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a b s t r a c t

The highly localized stress distribution found within dry masonry walls through transmission photo-
elasticity in Part I of this article is explained both proposing a micromechanical model (based on a form
of random cascade transmission of forces between bricks, which includes random coalescence
additionally to random branching) and applying a phenomenological description (based on the extreme
orthotropy of the equivalent homogeneous material).

� 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

Transmission photoelasticity has been shown in Part I of this
article to reveal the highly inhomogeneous stress distribution
within dry masonry walls, where ‘unloading islands’ emerge in
a narrow ‘stress stream’. The key to the interpretation of these
experimental results is randomness (but constrained within the
regular scheme imposed by the masonry) of contacts between
bricks and ‘overall’ material orthotropy with high contrast in elastic
moduli. Accordingly, two alternatives are proposed to fully explain
experiments presented in Part I, namely, (i) the micromechanical
model – where the masonry is treated as an elastic structure with
unilateral ‘orderly random’ contacts, to generate a form of random
cascade of vertical forces, where ‘random coalescence’ may occur in
addition to the usual rule of random branching – and (ii) the
continuum model – where the masonry behaves as a strongly
orthotropic material close to the elliptic border and reveals stress
localization following concepts proposed by Everstine and Pipkin
(1971) and Bigoni and Capuani (2002, 2005).

Although they both successfully explain our experimental
results, the micromechanical approach and the continuum model
have limitations, in the sense that the former is a simple approach
tailored on our experimental setting (so that it cannot be imme-
diately generalized to cover complex stress situations), while the
latter approach is general, though does not reproduce the diversity

of the stress states within masonries (the two approaches could be
combined, but this falls beyond the scope of the present article).

2. A resumé of experimental results

We refer to the experiments reported in Figs. 1 and 2, together
with those reported in Part I of this article to highlight: (i) the
highly localized nature of (almost vertical) stress percolation within
the masonry and (ii) the fact that forces are almost vertically
transmitted at random contacts between bricks.

A quantification of these forces has been proposed in Fig. 2
(which is the same photo reported in Fig. 2b of the Part I of this
article), through comparison with the elastic solution of a disk
subject to two equal and opposite forces (the material used is
PSM-9, for which the fringe constant is known to be 10.5 kPa/
fringe/m). The stress state in the disk is very similar to that obtained
with f.e. simulations when the force is applied at the centre of the
brick, so that the use of the analytical solution for the disk permits
a fast and enough accurate treatment of the images.

The quantification of force percolation shown in Fig. 2 reveals
that there is little diffusion of the load through the masonry, so that
the 125 N plus 70 N force near the load application becomes 75 N
plus 75 N plus 45 N in the three neighbor bricks near the bottom of
the sample.

To fully appreciate the strong, qualitative difference between
results reported in Figs. 1 and 2 and those pertaining to a model of
identical dimension, but homogeneous, we report in Fig. 3 results
pertaining a 72 mm� 88 mm� 6 mm rectangular plate of PSM-9
material, loaded in the same way as for the masonry models,
namely, with a vertical force applied on a 8 mm� 4 mm� 6 mm
punch (also made of PSM-9). The photo reported in Fig. 3, taken
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with the circular polariscope at 500 N vertical load, has been split
into two parts and interpolated with the analytical solution for
a uniform loading on a finite area of a semi-infinite elastic plate
[which is derived below, Eq. (2), see also Johnson, 1985]. This

solution can be derived from the problem of a concentrated force F
orthogonal to the otherwise free surface of an elastic half space, the
so-called ‘Flamant solution’, where only the radial stress is different
from zero and is given by

Fig. 1. Photoelastic fringes of a model of dry masonry with thin vertical joints detected with a circular transmission polariscope at white light. (a) Low vertical load (400 N); (b) high
vertical load (800 N). Note the unloaded brick three courses below the applied vertical load (denoted with a white arrow).

Fig. 2. Photoelastic fringes of a model of dry masonry with thin vertical joints detected with a linear transmission polariscope equipped with sodium vapor lamp (axes at 45� with
respect to the vertical) at an applied load of 250 N, denoted with a white arrow. Forces have been quantified through comparison with the solution of an elastic disk subject to two
opposite forces. (a) Fig. 2b of Part I of this article. Details are reported in parts (b) and (c).
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srðr;wÞ ¼ �
2F
p

$
cos w

r
; (1)

where r is the radial distance between the vertical force and the
point under consideration in the elastic half space, singled out by
the angular coordinate w, taken null when the point lies on the
vertical line of the loading force.

