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Abstract

An asymptotic solution is obtained for stress and pore pressure fields near the tip of a crack
steadily propagating in an elastic—plastic fluid-saturated porous material displaying linear
isotropic hardening. Quasi-static crack growth is considered under plane strain and Mode 1
loading conditions. In particular, the effective stress is assumed to obey the Drucker—Prager
yield condition with associative or non-associative flow-rule and linear isotropic hardening is
adopted. Both permeable and impermeable crack faces are considered. As for the problem of
crack propagation in poroelastic media, the behavior is asymptotically drained at the crack-tip.
Plastic dilatancy is observed to have a strong effect on the distribution and intensity of pore
water pressure and to increase its flux towards the crack-tip. © 2002 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Parts of earth’s shallow crust infiltrated with ground water or oil have a mechan-
ical response complicated by elastic—plastic deformation coupled with diffusion of pore
fluid. Hydraulic fracturing is often used in these media to enhance gas or oil production.
In addition to the interest in this technique, time-dependent geophysical phenomena
such as propagation of aseismic slips and following deformations have focussed
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research on fracture mechanics in viscous or inviscid poroelastic materials (Rice and
Cleary, 1976; Rice and Simons, 1976; Cleary, 1978; Rudnicki, 1985; 1991; Atkinson
and Craster, 1991; Rudnicki and Koutsibelas, 1991; Desroches et al., 1994). However,
neglecting plastic behavior of the solid skeleton represents only a first approxima-
tion. For instance, Johnson and Cleary (1991), van den Hoek et al. (1993) and
Papanastasiou (1997) suggest that linear elastic crack propagation models may
underestimate the down-hole pressure measured during field operations for hydrau-
lic fracturing. As a matter of fact, it will be shown in this paper — with reference to
steady crack propagation — that plastic dilatancy strongly affects the pore pressure
distribution at the crack-tip. There are few contributions that account for the elastic-
plastic behavior of fluid-saturated porous media when analyzing crack propagation.
Plastic dilatancy effects at the crack-tip were analyzed by van den Hoek et al. (1993)
and Mohr-Coulomb elastoplasticity was considered during crack propagation by
Papanastasiou and Thiercelin (1993) and Papanastasiou (1997), using a combined
finite difference/finite element technique.

In this article, an asymptotic solution is obtained for steady-state crack propagation
under plane strain, mode I conditions. Propagation occurs in a porous, fluid-saturated
material characterized by an elastoplastic skeleton obeying a Drucker—Prager yield
criterion with volumetric non-associative flow law and isotropic hardening. The
technique used to solved this asymptotic problem was initiated by Amazigo and
Hutchinson (1977) and developed in various directions, but always for a single phase
solid, by Achenbach et al. (1981), Zhang et al. (1983), Ponte Castafieda (1987), Ostlund
and Gudmundson (1988), Bose and Ponte Castaneda (1992), Bigoni and Radi (1993;
1996), Radi and Bigoni (1993; 1994; 1996), Herrmann and Potthast (1995). Here, the
mechanical behavior of the elastic-plastic medium is described through coupled
constitutive equations developed, in the framework of the theory of mixtures, by
Loret and Harireche (1991), where the Darcy’s law is used to model the fluid diffu-
sion process. Since the ductility of these materials is small compared with metals, as
shown by the experimental data reported by Khan et al. (1991, 1992) for Berea
sandstone, it is reasonable to consider the small deformation incremental theory.
Moreover, both problems of permeable and impermeable crack faces are considered.

Like for poroelasticity, the behavior is asymptotically drained at the crack-tip.
The results demonstrate that the explicit coupling between plastic dilatancy and fluid
compressibility yields a peculiar behavior of the pore pressure near the crack-tip.
Dilatancy increases the flux of water towards the crack-tip, but also the water pres-
sure since in this asymptotic analysis the latter is not controlled at finite distance
from the crack-tip. Moreover, the flux of fluid together with plasticity effects may
dissipate the amount of supplied energy, leading to a reduction of the energy avail-
able to fracture the material.

