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Preface

Part of my research activity in the last few years has potentially applications
in the �eld of ceramic materials. In the notes which follow, I have not at-
tempted to provide a comprehensive guide to the mechanical behaviour of
ceramics. Instead, I have collected together a number of unpublished contri-
butions, in which I was involved at di�erent levels. These regard particular
and often unrelated aspects of mechanical behaviour of ceramics. Moreover,
results have been obtained following an approach peculiar to Solid Mechanics
and they are not based on extensive experimental results. However, I hope
that some of the presented material might stimulate the scienti�c curiosity
of researchers in the �eld.

All the results presented have been obtained in co-operation with dif-
ferent researchers, to which I would express my sincere gratitude. In par-
ticular, I owe much to Giancarlo Celotti, Go�redo De Portu, Leonardo Es-
posito, Alessandro Gajo, Massimiliano Gei, Stefano Guicciardi, Alexander B.
Movchan, Andrea Piccolroaz, Enrico Radi, Sergei K. Serkov, Anna Tampieri,
Antonella Tucci, Monica Valentini.

Povo di Trento, January 2002. Davide Bigoni
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Chapter 1

An introduction to the mechanical

behaviour of ceramics

D. Bigoni 1)

Mechanical behaviour of ceramics is summarized with emphasis

on some issues that will be addressed in the subsequent chapters.

Elastic, plastic and viscous behaviour, fracture and large strain

e�ects are considered.

1.1. Preliminaries

Since neolithic times ceramics have played a fundamental role in man's
development and survival (Scott, 1954). But during the last thirty years the
technology of ceramic design and production has undergone a spectacular
growth.

The peculiar optical, electrical, and magnetic characteristics, connected
to the excellent thermo-chemical stability at high temperatures drives the
industrial exploitation of ceramics. Following a modern de�nition of ceramics,
these are materials manufactured from non-metallic, inorganic substances
exhibiting high thermal stability. A broad class of materials falls within the

1) Dipartimento di Ingegneria Meccanica e Strutturale, Università di Trento, Via Mesia-

no 77, 38050 Trento, Italy.



8 1. An introduction to the mechanical behaviour of ceramics

above de�nition, including � for instance � superconductors, tiles, diamonds,
zirconia, alumina, and glasses (Pampuch, 1991).

Structural ceramics are the main focus of the present notes. These di�er
from traditional ceramics essentially because of their high purity and the
presence of substances di�erent from silicates, such as oxides, carbides, ni-
trides, etc. Moreover, mechanical properties are a crucial design target within
this class of materials.

Our main interest here is the mechanical behaviour of structural ceramics
related to fracture initiation and growth under service conditions. In partic-
ular, the present monograph is articulated as follows.

A brief review of the mechanical behaviour of ceramics is included in
Chapter 1. The treatment is far from exhaustive and the interested reader is
referred to De Portu (1992), Evans (1984), Green (1998), Lawn (1993), Munz
and Fett (1999) for a comprehensive view of �eld of ceramics and to Ashby
and Jones (1980), Bridgman (1952), Cottrel (1964), McClintock and Argon
(1966) and Nadai (1950) for more general notions of material science.

Stable, rectilinear crack propagation in zirconia-containing ceramics is
analyzed in Chapter 2. The focus is on the toughening mechanism related to
stress-induced phase transformation in the near crack tip zone.

De�ection of crack path as induced by inhomogeneities in the form of
cavities, rigid/soft inclusions or cracks is analyzed in Chapter 3. Toughen-
ing may be connected to crack de�ection, so that the investigation becomes
important for ceramic materials.

A peculiar failure mode, namely, failure under uniaxial compression is
analyzed in Chapter 4 for silicon nitride at high temperature. Performed
experiments demonstrate an elastic-plastic behaviour. Failure is interpreted
in the framework of bifurcation theory.

Chapter 5 is devoted to the analysis of cold forming of powders. Problems
related to forming technology involve the major part of ceramic materials and
are connected to the analysis of density and residual stress distributions in
greens.

1.2. Elastic behaviour

Deformation in the elastic range of crystalline materials is related to (re-
versible) movements of atoms, which � for instance � may be experimentally
demonstrated using x-ray di�raction during deformation of a material ele-
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ment. At room temperature, linear elasticity is a common behaviour of many
ceramics, such as alumina (Al2O3) or silicon nitride (Si3N4).

Within the realm of linear elasticity, stress � and strain � are related
through a linear relationship

� = E [�]; (1.1)

where the fourth-order tensor E may describe a broad class of anisotropic
behaviours (E is characterized, in the most general case, by 21 material con-
stants, when a stress potential is assumed). The behaviour of single-crystals
is always anisotropic and the particular class of crystal symmetry de�nes the
number of elastic constants (Love, 1927). For instance, three or �ve elastic
constants describe cubic or hexagonal single crystals (Fig. 1.1).

FCC BCC HCP Tungsten Carbide

Figure 1.1. Crystal lattice structures: Face Centered Cubic, Body Centered Cubic,

Hexagonal Close Packed, Tungsten carbide.

At a macroscopic scale, polycrystalline ceramics often consist of a random
array of single-crystals, so that an isotropic elastic behaviour follows. In this
case, the elastic constants reduce to two, the Young modulus E and the
Poisson's ratio �. The elastic fourth-order tensor thus becomes:

E = �I 
 I + 2�I2� I ; (1.2)

where
� =

�E

(1 + �)(1� 2�)
; � =

E

2(1 + �)
; (1.3)

are the Lamé constants (� is the shear modulus, often denoted by G) and
I
I and I2� I are fourth-order tensors de�ned, for every second-order tensor
A, in the following way:

I 
 I [A] = (trA)I ; I2� I [A] =
1

2
(A+AT ): (1.4)

Indicative values of the elastic constants for some materials at room temper-
ature are reported in Table 1.1 (data taken from Green, 1998; Kingery et al.
1960; Meyers and Chawla, 1999; Munz and Fett, 1999; Shackelford, 1985).
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Table 1.1. Elastic constants E, � at 20ÆC.

Material Young modulus E (GPa) Poisson's ratio �

1040 carbon steel 200 0.3

304 stainless steel 193 0.29

3003-H14 aluminum 70 0.33

Copper 129.8 0.343

Polyamides (nylon 66) 2.8 0.41

Acetals 3.1 0.35

Borosilicate glass 69 0.2

Silicon nitride (HPSN) 320 0.28

Sintered alumina (95% dense) 320 0.20-0.26

Sintered stabilized zirconia 150-240 0.22-0.30

Ceramic �bre SiC 430 �

Glass �bre (S-glass) 85.5 �

Polymer �bre (Kevlar) 131 �

Ceramic whisker Al2O3 430 �

Al2O3 whiskers (14 vol%) in epoxy 41 �

1.3. Fracture

At room temperature, ceramics are typically brittle materials, which usu-
ally fail as a consequence of rapid and catastrophic fracture propagation 2).
Perhaps the major research goal of the last thirty years (in the �eld of ce-
ramics!) has been indeed directed to emend this characteristic, which is un-
acceptable in many technological applications.