The stress state induced in the half space when a uniform load p
is applied on a segment of length 2b is obtained in Cartesian
coordinates through integration of Eqn. (1) as

s11ðx1; x2Þ ¼ �2p
p

Zb

�b

ðx1 � xÞ2x2�
ðx1 � xÞ2þx2

2

�2 dx;

s22ðx1; x2Þ ¼ �2p
p

Zb

�b

x3
2h

ðx1 � xÞ2þx2
2

i2 dx;

s12ðx1; x2Þ ¼ �2p
p

Zb

�b

ðx1 � xÞx2
2h

ðx1 � xÞ2þx2
2

i2 dx;

(2)

where x1 and x2 are respectively the horizontal and the vertical axes
of a coordinate system centered at the middle of the uniformly
loaded segment [�b, b].

Note that, although the stress field (2) is referred to a semi-
infinite elastic medium, the comparison with the experiment
reported in Fig. 3 and referred to a finite rectangular plate is very
satisfactory. This is related to the fact that the loading punch is
small when compared to the dimensions of the plate.

A comparison between Fig. 3 and the figures pertaining to the
masonry models (Figs. 1 and 2, see also Part I of this article) reveals
that the stress state within the masonry models deeply differs from
the elastic, isotropic and homogeneous solution. This situation has
been noted in somewhat similar experiments by Da Silva and

Rajchenbach (2000). Their conclusion is that the experiments do
not fit both elasticity and plasticity models, rather, they show
diffusive patterns. Although we do not disprove their conclusions
(rather we agree on several points), we suggest here an interpre-
tation not involving any diffusion. In particular, we point out that
experimental results on masonry models can be successfully
interpreted in two alternative ways, namely, either as the response of
a highly inhomogeneous material composed by a regular – though
discontinuous – structure, or as the response of a homogeneous elastic,
but strongly orthotropic, material. The former approach is based on
micromechanical considerations, while a macroscopic modelling in
terms of an equivalent homogeneous material is pursued following
the latter approach. We explain both approaches below.

3. Interpretation of experimental results

There are two ways to explain the obtained experimental results:
one is the micromechanical approach, in which the masonry is
modelled as a discrete structure, where bricks are randomly in
contact at their vertices; another is the continuum mechanics
approach, in which the material is modelled as a continuous
homogeneous material, characterized by an extreme orthotropy.
Both approaches can be successfully developed as follows.

3.1. Micromechanics: masonry as a discrete structure with random
contacts between bricks

The bricks have been found to be randomly in contact at their
vertices, so that a simple micromechanical model of our masonries
can be obtained as follows (explained with reference to the case of null
vertical joints, while thick vertical joints are treated in Appendix A):

i) our physical models are loaded vertically and experiments
show that friction does not play an important role. Friction is

Fig. 3. A uniform rectangular plate loaded on a small portion of its edge through a 500 N vertical force. Isochromatic fringes detected with a circular transmission polariscope at
white light and compared to the analytical solution for an elastic homogeneous isotropic half space, loaded on a portion of its boundary, Eq. (2).
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therefore neglected in the mathematical model, so that it is
assumed that forces percolate only vertically through the
masonry;

ii) since experiments show that forces are localized near the
brick vertices, we assume that every brick is loaded at its
upper edge by three compressive vertical forces, applied at
the centre and at the vertices of the edge (F1, F2 and F3 in
Fig. 4b). Moreover, the contact points at the lower edge of
a brick are always two, to be randomly chosen between three
possibilities (labeled 1, 2 and 3 in Fig. 4b);

iii) equilibrium of the brick and unilaterality of the contacts at
the lower edge of it determine the vertical reaction forces (R1,
R2 and R3 in Fig. 4b), which become the vertical forces for
the upper edges of the bricks at the lower course.

More in detail, the load transmission mechanism 1 involves two
reaction forces applied at the lower corners of the brick, deter-
mined as

R1 ¼ F1 þ
F2

2
; R2 ¼ 0; R3 ¼ F3 þ

F2

2
: (3)

The load transmission mechanism 2 (3) involves a reaction
force applied at the central point of the lower edge of the brick,

plus a reaction force applied at the left (right) corner or a reaction
force applied at the right (left) corner, depending on the satisfac-
tion of the unilateral constraint that no tensile forces are trans-
mitted throughout the masonry. The reaction forces are thus
determined as

R1 ¼ hF1 � F3i; R2 ¼ F1 þ F2 þ F3 � hF1 � F3i � hF3 � F1i;

R3 ¼ hF3 � F1i; (4)

where C D denotes the Macaulay brackets defined for all real a as
CaD ¼ ðjaj þ aÞ=2.

