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SUMMARY: Flutter instability in an infinite medium is a form of material instability 
corresponding to the occurrence of complex conjugate squares of the acceleration wave velocities. 
Although its occurrence is known to be possible in elastoplastic materials with nonassociative flow 
law and to correspond to some dynamically growing disturbance, its mechanical meaning has to 
date eluded a precise interpretation. This is provided here by constructing the infinite-body, time-
harmonic Green's function for the loading branch of an elastoplastic material in flutter conditions. 
Used as a perturbation, it reveals that flutter corresponds to a spatially blowing-up disturbance, 
exhibiting well-defined directional properties, determined by the wave directions for which the 
eigenvalues become complex conjugate. Flutter is shown to be connected to the formation of 
localized deformations, a dynamical phenomenon sharing geometrical similarities with the well-
known mechanism of shear banding occurring under quasi-static loading. Differently from the 
latter phenomenon, flutter may occur much earlier in a process of continued plastic deformation. 

 
 

1. INTRODUCTION 
Several micromechanisms acting at a microscale during deformation of granular and rock-like 

materials involve Coulomb friction. As a consequence, the flow rule becomes nonassociative and 
the phenomenological rate elastoplastic constitutive equations for these materials become 
unsymmetric. Due to this lack of symmetry, two squares of the propagation velocity of 
acceleration waves or, in other words, two eigenvalues of the acoustic tensor, may become a 
complex conjugate pair. That this situation might correspond to a form of material instability 
particularly relevant in granular material was clear since J.R. Rice (1977) coined for it the term 
“flutter instability”, but neither examples of constitutive equations displaying this instability nor a 
mechanical interpretation for it were given at that time. Consequently, research was initially 
focused on the determination of situations in which flutter was possible (see Bigoni, 2000; Loret et 
al. 2000 for a review). In particular, it was shown that flutter instability may occur more often than 
one might expect, not satisfying any hierarchical relation to other instabilities (such as for instance 
shear banding), possibly at an early stage of a hardening process and typically triggered by 
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noncoaxiality (of the flow rule or induced by elastic or plastic anisotropy). However, the problem 
of finding a mechanical interpretation for the instability remained almost completely unexplored 
(with the exceptions of Bigoni and Willis, 1992 and Simões, 1997). This has been a major problem 
retarding further progress in research since, though generically believed to correspond to a 
dynamically growing disturbance, only the knowledge of the precise mechanical features of the 
instability can permit its identification for real materials. 
 

To shed light on this problem, a perturbative approach is developed, following the 
methodology proposed by Bigoni and Capuani (2002; 2005) to investigate shear banding and other 
forms of material instabilities. In more detail, the analysis is limited to the loading branch [see 
Bigoni and Petryk (2002) for a discussion on this delicate assumption] of an elastoplastic 
constitutive operator (taken from Bigoni and Petryk, 2002) embodying features typical of the 
behaviour of granular materials and capable of exhibiting flutter instability. An infinite body is 
considered made up of this material, homogeneously and quasi-statically deformed in two 
dimensions (plane strain or generalized plane stress). For this configuration, a time-harmonic 
Green's function is found, representing the first Green’s function obtained for a nonsymmetric 
constitutive equation [A quasi-static Green's function for unsymmetric constitutive equation has 
been developed by Bertoldi et al. (2005), but this is unsuitable for flutter anaylses, since this 
instability is essentially dynamic and thus remains unrevealed under the quasi-static assumption. 
In addition, Bertoldi et al. (2005) also derive boundary integral equations under the unsymmetric 
constitutive assumption, which are shown to possess certain typical features although not directly 
connected to the present discussion]. The Green’s function is employed to form a pulsating dipole 
(two equal and opposite forces having a magnitude varying sinusoidally with time) to be used as a 
dynamic perturbation revealing effects of flutter. 
 