There are essentially two approaches to linear elastic fracture mechan-
ics: the energy approach and the stress intensity approach. The former was
initiated by Gri�th (1920) and is equivalent to the latter, that is followed
below (for a detailed presentation of fracture mechanics see Anderson, 1995;
Broberg, 1999; Lawn, 1993). With reference to the coordinate system intro-
duced in Fig. 1.2, the asymptotic stress �elds near a crack tip in an isotropic,
linearly elastic material, subject to symmetric boundary conditions � the
so-called Mode I problem � can be expressed as (Westergaard, 1939)

�11(r; �)

�22(r; �)

�12(r; �)

9>=
>; =

KIp
2�r

cos
�

2

8>><
>>:

(1� sin �
2
sin 3�

2
)

(1 + sin �
2
sin 3�

2
)

sin �
2
cos 3�

2

: (1.5)

2) Brittle crack propagation occurs essentially by bond rupture, for cracks of atomic

sharpness.
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���� ���r

�

x1

x2

r

22

Figure 1.2. Polar and Cartesian coordinates used to describe crack �elds. The stress

component �22(r; 0) is also reported.

It should be noted that �elds (1.5) satisfy equilibrium with null body forces

div� = 0 ; (1.6)

the traction-free boundary conditions on crack faces

�22(r; �) = �12(r; �) = 0; (1.7)

and the symmetry condition ahead of the crack

�12(r; 0) = 0; (1.8)

for every value of KI .
Two key points emerge from an analysis of (1.5), namely:

� the stress �eld is proportional to the unknown amplitude KI , the so-
called stress intensity factor;

� the stress �eld is singular, in the sense that the stress approaches in-
�nity when the distance to the crack tip r tends to zero.

The stress intensity factor completely characterizes the near-tip stress state
and therefore depends on the particular geometry of the loaded structure. For
instance, in the case of an in�nite plate subject to a remote tensile stress �,

KI = �
p
�a;

for a through-thickness crack of length 2a and

KI = 1:12�
p
�a;

for an edge crack of length a.
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Being the stress in�nite at the crack tip, it cannot be sustained by any
real material. However, the fracture concept introduced above follows from a
mathematical model, so that on one hand a perfectly sharp crack is impossible
in a real problem and, on the other hand, an elastic material is also an ideal
notion. Consequently, for brittle materials it is assumed that the stress is high,
though not in�nite, at a real crack tip and that it is reasonably described
by representation (1.5), at least outside a process zone, which is very small
when compared to the problem size. Therefore, let us analyze loading of
a structure containing a crack. Under the hypothesis that a given stress
combination leads to failure, the achievement of this must correspond to the
attainment of a critical value of the stress intensity factorKIc. A fundamental
assumption of fracture mechanics is that the critical stress intensity factor
depends only on the nature of the material and is therefore independent of
the geometry and size of the fractured body. As a consequence, once KIc is
known for a given material, a failure analysis can be performed for a structure
made up of that material.

In addition to the symmetric mode illustrated above, there are other two
types of loading that a crack may experience, so that Mode I, Mode II and
Mode III are distinguished (Fig. 1.3). However, brittle materials are more
prone to fracture by normal tensile stresses than by shear stresses, so that
Mode I loading has the most practical importance.

Mode I Mode II Mode III

Figure 1.3. The three modes of crack loading.

The fracture toughness KIc can be experimentally determined by intro-
ducing an arti�cial crack in a testing structure, subsequently loaded to failure.
Di�erent test settings are used for ceramic materials (Anderson, 1995; Green,
1998). Some indicative values of toughness in di�erent materials are reported
in Table 1.2 (data taken from Ashby and Jones (1980); Cook and Pharr, 1994;
Evans, 1989; Green, 1998; Meyers and Chawla, 1999; Shackelford, 1985).



1.3 Fracture 13

Table 1.2. Toughness KIc of materials at room temperature.

Material KIc (MPa
p
m)

Mild steel 140

Medium-carbon steel 51

High strength steel (HSS) 50-154

Aluminum alloys 23-45

Cast iron 6-20

Rigid PVC 3-7

Polyamides (nylon 66) 3

Cement/Concrete 0.2

Soda-lime glass 0.7-0.9

Al2O3 3-5

SiC 3-4

Si3N4 4-7

Zirconia ceramics 5-35

E-glass (73.3 vol %) in epoxy 42-60

Fibre reinforced Glass/C 20

SiC �bres in SiC 25

SiC whiskers in Al2O3 8.7

Wisker reinforced Si3N4 14

The above presented scenario for fracture is very simple. In reality, cracks
interact with material microstructure, during propagation. This interaction
strongly in�uences toughness. In view of the fact that brittleness still perhaps
remains the most important limiting factor in the design of ceramics com-
ponents, it follows that the understanding of the micromechanics of fracture
propagation becomes crucially important. Following Green (1998), toughen-
ing mechanisms can be classi�ed in three groups (Figs. 1.4�1.6):

1. Crack tip interactions:

(a) crack bowing,

(b) crack de�ection.

2. Crack tip shielding:

(a) transformation toughening,

(b) microcrack toughening.

3. Crack bridging.

During crack bowing process, the crack front interacts with obstacles �
such as tough second phase particles � impeding propagation and does not
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c
ra

c
k

p
ro

p
a

g
a

tio
n crack front

crack bowing crack deflection

crack path

crack propagation

Figure 1.4. Crack tip interaction with a periodic composite.

transformed particle
untransformed particle

main crack

microcracks

Transformation toughening Microcrack toughening

Figure 1.5. Crack tip shielding.

bridging zone

unbroken ligaments

broken ligaments

Figure 1.6. Crack bridging.

remain straight. This mechanism is related to an increase in toughness, as
evidenced by Bower and Ortiz (1991).

Crack de�ection occurs when fractures deviates from rectilinearity, so that
mixed mode loading is involved. Note that crack de�ection produces non-
planar fracture, whereas crack bowing corresponds to nonlinear crack front.
Both toughening mechanisms are often concurrent and strongly in�uenced by
the morphology and contact conditions of the second-phase particles. Crack
de�ection, which is experimentally revealed by the roughness of the �nal
fracture surface, was analyzed by Cotterel and Rice (1980) and Faber and
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Evans (1983). An alternative analysis is provided in Chapter 3, under the
assumption that the particles inducing de�ection are far enough from the
fracture trajectory.

Transformation toughening is related to dilatant, stress-induced phase
transformation of particles in a ceramic matrix, a problem addressed in Chap-
ter 2.

Microcracks can be present in ceramics as induced by the fabrication
process or may nucleate as a consequence of a state of prestress or, �nally,
can be induced by stress.

Under certain circumstances, a microcracked zone around a larger crack
may yield a crack tip shielding e�ect 3). This e�ect, analyzed in (Evans and
Faber, 1981; Evans and Fu, 1985; Fu and Evans, 1985; Clarke, 1984; Rose,
1986; Rubinstein, 1986 and Hutchinson, 1987; Duan et al., 1995), is however
controversial in the sense that it may be almost entirely counterbalanced by
the resistance reduction caused by the presence microcracks in the material
(Ortiz, 1988; Ortiz and Giannakopoulos, 1989). Crack de�ection as induced
by interaction with a diluted distribution of cracks can also be analyzed with
the model presented in Chapter 3.

