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Abstract

A second-gradient elastic (SGE) material is identified as the homogeneous solid equivalent to a periodic planar
lattice characterized by a hexagonal unit cell, which is made up of three different linear elastic bars ordered in a
way that the hexagonal symmetry is preserved and hinged at each node, so that the lattice bars are subject to pure
axial strain while bending is excluded. Closed form-expressions for the identified non-local constitutive parameters
are obtained by imposing the elastic energy equivalence between the lattice and the continuum solid, under remote
displacement conditions having a dominant quadratic component. In order to generate equilibrated stresses, in the
absence of body forces, the applied remote displacement has to be constrained, thus leading to the identification
in a ‘condensed’ form of a higher-order solid, so that imposition of further constraints becomes necessary to fully
quantify the equivalent continuum. The identified SGE material reduces to an equivalent Cauchy material only
in the limit of vanishing side length of hexagonal unit cell. The analysis of positive definiteness and symmetry
of the equivalent constitutive tensors, the derivation of the second-gradient elastic properties from those of the
higher-order solid in the ‘condensed’ definition, and a numerical validation of the identification scheme are deferred
to Part II of this study.

Keywords: Strain gradient elasticity; non-local material; non-centrosymmetric material; internal length; homoge-
nization

1 Introduction

Research on the equivalence between spring networks and continuous bodies was initiated by Cauchy [13] and later
continued by Born [11], with the purpose of determining the overall elastic properties of crystalline materials subject
to small strain. Considering a linear interaction between atoms, a material is modelled as a three-dimensional linear
elastic lattice, with elements only subject to axial deformation. This is the so-called ‘Cauchy-Born rule’, which yields
the ‘rari-constant’ theory of elasticity, relating the elastic property of a solid to the interactions between its atoms or
molecules.

Over the years, the approach has been extended to evaluate mechanical characteristics such as Young modulus,
Poisson’s ratio and normal modes of vibration for a number of geometrically different networks [17, 20, 21, 23, 26].
With reference to a hexagonal lattice, composed of linearly elastic bars pinned to each other (so that bending effects
are excluded) and characterized by three different values of stiffness, as reported in Fig. 1, Day et al. [16, 33] have
shown that the overall behaviour of this lattice may be modelled through an equivalent isotropic Cauchy linear elastic
solid defined by the elastic bulk K and shear p moduli given by
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where k, % and k are the three in-plane bars’ stiffnesses (so that their dimension is a force per unit out-of-plane
thickness divided by a length) defining the hexagonal lattice.
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Figure 1: (Left) A planar lattice obtained as the periodic repetition of a hexagonal unit cell (with side length ¢) made
up of linear elastic bars, characterized by three stiffnesses k (red bars), k (green bars), and k (blue bars). The bars are
connected through hinge joints, so that only axial strain is present and bending is excluded. Reference systems are
also reported. (Right) Explosion of the hexagonal lattice displaying the cell and node nomenclature and highlighting
how the perimeter nodes are shared among adjacent cells.

The goal of the present research is to extend the theory developed by Day et al. [16, 33] towards a higher-order
approximation for the elastic material equivalent to the hexagonal lattice, showing nonlocal effects related to the four
parameters defining the lattice properties at the micro-scale, the hexagon side length ¢ and the stiffnesses k, k and k.

Phenomenological constitutive theories, used to model materials of engineering relevance, were traditionally as-
sumed to be local, or, in other words, did not comprise any internal characteristic length. Recently, experimental
observations at the micro- and nano-scale have evidenced size-effects [9, 12, 22, 37], which cannot be described with
local constitutive models. Therefore, an enhanced modelling has been introduced, which becomes particularly useful
when large strain gradient are involved, as in contact mechanics [19, 38] indentation processes [8, 15], fracture [18, 28],
and shear band formation [14, 32].

Several authors [1, 2, 5, 6, 24, 27, 31, 34, 36] have proposed non-classical continuum models to treat lattice structures
involving beam-type interactions. For these lattices, non-local effects emerge as the response to non simple interactions
between material points, generated, for example, when rotational springs are used [35].

The primary goal of the present study is the determination of the non-local response of lattices (having elements
only subject to axial forces), which has been scarcely considered so far (an example is the case of pantographic trusses
[30]). In particular, it will be shown that a hexagonal lattice structure with axially-deformable bars can be identified
with a ‘form I" Mindlin elastic material, a special type of second-gradient elastic law [25].

The present article is organized as follows. After the kinematics and the equilibrium of the hexagonal lattice (Fig.
1) is introduced (Sect. 2), the quadratic remote displacement conditions, plus the additional terms needed to enforce
equilibrium, are presented in Sect. 3. The homogeneous Second Gradient Elastic (SGE) solid equivalent to lattice is
identified in Sect. 4. In particular, by imposing an elastic energy matching, closed-form expressions for the higher-
order tensors are derived. As a consequence of the fact that the energy matching is imposed under the condition
that the applied displacement field generates equilibrated stress states, only a ‘condensed’ form of the constitutive
equations is determined for the SGE solid. As a conclusion, it is shown that the elastic second-gradient solid equivalent
to the lattice structure exhibits non-locality, anisotropy, and non-centro-symmetry (despite the fact that the equivalent
Cauchy material, derived on linear displacement fields, is local, isotropic, and centro-symmetric). Important issues
related to: the analysis of (i.) positive definiteness and (ii.) symmetry of the equivalent material, (iii.) the derivation
of the full SGE solid from the properties of the ‘condensed’ one, and (iv.) the validation of the derived second-gradient
model are deferred to Part IT [29] of this study.

2 The hexagonal lattice

2.1 Preliminaries: the periodic structure and its elastic equilibrium

An infinite periodic lattice (Fig. 1, left), defined in the plane containing the orthonormal basis e;—es, is considered as
the repetition of a hexagonal unit cell, which will eventually be identified with a representative volume element (RVE)
of an equivalent continuum. The hexagonal cell is regular and has side of length /, it is characterized by linear elastic
bars with three different values of axial stiffnesses, namely, k,k, and k, distributed according to the scheme reported
in Fig. 1, which preserves the hexagonal symmetry. Therefore, a total of six bars (two groups of three bars having the
same stiffness) converge at each hinge node of the lattice.

Among the three tessellations equivalent for the realization of the periodic lattice, the one is chosen for which the
unit cell has its center defined by the convergence of the bars of stiffness k& and k, while the other bars of stiffness k
define the hexagon perimeter. Each node of the cell is denoted by the index ¢ = {0, 1,2,3,4,5,6} and each cell is singled
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out by the integers {m,n} € Z, which determine the cell position with reference respectively to the non-orthogonal
directions e; and e, /3 = 1/2e; +/3/2ey, see Fig. 1 . It follows that the position x(m:n19) of the i-th node of the {m,n}

cell can be described with reference to the central node (i = 0) position x(™™9 through the following expression
x (M) = x(mnl0) 4 g (), (2)

where g(®) defines the direction spanning from the central node to the i-th node,

g = (1 —6;0) {—sin [W(Zgl)] e; + cos {77(131)} eg} , (3)

in which the index i is not summed and the Kronecker delta §;q is defined to include the null index value, so that
oo = 1 while 6;0 = 0 for every i # 0. From the definition expressed by Eq. (3), it follows that the vector g(*) has unit
modulus for every i # 0, while it vanishes when ¢ = 0 (central node),

g =0, |g? =1, for i=12,..6. (4)