2. Constitutive equations

We refer to the elastic—plastic model for fluid-saturated porous media proposed by
Loret and Harireche (1991), that is summarized here. Within the context of small
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deformation incremental theory, both the strain rate ¢ of the solid skeleton and the
rate of fluid mass content per unit reference volume ¢ are decomposed into an elastic
part and a plastic part, denoted by the respective indices ( )¢ and ( )”, namely

§ =4 ¢, =0+ (1)

The elastic strain rates £¢° and ¢ are related to the rates of total stress & and pore
pressure p through isotropic constitutive equations that involve four material coef-
ficients, namely, Biot (1941; 1956), Rice and Cleary (1976), the drained Young’s
modulus £>0 and Poisson’s ratio v € [—1, 1/2], the undrained Poisson’s ratio
vy € [v, 1/2], and the Skempton coefficient B>0. The above restrictions on the
material coefficients ensure positive definiteness of the elastic constitutive equations
in terms of the strain and stress pairs, (¢, ¢) and (o, p) respectively. In explicit form,

, 1=2v/1 | 1+v .

¢ = = o )1+ —— 2
€ z (3 tro + « p) + z devo, 2)
. 1-2 3

é’ez E va(trd‘—I—E p), (3)

where I is the second order identity tensor and dev ¢ denotes the deviatoric part of .
The coefficient « enters the effective stress (compressive pore pressure is positive)

" =0+ apl, 4)

which is related directly to the elastic strain ¢ through the drained coefficients E and v.
During undrained loading in the elastic regime, £°=0 and the strain rate is related to
the total stress rate ¢ through the undrained coefficients £, and v,, namely

1—2v 1+v
s e — u . I u
€ 3L, (tro) I+ E.

B
deve, p= —gtr('r. (5

Since water can not sustain shear stresses, the drained and undrained shear com-
pliances must be identical, i.e. (1 + v)/E = (1 + vy)/Ey, and then the Biot coefficient
a can be expressed in terms of B, v and v,, namely:

3 Vg —V

“TBA =201 + )

(6)

To close the system of differential equations, we assume that diffusion of pore
fluid obeys Darcy’s law and we require the fluid mass continuity,

q=—po k Vp, py {=—div q, @)
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where q is the mass flux, « is the permeability coefficient (unit: time x length3/ mass),
0o 1s the reference density, and V and div are the gradient and divergence operators
respectively.

The yield condition is expressed in terms of the effective stress o*. It is of the
Drucker—Prager type and it incorporates pressure-sensitivity through the coefficient
w >0, namely

fwﬂ@:Jhmﬂ+%ua—k:Q 8)
where
* 1 %12 1 2
Jr(o*) = Eldevc "= E|dev0'| , 9)

is the second invariant of the deviatoric effective stress, k is an internal variable
governing the isotropic hardening behavior. The fact that the stress enters the set of
state variables through the Biot effective stress o* rather than through the more usual
Terzaghi effective stress o+ p I, as usually assumed, e.g. Rudnicki (1984), simplifies
slightly the algebra. Rice (1977) has argued on theoretical grounds that the macro-
scopic effective stress appropriate to describe inelasticity effects arising from opening
of microcracks and sliding on small areas of contact is Terzaghi effective stress.
However, as the coefficient « is close to 1 for rocks, usually between 0.5 and 1, and
very close to 1 for soils, the difference on the plastic behaviour between the two for-
mulations is hard to quantify. To our knowledge, no discriminant argument of quan-
titative nature has been presented so far in favor of one formulation over the other.