Results demonstrate the following features of flutter instability occurring in a material for 
which the tangent constitutive operator is positive definite (so that negative second-order work and 
shear bands are excluded at the considered stress level).  
i. Differently from shear bands, becoming already evident when the boundary of the region of 

ellipticity is approached from its interior (Bigoni and Capuani, 2002; 2005), flutter instability 
remains undetected while the eigenvalues of the acoustic tensor lie in the real range, appearing 
only after two real eigenvalues have coalesced and then become a complex conjugate pair; 

ii. flutter instability corresponds to a disturbance blowing-up in space from the perturbing dipole 
and self-organizing along well-defined plane waves.  

iii. the normals to the above plane waves lie within the fan of directions corresponding to flutter 
and have been found to have an inclination remarkably different from that corresponding to 
shear bands, occurring later in the hardening process. 
 
It should be noted that the blow-up found in our solution will occur rapidly and nonlinearities 

neglected in our analysis (such as for instance the possibility of elastic unloading and plastic 
reloading) may soon become important, possibly changing the overall mechanical response. 
However, our results suggest that flutter instability should induce a layering in an initially 



homogeneous material, inducing a localization of strain in a form somehow similar −though 
occurring much earlier in a hardening process− to that pertaining to shear bands occurring in a 
dynamical context (Bigoni and Capuani, 2005). Our hope is that this feature revealed by our 
results has now been made accessible to experimental investigation. 
 
 

 
2. THE OCCURRENCE OF FLUTTER 
 

The occurrence of flutter instability is analyzed for the constitutive model presented in Bigoni and 
Petryk (2002); see also Bigoni and Loret (1999). For a given set of  constitutive parameters, it is 
possible to study flutter for all the propagation directions n while varying the plastic modulus H 
/µ, by use of inequalities obtained by Bigoni and Loret (1999). Therefore, the ranges in which 
flutter occurs can be plotted in the plane H /µ versus ϑn, where the latter defines the direction of n. 
Restricting the analysis to the infinitesimal theory, analyses have been performed assuming 
different values of the Lode parameter ϑL = {60°, 30°, 0°, −30°, −60°} in the deviatoric stress 
space, as shown in Fig. 1. 
 
 
 

 
 
 

Fig. 1 Stress directions in the deviatoric plane, defined by the Lode angle, considered for flutter 
analysis 

 
 
Results are reported in Figs. 2 and 3, the latter giving more detail for four of the cases reported in 
the former figure. Different stress paths defined by the values of the Lode angle reported in Fig. 1 
are considered for different anisotropy inclination ϑσ  (see Bigoni and Loret, 1999 or Bigoni and 
Petryk, 2002 for a definition) in  Fig. 2 at given values of values of pressure sensitivity and 
dilatancy parameters, respectively, ψ = 30° and χ = 0° (Bigoni and Loret, 1999 or Bigoni and 
Petryk, 2002). In the graphs reported in Figs. 2 and 3, the closed contours denote regions where 
flutter occurs in the plane defined by the normalized critical plastic modulus H/µ and the 
inclination of propagation  direction ϑn.  
 



 

 
 

Fig. 2 Regions of flutter instability (occurring for internal points) in the H /µ vs. ϑn plane, 
for the stress paths shown in Fig. 1 at various anisotropy inclinations ϑσ. 

 
 

Four details of Fig. 2 are reported in Fig. 3, where λ /µ = 1 (elastic moduli playing a role 
similar to the usual Lamé constants), b = 80° (Bigoni and Loret, 1999 or Bigoni and Petryk, 2002), 
ψ = 30° and χ = 0°, as in Fig. 2. The six regions in Fig. 3 correspond to the four cases: 

ˆ

 
ϑL = 0° and ϑσ = 15°     (Case 1),  
ϑL = ϑσ = 30°                 (Case 2), 
ϑL = 0° and ϑσ = 45°     (Case 3), 
ϑL = 0° and ϑσ = 60°     (Case 4). 