Furthermore, due to the RVE symmetry, the unit vectors g(*) satisfy the following property

g = _gl(it3) ;193 (5)

and the following combination of the unit vectors g, g(®, and g(® provides the unit vectors e; and e, 3

g(5) + g(G) o _ g(l) + g(G)
\/?: 3 w/3 \/g

Considering the definition of the unit vector g(), Eq. (3), the position x(™"™9 of the central node of the cell {m,n}
can be expressed with reference to the position x(®%1% of the central node of the cell {m,n} = {0,0} as

<(monl0) — 1 (0,000) 4 {m <g(5) 4 g(G)) +n (g(l) + g(G))} : (7)

(6)

e =

so that the position x(™™% of each node i of every {m,n} cell, expressed by Eq.(2), can be finally reduced to
x(mmli) — 5(0,000) 4 g {gu) +m (g<s> T g<6>) in (gu) T g<6>)] . (8)

All the perimeter nodes (i = {1,2,...,6}) join three adjacent hexagonal cells, Fig. 1 (right), so that the following
identities hold

X(m,nll) _ X(m,n+1\3) _ X(m—l,n—‘,—l|5)7 X(m,n\Z) _ X(m—l,n+1\4) _ X(m—l,n|6)7

X(m,n|3) _ X(m—l,n|5) _ X(m,n—l\l)’ X(m,n\4) — X(m,n—l\G) — X(m+1,n—1|2)7 (9)
KmnlS) — mALn—11) _ 3 (mt1nl3)  (mnl6) — gmtinl2) — x(mnt1je),

Introducing u(™ "9 as the (small) displacement of the i-th node belonging to the cell {m,n}, which according to Eq.
Eq. (9) satisfies
u(m,n|1) — u(m,n+1|3) _ u(m—l,n+1|5)7 u(m,n\2) _ u(m—17n+1\4) _ u(m—l,n|6)’

u( — u(m+1,n—1|2)7 (10)
u(m,n|5) — u(m+1,n71|1) — u(?n+1,n|3)7 u(m,n\G) _ u(m+1,n|2) _ u(m,n+1|4)’

monl3) = y(m=1nl3) = y(mn=11)  ymal4) = (mn-16)

the elongation E(™"%7) of the bar connecting the nodes i and j (with i # j) is given by

Elmnlig) — (u<m,nm _ u(m,nm) . (gm _ gm), i (11)
which is insensitive to a permutation of the node indexes ¢ and j,

Emnlig) — plm.nlji) (12)
Considering that the bars have a linear elastic response, the force F(mnli.7) (positive if tensile and negative if com-
pressive) acting on the i-th node of the cell {m,n} and generated by the elongation E(m:nli9) of the bar with stiffness
E(7) is given by

F(mmlig) — _p(i5) gimmnlig) (gu) _ gu)) : (13)
which, according to the second Newton’s law, is also the opposite of that acting at the j-th node and due to the

elongation E(™"%7) of the same bar
F(mvn‘jvi) — _F(m/n’llﬂ) (14)
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Independently of the cell indexes {m,n}, the stiffness k(:7) related to the bar connecting the nodes i and j is
defined as (Fig. 1, left)

k, i#0and j#0,
kD) =8k, i=0and jeven or ievenandj =0, (15)
k, t=0and j odd or ¢oddand;j=0.

The sum of all the forces F(™"%9) acting on the node i (belonging to the cell {m,n}) and generated by the
elongation of all the bars jointed at that node, provides the resultant R(""9) Fig. 2 (left). Considering the properties

expressed by Eq. (10), the resultant forces at all of the lattice nodes are given through the three primary resultants
R(m:nl0) R (m.nll) R(m.nl2) o9

6
R(mnl0) — 3~ Rlmnlo.g)

Jj=1
R(m,n\l) _ F(m,n|1,0) + F(m,n\1,2) + F(m,n|1,6) + F(m,n+1\3,0) + F(mfl,n+1\5,6) + F(mfl,n+1\5,0)’ (16)

R(m:nl2) — F(m.n[2,0) + F(m,n|2,1) + F(m.n[2,3) + F(m—1,n]6,0) 4 F(m—1,n+1]4,3) 4 F(m—1,n+1]4,0)

—_— L o —_—— i ——— —— —n_— —_——_—— - — —
R(m,nu) Ab(m’"‘l)
R(Tn,n|5) b(m,n\

<Ab(mml3)

Figure 2: Resultant forces R("™"%) (left) and additional displacements Au(™™% (right) associated with the node i
(i=0,...,6) belonging to the cell {m,n} within the lattice drawn in its undeformed configuration.

Assuming quasi-static conditions, from property (10) the equilibrium of the whole lattice is attained when the
three primary resultants R0 R™7D and R™"2) vanish for every cell {m,n}

Rm7l0) — Rimnll) — R(mnI2) — V{m,n}. (17)

The elastic energy Ul(gzm) stored within the cell {m,n} (instrumental to later identify the energetically equivalent
microstructured solid) is provided by

lat

6 6
U(m’") _ % Z K (:0) [E(m,nli,o)} 2 + i Z I (61+1—6056) [E(mvnﬂvi-i-l—ﬁ&:a)] ? , (18)
=1 =1

where only one half of the energy stored within the bars along the hexagon perimeter has been considered, so that the
total energy of the infinite lattice is obtained by summing the energy of each cell

U = > uimm, (19)

m,neEZ

2.2 Definition of an average operator for the displacement gradient in the lattice struc-
ture

With reference to a generic field f(x1, x2) over a domain 2 of a continuous body, its gradient and the related average
are respectively given by
afj (2171 ’ 2172)

frlan,ma) = S

1
= — [ fpd0
) <f]yk> ||Q||/Qf]7k ) (20)

where [|€?|] is the measure of 2. By means of the divergence theorem, the gradient average can be rewritten as

1
(fik) = el /SQ finwds, (21)

where only the evaluation of the field f(z1, z2) along the cell perimeter is needed. In order to compute the displacement
gradient average, the displacement field along the cell perimeter can be linearly interpolated as

u(s;m,n,i) = u™n 4 (u(m’"““*&;ie) — u(m*”li)> %, i=1,...,6, (22)
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where s is the curvilinear coordinate along the bar of the cell {m,n} connecting the node ¢ to node i + 1 — 6J;5 and
measuring the distance from the former (i=1,...,6). Considering this interpolating field u(s;m,n,i) and identifying
Q with the hexagonal domain, the average of the displacement gradient for the lattice structure (identified with the
subscript ‘lat’ to highlight its relation with the lattice, and not with the continuum) can be obtained by substituting
Eq. (22) into Eq. (21) as

6
m,n 1 m,n|i m,n|i+1—64; 7
<Uj k>l(at )= 3\/>£ Z ( ( 9 +u ( i 6)) nl(c)a (23)
(i) (i)

which, when the normal vectors n;’ are expressed with respect to the unit vectors g, ~, reduces to

<uj k>|(;? n) 96 Z ( (m n|i) +u (m nl|i+1— 6616)) (gl(;) +g](€i+1765i6)) . (24)

(m.n)

Lt can be expressed in the reference system e;—e; as

More specifically, the four components of (u;, k)

7u§m,n\2) _ ugm,n|3) + ugm,nﬁ) + u(1m7n|6) 2u(1'm,n\l) + ugm,n|2) _ u(lm,n\S) _ 2u(1mn|4) _ ugm,n\fy) (m,n|6)

+ uy

m,n) __ 1 2 6
<vu( )>Iat - Z _u;m,n\Q) _ U(Qm,n|3)\{§u§m,n\5) + ugm,n|6) 2uém,n\1) + u(2m,n|2) _ uém,n\?)) _ 2ugan|4) _ uém,n\S) + uém,n\(i)
2v3 6

(25)

