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Abstract  Perturbations in terms of small elastic deformations superimposed upon
a given homogeneous strain are analysed within a boundary element
framework. This is based on a recently-developed Green’s function and
boundary integral equations for non-linear incremental elastic deforma-
tions. Plane strain deformations are considered of an incompressible
hyperelastic solid within the elliptic range. The proposed approach is
shown to yield bifurcation loads and modes via a perturbative approach.
Numerical treatment of the problem is detailed and applications to mul-
tilayers are shown. Relations between shear band formation and global
instabilities are given evidence.

1. INTRODUCTION

The response to perturbations of a pre-stressed, non-linear elastic solid
is an important issue in a broad spectrum of mechanical problems in-
cluding the modelling of biological tissues, the analysis of geological
formations and the behaviour of seismic insulators and rubber bearings.

With reference to plane strain deformations of incompressible materi-
als, Biot [1] has shown that the incremental elastic response is governed
by two incremental moduli, functions of the current stretch. Biot’s con-
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stitutive framework was assumed in [2] to obtain a Green’s function and
a boundary integral formulation for incremental deformations superim-
posed upon a given, homogeneous strain. Both Green’s function and
integral formulation pave the way for constructing a boundary element
technique (BEM) suitable to analyse incremental problems of non-linear
elasticity. This is the purpose of the present article, where a general nu-
merical scheme is formulated to handle generic boundary value problems
with prescribed nominal tractions or displacement boundary conditions.

It should be mentioned that several attempts have been presented
to analyse non-linear problems using boundary element techniques. In
these cases, in addition to the usual boundary integrals, a domain in-
tegral is introduced, leading to the so-called ‘field-boundary element
method’. The introduction of this term nullifies a main advantage of
BEM and originates from the discrepancy between the nonlinear char-
acter of the equations governing the problem and the employed funda-
mental solution (usually pertinent to linear, isotropic elasticity). Al-
though restricted to perturbations of homogeneously deformed, elastic
solids, the proposed boundary element technique retains all the well-
known advantages of the small strain formulation, like: discretization
limited to the domain boundary; automatic satisfaction of the incom-
pressibility constraint; description of singularities near corner points of
the boundary.

The method is shown to be particularly suitable to analyse bifurcation
problems even involving surface and localized modes.

2.  INCREMENTAL CONSTITUTIVE
EQUATIONS

Coustitutive equation given by Biot [1] for incompressible materials
incrementally deformed in plane strain is adopted. The constitutive
framework embraces a broad class of material behaviours including hy-
per and hypo elasticity, and the loading branch of associated elastoplas-
ticity. In a Lagrangean formulation of field equations, with the current
state taken as reference, the constitutive equations for the nominal stress
tensor rate iij can be written in the form

tij = Kijrivrk + pdij = Kijuvpk + 7035,  vi; =0, (1.1)

)

where v; is the velocity, d;; is the Kronecker delta and

o1+ 09 . tutiln . o1—o9

5 T=T 5 TP T (1.2)
are the in plane hydrostatic stress rates (positive in tension), related
to the principal components o1, o9 of the Cauchy stress and to the
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nominal stress. The tensor K;;z; represents the instantaneous stiffness,
characterised by the major symmetry K;;z; = Kj;;; and having the form

3]

o
Ki111 = ps — 5 P Ki122 = —fi4, Ki112 = Ky121 = 0,
g
Koo11 = —pi, Ko200 = pis + 5 P Kao12 = Kogo1 = 0,
o g
Kio12 = p + 5 Kig91 = Kotio = p—p, Koro1 =p— 5
(1.3)
where
o1+ 09
o=01=03  Pp= (1.4)

and p, ps are two incremental moduli corresponding respectively to
shearing parallel to, and at 45° to, the Kulerian principal axes.

The formulation is restricted to the elliptic range (E), corresponding
to negative or complex coefficients y; and ~ys:
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where k = o/(2u) is a parameter characterising the pre-stress. The
elliptic range may be further sub-divided into elliptic-imaginary (EI:
A > 0, so that 1 and 9 are both negative) and elliptic-complex (EC:
A < 0, so that y; and 79 are a conjugate pair) regimes.

Discontinuous strain rates corresponding to shear bands are possi-
ble at the boundary of the elliptic range. Elliptic imaginary/parabolic
(EI/P) boundary is attained when k =1 (; = 0) whereas elliptic com-
plex/hyperbolic (EC/H) boundary is attained when A =0 (y; = 72).

3. THE FUNDAMENTAL SOLUTION

In the framework described by the constitutive eqns. (1.1), the Green’s
function set {v; 79} for an infinite and uniformly deformed medium can
be written in the form [2]:

g _
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(1.6)
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where r and 6 are the polar coordinates singling out the generic point
with respect to the position y of the concentrated force, indices 7 and g
range between 1 and 2 and
sin[a+ (i — 1) ]sin[a 4 (g — 1) 5]

K(a) = NG ; (1.8)

A(a) = sin a(cot? o — ;)
Ky(a) = K9(a) cos[ t(g-1T }

(cot®> a — y2) > 0, (1.9)
(e

), (g not summed) (1.10)

I(a )_2<;—1) (2cos® a— 1) — k. (1.11)

From the Green’s velocity v{ and pressure rate 79, the in-plane hy-
drostatic stress rate p9 and the associated incremental nominal stress
tfj can be obtained by using constitutive equations (1.1).