The algorithm to determine a force percolation within
a masonry works as follows. For a given masonry geometry, first,
the load mechanisms between the bricks are randomly generated
(employing a discrete probability density function) selecting
between the three possibilities listed in Fig. 4b and, second, the
forces and the contact points are obtained by employing Eqs. (3) or
(4). The proposed algorithm works in such a way that all equilib-
rium conditions (including rotational equilibrium) and unilateral
constraints are automatically satisfied.

It is clear that the structure is statically determinate and there is
a great (although finite) number of force distributions (but all con-
strained to lie within a certain ‘limit’ geometry and to possess a certain

Fig. 4. Model of a masonry as a discrete system with a form of random cascade vertical force transmission, where ‘random coalescence’ is possible, in addition to random branching.
An example of force diffusion tree similar to results reported in Fig. 1 is given in (a), where the darker is the color, the higher is the force transmitted (white bricks are unloaded, see
the scale reported in the lower part of the figure, where the transmitted percent of vertical load has been reported). Force transmission mechanisms are given respectively in part
(b), while examples of random force branching and coalescence are presented in parts (c) and (d), respectively.

D. Bigoni, G. Noselli / European Journal of Mechanics A/Solids 29 (2010) 299–307302



Author's personal copy

‘regularity’) to equilibrate a given vertical load.1 Moreover, the
obtained force distribution is a type of random cascade, in which
some additional rules have to be enforced, so that random
branching (Fig. 4c) is also accompanied by random coalescence,
occurring when two or three vertical forces applied at the upper
edge of a brick coalesce into one or two (Fig. 4d).

An example of the above procedure for determining a force
distribution in a masonry is shown in Fig. 4a, where darker bricks
are loaded more than lighter. This stress distribution has been
generated to mimic the experiment shown in Fig. 1. After the load
percolation through the masonry has been generated with the
above-explained algorithm, the stress state within the bricks and
the relative simulation of photoelastic fringe patterns (corre-
sponding to in-plane principal stress contours) has been evaluated
as in Fig. 5 of Part I (with ABAQUS-Standard, Ver. 6.7–1, Hibbitt,
Karlsson & Sorensen Inc., employing 4-nodes bilinear elements
CPS4) and reported in Fig. 5.

Due to the assumed randomness of the contacts, from a practical
point of view only ‘some’ of the possible stress distributions can be
investigated with the proposed model; however, the obtained
diversity of the possible stress distributions reproduces our exper-
imental results.

The proposed model shares some similarity with the so-called
‘q-model’ proposed by Liu et al. (1995) (see also Coppersmith et al.,
1996), in which the percolation of vertical forces through a granular
system is analyzed assuming that the vertical forces are randomly
distributed at n contact points, so that for n¼ 2, a unit force is split
into a force q and another force 1� q. Although rotational equi-
librium is violated and horizontal forces are neglected (Socolar,
1998), the q-method allows successful predictions of so-called
‘force chains’ in random distributions of photoelastic disks.
However, the q-model does not provide information on the stress
distribution within the elements, while our method, in which both
equilibrium and unilaterality of contact are preserved, allows
determination of stresses even inside the bricks.

3.2. Masonry as a continuous material with extreme orthotropy

In a macroscopic modelling, the highly inhomogeneous struc-
ture of the masonry models is ‘viewed at a distance’ from which
inhomogeneity can be disregarded, so that the response of
a uniform equivalent continuum is considered. In these conditions,
the diversity of the possible stress percolations in nominally
identical structures is necessarily lost, since these become in
a sense identical when ‘viewed at a sufficient distance’ and they
appear as manifestations of the same localized stress distribution.