An alternative but equivalent way for deriving the average of the displacement gradient, Eq. (25), can be obtained
with reference to the piecewise description of the displacement field along each one of the six equilateral triangles,
subdomains of the hexagonal cells and enclosed by the three different bars. Such a piecewise description of the
field u("™™9) (x) follows from the linear interpolation of the displacements of the central node and the two consecutive
perimeter nodes j and j+1—64;6 (with j = 1, ...,6), corresponding to the three vertices of the j-th triangle composing
the {m,n} hexagonal cell, as

u(m,n;])(x) = Almmniy 4 c(mn.g) with j=1,..,6 m,n €7 (26)
where matrix A (™3 and the vector ¢(™™9) are
) 92 cos (Tj) (1L§m,n\]) _ u(lm.n\o)) +2cos (m 1)) (ugm,n\()) _ ugm,n\]Jrl)) i) _ 2¢cos (TJ) (u (m,nl3) (m.n\[))) +2cos («(;;1)) (u(zm.n\o) _ u(2m<n|]+l))
All - ’ A12 G
v VEL v V3t
L 2sin () (u™" — ™) + 25in (w(z;l)) (ulmnlo) _ y manli+1)y L 2sin () (™) — u$m1) | 9 in ( o ) (ulmnIo) _  fmonlit1y
(21 ) B (m,n[0) vat 7 (22 ) B (m,n|0) vat
Clﬂl.’ﬂ)] = ulm,” R Cz’rn,ﬂ.] — uz’l‘ll.n .
(27)

The average of the displacement gradient within the unit cell {m,n} follows from Eq. (20) as

6
(mn) _ 1 (m1.9) (x)d 9
(Va0 = o ; /WM V™) (x)dQ. (28)

which, considering the piecewise description of displacement (26), Eq. (28) can be rewritten as

6

(VuG) = £ 3

7=0

(29)

qun M,5) A(m n,5)
AéT M5) A(m n,j5)

and that, recalling Eq. (27), reduces to the same expression given by Eq. (24).

3 Second-order displacement boundary condition

The key for the identification procedure performed in the next Section is the imposition to the infinite lattice of a
linear and a quadratic nodal displacement fields (as in [3], [4], [7], [10]), together with an ‘additional field” Au(™™%)
namely,

ulm™m) = (Ml 4 Bstrxgm’”li)xgm’nli) + Aulmmnld), with rs,t=1,2 (30)

where o, and (g, are tensors defining the displacement amplitudes and satisfying the symmetry properties o, = g
and Bgir = Bisr, SO that they have in general three and six independent components, respectively. The presence of the
additional term Au(m nld) i necessary, as shown further on, for attaining the quasi-static equilibrium for every ag,

and gy, as defined by Eq. (17). The displacement field expressed through Eq. (30) can equivalently be written as

u(m,n|i) — ax(NL,n\i) + (x(7n,n|i) ®X(m,n|i)) :ﬂ"‘ Au(’m,n\i)7 (31)
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where the second-order tensor a and the third-order tensor 3 have components oy = (@)s and Bsr = (B)str. In
Eq. (31), the dyadic product ® and double scalar product : are introduced, respectively defined as (a® b),, = asb;
and (A:®B), = AuBsir. Considering the displacement field (31), the elongation of the bars can be computed from
Eq. (11) as

E(mmlig) _p {a (gu) _gu)) [ (m.nf0) & (g(> g(”ﬂ .8

, . . , , . - (32)
4/ [(gm +g(1)) ® (gm _ gm)} :5} . (gm _ gu)) F ARl
so that the corresponding force at the i-th node can be evaluated from Eq. (13) as
FOmnlig) — _ pG.)p qlid) {a (gu) _ gu)) ) [X<m,n\o> ® (g@) _ gu)H .8 )
33
40 [(gm + gu)) ® (gu) - g(j))} :ﬂ} £ ARl
where (manli) — (Au(mald) (manli)) . (g0 — g)
AEm,nz,j — Aum,nz _Aum,nj . g’L_gj , ) )
AF(nnliod) — _pid) ApGnalid) (g) — gli) | 17 (34)
and N _ _ _ _
Gl — (gm _ gm) ® (gm _ gm) . (35)

In combination with Eqs. (33) and (34),, the three primary resultants R(™"0 Rm»ID R(m:712) Eqs. (16), reduce
to

(mnl0) _ (3 _ % @ ae®) e® 1 (BLF)e2 ) 5e®) :8.ed] g
R (k k)ei:%s(g ag) g +(k+k)€i_;35[(g 2g?):8-8"]g .
P x(mml0) & o (i) 0] g (0,5) @ (0.9) (mnl0) _ Aq(mnld)
2(i-7)e 3 [(xm0eg) o gz}gw;k DGO (Au 1) - A,
R(m,nl):(k_g)gi—m,s) (gu). gu)g(z +( +@) 42“73’5[( <>®g<z>> .8 gu)} (i)
T_% (mnl0) g o) ;3. g®] g %) 2 g g g® (@)
+2 (- Ic)fi_%ﬁ[(x @g”) 3-89 +2(F k)f_;[( og"):8-8"]e
% {Gu,m (Au<m,n\1 Aul™ n\O)) 1+ g6 ( Aulmnll) _ Au(mfl,n+1|o>)
4+ GBO (Au<m ml1) _ Aqg(mn+110) )} _% [Gwo (Au(mm\l) _ Au(m,mz))
+ gBo (Au<m,n|l> _ Au(m,ms)) + g0 (Au(m,nm _ Au(m,n+1|2>)] 7
(37)
man2) _ (5 _% @ ae®) e® 1 (FLF) 2 ) e®) :g.e0] g
R (7 k)zi:%5(g ag) g +(k+k)ei%5[(g @) 8- e
% x(m:n[0) @] g P AYE @ o) :8.e0] g
2(i-8)e 3 [(xmn0050) peg 0 w2 () T [(5 08 000"
+ % [G@m ( Au(mn2) _ Ay n\O)) 1+ gl ( Au(mnl2) _ (m—l,n+1|o>)
L g6 (Au<m,n|2> _ Au(mﬂm\O))} A [G(4, ) (Au(m nl2) A um n\S))
LG6o (Au<m,n\2) _ Au(m,nm) 1+ G20 (Au(mmz) _ Au(mfl,nu))} .
(38)

It follows from the above that all of the resultant forces R(""") may be annihilated only when the additional field
Au™"") assumes a linear expression which, under the constraint given by equations (10), is provided in the following
general form (Fig. 2, right)

Aa(mvnlo) — Zx(mvnlo) _|_ Z7
Au™m) = & Ap(mnli) — yx(mali) 4y i odd, (39)
Acmnlt) = Wx(mnl) 4w i # 0 and even,
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which implies that the average of the displacement gradient (24) in the lattice is

V3(2m 4 n) } V+W
+ .
3n 2

(Vu)!™™ = o + (8- [ (40)

Considering the additional field , Eq. (39), the three primary resultants R0 R(mn1) Rm712) Eqs. (36)(38),

reduce to
(manl) _ (T _ T i (i) @ 5 ¢®) : g.g®] g
RO = (7 k)éi_§5(g cag) g +(k+k)ei;5[(g 2g"):8-g")g
(#1132 [0 ee0) -]
1=1,3,5 (41)
@ g0\ [7 (Ve gy mnl0) 4y
+i;5(g ®g ){k(wg Y (V-Z)x b z)

+h (JWg(i) (W = Z)x(mnl0) |y z)] ,

R ()0 5 (6000 (4 7) 5 [(6 08 -

i=1,3,5 i=1,3,5

_g) 3 [(X(m,mm ®g(z‘>> :5.g<¢)} g

£i=1,3,5
7 (1) @) . 3. g
k)gzi_;;, [(g1®g’).ﬂ gz}g’—k (42)

—I—Z(k:
+2(E— 5

@) @) [E(—rve® — V) x(mnl0) (1) _ o) _
+Z§)5<g Qg )[k( Vgt +(Z -V)x +£z<g g )+z V)

+F (—Wg(l) (W — V) x(mnl0) +£W( )4 gl )) +w—v)] :

R(mn2) — (75 _ E) 5y (gu) .agu)) g (75 +E> Y Kgm ® gu)) 3. gu‘)} g®

i=1,3,5 i=1,3,5
(mn10) & o) : . g®] g
(D) 3 (o) e
() @) .3.00]| )
+2(k ) P 1,375[( Iog ).,8 g }g + (43)
+ ( ®g(l))[ ( (Wg? (2 - wW)xmn0 4 ¢z, (g(i)+g(2))+z—w>

i=1,3,5

5 (—eWg® 4 (V= W) x(mm10 — v (g0 — g v —w)].