Finally, crack bridging occurs when there are �bres or particles in the
wake of the crack pinning its faces and therefore reducing the crack tip stress
intensity factor (Rose, 1982, 1987; Cox and Marshall, 1988, 1994; Budiansky
and Amazigo, 1989; Movchan and Willis, 1993; Movchan and Willis, 1996,
1997 a, b, 1998). With the exception of transformation toughening, crack
bridging is the most important toughening mechanisms among all discussed
above (Pezzotti, 1993; Pezzotti et al., 1996).

1.4. Plastic behaviour

Inelastic deformation is usually related to dislocation activity. In mono-
lithic ceramic materials such as alumina, temperatures superior to 1300ÆC are
needed to make dislocation motion appreciable. Therefore, although ceram-
ics are crystalline materials like metals, plastic deformation is not exhibited
in ordinary conditions. However, micromechanisms di�erent from dislocation
activity may also induce irreversible deformation. For instance, inelastic de-
formation of silicon nitride at high temperature is related to the viscous �ow

3) Porosity decreases toughening as evidenced by Rice, 1984; Zimmermann et al. (1998)

and Zimmermann and Rödel (1998).
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of a a glassy phase often present in the grain boundaries of this material.
An example of such a behaviour is presented in Chapter 4. Completely dif-
ferent micromechanisms of plastic deformations take place during forming of
ceramic powders. These are presented in Chapter 5 and, in summary, consist
in rearrangements, deformation and collapse of particles. Finally, inelastic
deformation is connected to phase transformation occurring � for instance �
in zirconia-containing ceramics. Elastoplastic constitutive laws are therefore
employed in Chapter 2, when analyzing transformation toughening during
crack propagation.

Let us consider behaviour of an elastic-plastic material deformed in uni-
axial tension, as illustrated in Fig. 1.7.

�

�

f t

A

B

� �p e
�

�

f t

f c

A

B

� �p e

softeninghardening

elastic unloading

hardening/softening plasticity ideal plasticityhardening/softening plasticity ideal plasticity

hardening softening

elastic unloading

Figure 1.7. Elastoplastic models.

When unloading occurs after a plastic state has been reached, e.g. point A,
the inelastic deformation �p is not recovered. A key ingredient in any phe-
nomenological theory of plasticity is the fact that plastic deformation is pos-
sible only when the stress state satis�es a yield criterion. For isotropic ma-
terials, a yield criterion may be visualized as a locus in the principal stress
space representing elastic states of the material (Fig. 1.8). Plastic deforma-
tion is possible only when the stress state lies on the boundary of the yield
locus, namely, the yield surface.

Plastic or elastic deformation actually takes place if a loading/unloading
criterion is met. This criterion is necessarily incremental. In fact, starting
from point A in Fig. 1.7, incremental plastic or incremental elastic deforma-
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von Mises Tresca Drucker-Prager Coulomb-Mohr

� 2

� 3

� 1

� 2

� 3

� 1

� 2

� 3

� 1

� 2

� 3

� 1

Figure 1.8. Yield surfaces in the principal stress space.

tions may occur. As a consequence, time independent, inelastic deformation
is described by a rate theory, as brie�y explained below (the interested reader
is referred to Hill, 1950; Besseling and van der Giessen, 1994; Lubliner, 1998).

The skeleton of a generic phenomenological theory of plasticity usually
consists in the following hypotheses:

A1: Additive decomposition of total strain � into an elastic part and a plastic
part:

� = �
e + �

p: (1.9)

A2: Elastic law (1.1) de�ned by the constant fourth-order elastic tensor E

and relating the stress to the elastic deformation:

� = E [�e]: (1.10)

A3: Yield function de�ned in terms of stress � and K, a generic set of internal
variables of arbitrary tensorial nature, so that:

f(�;K) < 0 elastic behaviour is only possible;

f(�;K) = 0 plastic deformation rate may occur;

f(�;K) > 0 is not de�ned:

(1.11)

A4: Plastic �ow rule in terms of a symmetric, second-order tensor P, the
�ow mode tensor:

_�p = _�P; (1.12)

where _� � 0 is the non-negative plastic multiplier and a dot over a sym-
bol denotes the derivative with respect to a time-like, non-decreasing
scalar parameter governing the rate problem.



18 1. An introduction to the mechanical behaviour of ceramics

A5: Hardening law:
_K = _� �K; (1.13)

where �K is a continuous function of the state variables.

The above equations yield the rate constitutive equations in the general
form (Bigoni, 2000)

_� =

8<
:

E[ _�]� 1

H
< Q � E[ _�] > E [P] if f(�;K) = 0 ;

E[ _�] if f(�;K) < 0 ;
(1.14)

where the operator < �> denotes the Macaulay brackets which associates to
any scalar � the value < � >= max f�; 0g, tensor Q is the yield function
gradient

Q =
@f

@�
;

and the plastic modulus H is related to the hardening modulus h through

H = h+Q � E [P ]: (1.15)

The hardening modulus h, de�ned as

h = � @f
@K � �K; (1.16)

describes the type of hardening of the material. In particular, h is positive
for strain hardening, negative for softening and null in the case of ideal plas-
ticity. When h is constant, linear hardening occurs, but h may be function
of the state, thus describing a nonlinear hardening law (Fig. 1.7). When the
hardening is strictly positive, h > 0, the constitutive law (1.14) can be in-
verted

_� =

8<
:

E
�1[ _�] +

1

h
< Q � _� > P if f(�;K) = 0 ;

E
�1[ _�] if f(�;K) < 0 :

(1.17)

In the particular but relevant case in which the �ow mode tensor is equal
to the yield function gradient, P = Q, the yield function is called �associa-
tive�.

Comparing to linear elasticity (1.1), two key points emerge from the anal-
ysis of the constitutive equations (1.14) or (1.17), namely:

� the constitutive equations (1.14) are written in rate form. This does
not imply dependence on physical time, rather time is identi�ed with
any scalar parameter governing the loading process.
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� the constitutive equations (1.14) are incrementally nonlinear, due to
the presence of the Macauley brackets.

It follows from the above points that in any problem of plastic �ow, the
constitutive equations have to be integrated with respect to the time-like
parameter governing the �ow.