Let Q and ¢ denote the derivative of the yield function (8) with respect to the
effective stress tensor o* and to the pore pressure p, respectively:

aof devo n af
(2 — — — = I’ =—— = s 10

since dev o* =dev o, as it follows from (4).
The evolution law for the plastic internal variable allows for non-associative flow-
rule and linear isotropic hardening behavior, namely:

¢ =AP, P=A¢, k=A H, (11)

where A >0 is the (non negative) plastic multiplier and H >0 the hardening mod-
ulus, assumed to be strictly positive and constant for linear isotropic hardening
behavior. The plastic flow direction P has both a deviatoric and a volumetric com-
ponent introduced by the plastic dilatancy parameter 8 € [0, u], namely,

devo B

SN A R "
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The consistency condition f(c*, k)=0 together with (10) and (11); yields the
plastic multiplier A:

Lo L |
A :E<Q-O' )_H(Q G+a up) (13)

where the symbol () denotes the Macaulay operator, namely, for every real value x,
(x) =max{x, 0}.

Plastic flow occurs when the stress point lies on the yield surface (8), thatis f{c*, k)=0
and Q - 6* >0, while elastic unloading occurs whenever f{(o*, k) <0 or Q - *<0. So
when the stress point lies on the yield surface (8), the elastic—plastic rate constitutive
equations can be written in the form:

é:%[(l —2v)<%trd‘+a p)I+(l +v) dev()‘—i—%(Q-d‘—kau;ﬁ)P], (14)
p ] 1-2 Sy ! 3 ) 15
§_E|:(x( - v)(trG+Ep)+Z(Q-0'+otup)(xﬁi|, (15)

where we have introduced the dimensionless hardening modulus 4= H/E; otherwise,
the rate constitutive relationship reduces to the poroelastic equations, obtained by
setting A =0.

Note that, for B=u, the rate constitutive equations become associative in the
sense that the elastic-plastic stiffness and compliance expressed in terms of the pairs
(g, ¢) and (o, p) are symmetric.

3. Crack propagation problem

The problem of a plane crack propagating at constant velocity ¢ along a recti-
linear path in an infinite medium is now considered. The mechanical behavior of the
material is described by the incremental elastic—plastic constitutive model presented
in Section 2. This framework allows for possible sectors of elastic unloading which
may develop in the proximity of the crack-tip, during crack propagation. A cylin-
drical coordinate system (O, e,, ey, e3) moving with the crack-tip towards the ¥ =0
direction is considered, with the x3-axis aligned with the straight crack front. The
steady-state condition yields the following time derivative rule, for any scalar, vector
or second order tensor A:

A=c(r'A, sing — A, cos®). (16)

The equations of quasi-static equilibrium of the porous medium as a whole are
expressed in terms of the total stress o in the format akin to single phase solids,

divo = 0, (17)



350 E. Radi et al. | International Journal of Plasticity 18 (2002) 345-358

and the kinematic compatibility conditions between the strain rate € and the velocity v
of the solid skeleton are as usual

€ = (VV)sym: (18)

where, for any second order tensor A, (A)sym = (A + AT) /2.
In addition to (18), the plane strain condition implies

é33 = V3 = 0. (19)

Constitutive Eqgs. (14) and (15) together with quasi-static equilibrium (17) and
kinematic compatibility conditions (18), form a system of first order partial differ-
ential equations which governs the problem of the crack propagation. The solution
to this system is sought in a separated variables form, by considering asymptotic
expansions of near crack-tip fields with a single term. To this purpose, we first prove
the following

Proposition. The pore pressure is less singular than the total stress o, namely, if
o =0(r*) as r—0, that is if the total stress is singular as r*, s <0, then the pore pres-
sure behaves as p= 0@+ ).

Proof. Assume that o = O(r*) as r tends to zero. The constitutive relation (15) implies
that at least one of the conditions p= O(r*) or {=O(r*) must be met. Let us assume
the validity of the former condition: it follows that

Vp = O(rS’l).
Then Darcy’s law (5), also implies that q= O(r*~!), thus
divq = 0(1”572),

and finally the mass continuity equation (7), yields ¢ = O(r*~2), but this result is not
compatible with the constitutive Eq. (15) since p= O(*~') and & =O(*~"). There-
fore, only the condition &= O(*) must be considered. Indeed then, the time deriva-
tive rule (16) gives = O(r*~!) and thus the mass continuity Eq. (5), implies q= O(*)
so that Darcy’s law (5); is satisfied if and only if p=0(**1).