4. BOUNDARY ELEMENT FORMULATION

We refer to mixed boundary value problems in which velocities and
incremental nominal tractions 7 are prescribed functions

v; = 0y, on 0B, t”nz = 7._']' on dB,, 0B = 0B, UJBr, (1.12)

defined on separate portions 0B, and dB; of the boundary 0B of a solid
B, currently in a state of homogeneous, finite deformation.

In this context, an integral representation exists relating the velocity
at interior points of the body to the boundary values of nominal traction
rates and velocities [2]:

) = [ [fo) o) o o3) = 0, 9) o) 3 0] (119

If the point y is at the boundary, eqn.(1.13) becomes [2]

Clui(y) = /anj(X)vf-(x,y) dlx—][anjg(x,y)vj(x) dl,,  (1.14)

where

C? = lim 77 (x,y) dly, (1.15)
e—0 806
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is the so-called C-matrix, depending on the material parameters, state
of pre-stress and the geometry of the boundary (in the case of a smooth
boundary, C{ = 14,;). Note that symbol C; introduced in (1.15) de-
notes the intersection between a circle of radius € centred at y and the
domain B.

The boundary equation (1.14) is the starting point to derive the col-
location boundary element method. To this purpose, the boundary 0B
is divided into m elements I'® (e = 1,---,m), with subsets m, and m,
belonging respectively to 0B, and dB; (clearly m = m,, + m;).

Inside each boundary element I'®, the following discretization for ve-
locities and nominal tractions is introduced

0i(X) = Pa(X) Via,
(1.16)
7i(X) = @a(X) Tias a=0,---,0,

where ¥4, Tio are the nodal values of velocities and nominal traction
rates, respectively, and ¢, are the relevant shape functions, selected as
polynomials of degree ©.

The discretized form of eqn. (1.14), collocating the point y at y(&®)
corresponding to the node & of the element e is:

m
Cigq_)iéa + Z <7_)iea]£ Pa(x) 7'—1‘9 (x,y)dly — %Eﬁ /F Pp(x) vi'q (x, Y)dl:c> =0,
e:1 € €

(1.17)
where indices o and 7 are summed and range between 0 — © and 1 — 2,
respectively.
Collocating eqn. (1.17) at each node along the two directions z; and
zo yields an algebraic system that can be written in a form

Hv = G7, (1.18)

~ X . . _ e
where v and 7 are the vectorial expressions for v7, and 7,5, defined as:

D20(e—1)+2a+i = Via> P20 (e—1)+2a+i = Tia (1.19)
where O is not a free index, but the fixed number specifying the degree
of the interpolating functions.

Solution of system (1.18), after re-arrangement of data and unknowns,
gives the nodal velocities v;, on 0B, and the nominal traction rates %iﬂ
on 0B,.

We limit the presentation to discretization of the boundary into linear
elements and linear shape functions, so that the singular integrals in
eqn. (1.17) relative to elements adjacent to the collocation node e can
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be evaluated analytically. In particular, the strongly singular integral
on the left hand side of eqn. (1.17), after change of variable, takes the
form

. le—l le
1509 =]£ <1 - ln1> #2(n,61) dn +]£ (1 — lﬁ) 79 (n, 02) dn.
(1.20)

As far as the two elements e — 1 and e are concerned, the incremental
Green’s tractions can be computed as:

Xig(k’ li_*)
9 = (- (121)
which are independent of 6. Introducing eqn. (1.21) into eqn. (1.20),
we obtain

‘ l
I§8) = (—1)° xig log <z el> . (1.22)
-

Analogously, the weakly singular integral on the right hand side of
eqn. (1.17) is equal to

7lig:e) _ et 1 n g t Y .9
weak - v; (777 01) d’l + I—- v; (777 02) d’l’]
0 le—1 0 le
(1.23)

Taking in account the expression of v{ given in eqn.(1.6) the integral
(1.23) can be analytically evaluated and the resulting four components
are listed in Table (1).

Table 1 Analytic expressions for the weakly singular integrals (1.23)

(ig,e)

i g Integral 1,7,/

poor e [l s g )] 4k [2Rs08 4 g1 y)]
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2 1 0} (01) + 3 (62)
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5. NUMERICAL EXAMPLES

As a first example, the response of a multilayered elastic block to
an incremental, skew-symmetric loading 7, (see the detail in Fig. 1) is
investigated. The block is formed by three layers perfectly bonded to
each other. Material (1) constituting the external layers is supposed to
be different from material (2) of the inner layer. All layers are supposed
to undergo the same homogeneous, plane strain deformation with the
principal directions of deformation aligned normal and parallel to the
layers. Therefore, a uniaxial state of traction or compression prevails in
the laminate, with different values for materials 1 and 2. Starting from
this pre-stressed state, the incremental load 7 is applied. The loaded
zone has been chosen to be equal to 2/15 b (b is the half-length of the
edges) and a regular boundary mesh for each layer has been adopted.