1.5. Viscous behaviour

When deformation depends on physical time, the behaviour is viscous.
Viscous �ow, typical of �uids, may also occur in solids and its occurrence is
related to the period of time over which the stress is applied 4). The simplest
viscous constitutive equations are those for an incompressible Newtonian

�uid

� = �pI + 2� _�; tr _� = divv = 0; (1.18)

where � is the viscosity of the �uid, v its velocity and _� the Eulerian strain
rate (the symmetric part of the velocity gradient), �nally, p = � tr�

3
is the

pressure at a point of the �uid.
As a crucial point, we note that Eq. (1.18) relates the Eulerian strain rate

to the current stress.
In a number of circumstances, �uids are involved in the industrial ap-

plications of ceramics, for instance during injection molding or slip casting.
During the latter process, emulsions and slurries are usually employed, con-
sisting of suspended solid particles in a �uid. Flow of these material is usually
sensible to the volume fraction of particle and violate Newtonian behaviour
in several ways. First, the viscous �ow becomes nonlinear, so that the shear
stress is a nonlinear function of strain rate. Second, the shear stress depends
not only on the local strain rate, but also on its history (so-called �memory
e�ect�). The latter is described by viscoelasticity, which � according to the
Kelvin-Voigt scheme � can be viewed as an �parallel� combination of (1.1)
and (1.18)

� = �pI + 2� _�+ 2�� ; tr _� = divv = 0; (1.19)

4) For instance, the hot rocks of the Earth's mantle may be considered as solid when

deform under the action of seismic waves. On a completely di�erent time scale � on the

order of a million years � the same rocks are unable to support shearing stresses and �ow

as a �uid.
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or � according to the Maxwell scheme � can be viewed as a �series� combi-
nation of (1.18) and (the rate of) (1.1)

_� = � _pI + 2� _�� 1

�
(pI + �) ; tr _� = divv = 0; (1.20)

where � = �=� is the relaxation time. Constitutive equations (1.19) and
(1.20) describe two speci�c incompressible, viscoelastic behaviours (further
details can be found in Malvern, 1969).

Finally, in applications at high temperature, ceramics often exhibit a
time-dependent plastic deformation, the so-called creep. An elastic-visco-
plastic behaviour can be de�ned as a generalization of (1.20), where a thresh-
old for viscous behaviour is introduced (Duvaut and Lions, 1976; Loret and
Prevost, 1990)

_� = E _�� 1

�
(� � �0)H(f(�(t)); (1.21)

where H is the Heaviside function (H(x) = 1 for x > 0, otherwise H(x) = 0),
f is the yield function, dependent on current stress �(t), and �0 is the
projection of � on the yield surface at time t. Di�erently from the usual
de�nition employed in rate-independent elastoplasticity, positive values of
f(�(t)) are fully allowed in (1.21). Constitutive equation (1.21) describes an
elastic rate-indepedent behaviour within the yield function. When the stress
intensity corresponds to positive values of the yield function, the material
�ows with a viscous deformation rate proportional to j� � �0j.

1.6. Large strains

Large deformations may occur in the elastic or inelastic range. For in-
stance, ceramic whiskers � such as SiC � or silica-glass �bres may often be so
strong that deformation can proceed beyond the limit of linearity to a range
of nonlinear elastic deformation (Green, 1998). Moreover, during compaction
of ceramic powders large plastic strains occur, while elastic deformation usu-
ally remains small. An example of this large strain elastic-plastic behaviour
is presented in Chapter 5.

In other cases, deformations are actually small, but e�ects such as in-

stabilities (for instance buckling of �bres which may occur in a composite)
may be properly captured only within a theory taking into account large
strain e�ects. For instance, failure of silicon nitride cylinders subject to uni-
axial compression is described in Chapter 4, employing bifurcation theory of
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�nitely deformed, elastic solids. Strains are actually not so large in that case,
but large strain e�ects are necessary to predict bifurcations.

In a large strain theory, the constitutive equations involve objective mea-

sures of stress and strain. For instance, in an Eulerian description, an elastic
constitutive law may be generically written in the form:

� = �0I + �1B + �2B
�1; (1.22)

where B is the left Cauchy-Green strain tensor and the scalars �i, i = 0; 1; 2

are functions of the invariants of B (Gurtin, 1981).
In any rate theory of plasticity at �nite strain objective rates of stress

and strain replace the rates _� and _�. A presentation of �nite strain theory is
far beyond the scope of the persent introduction and the interested reader is
referred to (Bigoni, 2000; Gurtin, 1981; Ogden, 1984; Holzapfel, 2000).
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Chapter 2

On toughening in

zirconia-containing ceramics

Davide Bigoni 1) and Enrico Radi 2)

Transformation toughening in zirconia-containing ceramics is re-

lated to dilatational, inelastic volumetric strain. A model for

steady-state, Mode I crack propagation in a pressure-sensitive,

dilatational elastic-plastic material is presented, based on the

Drucker-Prager yield criterion. In the framework of asymp-

totic analysis, results demonstrate a toughening e�ect related to

pressure-sensitivity and volumetric inelastic strain. Asymptotic

�eld representations may yield a deep understanding of near-crack

tip stress-deformation phenomena.

2.1. Introduction

Zirconia (ZrO2) is often used in ceramic alloys as a toughening agent.
In fact, zirconia ceramics exhibit a marked inelasticity and a relatively high

1) Dipartimento di Ingegneria Meccanica e Strutturale, Università di Trento, Via Mesia-

no 77, 38050 Trento, Italy.
2) Dipartimento di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio

Emilia, Via Fogliani 1, 42100 Reggio Emilia, Italy.
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fracture toughness, which make them suitable for di�erent industrial applica-
tions, as for instance adiabatic engine components (Robb, 1983). The tough-
ening e�ect is related to the martensitic phase transformation � accompanied
with large shear (up to 16%, in an unconstrained crystal) and volumetric
(up to 5%, in an unconstrained crystal) strains 3) � in which tetragonal zir-
conia transforms to monoclinic (t-ZrO2 �! m-ZrO2). More in detail, the
tetragonal phase, usually found at high temperature, may be retained at low
temperature, when the zirconia precipitate is su�ciently constrained by the
surrounding material. This occurs when the zirconia particle is smaller than
a critical size (which for instance is inferior to 0.5�m, for a t-ZrO2 particle
to be retained at room temperature, Green, 1998). During fracture propaga-
tion, a stress-induced transformation has been experimentally demonstrated
to occur near the crack tip (Evans and Heuer, 1980; Marshall et al. 1990;
Dadkhah et al. 1991; Green et al. 1991). This gives rise to a nonlinear, irre-
versible 4) deformation which extends during propagation in the crack wake
and yields a crack tip shielding e�ect (Evans, 1984; Evans and Cannon, 1986).
In particular, though unstable fracture propagation would occur in the pure
matrix material, stable crack growth has been observed � on the order of sev-
eral millimetres � and R-curves have been measured in zirconia-containing
ceramics (Stump and Budiansky, 1989).

There are di�erent theoretical approaches to evaluate toughening as-
sociated with stress-induced phase transformation. Initial approaches have
assumed a purely dilatational transformation strain, characterized by the
macroscopic hydrostatic stress vs. dilatation strain shown in Fig. 2.1.

In particular, phase transformation initiates at a critical mean stress �cm
(point 1) and proceeds until point 2. If the slope of the 1-2 line is steeper than
a critical value, the transformation is unstable (supercritical case), otherwise
it is stable (subcritical case) and the phase change occurs gradually, with the
zirconia particles only partially transformed (for states represented by points
between 1 and 2). Assuming the above model, McMeeking and Evans (1982),
Budiansky et al. (1983), Lambropuolos (1986a,b), Rose (1986), Amazigo and

3) Due to the constraint of the matrix phase on the zirconia precipitate, transformation

occurs with extensive microcracking and shear strain is accomodated by twinning, thus

resulting in an overall shear strain which may be remarkably less than 16%.
4) The stress-induced transformation is usually considered irreversible, even if reversible

transformations have been often observed (Marshall and James, 1986; Marshall and Swain,

1989).
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Figure 2.1. Hydrostatic behaviour of ceramics containing particles su�ering a

dilatational phase transformation.