The annihilation of the three resultant forces R ™% RV and R(™?) for every unit cell {m,n} is equivalent
to a system of 30 linear equations in the 18 unknown components of the vectors v, w, and z, and of the matrices V,
W, and Z (Egs. (39)). Solving this system leads to two results, namely, (i.) the determination of 12 out of the 18
additional field components, which depend on the components of z and Z assumed as free parameters as

Zia+ Z12
19 - = _
_ (1] - 9 i3] |11 + B2z 5] | B221 — Br2z 2
V=~ lau2a22 * 211 — Z2 e {f]{ {5222 + Ba11 K B112 — Pon1 E+z
2
- VAR SAT
Q12 —_— _
_ 2] - 2 ] |Bii1 + Brze 6] |B221 — Bi2z 2 44
w=% S 5 02| 7y = 2o | (OF {{7{ [5222 + 8| T * Biiz — Ban Eta, ()
B 2
[Briz + Barr Broz + Bozr Br12 + P11 Bioz + Ba21
V = KU (+Z, W = K (+Z,
| B111 — P12z P11 — Pa22 Br11 — Pr22 P11 — Pa22

and (ii.) two linear equations for the six components of 3.
It follows from these two equations that tensor 3 is constrained to have only four independent components and
will be henceforth referred as 8, a symbol defining the set of generic quadratic amplitude tensors 3, for which the
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lattice structure is in equilibrium in the absence of external nodal forces. Considering 3111, (221, B112, B222 as the four

independent components, tensor 3 is defined by the six components S111, B221, B112, 222, B, and B, where the
last two are

lat 91 T 9]
{ 211 } _ <1 + (3] ) [ Baza | (3] [ P12 } . (45)
122 211 B | 2plp | B
In Eqgs. (44) and (45), the coefficients Ij;) (j = 1,2,3) are the three invariants of the diagonal matrix K
k0 07
K=|(0 k£ 0], (46)
0 0 k&
so that
o~ 1 PG s
I[l]:trK:kJrkJrk, I[Q]:i (trK)ther} =kk +kk+EkEk, 1[3]:det(K):kkk, (47)
while the coefficients KVl (j = 1,...,6) are given by
ety _ Rk — k) +k(k —F) g k(k — k) + k(k — k) K= 3k(k + k) + 4k (k + 2k)
Tz Tz 4
. . (48)
w4 _ 3k(k + k) + 4k(k + 2k) %) — Iy + 3kk *16) — Iy + 3kk:.

(m.n)

Imposing that the additional field Au(™ "% does not affect the mean value of the displacement gradient (Vu),, ",
Eq. (40), leads to the condition
V+W=0, (49)

which, considering Eq. (44), implies the following expression for Z

0 g2 [Buz + B85 B%s + B
g K +KT 0 (50)

2
Buin — BBy B — Baze

while the vector z appearing in Egs. (44) remains indeterminate because it only produces a rigid-body translation.
It is worth noting that:

e in the case of bars with same stiffness (k = k= E), enforcing Egs.(45) automatically provides the equilibrium
Egs. (41)—(43) for the generic purely quadratic displacement field augmented by a rigid translation z,

k=k=k — { V7% (51)
V=W=Z=0,

so that the additional field reduces to a rigid-body translation, Au = z;

e in the case when 3 = 0, it follows that V = W = Z = 0 but the additional field is in general non-null when
two over the three stiffnesses are different from each other. Indeed, the additional field is annihilated only when
g ag) =gB® . agl® = gb®.ag® (or equivalently, a; = agy and ajs = 0), except in the particular case
of bars having same stiffness (k = k= @)7 in which case the additional field is always null;

e the second-order tensors V, W, and Z of the additional field display the following permutation properties

V (K1, k2, k3) = V (K1, K3, K2) W (K1, ko, k3) = W (K1, K3, K2) , Z (K1, ko, k3) = —Z (K1, k3, K2) . (52)

In the case B8 = 0, the above equations are also complemented by following properties for the vectors v, w of
the additional field

V (K1, k2, k3) = V (K3, K2, K1), W (K1, K2, K3) = W (K2, K1, K3) , when 3 = 0. (53)

At this stage, the additional field Au(™") Eq. (39), results completely defined through Eqs. (44), (45), and
(50). With the purpose of highlighting the contribution of the additional field Au to the considered second-order
displacement, Eq. (30), three deformed configurations of the lattice are shown in Fig. 3.



Published in International Journal of Solids and Structures (2019) 176-177, 1-18
doi: https://doi.org/10.1016/j.ijsolstr.2019.07.008

Looking to the upper row of the figure, the first image on the left shows the displacement produced by a purely
linear (3 = 0) didplacement, while the second image depicts the corresponding additional field only. Finally the image
on the right is the composition of the two. The lower row shows respectively a purely quadratic (e = 0) displacement,
its additional field Au/{m’"”)kand the composition of the two. In the figure, the following stiffnesses of the lattice have
been considered: k = k = 10k.
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for the quadratic displacement
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Figure 3: (Upper part) Deformed configurations for a lattice with bars of stiffness k& = k = 10k subject to (left)
a purely linear displacement condition with {aj1, 22,012} = {0,0,1/5}, (center) its additional field, and (right)
the sum of these two. (Lower part) As in the upper part, but for a purely quadratic displacement condition with
{B111, Baa1, Burz, Basa, B8, e} = {—1,1,1,-1,1,1}1/(80).

4 Identification of the higher-order solid equivalent to the lattice struc-
ture

Considering the second-order displacement field Eq. (30) defined by the tensors a and 3"t Eqgs. (45) and by the
‘additional field” Au(™"") Eqs. (44) and Eq. (50), the elastic energy stored within the lattice cell {m,n} is computed.
This elastic energy is shown to display the same mathematical structure of the elastic energy stored within a unit cell
made up of a homogeneous elastic second-gradient solid (SGE) when subject to a quadratic displacement field, defined
by the tensors a and BSGE (note that ESGE defines the coefficients of all quadratic fields which generate equilibrated
stresses in a second-gradient elastic material without body forces). Therefore, imposing the elastic energy matching
between the lattice and the SGE solid allows for the identification of the constitutive parameters of the latter and
shows that the self-equilibrium condition provides the same constrained boundary condition for the two materials, so
that 8"t — gSCE.

It is instrumental to represent the components of the tensors o and ,B(') (where the superscript () denotes either
(lat) or (SGE)) using a vectorial notation through the vectors a and b(") as

Bi11
an Ba21

a— [a22 ] 7 b() — ﬁll? \ (54)
901 Ba222
28211
28122
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and to collect the four components of ﬁ(') not constrained by the equilibrium Eq. (45) in the vector b*

Bi11
y Baz1
b* = , 55
Bi12 (5)
B222
so that vector b(") can be obtained as
b = TOp* (56)

where the matrix T®) is the transformation matrix enforcing the equilibrium conditions in the lattice (in which case
it will be denoted as T'at) or in the second-gradient elastic solid (in which case it will be denoted as TSGE).