 
With reference to the Cases 1,2,3 and 4, detailed in Fig. 3, we note that the critical values of 
hardening modulus for loss of positive definiteness of the constitutive operator  and for loss 

of ellipticity  permitting shear bands with normal inclined at ϑ

PD
crH

E
crH nE are 

 



Case 1:  PD
crH /µ = 0.42,  E

crH /µ =  0.19,    ϑnE = −28.0° 

Case 2:  PD
crH /µ = 1.22,  E

crH /µ =  0.18,    ϑnE = −16.4° 

Case 3:  /µ = 1.03,  /µ =  0.74,    ϑPD
crH E

crH nE = −32.0°   (1) 

Case 4:  /µ = 1.81,  /µ =  1.57,    ϑPD
crH E

crH nE = −33.9° 
 
so that in all cases flutter may initiate when the constitutive operator is positive definite (therefore 
at an early stage of a deformation process) and may extend in a region possibly involving loss of 
ellipticity.  
Note that thresholds (1) have been graphically represented in Fig, 3, where light grey regions 
correspond to regions where flutter may occur with the constitutive operator still positive definite, 
while in the dark grey regions ellipticity is lost (horizontal lines marking ellipticity loss are 
denoted with “E (case i)”, where i = 1,..,4 stands for the number of the relevant Case). In the same 
figure, three black spots and a white spot (referred to Case 2) indicate the inclinations of shear 
bands at first loss of ellipticity. Note that the small flutter regions of cases 3 and 4 are beyond the 
positive definiteness threshold, but still in the elliptic region. 
 

It may be important to remark that the initial inclinations of propagation normals for 
flutter and shear bands are unrelated and result remarkably different. 
 
From the above analysis it can be deduced that the constitutive model allows one to approach 
flutter starting from a well-behaved state. Moreover, it may be interesting to note from Fig. 3 that 
there are overlapping regions corresponding to different stress states (Cases 1 and 2). In these 
zones the flutter may have identical characteristics even if the stress state is different. 
 
 



 
 

Fig. 3 Regions of flutter instability (occurring for internal points) in the H /µ vs. ϑn plane, for the 
stress paths shown in Fig. 1 at various anisotropy inclinations ϑσ. The regions of positive 
definiteness of the constitutive operator are marked in light grey, while (E) denotes loss of 
ellipticity into shear bands (regions shaded in dark grey) inclined at ϑnE(i), where i=1,..,4 denotes 
the relevant Case, see (1). 
 
 

3. THE DYNAMIC TIME-HARMONIC GREEN’S FUNTION FOR GENERAL 
NONSYMMETRIC CONSTITUTIVE EQUATIONS 

 
 

An initial static homogeneous deformation of an infinite body is considered, satisfying 
equilibrium in terms of first Piola-Kirchhoff stress and taken as the reference state in an updated 
Lagrangian formulation. A dynamic perturbation is superimposed upon this state, defined by an 
incremental displacement u satisfying the equations of incremental motion, written with reference 
to the constitutive equation employed by Bigoni and Petryk (2002), in which “dots” over symbols 
are to be interpreted now as incremental quantities rather than rates. Thus  
 

 Cijkl uk,lj + fi = ρ ui,tt        (2)
 

where ,t denotes material time derivative and fi and ρ are the incremental body forces and the mass 
density, respectively. Equations (2) look like ordinary elastodynamics, except that Cijkl has neither 
the usual major nor the minor symmetries. Note that tensor Cijkl can be identified (and will be in 



the examples) with that provided by Bigoni and Petryk (2002), but can also be thought completely 
arbitrary in the following. 

To investigate the properties of eqn. (2), outside and inside the flutter region we follow the 
Bigoni and Capuani (2005) approach, based on the determination of the dynamic Green's  
function, sought for simplicity under the time-harmonic assumption 

 
u(x, t) = u (x) eˆ −i ωt,     f(x, t) = f (x) eˆ −i ωt,      (3) 

 
where ω is the circular frequency and t and x denote time and space variables, respectively, so that 
the time dependence can be removed from eqn. (2) and consequently 

 
0ˆˆˆ 2

, =++ iiljkijkl fuuC ωρ .       (4)
 

The Green's tensor Gip(x) is obtained by solving eqn. (4) under the hypothesis  = δif̂ ip δ(x), with 
δ(x) denoting the Dirac delta. In order to approach the flutter condition, we exploit a plane strain 
deformation analysis, in which only two relevant components of the Green's function appear. 
 