Budiansky (1988), Stump and Budiansky (1989), and Hom and McMeeking
(1990) performed various analyses at di�erent levels of sophistication, both
in the subcritical and supercritical ranges. The analyses essentially show
that the shielding e�ect due to stress-induced phase transformation induces
a rising in the R-curve, without changing the toughness when a stationary
crack is present in an non-transformed material

In contrast with the purely dilatational behaviour, detailed experiments
provided by Chen and Reyes-Morel (1986), Chen (1986) Reyes-Morel and
Chen (1988), Reyes-Morel et al. (1988), and Subhash and Nemat-Nasser
(1993) evidence a strong coupling between dilatational and shear strains, so
that a model neglecting the latter should be considered merely approximated.
The above-mentioned experiments also indicate the Drucker-Prager (1952)
criterion as the best candidate for describing yielding of zirconia-containing
ceramics. Moreover, calculations performed by Lambropoulos (1986b) reveals
that the e�ect of shear transformation strain on the shape of the transfor-
mation zone may be very strong.

Therefore, a more fundamental approach has been followed by Stam et al.
(1994) and Stam and van der Giessen (1995, 1996a,b), employing the model
proposed by Sun et al. (1991) and Sun and Hwang (1993a,b). The numeri-
cal results presented con�rm �ndings obtained with the simple dilatational
model. Recent analyses based on the Sun model (Yi and Gao, 2000; Yi et
al. 2001) again show a shielding e�ect related to stress-induced phase trans-
formation. However, the Sun and Hwang model is su�ciently complicated
to discourage analytical approaches to crack propagation analysis. Simpli-
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�ed plasticity models � retaining the key ingredients of plastic dilatancy and
pressure-sensitive yielding � have been therefore employed to develop ana-
lytical solutions to crack growth near-tip �elds. In particular, a stationary
crack was analyzed for power-law (Li and Pan, 1990 a, b) and elastic-perfectly
plastic (Li, 1992; Ben-Aoun and Pan, 1993) materials. However, according to
the simpli�ed analyses by McMeeking and Evans (1992) and Budiansky et
al. (1993), the shielding e�ect related to phase transformation should become
more evident in conditions of crack growth. Steady-state fracture propaga-
tion was considered by Amazigo and Hutchinson (1977), Ponte Castañeda
(1987) and Bose and Ponte Castañeda (1992) for J2-�ow theory of plasticity.
Their approach has been generalized to various pressure-sensitive models by
Bigoni and Radi (1993, 1996), Radi and Bigoni (1993, 1994, 1996), Potthast
and Hermann (1996, 1997, 2000) and Zhang and Mai (2000), Radi et al.
(2001).

In particular, Bigoni and Radi (1993) and Radi and Bigoni (1993) have
provided the �rst asymptotic solution for steady crack growth in a Drucker-
Prager elastoplastic material with linear strain hardening under Mode I,
plane strain and plane stress conditions, for associative and nonassociative
�ow rule. The results of Bigoni and Radi (1993) and Radi and Bigoni (1993)
are concisely presented below in a way to give evidence to the connections
with fracture behaviour in zirconia-containing ceramics.

2.2. Asymptotic crack-tip �elds

The determination of asymptotic stress and strain �elds in the plastic
zone near a crack tip is a basic problem in the understanding of fracture
propagation mechanisms. Our interest here is in asymptotic analyses, which
give an accurate description of near tip �elds. The validity of these is re-
stricted to within an annular zone which � on one hand � is close enough
to the crack tip to justify the dominance of certain terms in the asymp-
totic expansion of unknown tip �elds, but � on the other hand � is greater
than the fracture process zone, where microscopic separation processes occur
(Hutchinson, 1983).

This is sketched in Fig. 2.2, where r1 denotes the radius of the fracture
process zone and r2 sets a outer limit to the asymptotic analysis.

In the fracture propagation problem that is considered, the crack tip
steadily and rectilinearly moves in an elastic-plastic material characterized
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by the bi-linear constitutive law in shear shown in Fig. 2.3, where  is the
engineering strain, � the shear stress and G and Gt are the elastic and hard-
ening shear moduli, respectively.

elastic limit elastic unloading

plastic loading
	




	 o



o

G

1

G
1 t

��� G /Gt

Figure 2.3. Shear stress � vs. engineering strain  for the assumed model.

We refer to a fully incremental theory of plasticity, so that during crack
propagation, elastic unloading and plastic reloading zones form, as schemat-
ically illustrated in Fig. 2.4.

Obviously, only the initial tangents to the plastic and elastic sectors are
�viewed� in an asymptotic analysis, so that the analyzed situation looks like
that sketched in Fig. 2.5, where �1 and �2 denote the angular coordinates of
the elastic unloading and plastic reloading sectors, respectively.
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Figure 2.4. Sketch of crack propagation in a plastic material.
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Figure 2.5. Sketch of elastic unloading and plastic reloading sectors during crack

propagation.

It may be important to remark that a plastic reloading sector must be nec-
essarily present on crack �anks during crack propagation (Ponte Castañeda,
1987).

2.2.1. Constitutive equations

Small strain version of the Rudnicki and Rice (1975) model, with lin-
ear strain hardening is characterized by the following nonlinear incremental
relationship between strain _� and stress _� rates:

_� =
1

E

�
(1 + �) _� � �(tr _�)I +

1

h
< Q � _� > P

�
; if f(�) = 0;

_� =
1 + �

E
_� � �

E
(tr _�)I ; if f(�) < 0;

(2.1)

where � is the Poisson's ratio, E the Young modulus, h the ratio between
the hardening modulus and E, the operator < � > is the Macaulay brackets,
and the yield function gradient Q and plastic mode P tensors are
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Q =
�

3
I +

S

2
p
J2
; P =

�

3
I +

S

2
p
J2
; (2.2)

in which J2 = S �S=2 is the second invariant of deviatoric stress S and �
and � are two material parameters governing the pressure-sensitivity and the
dilatancy of the material, respectively. Finally, f(�) is the Drucker-Prager
yield function

f(�) =
�

3
tr� +

p
J2 � k; (2.3)

where k is 1=
p
2 time the radius of the deviatoric section of the yield surface

with the �-plane in the Haigh-Westergaard stress space.
Even if the above-described constitutive model has been thoroughly em-

ployed in rock mechanics (where � and � may range between 0.4 and 1 and
0.2 and 0.5, respectively), there are only few experimental data for ceram-
ics. In particular, Chen and Reyes-Morel (1986) and Reyes-Morel and Chen
(1988) reported � = � = 0:69 for zirconia-containing ceramics. These ex-
perimental results support the validity of the associative �ow rule, which is
however usually violated for geomaterials. We will limit the presentation in
the following to the Mode I plane-strain condition with associative �ow rule,
� = �.