Since prior to vertical loading bricks are set in contact only
under the (evidently small) effect of gravity, the vertical joints are
unable to sustain any (normal or shearing) traction, while the
horizontal joints cannot support shearing stress, but they can carry
orthogonal compressive forces. In these conditions and due to the
specific geometry of the masonry, the material becomes equivalent
to an orthotropic homogeneous material, with a high contrast
between stiffness moduli.2

The solution for a concentrated force F orthogonal to the
otherwise free surface of an elastic orthotropic half space (with
orthotropy x1� x2 axes aligned parallel and orthogonal to the free
surface) has been found by Lekhnitskii (1981). With reference to an
elastic material loaded in plane stress (as is the case of our masonry
models), the constitutive equations can be written in inverse

311 ¼
1
E1
ðs11 � n12s22Þ; 322 ¼

1
E2
ðs22 � n21s11Þ;

312 ¼
1

2m12
s12; (5)

and direct form

s11 ¼
E1

1� n12n21
ð311 þ n21322Þ;

s22 ¼
E2

1� n12n21
ð322 þ n12311Þ; s12 ¼ 2m12312; (6)

where E1 and E2 are the two Young moduli in the directions 1 and 2
respectively, m12 is the shear modulus, while n12 and n21 play a role
similar to the Poisson coefficient of isotropic elasticity.

The solution for the concentrated force, where only the radial
stress is different from zero and defining w as the angle taken from
the vertical line of the load F, is expressed by

srðr;wÞ ¼ �
F
p

$
cos w

r
$

ffiffiffiffiffi
E2

E1

s
$
u1 þ u2

LðwÞ ; (7)

which generalizes the Flamant solution, Eq. (1). Here u1 and u2 are
the roots of the equation

E2

E1
$u4 þ

�
2n12$

E2

E1
� E2

m12

�
$u2 þ 1 ¼ 0; (8)

and

LðwÞ ¼ E2

E1
$sin 4w�

�
2n12$

E2

E1
� E2

m12

�
$sin 2w cos 2wþ cos 4w

¼ det½AðwÞ�$1� n12n21

m12E1
;

(9)

is a quantity proportional to the determinant of the so-called
‘acoustic tensor’ A(w) (Rice, 1977). Therefore, the differential
equations governing equilibrium remain (strongly) elliptic until
this determinant is strictly greater than zero. Our masonry struc-
ture is characterized by a low value of shear modulus m12 and of
elastic modulus E1, the latter particularly in the case of thick joints
between bricks. Moreover, the two Poisson’s ratios are certainly
small and, as a first approximation, they can be taken to be zero,
n12¼ n21¼0, so that the function (9) becomes:

LðwÞ ¼ 1
m12E1

ðm12E2 sin 4wþ E1E2 sin 2w cos 2w

þ m12E1 cos 4wÞ: (10)

The analysis of the singularity of the acoustic tensor when an
elastic modulus tends to zero provides the key to the under-
standing of localization of deformation (Rice, 1977). The following
two cases are of interest to describe our experimental results.

i.) Coefficient m12 tends to zero, while E1 remains finite. Two
shear bands form: one vertical and one horizontal, corre-
sponding to a band normal inclined at w¼ 0 and w¼p/2 in Eq.
(10) and a shear deformation mode within the band.

1 Since force distributions are always possible and these will ensure equilibrium
for applied vertical load distribution of arbitrary intensity, a collapse load will not
be predicted for applied vertical loads, a conclusion consistent with limit analysis,
where compressive strength is usually taken to be infinite (Heyman, 1966).

2 More precisely, this material should be considered elastoplastic, rather than
elastic, in conditions where both an elastic or an elastoplastic strain increment may
occur. However, the plastic branch of such an elastoplastic material can be analyzed
employing an ‘elastic comparison material’, following concepts introduced by
Bigoni and Capuani (2002, 2005). Therefore, the analysis is reduced again to the
analysis of the behaviour of an elastic orthotropic material.
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ii.) Both E1 and m12 tend to zero. One vertical compaction/sepa-
ration band becomes possible, corresponding to a band
normal inclined at w¼ 0 in Eq. (10) and a uniaxial strain
deformation mode within the band.

Since in both of the above cases one vertical shear band is
always possible, the application of a vertical load will result in
a stress map elongated and focussed in the vertical direction. This
becomes evident from the analysis reported below.

Solution (7) depends on two independent elastic constants
only and, when a uniform load p is applied on a segment of
length 2b, its integration provides a generalization of solution (2)
in the form

where

Lðx1; x2; xÞ ¼
1h

ðx1 � xÞ2þx2
2

i2

�
E2

E1
$ðx1 � xÞ4

�
�

2n12$
E2

E1
� E2

m12

�
ðx1 � xÞ2x2

2 þ x4
2

�
: (12)