4.1 Energy stored within the lattice structure

Considering the second-order displacement field Eq. (30) defined by the tensors a and 3" under the equilibrium
constraint Eqs. (45) and with the additional displacement given by Eqs. (44) and (50), the elastic strain energy
U(m’n)

lat (a, ﬁ'at), stored within the lattice unit cell {m,n} can be written in terms of vectors a and b'at, as

U™ (ab™) = U™ (a, 7). (57)
so that b = T™'b* with the definition

1 0 0 0

0 1 0 0

0 0 1 0
TR = 0 0 0 1 (58)

9][3] _ 9[[3] N
0 0 Iyl Iyl
_ M 9 _ 9 0
Iy Iz Iy Iz

Therefore, from Eq. (18), the elastic energy of the lattice can be expressed as Ul(;: ) (a,b™) and therefore can be
represented as the following quadratic form in a and b*
(k.EE) | b*

+
b [m2H[5](E,%,E) +n2H[6](E,E,E) + mnH! ( kEk ) +mH[8]<k p k) (59)
+nH[9](E, 3 E) + H[l‘”(E, 3 75) } b*} :

U (a,b") = 2 {a- Wk, %, %) a+26a- [mHP(E,E,E) +nHP)(%,5,F)

where the matrices H[" (r =1,...,10) depend on the values of the three stiffnesses k, E, and k. These matrices have

different dimensions (3 x 3 for r = 1, 3 x 4 for r = 2,3,4, and 4 x 4 in the other cases) and their components HE;]
are reported in Appendix A. From Eq. (59) it is evident that the strain energy depends on the cell position whenever
b* # 0, so that it becomes independent of indexes m and n only when b* = 0, a condition corresponding to bt =0

and also implying 3¢ = 0.

4.2 Energy stored within a second-gradient elastic solid

With reference to the ‘form I’ elastic material introduced by Mindlin [25], a second-gradient elastic (SGE) solid has
a quadratic strain energy density Usgr function of the strain € and the curvature x, which can be derived from the
displacement field u as
€ij = %, Xijk = Uk,ij, (60)
displaying the symmetry properties €;; = €;; and x;;x = Xjik- The quadratic strain energy density Usgr can be
decomposed as
Usgr (€,x) = Uc (€) + Um (€, x) + Ua (X)) , (61)

where Uc (€) is a ‘purely local’ (Cauchy) energy term and U, (x) a ‘completely non-local’ energy term, while the
mutual energy term Uy (€, x) expresses the coupling between strain and curvature,

1 1

sCijnicijent, U (€, x) = MjhimXijk€im, Up (X) = = Aijkimn Xijk Ximn, (62)

Ue(€) = 3 2

10
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being C, M, and A the fourth-, fifth-, and sixth-order constitutive tensors, respectively, possessing the following
symmetries

Cijri = Cjim = Cyjin = Chayy, Mijkim = Mijemi = Myikim, Ajjrimn = Ajikimn = Aijkmin = Aimnijr-  (63)

The tensors work-conjugate to the fundamental kinematic fields € and x are respectively the stress o and double
stress 7, defined as
0ij = Cijime€im + Mijimn Ximn, Trji = Akjitmn Ximn + Mimkji€m, (64)

which are restricted to satisfy the equilibrium equations, that in the absence of body-forces are expressed by
Tijj = Thjijk = 0- (65)

The vectorial representations for the strain € and the curvature x are introduced through the strain p and curvature
q vectors as

X111
€11 §221
P= | ¢€x2|, q= 12 s (66)
%15 X222
2x211
2X122
so that the elastic energy densities (62) can be rewritten as
Uc(e) =Uc(p), Um(e,x)=Um(p,a), Ua(x)=Ua(q), (67)
where 1 1
uc (P) = §Cl]pzp]a uM (paq) = M]kp]qk7 uA (q) = §Aquk}qla Zv] = 17273 k;7l = 17 "'567 (68)

with the matrices C;;, M;, and Ay respectively representing the constitutive tensors C, M, and A in the Voigt
notation. Note that matrices C;; and Aj; are square and symmetric (the former of order 3 and the latter of order 6),
while Mj, is a rectangular (3 x 6) matrix. Considering this notation, the strain energy density Usge (p,q) can be
introduced as

Usce (p,q) = Uc (p) + Um (p,q) + Ua (), (69)
representing the strain energy density Usgk (€, x) in the Voigt notation, so that
Usee (€, x) = Usce (P (€),a (X)) - (70)

It is assumed now that the second-gradient elastic material is subject to remote quadratic displacement bound-
ary conditions provided by the second-order displacement field, Eq. (30), in the absence of the additional field
(Aul™nl) = 0, see also Sect. 4.3),

ux) =ax+ (x®x) : 6. (71)
The quadratic displacement field (71) is restricted, at first order, by equilibrium,
Cijkn Bjirn = 0, (72)

an equation which introduces two relationships between the six coefficients f;;1, so that two of them are dependent
on the remaining four. Therefore, the coefficients ;;;, are re-assembled in the vector ﬁSGE, so that

u(x) = ax+ (x ® x) :ﬁSGE, (73)
where
5§1G1E = P11, ﬁ;&E = a1, 5%1%'5 = P12, ﬁ;ng = (222 (74)
SlclE = B111D1 + B221D2 + B112D3 + P222Dy, ﬂ?szE = f111D5 + B221D6 + B112D7 + Pa22Ds,
in which
D — 2C2, — Cq1 (Cy2 + Ca3) Dy = 2C;3Ca3 — Ca3 (Ci2 + Ca3) D — Ci3(Cs3 — Ci2)
(Cig + C33)” — 4C13Co3” (Cig + C33)” — 4C13Co3 (Ciz + Ca3)® — 4C13Ca3’
_ 2C13Co2 — Co3 (Ci2 + Cs3) Dy = 2C11Co3 — Ci3 (Ci2 + Cs3) D = Co3 (Ci2 — Cs3) (75)
(Cig + Ca3)® —4Cy3Co3 (Cig + Ca3)® — 4C13Co3 4Cy3Co3 — (Cp + Ca3)?’
D = C33 (Ci2 + C33) — 2C13Co3 ~2C35 — Cya (Cyp + Cay)

8 = .
4Cy3Co3 — (Cia + Ca3)? (Cra + Ca3)” — 4C13Ca3

11
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From now on the constrained tensor 3, due to Egs.(74), will be denoted by ,BSGE, so that the strain p and the curvature
g vectors can be rewritten as

pSeE — p (a, TSGEb*) 7 qSCE — 9TSCEp*, (76)
where
1 0 0 0
0 1 0 0
SGE __ 0 0 1 0
™= 0 0 0 1 ’ (77)
205 2Wg 27 2Wg
201 2y 203 2Wy
and p°CF can also be expressed as
pSGE (a, b*) —a+2 (P[l]xgm,n) + P[2]xgm,n)> b* (78)
with
1 0 0 0 D5 D D7 Ds
PU=( D @ @5 @ |, PA=1] 0 0 o 1 |. (79)
Ds Dg Dr+1 Dg D1 Da+1 D3 Dy

From Egs. (74), the energy densities, Eqgs.(68), become

1 1 1,7=1,2,3
SGE SGE . SGE SGE SGE} * * SGE % SGE} * * ok _k ) ) 4y 9y
Uc (P°CF) = SCupSEpsCE,  Um (pSCF, 275" ) = M3, pSCEa,  Ua (2T5%b") = “Ajdiai, Vi—Toa4
(80)
where g* = 2b™ and
T
M* = MTSCE, AF — (TSGE) ATSGE. (81)

Matrices M™ and A* have reduced dimensions, so that the former is a rectangular 3 x 4 matrix and the latter a
symmetric square matrix of order 4. They define the condensed representation for the constitutive matrices M and A,
so that the strain energy density of the second-gradient elastic material can be seen as a function of a and b*, namely,
uSGE (a, b*).