2.2.2. Crack propagation

We refer to steady state crack propagation, so that, adopting a Cartesian
reference system with origin attached to the moving crack tip (Fig. 2.6), the
time derivative of a generic �eld may be replaced by the spatial derivative

_( ) = �V ( );1; (2.4)

where the axis 1 is in the direction of crack propagation and V is the (con-
stant) crack propagation velocity. In a cylindrical coordinate system, the
equilibrium equations under plane-strain condition become

r �

x1

x2

V

Figure 2.6. Moving crack and reference systems.
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(r�rr);r + �r�;� � ��� = 0;

(r�r�);r + ���;� + �r� = 0;
(2.5)

(where �rr, �r� and ��� are the three in-plane stress components) and the
kinematical compatibility conditions

_�rr = vr;r; _��� =
v�;� + vr

r
; _�r� =

1

2

�
v�;r +

vr;� � v�
r

�
; _�33 = 0; (2.6)

where vr and v� are the two in-plane components of velocity, �rr, �r�, ��� the
three in-plane components of strain rate and the index 3 denotes out-of-plane
components.

The steady-state condition (2.4) allows us to express the stress rates in
terms of spatial derivatives with the following time derivative rule

_�r� = V

�
sin �

r
(�rr � ��� + �r�;�)� �r�;r cos �

�
;

_�rr = V

�
sin �

r
(�rr;� � 2�r�)� �rr;r cos �

�
;

_��� = V

�
sin �

r
(���;� + 2�r�)� ���;r cos �

�
;

_�33 = V

�
sin �

r
�33;� � �33;r cos �

�
:

(2.7)

A substitution of Eqs. (2.6) and (2.7) into the constitutive equations (2.1)
together with the equilibrium equations (2.5) yields a system of six PDEs
for the six unknowns functions vr, v� and �r�, �rr, ���, �33. The key math-
ematical point is now to reduce the PDEs system to a system of ODEs,
looking for solutions in the separable variable form proposed by Amazigo
and Hutchinson (1977)

vr =
V

s

� r
B

�s
wr(�); v� =

V

s

� r
B

�s
w�(�);

�r� = E
� r
B

�s
Tr�(�); �rr = E

� r
B

�s
Trr(�);

��� = E
� r
B

�s
T��(�); �33 = E

� r
B

�s
T33(�);

(2.8)

where the negative exponent s denotes the strength of stress and velocity
singularity and B denotes a characteristic dimension of the plastic zone.
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Having assumed the representation (2.8), the angular functions wr, w� and
Tr�, Trr, T��, T33 and the �eld singularity s become the unknowns of the
problem 5). These may be obtained through a Runge-Kutta numerical inte-
gration, combined with a shooting method to satisfy all boundary conditions.
In the particular case of Mode I propagation, the boundary conditions are
the following.

1. Mode I symmetry conditions (and regularity of angular functions)

w�(0) = Tr�(0) = 0;

wr;�(0) = Trr;�(0) = T��;�(0) = T33;�(0) = 0;

(2.9)

2. Boundary conditions on crack faces

T��(�) = Tr�(�) = 0; (2.10)

3. Continuity across the elastic-plastic boundaries of all �eld quantities.

It is worth noting that possibility of elastic unloading and plastic reload-
ing has to be checked and taken into account during numerical integration
of the ODEs system.

2.3. Results

Extensive numerical investigations including plane-strain, plane-stress sit-
uations, e�ects of �ow rule non-associativity, porosity, and �uid-saturation
can be found in (Bigoni and Radi, 1993, 1996; Radi and Bigoni, 1993, 1994,
1996; Radi et al. 2001). Therefore, we limit the presentation here to the
�ndings that may be relevant in the �eld of ceramic materials.

Values of the singularity s and elastic unloading �1 and plastic reloading
�2 angles as functions of the pressure-sensitivity parameter � are reported in
Figs. 2.7 and 2.8, respectively.

Small and high strain hardening are considered, corresponding to the
values 0.001 and 0.75 of the hardening parameter � de�ned through

1

�
= 1 +

1

2(1 + �)h
: (2.11)

5) The present asymptotic problem gives the leading term in the asymptotic expansion

of crack tip �elds. It is a homogeneous problem, so that the amplitude factor B remains

undetermined.
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Figure 2.7. Singularity of stress and velocity �elds s as a function of pressure-sensitivity

parameter � for small (� = 0:001) and high (� = 0:75) strain hardening.
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Figure 2.8. Elastic unloading �1 and plastic reloading �2 angles for small (� = 0:001)

and high (� = 0:75) strain hardening.

It should be noted that the Poisson's ratio � was found not in�uence much
the results and has been chosen equal to 0.3. The angular function describing
the stress and velocity components are reported in Fig. 2.9 and Fig. 2.10,
respectively, where di�erent values of pressure-sensitivity are considered for
small hardening � = 0:001.

Figures 2.7�2.10 are su�cient to draw the main conclusions of our study,
namely, that an increase of the pressure-sensitivity and related dilatancy
yields

� a reduction in the singularity of the stress and velocity �elds;

� a decrease in the stress deviator ahead of the crack tip.
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Figure 2.9. Stress angular functions for di�erent values of pressure-sensitivity � at

small strain hardening � = 0:001.
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Figure 2.10. Velocity angular functions for di�erent values of pressure-sensitivity � at

small strain hardening � = 0:001.
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The above two facts imply a crack growth stabilization connected to an in-

crease of pressure-sensitivity and related plastic dilatancy. This conclusion is
therefore consistent with the well-known fact that the dilatancy associated
with stress-induced phase transformation is directly related to the shielding
e�ect. An analysis based on nonassociative �ow rule � where plastic dila-
tancy is unrelated to pressure-sensitive yielding (� 6= �) � shows that for

a �xed pressure-sensitivity, plastic dilatancy is the key constitutive feature

controlling crack stabilization (Radi and Bigoni, 1993).

2.4. Conclusions

We have presented a simple model for steady-state, Mode I crack propaga-
tion in transformation-toughened ceramics. Though based on linear harden-
ing (of the type shown in Fig. 2.3, instead of the more elaborate constitutive
law sketched in Fig. 2.1), the model retains a number of features typical of
behaviour of zirconia-containing ceramics. These are:

� nonlinear, inelastic deformation,

� pressure-sensitive yielding,

� inelastic dilatancy,

� coupling between shear and dilatant inelastic deformation.

Moreover, the model is simple enough to permit an asymptotic analysis of
all relevant �elds, including full treatment of loading/unloading conditions
in the crack wake. If, on one hand, the analysis yields the known result that
plastic dilatancy and pressure-sensitive yielding induce a crack stabilization
e�ect, on the other hand, a detailed representation of near tip �elds, possible
with our analytical approach, may become important for design purposes.