Equations (1) and (7) are exact. However, in the case (i) of
extreme contrast in orthotropy, there is an asymptotic solution
available, which approximates Eq. (7). This has been found by
Everstine and Pipkin (1971) 3 (see also Christensen, 1979) and is
expressed by

s11ðx1; x2Þ ¼ 0;s2iðx1; x2Þ ¼ �
F

3 p
,

xi�x1

3

�2
þx2

2

; (13)

where i ˛ [1,2] and 32 is in our case (in which n12¼ n21¼0) the
ratio between the shear modulus m12 and the vertical elastic
modulus E2. When a uniformly distributed load p acts on a half

Fig. 5. Isochromatics for the masonry loaded through the force percolation tree reported in Fig. 4a is analyzed with linear elastic f.e. Monochromatic [part (a)] and colored [part (b)]
contours denote calculated in-plane principal stress difference, corresponding to the photoelastic fringes.

s11ðx1; x2Þ ¼ �
p
p

$

ffiffiffiffiffi
E2

E1

s
$ðu1 þ u2Þ

Zb

�b

1
Lðx1; x2; xÞ

$
ðx1 � xÞ2x2h
ðx1 � xÞ2þx2

2

i2 dx;

s22ðx1; x2Þ ¼ �
p
p

$

ffiffiffiffiffi
E2

E1

s
$ðu1 þ u2Þ

Zb

�b

1
Lðx1; x2; xÞ

$
x3

2h
ðx1 � xÞ2þx2

2

i2 dx;

s12ðx1; x2Þ ¼ �
p
p

$

ffiffiffiffiffi
E2

E1

s
$ðu1 þ u2Þ

Zb

�b

1
Lðx1; x2; xÞ

$
ðx1 � xÞx2

2h
ðx1 � xÞ2þx2

2

i2 dx;

(11)

3 Everstine and Pipkin (1971) also noticed a ‘stress channeling effect’ for fiber-
reinforced materials, essentially similar to the stress percolation found in our
models.
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space, Eq. (13) can be integrated to obtain the following approx-
imation to Eq. (11)

s11ðx1; x2Þ ¼ 0; s2iðx1; x2Þ ¼ �
p
3p

Zb

�b

xi � xd1i

x2
2 þ

�
x1�x

3

�2dx; (14)

where i ˛ [1,2] and d1i is the Kroenecker delta.
The use of Eq. (11) or (14) is equivalent to our purposes, since

results are qualitatively identical in both the limit cases (i) and
(ii) of extreme orthotropy. Hence, maps of in-plane principal
stress difference have been plotted in Fig. 6, obtained with
Eq. (11) and elastic constants ranging from the isotropic case
(Fig. 6a) to the extreme orthotropy where both E1 and m12

tend to zero (Fig. 6d), keeping E1/m12¼ 2. In particular, Fig. 6b–d
correspond to E1/E2 taken equal to 2/3, 1/3, and 1/300,
respectively.

An inspection of Fig. 6 clearly reveals that the stress
distribution strongly localizes and focusses parallel to the
direction of the load when the orthotropy becomes high, which
explains the nearly vertical stress percolation in the masonry
models. This finding is in complete agreement with results
obtained in elastic solids prestressed near the elliptic boundary
by Bigoni and Capuani (2002, 2005); Bigoni and Dal Corso
(2008); Bigoni et al. (2008); Dal Corso et al. (2008); Piccolroaz
et al. (2006). Therefore, our physical models provide examples
of a material characterized by constitutive equations with an
extreme orthotropy and therefore near the elliptic boundary, or

Fig. 6. Level sets of in-plane principal stress difference for a vertical uniform force distribution (denoted with a thick black arrow) on an area of finite length on an elastic half space,
Eqs. (11). (a) The isotropic solution; (b) and (c) ‘intermediate’ values of orthotropy; (d) the highly orthotropic solution, obtained with both E1 and m12 tending to zero (while E1/
m12¼ 2) evidencing nearly vertical stress percolation.
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– in other words – near material instability. Perturbed with
concentrated forces, the response of such a material can be
interpreted within the theory proposed by Bigoni and Capuani
(2002, 2005).4 Accordingly, the mechanical response is highly
localized, so that the stress percolates in a ‘narrow channel’ almost
coaxial with the concentrated force.

Note that Fig. 6d closely resembles the wave-like stress diffusion
pursued by Goldenberg and Goldhirsh (2005), see also Luding
(2005) to explain the behaviour of granular materials.5 In the case
(i) of extreme orthotropy, where only m12 tends to zero, Eq. (14)
yields, for 3¼ 1/25, a plot of the principal in-plane stress difference
qualitatively identical to Fig. 6d and therefore the experimental
results are fully explained in both cases (i) and (ii) of extreme
orthotropy.