The elastic energy stored in a hexagonal domain Q"™ made up of a second-gradient elastic continuum (with the
same shape and location of the lattice’s unit cell {m,n}) is obtained through volume integration of the strain energy
density

Uiz (a,b*) = / L Usce (a,b*) de, (82)
Q m,n
which is evaluated as

Ui (a, b*) = (2 {a .Gl(C;)a+2a- [mG[Ql(cij) +nGBI(C,) + GW(M*.)} b*

ij
+0%b* - [mQGm(Cu‘) +n?GIUC;;) + mnGl(Cyy) + mGHI(MY)) (83)

9 * 10 * *
+nGPI(Mz,) + G1Y(Cy, Aij)] b } ,
where the coefficients of the matrices GI"l (r = 1, ..., 10) are reported in Appendix A.

4.3 Identification of the ‘condensed’ second-gradient material equivalent to the lattice
structure

By imposing the elastic energy matching between the lattice, Eq. (59), and for the moment unknown effective second-
gradient material in the ‘condensed form’, Eq. (83), to hold for every unit cell {m,n} and every pair of vectors a and
b*

U™ (a,b*) = UL (a,b*), ¥ m,n,a,b*, (84)

lat

the following identities are obtained
G =HI"T  vre,10). (85)

It is highlighted that imposing the energy equivalence, Eq.(84), at first-order (3 = 0 and therefore b* = 0) implies

Gl = H[l]7 (86)

12
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providing all the coefficients of the matrix C as

2][1]1[2] + 9[[3] - 2[[1]1[2] — 9][3] - B . Ci1 — Cio B 9[[3]

————, Chp=——"F"——"—, C3=Cy3=0, Cy= = )
44/31}y) 4/31 )y 2 4/31}y

which coincide with the corresponding constants obtained in [16] through a different identification technique. From

the first-order result, Eq. (87), it follows that the two transformation matrices are the same for both the lattice and
the equivalent material, namely,

Cll = C22 =

(87)

Tlat — TSGE7 (88)

so that b = b°°F and therefore 8 (b*) = 3°°F (b*), meaning that the linear and quadratic components of the
displacement field imposed to both the solid and the lattice coincide.
The non-local properties can now be identified from Eq. (85) for » = 2,...,10. In particular, the ten components
of the matrix A™ are identified as
Al3 =0, Aj,=0, A5;=0, A}, =0,
311302 5 /i~ A3 4y~ A2 ~ —~ ~
AL = % 50k (k+%) ~F (F+k) (100 + 350k + 100k ) +
641[111[2]
—F" (ke T) (50K* + 419%%% + 330K2R + 419Kk + 50K+ ) +
+28"kk (24K* + 450K°F; + 1853K°K2 + 450K%° + 24K*) +

S RR2R? (% T E) (219@2 + 1283kk + 219752) 1215353 (E + %)2] :

A, = f}[ﬁﬂg [101@5 (E+7£)3 + 5% (E+7£)2 (452 + 5kE + 4%2) +

45 (k n %) (10%4 — T1R3E — 303%2%2 — T1RES + 10’154) n
By (6%4 — OF3E + GALR2R2 — OFKS + 6%4) T

e~ ~ ~ ~ o~ ~ o~ o~ ~ -\ 2
—FR2R2 (k n k) (33k2 LRk 33k2) — 35K3K3 (k n k) ] ,

. V31 2 Tl A S e Sl ) T oni2 (89)
As, = GIr 1L {wk <k+k) e (k+k) (20k _ 137k + 20k )+

- (2 + 7%) (10%4 — 53%3% + 219k%k2 — 53kE + 107%4) +
1R Rk (12%4 — 45%5F + 349K2K2 — 45K + 12754) +
RR2R2 (% n 75) (51%2 —197kk + 517%2) L 1TRIES (E n 7%)2] ,
2
Ass = w;/%i]é} [%6 (k+ 7%)3 (482 - TR + 472 ) +
B (547 (16%4 — 132K%% + 181k2K2 — 132kk° + 16%4) +
5 (R +% (8%6 — 1105k + 301%4k2 + 667k3k3 + 301k2k4 — 110kk° + 8756) +
1ok bk (4@6 + 27k5k — 101k4k2 — 587k3k3 — 101k2k* + 2TkkS + 4%6) +
FRR (E n '15) (6%4 ~121K3% — 349K2K2 — 121kK° + 6'154) +

k3RS (E + E) ’ (4@2 + 43Kk + 4%2) + 2%k (E + 75) 3}

13
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* V362 76 (7 7\ (g2 T a2
AL, = %{—zk (F+F) (4% +8RE + 452) +

_E /i~ N2 ~ o~ ~ o~ o~ — ~
3 (F+k (16k4 + 4F3F — 63k2K2 + ATkS + 16k4) n
(k4% (8@6 4 6ROk — 267R*R2 — 173R3% — 26Th2E* + 6kE® + 8’156) +
9% Tk (4KS — 15K5% + 11554K2 + 46153%3 + 11562k — 156K° + 4756‘) T
TR (E n 75) (6@4 + T1RE + 43522 + T1RES + 654 ) +
e~ ~ ~\ 2 ~ — ~ o~ —~ ~\ 3
LTRBES (k: n k:) (4k2 + 35Kk + 4k2) R (k n k:) ,
* V3¢ 76 (27 (1072 _ 77 7.2
A;, = G [21@ (k+k> (1% — Tk + 12k )+
_E /~ N2 ~ o~ ~ o~ o~ — ~
7 (F+ % (48k4 + 260k%% + 10352k2 + 260%%3 + 48k4) T
5 (F+E (24%6 1 2865 % + 583K4R2 — 255k3%3 + 583K2k* + 286kk° + 24%6) +
19Kk (12%6 — 3%5k — 735Kk — 1753k3k3 — 7352k — 3kk® + 12%6) +
R (E T '15) (18%4 + 309%%% + 937h2E2 + 309Kk + 18’154) 4
e~ ~ ~\ 2 ~ o~ ~ o~ ,\ N\ 3
ey (k n k) (12k2 S+ 1TRE + 12k2) e (k n k) } ,
while the twelve components of the matrix M™ as

MTl = Mikz = M§1 = M32 = M§1 = M§2 = M§3 = M§4 =0,

(E—E) (I 12 — 9113)) (EE— 2k (E+%))£

Miz = Mg; =
8v/3I I3, (90)

3 (74:\ — E) (Im][g] + 3][3]) (EZZ — 2k (E + %))
8v/3I I,

Mi, =M5, = — L.

It is worth to note that the result provided by Eqgs. (87)—(90) shows that the constitutive matrices are invariant with
respect the following permutations of {k, k, k}:

C (K1, k2, k3) = C (K1, K3, k2) = C (K2, k1, k3) = C (K2, k3, k1) = C(k3, k1, ko) = C (K3, K2, K1)

A" (k1, ko, k3) = A" (K1, K3, K2), M* (K1, K2, k3) = =M™ (K1, K3, K2) . (91)

It can be therefore concluded that

the effective response approaches that of a Cauchy elastic material only in the limit of vanishing length of

the lattice’s bars, £ — 0, a condition for which M7; = Aj; = 0.