In conclusion, we note that the approach presented in this Chapter has
been extended to rather complicated situations. For instance, Radi and Bigoni
(1995, 1996) analyzed isotropic and anisotropic hardening for Gurson yield-
ing; Radi et al. (2001) included �uid saturation; Potthast and Hermann
(1996, 1997, 2000) and Zhang and Mai (2000) considered dynamic and tem-
perature e�ects. It may be therefore reasonable to think that the asymptotic
scheme presented in the present Chapter could be further re�ned for material
modelling of zirconia-containing ceramics.
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Chapter 3

Crack de�ection in ceramic

materials

Monica Valentini 1), Davide Bigoni 1),

Leonardo Esposito 2), Alexander B. Movchan 3)

and Sergey K. Serkov 4)

Predictions of a mathematical model developed for analyzing de-

viations from rectilinearity of a crack in brittle elastic materials

containing a dilute distribution of voids and elastic inclusions are

compared with experimental results relative to some ceramic ma-

terials: a glaze, a porcelain stoneware, and a zirconia. All these

materials contain spheroidal pores. The investigation involves sim-

ple experimental setting, namely crack de�ection of median-radial

cracks induced by Vickers indentation. This is �nally compared to

the predictions of the analytical model. Despite of the strong hy-

potheses (plane deformations and small ratio between inclusion di-

ameter and crack distance) the simulation results are qualitatively

accurate. Under these assumptions one can obtain analytical solu-
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tions. This may suggest the use of the analytical model as a tool

for the design of ceramic porous or composite materials.

3.1. Introduction

Analysis of crack propagation and failure in ceramic materials is a basic
problem with implications on many design aspects. Structural and traditional
ceramics are usually brittle materials and the presence of porosity or second
phases strongly in�uences fracture mechanisms. In particular, crack trajecto-
ries may be perturbed and de�ected from rectilinearity by grains (Bower and
Ortiz, 1993), defects, pores, inclusions, particles (Xu et al. 1997). Though
with proper reserves (see Pezzotti, 1993; Pezzotti et al. 1996), de�ection of
crack trajectory may be related to material toughness (Evans, 1990); there-
fore, an analysis of the perturbation of a crack path due to the interaction
with voids and inclusions may have practical applications in the design of
composite ceramics. Motivated by this interest, a certain experimental and
theoretical research e�ort has been addressed to the mechanics of cracks in
elastic media containing defects, cracks or inclusions (Claussen, 1976; Cot-
terel and Rice, 1980; Hoagland and Embury, 1980; Faber and Evans, 1983;
Clarke, 1984; Fu and Evans, 1985; Evans and Fu, 1985; Rubinstein, 1986;
Rose, 1986; Hutchinson, 1987; Ortiz, 1988; Ortiz and Giannakopoulos, 1989;
Duan et al. 1995) Moreover, in a series of papers, Movchan and co-workers
(Movchan et al. 1992; Movchan, 1992; Movchan and Movchan, 1995) have
developed an asymptotic model for the interaction of a semi-in�nite crack
and small defects. In the model, the defect is characterized on the basis of
the Pòlya Szegö (1951) matrix. Defects modelled as elliptic elastic inclusions
and voids have been considered in (Bigoni et al. 1998; Valentini et al. 1999).
The solution for the crack trajectory is obtained by introducing a number
of simplifying hypotheses, which make the problem solvable in analytical,
closed-form. These assumptions are:

� plane strain (or stress),

� isotropic elasticity,

� small ratio between inclusion diameter and distance of the inclusion
centre to the crack trajectory,

� crack of semi-in�nite length,

� non-interaction between defects,
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� use of the pure mode I (KII = 0) fracture propagation criterion (Sih,
1974), an assumption which may be motivated invoking the brittleness
of the matrix material.

In the present article the possibility of an application of the above ana-
lytical model is explored to predict crack paths in some ceramic materials.
A well-known alternative to our method is the use of a numerical technique,
e.g. �nite elements. Numerical results are often problematic in situations
involving singularities (as in the present case) and may be unpractical for
design purposes. Therefore, a closed-form, analytical model becomes partic-
ular appealing. We restrict the attention to the simplest experimental setting,
considering ceramic materials with spheroidal pores and inducing fractures
with a Vickers indenter. In particular, on the surface of suitably prepared
samples of zirconia, porcelain stoneware, and glaze, cracks were induced by
Vickers indentation technique. The trajectories resulting from propagation of
the median-radial cracks emerging from the corners of the impression have
been observed. These are found to be in�uenced � generally attracted � by
the voids. The experiments have been �nally compared to the predictions
of the analytical model for crack propagation as in�uenced by the presence
of ellipsoidal voids. The applicability of the theory to the experiments is
conditioned by the above-mentioned assumptions. Despite that, we have al-
ready veri�ed a surprisingly good qualitative adherence of simulated to real
crack trajectories in a few experiments on a porcelain stoneware (Valentini
et al. 1999). The more systematic results reported in this chapter are also
encouraging, and suggest the possibility of using the analytical tool in design
situations relative to not fully densi�ed or composite ceramics.

3.2. Mathematical model

To make the chapter self-contained, the model for the analysis of crack
trajectory as in�uenced by elliptical defects is brie�y described in this section
(for a detailed presentation, the interested reader is referred to Movchan et
al. 1992; Movchan, 1992; Movchan and Movchan, 1995; Valentini et al. 1999;
Bigoni et al. 1998).

We consider an in�nite, brittle-elastic body with a semi-in�nite crack.
The elastic properties are speci�ed by the Lamé constants � and �. The
crack is assumed to be a Mode-I crack propagating through the body under
an external loading corresponding to a stress intensity factor KI greater than
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the critical one. An elastic defect with Lamé constants �0 and �0 is present
in the in�nite elastic medium in such a way that it is far from the trajectory
of unperturbed (reference) crack (Fig. 3.1).

l

x1

x2

�

2a

2b

x2

0

x1

0

H(l)

Figure 3.1. Sketch of the analyzed crack geometry.

This is the straight trajectory that would be described in the absence of
defects. The defect has the shape of an ellipse centered at the point (x0

1
; x0

2
)

with major and minor semi-axes denoted by a and b, respectively. The major
axis is inclined of an angle � with respect to the x1-axis of the Cartesian
plane. Due to the presence of the defect, the crack trajectory deviates from
rectilinearity and this perturbation can be summarized in the closed-form
formula for the crack trajectory H(l) as a function of the crack tip abscissa
l (the details of the derivation are given by Valentini et al. 1999):

H(l) =
ab

4x0
2

�
�(�4 ��)(t+ t2 � 2)

+ 2�2��

�
sin 2�(t+ t2)(2t� 1)

p
1� t2 � cos 2�(t� t3)(1 + 2t)

�

+
��4

�4 +�
(t� t3)

� �
1 + � cos2 2�

�
(1� t)(1 + 2t)2

+
�
1 + � sin2 2�

�
(1 + t)(2t� 1)2 � � sin 4�

p
1� t2(4t2 � 1)

��
; (3.1)

where the variable t depends on l through the relation

t =
x0
1
� lq�

x0
2

�2
+
�
x0
1
� l
�2 ; and � =

r
a+ b

a� b
: (3.2)
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The elastic properties of the inclusion and matrix in�uence the crack
trajectory via the constants:

� =
�0 � �

��0 + �
;

� =
2�(�+ 1)�0

�4[(�0 � 1)�+ 2�0] + �[(�0 � 1)�� 2��0]
;

� =
2[(� � 1)�0 � (�0 � 1)�]

�4[(�0 � 1)�+ 2�0] + �[(�0 � 1)�� 2��0]
;

(3.3)

where, for plain strain, � = (�+3�)=(�+�). The crack trajectory H(l) and
the position of the centre of the ellipse are given in an orthogonal co-ordinate
system with the axis x1 corresponding to the unperturbed crack trajectory,
i.e. the straight trajectory representing the crack path in the absence of any
defect.