The solution relative to an extreme orthotropy contrast (Fig. 6d)
fully explains the near vertical stress percolation found in our
experiments. The localized stress distribution obtained for high
orthotropy contrast degenerates at the boundary of ellipticity into
a set of vertical lines, transmitting the load without diffusion, as

pointed out by Di Pasquale (1992), with reference to the so-called
‘no-tension material model’ introduced by Heyman (1966).

It should be noted that, consistently with the continuum
mechanics assumption and differently from the micromechanics
approach, the diversity of stress states within the same masonry
structure cannot be now reproduced, since masonry is interpreted
as a homogeneous material, while the different localized stress
streams are manifestations of the same localized response,
differing only for the presence of structural imperfections. A way
for reproducing stress-state diversity within a masonry might be
pursued by introducing some form of randomly distributed defects
in the continuum material, similarly to the randomly distributed
dislocations in the simulations of crystal plasticity (van der Giessen
and Needleman, 1995), but this leads us beyond the scope of the
present investigation.

4. Conclusions

Models of dry masonry walls have been shown to represent: (i)
from micromechanical point of view, an example of a microstruc-
ture dominated by random (but constrained within a regular fabric)
contacts between bricks; (ii) from continuum modelling point of
view, an example of a material on the verge of an instability. These
two points of views have been successfully translated into model-
ling using micromechanical considerations and the perturbative

Fig. 7. Model of a masonry with thick vertical joints as a discrete system with a form of random cascade vertical force transmission, where ‘random coalescence’ is possible, in
addition to random branching. A dark color denotes a high force transmission, so that white bricks are unloaded (see the scale reported in the lower part of the figure, where the
transmitted percent of vertical load is reported). (a) A force percolation tree obtained with the model; (b) force splitting-rules for a masonry with thick joints; (c), (d) examples of
random branching and random coalescence.

4 The perturbative approach has been recently employed to explain fundamental
features of shear band propagation by Bigoni and Dal Corso (2008).

5 Piccolroaz et al. (2006) have pointed out that the perturbative approach by
Bigoni and Capuani (2002, 2005) can be generalized to model the behaviour of
granular materials.
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approach proposed by Bigoni and Capuani (2002, 2005). These
models explain experimental results presented in Part I of the
present article and open a new perspective in the modelling of
masonry structures.
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Appendix A. Micromechanical model for thick joints

In a microstructural modelling, we can take into account that
the distribution of the contact points between bricks is random, but
localized near the edges of the bricks. Roughly speaking, the idea
here is to treat every brick as a doubly supported beam by randomly
distributed reaction forces (R1� R4, to be selected between the
three possibilities shown in Fig. 7b), subject to the vertical loads
(F1� F4, Fig. 7b) transmitted by the two bricks in the upper course.
Note that we have excluded the possibility, never observed in our
experiments, that a brick be supported simultaneously at the two
corners of the lower bricks. The result of the procedure is a form of
random cascade admitting random coalescence, in addition to
random branching (Fig. 7c and d). Note that the width of the bricks
is b and the thickness of the joints is d in Fig. 7, so that the reaction
forces are determined as

R1 ¼ F1 þ F2

�bþ d
2b

�
þ F3

�
b� d

2b

�
;

R2 ¼ R3 ¼ 0;

R4 ¼ F4 þ F2

�b� d
2b

�
þ F3

�
bþ d

2b

� (15)

for mechanism 1; as

R1 ¼
hbðF1 � F4Þ � dðF1 þ 2F3 þ F4Þi

b� d
;

R2 ¼ F1 þ F2 þ F3 þ F4 � R1 � R4;R3 ¼ 0;

R4 ¼
hbðF4 � F1Þ þ dðF1 þ 2F3 þ F4Þi

bþ d

(16)

for mechanism 2, and as

R1 ¼
hbðF1 � F4Þ þ dðF1 þ 2F2 þ F4Þi

bþ d
;

R2 ¼ 0;R3 ¼ F1 þ F2 þ F3 þ F4 � R1 � R4;

R4 ¼
hbðF4 � F1Þ � dðF1 þ 2F2 þ F4Þi

b� d

(17)

for mechanism 3.
We can note from Figs. 4 and 7 that the proposed micro-

mechanical model correctly reproduces both the tree-like form of
the stress percolation and the diversity of ‘stress streams’ occurring
even in nominally identical masonries.
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