Finally, from Eqgs. (87)—(90) it is evident that the stiffness ratio between the bars may have a dramatic effect on the
equivalent solid response, as further discussed in second part of this article [29].

4.4 TInfluence of the additional field Aul™"/#

It is remarked that, although ,BSGE = 3", the displacement fields imposed to the lattice differs from that imposed
to the equivalent solid due to the presence of the additional field Au(™"") in the former. From the practical point
of view, however, the amplitude of such an additional field does not play an important role when compared to the
amplitude of the quadratic part, so that the deformed configuration of the solid very well represents that of the lattice,
even if in the latter the additional field is present.

To analyze the influence of the additional field on the kinematics of the lattice and of the equivalent solid, a
rectangular domain (having sides 25v/3¢ x 37¢) is considered, occupied in one case by the lattice, which is shown on
the left in Fig. 4, (625 hexagonal unit cells, namely, 25 along each axis of the rectangle) and in the other case by the
equivalent continuum with its boundary reported on the left in Fig. 4. The solid is subject to a displacement field
characterized by tensors a and ,BSGE, while the lattice is subject to the same o and to ,Blat = BSGE plus the additional
field Aut™"l} In particular, the following values have been selected to produce the figure a1; = 0.018, ags = 0.02,
a1z = 0.02 and F7F = R, = 0.0029, B5SEF = BEE, = 0.00286, B7EF = AR, = 0.003, B5SE = S5, = 0.004. Moreover,

having selected E/E =2 and E/E = 3 as bars’ stiffness ratios, the remaining two components of ,BSGE result from Eq.

14
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(45) and (74) as B5°F = B5Y, = —0.007 and 355 = B, = —0.0052. The additional field Au{™"/%} applied to the
lattice has been calculated with the given values of o and 3" through Eq. (44) and (50).

The undeformed and deformed configurations (visible as lines for the equivalent solid and as spots for the lattice)
are reported in Fig. 4. The positions of the undeformed lattice’s nodes were chosen to lie on the undeformed lines of
the continuum. The fact that, after deformation, the dots overlap the deformed lines demonstrates that the additional
field (needed to enforce equilibrium in the lattice) affects only marginally the overall displacement of the lattice, in
which the linear and quadratic displacement fields prevail.

/l z,/l
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Figure 4: (Left) Rectangular domain (having sides 25v/3¢ x 37¢) occupied in one case by the lattice (625 hexagonal
unit cells) and in the other case by the equivalent continuum (only its boundary is reported). (Right) Undeformed and
deformed configurations for initially straight lines of the equivalent continuum, when subject to a linear and quadratic
displacement field. The same displacement, plus the additional field Aul” "} are applied to the lattice, of which
the nodal positions are reported as spots. The additional field Aut™"/%} is observed to play only a marginal role in
the overall deformation of the lattice.

5 Discussion

An infinite hexagonal lattice of bars (only subject to axial forces and characterized by three different elastic stiff-
nesses) has been considered and solved, when loaded at infinity with a quadratic displacement field, enhanced with an
additional displacement to comply with the periodicity constraint of the lattice. Its elastic energy has been shown to
match with that of a second-gradient (‘form I" Mindlin) elastic material, subject to the same quadratic field. In this
way, a homogeneous continuum, enriched with an internal length, has been derived, which is equivalent to the discrete
lattice. However, this continuum was only identified in a ‘condensed’ form, so that not all constitutive parameters
have been identified. For those appearing in the condensed version, closed form expressions have been given, showing
the influence of the lattice properties (the hexagon side length ¢ and the bars stiffness k, k, k). As an example, the
higher-order constitutive parameters M;; and M}, ruling the non-centrosymmetric behaviour (and made dimensionless
through division by kf) are portrayed in Fig. 5 where two stiffness ratios E/E and E/E are varied. The red lines high-
light the condition for which both parameters vanish, so that, correspondingly, centrosymmetric response is retrieved,
while in all the other cases non-centrosymmetry characterizes the mechanical behaviour of the equivalent material.

15



Published in International Journal of Solids and Structures (2019) 176-177, 1-18
doi: https://doi.org/10.1016/j.ijsolstr.2019.07.008

/ "

kel

kE

Figure 5: Nonlocal constitutive parameters M35 (left) and M3, (right) as functions of the bar stiffness ratios E/E and
k/k. The red lines represent the stiffness ratios pairs for which a centrosymmetric response is attained, while in all the
other cases the solid equivalent to the hexagonal bars’ lattice displays a non-centrosymmetric mechanical behaviour.

The fact that the equivalent material is only defined in a ‘condensed’ form is a consequence of the fact that the
elastic energy equivalence between the solid and the lattice has been so far restricted to self-equilibrated displacement
fields. This means, in other words, that the mechanical tests applied both to the lattice and to the continuum are not
enough in number to completely characterize the latter. Nevertheless, the presented results allow already to conclude
that even a simple hexagonal lattice, which corresponds to an equivalent isotropic, local, and centrosymmetric material
at a first-order of approximation, at a higher approximation displays anisotropic, non-local, and non-centrosymmetric
effects. Therefore, the presented results provide a tool for advanced mechanical design of microstructured solids. The
complete derivation of all material constants of the second-gradient equivalent elastic solids is deferred to Part II
of this study, together with the analysis of positive definitess and symmetry of the equivalent material and with an
assessment of the validity of the second-gradient model.
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Appendix A - Components of the matrices H'! and G!"!
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The coefficients of the matrices Gl (r =1, ..., 10) are
G = (c11 + C19D1 4 C13D5) G[fz] - (C12CD2 +Ci3Dg), G =2 (c12c2>3 + C13D7 + Ci3),
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+Co3 (V3DaDg + 3 (Da + D + V3) + D (6D4 + v3(Ds +3)))) ,

9

1 (\/§C22@§ +2Ca3 (303 + V3(D7 + 1)) D3 + Ca3 (3\/3@9% +6(D7 + 1)D3 + V3 (D7 + 1)2) +
;—3@7 (2C12D3 + V3C11D7 + 2Ci3 (V3Ds + D7 + 1)),

1 (Co2D3 (\/?;@4 +3) +3v3C12D7 + 3D4 ((Ci2 + V3Ci3) D7 + Cas (\/5@3 + D7 +1)) +

+ (3(Cyz2 + C33)D3 + 3Cy3 (V3D3 4 207 + 1) + V3(D7Cs3 + Cs3 + 3C11D7)) Ds+
+Co3 ((V3D4 +3) (D7 + 1) + D3 (604 + V3(Ds +3))))

g (3v/3C33D3 + 6 (Ci2 + v3C13 + Ca3) DsDs + (3v/3C11 + 6Ci3 + V/3Ca3) D2+

+Ca2 (D4 (V3D4 + 6) + 3v/3) + 6v/3C1oDs + 2Ca3 (303 + V3 (Ds + 3) Dy + 3Ds)) -

9 (D1 (2v/3Ci2 + 3Cy3 + V3Ca2 D1 + 3C23D1) + Cu1 (35 + V/3) +

+D5 (3D5C13 4 2v/3C13 + 3C12D1 + 2v/3Ca3D1 + 3C33D1 + V3C33Ds5))

g (2v/3C12D5 + 3C33Ds5 + 3C11D6 + D5 (3C12D2 + 2v/3Co3D2 + 3C33D2 + 2v/3C33D6) +

+Ci3 (32 + 6D5D6 + 2v/3Dg + 3) + D1 (2v3C22D2 + 3 (Ci2 + Cs3) D + Caz (6D2 + 23D + 3))) .
g (2v/3C12D3 + 3C11 D7 + D1 (2v/3Co2D3 + 3C12D7 + 3Cs3(D7 + 1)) +