Therefore, the pore pressure does not display a singularity at the crack-tip if —1/2<
s<0, rather, it tends to vanish as r approaches zero. Thus we have obtained an
extension to elastic—plastic porous media displaying linear isotropic hardening of a
result that holds for quasi-static crack propagation in poroelastic materials (Rice and
Simons, 1976; Atkinson and Craster, 1991). However, while there, the pore pressure
behaves as r!/? and the stress field in the solid skeleton has the square-root singularity,
here, the exponent s will be found in the interval ]-1/2,0[. The vanishing of the pore
pressure as r tends to zero means that for quasi-static conditions the material is
effectively drained at the crack-tip.
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From the above argumentation, the leading order asymptotic expressions of the
velocity, stress, pore pressure, mass flux, rate of fluid mass content and strength
fields are assumed to be the product of a power function of r times a nondimensional
function of ¥, namely,

r

V(r, ) = § (E>sw(z9), o(r, ) = E(%)ST(z‘}), p(r, D) = ‘% (%)sP(ﬁ),

Y : S 20)
a9 = po ¢ () 20). &) == (Z) EO) kro9) = E(%) x).

The exponent s of the stress singularity is to be found and R denotes a character-
istic dimension of the plastic zone, which remains undetermined since the asymptotic
problem is homogeneous. In view of the field representations (20), the strain rate
and the rates of stress and pore pressure can be recast in the following format:

£(r, 0) = }5 (LI;)SD(zS‘), 6(r, 9) = E,E (%)Sz ®),  pr D) = %2 (%)Sl'[(ﬁ). @1

Indeed, a substitution of (20); and (21); into (18) gives

D=(s'WRe+wee) (22)

Sym’

where the suffix ( )’ denotes differentiation with respect to . Moreover, the time
derivative rule (16) can be used to define the intermediate angular functions X and
ITin (21), namely:

Y =T sint—s T cos®¥, IT=P sind—(1+s)P cosv. (23)
Asymptotically, the effective stress o* coincides with the total stress o since the

pore pressure provides higher order contribution only. Then introduction of the
asymptotic fields (20) in the yield condition (8) results in

flo*, k)= E(%)Sf(T, X) + o(), (24)

and thus, in a neighborhood of the crack-tip the yield condition (8) may be equiva-
lently written as:

AT, x) = VI (T) + %trT —x=0. (25)

The gradient to the yield function and plastic flow direction defined in (10) and
(12) are independent of r:

dev T u dev T B8
=——+4+-1, P=————+=1L 26
Q=AM 3 N 20
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A substitution of the asymptotic fields (20) and (21) into the equilibrium Eq. (17)
and into the constitutive relations (14) and (15) using the compatibility conditions
(21)1, (22) yields at the lowest order:

T.es+s T-e. =0,
(s"'Wee+w® e,A)Sym: 1+ X —v X)) I+ 4" 1Q-DP, X))
E=a(l —2v) trZ + 17 'a B (Q-Y).

Note that Egs. (27); > together with the yield condition (25) and definitions (23),
and (26) coincide with the corresponding field equations governing the quasi-static
crack propagation in the drained elastic-plastic material of the solid phase. This pro-
blem has been previously solved for associative (Bigoni and Radi, 1993) and non-
associative (Radi and Bigoni, 1993) flow rules. Therefore, the stress singularity s, the
amplitudes of the elastic and plastic sectors, as well as unknown stress and velocity
fields are already available.

There remains to be determined the pore pressure function P(1%), the mass flux
function z(¥%) and the rate of mass fluid content function E(##). Introduction of the
fields (20) for pore pressure, mass flux and rate of mass fluid content into Darcy’s
law and mass continuity equation (7) yields at the lowest order:

z, = —(1 +5)P,
79 =—P, (28)
z99+ (1 +5)z,+E=0.