Three ratios of incremental shear moduli (g, /)1, (f+/t)2 and p1/po
have been considered for the two materials (Tab. 2) and the relevant
results are shown in Fig. 1, where the velocity [normalized through mul-
tiplication by p1/(b7)] is plotted versus the pre-stress k. It can be seen

Table 2 Bifurcation stress k for a three-layered elastic structure

Ezample Shear moduli ratios Bifurcation stress k
(s/p)1 (ps/p)2  p1/pe  Analytical Numerical
1 1.0 0.5 0.5 0.4722 0.4852 =+ 0.4859
2 0.5 1.0 2.0 0.3714 0.3789 + 0.3797
3 2/3 1.0 1.5 0.4386 0.4469 -+ 0.4477

that traction increases stiffness whereas compression induces stiffness
degradation, which becomes dramatic when critical values of k are ap-
proached. Tab. 2 compares numerical estimates of the bifurcation values
of k with those evaluated analytically by Bigoni and Gei [4], though for
slightly different boundary conditions. It is worth noting that the value
of k is independent of the material, but depends only on the maximum
in-plane stretch.

A second example concerns the so-called ‘van Hove condition’, where
the solid is subjected to prescribed displacements over the entire bound-
ary and the current deformation (and stress) is homogeneous [5, 6]. In
these conditions, starting from an unloaded configuration, shear bands
occur as the first possible bifurcation. We analyse this situation for
the square elastic block shown in Fig. 2, characterised by p./pu = 0.25
(corresponding to the elliptic complex regime) and homogeneously de-
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Figure 1 Non-dimensionalized velocity of the corner point ¢ versus pre-stress k.

formed in a state of uniaxial tension and compression. All displacements
are prescribed on the boundary, so that the solution is known unless an
arbitrary value of homogeneous pressure. A perturbation is given by
prescribing the triangular distribution of velocity sketched in Fig. 2.
The level sets of the modulus of the velocity are reported in Fig. 3 and

k=l 2 :
2z > g prescribed
R3] m velocity
3 & &
8o &l

>
8- » /b

Figure 2 Loading geometry in van Hove conditions.

4, for three different values of pre-stress k = {—0.859,0,0.859}. The
values +0.859 are close to the boundary of loss of ellipticity (4-0.866),
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where shear bands become possible, inclined at an angle n = 27.367°,
with respect to the direction of tensile stress.

The fact that strain localization can be observed within the elliptic
range — employing a perturbation approach — agrees with previous
findings [2, 7]. This aproach may provide an explanation of the fact that
shear banding is a preferred instability when compared to other diffuse
bifurcations, possible at loss of ellipticity under van Hove conditions [8].
v
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Figure 8 Level sets of modulus of velocity at different values of pre-stress k. Loading
geometry is sketched in Fig. 2, with ¢/b = 1/2. Note the shear bands emerging at k = 0.859.
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Figure 4 Level sets of modulus of velocity at different values of pre-stress k. Loading
geometry is sketched in Fig. 2, with ¢/b = 4/9. Note the shear bands emerging at k = 0.859.

The van Hove setting is very peculiar and provides the maximum
possible ‘confinement’ to a material sample. A relaxation of this severe
configuration was proposed by Ryzhak [9] and will be called ‘weak van
Hove’ conditions in the following. In particular, the material must be
homogeneous and orthotropic, with orthotropy axes parallel and orthog-
onal to the given loading direction. Two parallel edges of the material
element must be in smooth (bilateral) contact with a rigid constraint.
The current configuration, sketched in Fig. 5, is perturbed with two
assigned, triangular velocity distributions. For weak van Hove condi-
tions, level sets of the modulus of the velocity are plotted in Figs. 6 and
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Figure 5 Loading geometries in weak van Hove conditions.

7, for different values of pre-stress k = {0,0.7,0.857}, corresponding to
compression parallel to zs.

It can be seen that shear banding is not evident until £ = 0.7 but it
appears clearly for £ = 0.857, which is close to the boundary of ellipti-
city. ‘Reflection’ of shear bands at the boundary emerges as a peculiar
deformation pattern. Similar deformation mechanisms have been also
observed in different contexts (porous plastic materials [10]; dynamics
of visco-plastic solids [11, 12]), and may explain pattern formation in bi-
ological system or geological structures. The localization of deformation
may also suggest possible technological applications. For instance, the
highly strained regions could be employed to transmit signals so that the
pre-stress could become a parameter controlling special types of delay
lines.
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