+D5 (3 (Ci2 + Cs3) D3 + 2v/3Cs3 (D7 + 1)) + 2Ca3 (D3 (3D1 + V3Ds5) + V3D (D7 + 1)) +
+C13 (3D3 + 2V3 (D7 + 1) + D5 (607 + 3))) ,

g (3C13D4 + 6Co3D1 Dy + 2v/3Co3D5Dy 4 3C33D5Dy + CooDy (2v3Dy + 3) +

+3C23D5 + (3C11 + 2v3Cas + 2v3Ca3D1 + 3C33D1 + 6C13D5 + 2v/3Cs3D5) Da+

+Ci2 (3D5D4 + 2V3Dy + 3D1Ds + 3)) ,

9 (V3Ca2D3 + Ca3 (302 + 2v/3D6 + 3) Do + D (V3D6Cs3 + 3Cs3 + 3 (Ciz + Ca3) D2 + 3C13Ds)) ,
2 (2V/3CasDaDs + 3C19DsDs + 3C15Ds + 3C19DoDr + 6C13DeDr + Cos (D3 (6D + 2v/3D5 +3) +
+2v/3Ds (D7 + 1)) + Ca3 (3 (D2 + 1) (D7 + 1) + D (3D3 + 2v/3 (D7 +1)))) .

g (CoaDs (23D + 3) + 3 (Ci2 + Cs3) DaDg + (3C12D2 + 6C13D6 + Cas (3D2 + 2v/3Dg + 3)) D+
+Cas3 (3D + D4 (6D2 + 23D + 3) + 2v3D2Ds) ) ,

9 (V3Ca2D3 + Ca3 (303 + 2v/3 (D7 + 1)) D3 + 3D7 (D7C13 + Ci3 4+ C12Ds3) +

+Cs3 (D7 + 1) (303 + V3 (D7 + 1)),

(A.16)

GYl = 3 (CorDy (2vBDs +5) + 804 (Cas + (Cra + ) D) + 8Ca Dyt

+ (3C12D3 + 6C13D7 + Cs3 (303 + 2V3(D7 4+ 1))) Ds+

+Cas (307 + 204 (303 + V3 (D7 + 1)) + 2v/3D3Ds + 3)) , (A.17)
Gl = 9(Coa®s (V304 +3) + Ds (3(Cia + Css) D + 3C15Ds + V3Ca3Ds) +

+Ca3 (303 + 2v/3DsDy + 3Ds)) -
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G[181] = % (D1M3; + DsM3; + M7), G[182] = % (D1M3y + DaM3; + D5 M3, + DM, + M7,),
cl¥ = % (DM, +®3M§1 + DsMs + DrMZ, + Mi, + M* D, GEl= % (D1M3, + DaM3, + DsME, + DM, + M3,
Gl = 7 (@M, + DMy, Gl = (@M, + DM, + DM + DiM, + M),
G[284] = % (D2M354 + DygM3, + DM3, + DsM3,) Ggs?] = g (@3M23 + D7M35 + M33)
G) = (DyM3, + DM, + DM, + DM, +M3,) . GE] = 22 (DM, + DeM,)
(A.18)
G[191] = 2 (D1 (M3, + V3M3,) +V3DsM7; + DsM3, + M7, ),
Gij = (®1M;2 + VB (DM, + M5, ) + D3 (M3, + VBM3,) + VBDsM, + DsM3, + D (VBME, +Mj,) + Miy),
G[@ %E (D1M35 + V3D1M3; + D3M3; + V3D3M3; + V3Ds M35 + Ds M + D7 (VBMY; + M3, ) + Mz + M3,

G = 27 (V3 (D1M34 + DaM3,) + D1M3, + (Dy + v/3) M3, + V3D5 M7, + D5 M3, + Ds (VMY + M3,) + Miy,)
9
G[292] = 2 (DaM3, + V3 (D2 + 1) M3, + D (\/gMTQ +Ms,))

4
G[% =50 (@2'\/'33 + V3DaM3; + DMy + V3D3M3, + Dy (\[M 15+ Ms3) + D7 (\/?;ME + M3,) + M3, + V3M3,)
9
Goi = 57 (V3 (DM, +DiM3, + M§4) +DaM3y + (D + V/3) M3y + D (VMY + M3y) + Ds (VM + M35,))
Gg)?] =7 (@3 (M55 + v/3M33) + D7 (VBM73 + M33) + M33)
9
G:[394] =9 (DsM3, + V3D3M3, + + (D + \/§) M3 + V/3D4M34 + D7 (\/th + M3,) + Ds (\/:;Mﬁ +M33) +M3,)
9
Gl = 5 ((Da+ V3) M3, + VBDM3, + Ds (VEMI, + M3,)
(A.19)
ol 3V3 4. f@?C C Ci1 + 2C1oD1 + 205 (D1 (Cr5 + C C D2 (Cop + C
= 11t ( 2 (Ci1 + Cs3) + Ci1 + 2C12D1 + 2D5 (D1 (Ci3 + Cag) + Ci3) + D7 (Coz + 33)),
3v3
G[1120] = KTATQ + g\[(@e (C11D5 + D1 (Ci3 + Coz) + Ci3) + D2 (Ci2 + D5 (Ciz + Coz) + CooD1) + Ci3D5+
+Cs3 (@1®2 + D1 + @5@6))
[10] 3V3 .,
Gi;' = 12 ——Als+ < 3 \[ 3 (D7 (D5 (Ci1 + Cs3) + D1 (Cig + Caz) + Ci3) + Ci2D3 + Ci3D3Ds + Ciz+
+D1D3 (sz + C33) 4+ Ca3D1 + Co3D3Ds5 + C33D5)
3V3
G[1140] = R —5 Als + 8\[ (Dg (C11D5 4+ C13D1 + Ci3 4+ C33D5) + Cia (Da + Ds) + C13D4D5 + D1Dy (Coz + Cs3) +
+Cas (@1®8 + D1+ DuDs)) ,
ol _ 3V3,. f@cm 2(Ds (Crz + C C CoosD2 + Cas ( (Do + 1) + D2
2 T 5 2T 35 (6(11 6 +2 (D2 (Cr3 + Ca3) + Ci3)) + C2D3 + 33(( 2+ 1)" + 6))7
3V3
G = ;—[A;g + g\f (CLiD6D7 + Cuz (DD + DD + D7) + CosDoDs + Coz (DoD7 + Dy + D3 D) +
+Cs3 (@2@3 + D3 + DeD7 + D)) ,
3V3
Gl = T f(@s (D6 (Cr1 + Cas) + Ciz (Da + 1)) + CraDg + Da (C13D6 + CosDo + Ca3Do + Caz) +
+Caz (@2@8 + Do + DaDg + 1)),
G“Ol—?’fA* fCCD 203D (Cr3 + C D5 (Coa D3 + 2C Cas (D2 + (D7 + 1)?
3. T 33 + (11 2+ 2D3D7 (Ci3 + Cag) + D3 (CoaD3 + 2Ca3) + 33(3 (7+)>),
3
Gglf] = 7{'“‘34 + g\[ (Ds (D7 (Cq1 + Ca3) + Ci3D3 + Ca3) + C12D7 + Ci13DuD7 + D3Dy (Coo + Ca3) +
+Cas (@3@8 + D3 + DaD7 + Dy)) ,
3
G£1140] = 22[:0\44 + \[ 3 (D3 (Ci1 + Cs3) + 25 (Ci2 + Dy (C13 + Ca3)) + C2DF + Coz + 2Co3Dy + C33D3) .
(A.20)
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