Thus a substitution of (28); , and (27); into (28); gives an equation for the pore
pressure function P,

P4 (l4sPP=a(l-w)uL +h e f(Q-Y), (29)

where the left-hand side coincides with the function E. Consequently, once the stress
field T(¢) is known from the solution of the drained problem (27), the expressions of the
angular functions X (¢#) and Q(¥%) in (23); and (26) may be introduced into the second
order ODEs (29), which can be solved for P(¢), from which z(¢) and follow by (28).

To illustrate the procedure, we consider Mode I crack propagation: the symmetry
condition implies the vanishing of the mass flux component zy at ¥ =0, and thus by
(28), the condition P'(0)=0. Moreover, we consider both permeable and impermeable
crack faces. For permeable crack flanks, the pore pressure vanishes at 9=,

P(m) =0, (30)

whereas, for impermeable crack faces, the mass flux vanishes at # = 7, that is by (28),,

P(n)=0. 31)
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Fig. 1. Variation of (a) stress singularity s, (b) elastic unloading and plastic reloading angles with the
pressure-sensitivity coefficient u, for associative flow-rule. A simultaneous increase of the dilatancy and
friction coefficients decreases the strength of the singularity s.

4. Results

As mentioned previously, the singularity s, the stress, velocity fields and ampli-
tudes of plastic and elastic sectors at the crack-tip in the drained material are avail-
able from Bigoni and Radi (1993) and Radi and Bigoni (1993): in this analysis, these
sectors are defined by rays emanating from the crack-tip. For convenience, we
report in Fig. 1 the variation with u of the stress singularity and the elastic unload-
ing and plastic reloading angles, and in Fig. 2 the stress and velocity angular dis-
tributions, in both cases relative to the material parameters u=8=0.1 (associative
flow rule). The corresponding plots relative to non-associative flow rule with iso-
choric plastic flow, namely for £=0.1, =0, are reported in Figs. 3 and 4. All the
results refer to the following values of the material parameters: « =0.5, v=1/3 and,
except in Fig. 1(a), h=H/E=0.001. We recall that these asymptotic solutions
defined by (20) are determined except for an amplitude factor, since all the field
equations and the assigned boundary conditions are of homogeneous type. As
another consequence, the diffusion terms are of higher order in the differential
equations. Consequently, the situation is similar to that of a slow crack propagation,
and not to that of fast crack propagation: for impermeable crack faces in an elastic
porous material, the latter involves a bounded but finite pressure at crack-tip and
requires a boundary layer analysis, Rudnicki (1991).

On the basis of the results for the drained solid skeleton, the asymptotic pore
pressure field near the crack-tip can be obtained with a numerical integration' of
(29), using the boundary conditions (30) or (31). In particular, the angular variations
of the nondimensional pore pressure P and of the mass flux component zy for the
case of an associative flow rule u=p8=0.1 are reported in Fig. 5. Note that from
(28); the radial component of the mass flux is proportional to the pore pressure,

' The routine DIVPRK of IMSL Library has been used.



354 E. Radi et al. | International Journal of Plasticity 18 (2002) 345-358

with reversed sign, and thus it has not been plotted. The cases of permeable and
impermeable crack surfaces are reported in Figs. 5a and b, respectively. For perme-
able crack faces the pore pressure is positive in a neighborhood of the crack-tip and
attains its maximum value ahead of the crack-tip (Fig. 5a). Correspondingly, the pore
fluid flux in radial direction is negative and directed towards the crack-tip, which
behaves as a sink. For impermeable crack faces, a decrease is found in the pore pres-
sure directly ahead of the crack-tip for © <80° (Fig. 5b), which has the effect of
weakening the material ahead of the crack-tip and dissipating energy.