The Green's function is determined employing a Radon transform technique, as proposed 
by Willis (1991). In particular, having introduced polar coordinates (so that the position vector x 
has modulus r = |x| and is inclined at angle ϑ to the x1−axis), the two-dimensional, time-harmonic 
Green's function corresponding to a generic, completely non-symmetric constitutive (tangent) 
fourth-order tensor, can be written in the form  
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where Ci and Si denote the cosin integral and the sin integral functions, kN = ω/cN and cN are the 
eigenvalues of the acoustic tensor A(n) (relative to the constitutive incremental tensor) with  
corresponding left and right eigenvectors wN and vN, all quantities depending on the propagation 
inclination n (which means on α + ϑ). 
 
 

4. A DYNAMICAL INTERPRETATION OF FLUTTER INSTABILITY 
 

The behaviour of the Green's function, eqn. (5), is analyzed here, outside and inside the 
flutter region.  As a reference, we consider Case 3 shown in Fig. 3, in which the material is subject 
to the radial stress path corresponding to ϑL = 0 in Fig. 1 and the direction of the axis of elastic 
symmetry is taken inclined at ϑσ = 45° with respect to the principal stress direction k1.  
The employed material parameters are λ/µ = 1, b = 80°, ψ = 30°, and χ = 0°. Dimensionless 
Green's tensor components have been computed for  

ˆ

 



ϖ  = a ω
µ
ρ

 = 1,  

 
where a is a characteristic length, and for several values of the plastic modulus H/µ, including the 
values 3.53 and 1.5. These correspond, respectively, to situations near and inside the flutter region 
(see Fig. 3), but still in a situation where the second order work is positive definite. The values of 
the components are plotted in Fig. 4 as functions of the distance from the singularity along a radial 
line inclined at −45° with respect to the x1−axis, normalized through division by a.  
 

The real (imaginary) parts of the Green's function components are plotted left (right) in 
the figure and the plots having been obtained starting from x1 = 1/10 to exclude the singularity (in 
the real components of the Green's tensor). 
 

Commenting the results:  
 

• first, we note from the figure that the Green's tensor is not symmetric (since the acoustic tensor is 
not), so that G12 ≠ G21; 

• second, results referring to values of plastic mudulus H/µ higher than 3.53 and up to 7 (not 
reported here for conciseness) produce curves practically coincident to those pertaining to H/µ = 
3.53, we can therefore conclude that there is not much difference between the situations in 
which the material is far from and very near to the flutter region. This feature has been 
confirmed by us with several calculations (not reported here) and distinguishes flutter from 
shear banding, the latter becoming already visible when the condition of loss of ellipticity is 
approached from the interior of the elliptic range (Bigoni and Capuani, 2002; 2005); 

 • third, a blow-up of the solution with the space variable, clearly visible in all components of the 
Green's tensor is the characteristic feature of instability inside the flutter region, H/µ = 3.53. 
This blow-up is similar to that evidenced by Bigoni and Willis (1994), but in a constitutive 
setting including viscosity, which is now absent. 

 
Further exploration of flutter instability requires plotting of incremental displacement maps 
produced by a pulsating dipole, in a way similar to (Bigoni and Capuani, 2005). This (not reported 
here for conciseness) reveals the above-determined spatial blow-up corresponds to the formation 
of deformation patterns exhibiting well-defined directional properties, determined by the wave 
directions for which the eigenvalues become complex conjugate. 
 
 
 



 
 
Fig. 4 Dimensionless Green's tensor components (real part left, imaginary part right in the figure) 
along a radial line inclined at −45° with respect to the x1−axis for Case 3 of Fig. 3 and ϖ  = 1. 
Two values of the plastic modulus H/µ = {3.53, 1.5} are considered, corresponding, respectively, 
to situations near and inside the flutter region. The blow-up of all components of the Green's 
tensor is evident in the flutter region, H/µ = 1.5. 
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