The influence of plastic dilatancy on the pore pressure can be read from (29): since
o* is close to the total stress o near the crack-tip, the plasticity condition is asymp-
totically equivalent to Q-X >0; moreover, the plastic contribution on the right
hand-side of (29) is predominant for small hardening. Thus, plastic dilatancy corre-
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Fig. 2. (a) Angular variation of stress and (b) velocity angular functions near the crack-tip, for associative
flow-rule.
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Fig. 3. (a) Variation of stress singularity s, (b) elastic unloading and plastic reloading angles with the
pressure-sensitivity coefficient u, for non-associative flow-rule. An increase of the non-normality coeffi-
cient u—p increases the strength of the singularity s.
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sponding to B > 0 increases the pore pressure, and correlatively from (28);, also the
flux towards the crack-tip. Although the occurrence of these two effects seems at first
glance paradoxical, it is due to the assumed radial dependence of the fields. On the
other hand, the fact that plastic dilatancy triggers the flux towards the crack-tip
makes the situation much similar to that of strain-localization where the shear-
bands, which are zones of high shearing and dilatancy, attract water, Loret and
Prévost (1991). To appreciate the effects of plastic dilatancy on the pore pressure
and mass flux fields in the neighborhood of the crack-tip exhibited by Fig. 5a, the
situations of small and zero plastic dilatancy are shown in Figs. 6a and b respec-
tively. For small plastic dilatancy, Fig. 6a, the behavior is similar to that of the
associative case, Fig. 5a, except for the magnitude of the fields. For a purely iso-
choric plastic deformation, Fig. 6b, the pore pressure in the diffusing fluid is coupled

80
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Fig. 4. (a) Angular variation of stress, (b) velocity angular functions near the crack-tip, for non-
associative flow-rule.
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Fig. 5. Angular variation of pore pressure P and mass flux component z, near the crack-tip, for (a)
permeable and (b) impermeable crack surfaces.
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Fig. 6. Angular variation of pore pressure P and mass flux component z, near the crack-tip, for (a) small
and (b) vanishing plastic dilatancy, relative to permeable crack surfaces. For =0, pore pressure is cou-
pled with the elastic volumetric strain, and this changes qualitatively and quantitatively its variations.

with the elastic volumetric dilatation only, and thus it displays a variation similar to
the poroelastic case, Atkinson and Craster (1991). This explains why the transition
from >0 to =0 is not smooth. Note also in this case that the fields for permeable
crack faces coincide with those for impermeable crack faces, since both pore pressure
and mass flux tend to vanish at the crack flanks, namely for ¢ > 130°.

The above comments on dilatancy pertain essentially to permeable crack faces.
For impermeable crack faces, the pressure is negative ahead of the crack-tip but it
increases with ¢ and is positive along the crack faces (Fig. 5b): therefore, similar to
poroelasticity, the flux of water is directed away from the crack in a large fan ahead
of the crack.

From the above discussion, it may be concluded that the pore pressure distribu-
tion at the crack-tip is strongly influenced by plastic dilatancy. In fact, one can show
numerically that increasing the value of the plastic dilatancy 8 or that of the friction
coefficient p leads to an increase of s, that is to a decrease of the stress singularity,
see Fig. 1 for the effect of n. On the other hand, increasing non-associativity, that is
the difference wu-g, leads to an increased stress singularity and has thus destabilizing
effects on the crack-propagation, see Fig. 3.

5. Conclusions

Steady-state crack propagation has been analyzed in plane strain, Mode I condi-
tions in an elastic-plastic fluid-saturated porous material. The performed analysis is
restricted to the leading order terms of the crack-tip fields, neglecting inertial effects.
Under this approximation, it is shown that the asymptotic pore pressure and flux
fields can be uncoupled from the stress and velocity singular fields. In other words, to
solve the problem it is possible, first to determine all asymptotic leading order fields in
drained conditions, and second to obtain pore pressure and flux distributions. The
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underlying reason for that procedure is that, similar to poroelasticity, the pore
pressure remains regular at the crack-tip, where it tends to vanish. The obtained
numerical results show that the crack-tip pore pressure distribution is very influ-
enced by the plastic dilatancy.
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