The analysis of the formula for crack propagation leads to the interest-
ing observation that the elastic properties of the materials a�ect the crack
trajectory via Dundurs constants (Dundurs, 1967):

�12 =
�0(�+ 1)� �(�0 + 1)

�0(�+ 1) + �(�0 + 1)
; �12 =

�0(�� 1)� �(�0 � 1)

�0(�+ 1) + �(�0 + 1)
: (3.4)

These dimensionless elastic invariants play an important role in the theory of
elastic composites (Thorpe and Jasiuk, 1992). In fact, the stress �eld in two-
dimensional, two-phase elastic composites depends on these two parameters
only, rather than on the four elastic constants (shear and bulk moduli of both
phases).

In our model, the constants (3.3) can be rewritten in terms of Dundurs
invariants:

� =
�12 � �12
�12 + 1

; 
 =
2�12

�12 + 1
;

� =
2�

�4(1� 
)��(1 + 
)
;

� =
2

�4(
�1 � 1)��(
�1 + 1)
:

(3.5)

In particular, it can be concluded from (3.5) that the crack trajectories
belong to a two-parametric family of curves.

In the case where the inclusion is a void, the formula for the crack tra-
jectory may be obtained taking �0 = �0 = 0 in (3.1)-(3.3):
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H(l) =
R2

2x0
2

�
2(1 +m2)� t

�
2 + t� t2 +m2(1 + t)

+ 2m cos 2�(1 + 2t)(1 � t2)� 2m sin 2�(2t� 1)(1 + t)
p
1� t2

��
; (3.6)

where

R =
a+ b

2
and m =

a� b

a+ b
:

Note that formula (3.6) is independent of the mechanical characteristics
of the material and depends only on the morphology of the void, namely,
inclination of the major axis, dimension and aspect ratio of the ellipse, i.e.
parameters �, R and m. This may be viewed as a corollary of the statement
that the crack trajectory (3.1) depends on Dundurs constants and defects
morphology only. The constants (3.4) and (3.5) for an elliptical void reduce
to the simple expressions:

�12 = �1; �12 =
1� �0
1 + �0

� 0; � = �1;


! �1; � = 0; � =
2

1� �4
:

It may be interesting to note that imperfectly bonded circular inclusions have
been considered in (Bigoni et al. 1998).

3.3. Experimental results

3.3.1. Materials

In order to check the expectations of the mathematical model, the fol-
lowing materials have been selected:

� a slip cast yttria tetragonal zirconia polycrystal TZP (TZ-3YS, Tosoh
Co. Japan), preparation reported elsewhere (Salomoni et al. 1992),

� a porcelain stoneware,

� some glaze tiles.

The choice of the commercial traditional ceramics has been suggested by
the possibility of exploiting their high intrinsic porosity. In fact, as a con-
sequence of the industrial processing, pores with spheroidal geometry are
usually present in the microstructure of the porcelain stoneware, when con-
taining a large amount of glassy phase. In the glaze tiles, on the other hand,
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pores of spheroidal geometry are usually trapped in the glaze layer, and often
emerge on the proper surface.

Samples of TZP and porcelain stoneware were polished to mirror like, to
perform a clear surface analysis. Samples of TZP were preliminary observed
with SEM (Jeol, T330, Japan) to detect surface defects, for subsequent inves-
tigation of crack interaction. A selection of suitable samples of glazed ceramic
tiles with porosity emerging on the proper surface was made on the basis of
preliminary SEM observations. In this material, quasi-spherical pores were
found on the proper surface with an average diameter ranging between 5 and
20�m. These samples did not require any preliminary surface preparation.

3.3.2. Experiments

On the surface of the samples cracks were induced by Vickers indentation
technique, applying indentation loads ranging between 19.62 and 49.05N.
The resulting crack paths have been �nally observed both with optical and
scanning electron microscopes. Note that for TZP samples Vickers indenta-
tions were induced near already detected surface defects, whereas, due to the
high intrinsic porosity, indentations were induced in random positions for
porcelain stoneware and glaze and subsequently observed.

For all investigated materials, a particular care was taken to the gener-
ation and development of median-radial cracks, arising from corners of the
impression. Not always, in fact, the crack systems were suitable to verify the
expectations of the model. For instance, sometimes the median-radial cracks
were intercepted and stopped by a pore. In other cases at high indentation
loads, material removal phenomena � consequent to induced lateral cracks
� prevented any clear and correct observation of crack trajectory. On the
other hand, indentation loads lower than 19.62N may not even be su�cient
to induce well developed median-radial cracks for fracture toughness deter-
mination (Marshall and Lawn, 1977). The experimental procedure was found
particularly delicate in the case of porcelain stoneware, and was abandoned
after few experiments were performed (the most representative of these are
reported by Valentini et al. 1992, Bigoni et al. 1996, and Valentini, 1998).
Other experiments were attempted in a zirconia/alumina composite and in a
borosilicate glass containing copper platelets (Valentini, 1998). These mate-
rials did not �t correctly the model hypotheses and therefore results are not
reported here.
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3.3.3. Model prediction

In the following, the micrographs of the most representative experiments
are shown, together with the corresponding simulations obtained from the
analytical model, formula (3.6). The formula is used with a direct estima-
tion of the needed geometrical parameters, namely, dimensions, orientation,
shape, and relative position of the defects. Note that the use of formula (3.6)
� relative to ellipsoidal voids in an elastic matrix � does not require any con-
sideration of the mechanical characteristics of the material. Moreover, the
simulations have a qualitative meaning, therefore all measures have been re-
ferred to a grid of points in an arbitrary length units, in the sense that only

Figure 3.2. Crack path near two circular voids in glaze: SEM micrograph

(bar = 10 �m).
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Figure 3.3. Crack path near two circular voids in glaze: simulation of the crack path.



3.3 Experimental results 51

the relative dimensions and positions play a role in determining the shape
of the crack trajectory. Figures 3.2�3.11 are relative to the glaze, whereas
Fig. 3.12 to a slip cast TZP material containing a defect consisting in a nearly
spherical void. This void, having a diameter of 130�m, is much larger than
those present in the glaze.

Figure 3.4. Crack path near two circular voids in glaze: optical microscope micrograph

(the diameter of the smaller void is 10 �m).
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Figure 3.5. Crack path near two circular voids in glaze: simulation of the crack path.
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Let us analyze the results in detail. Two circular voids of di�erent dimen-
sions present in a glaze sample are shown to attract a crack in Fig. 3.2. The
corresponding model prediction is shown in Fig. 3.3.

Figure 3.4 is obtained with an optical microscope on a glaze sample. It
may be observed that the crack trajectory starts from the indentation on the
left side of the photograph, and is initially attracted by the void of small
size and subsequently by the second, larger void. The simulation is presented
in Fig. 3.5.

A crack interacting with three voids in a glaze sample is shown in Fig. 3.6.
Two of the voids are approximately circular an the third has an elliptical form

Figure 3.6. Crack interacting with two circular and an elliptical void in glaze: SEM

micrograph (bar = 8.3 �m).
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Figure 3.7. Crack interacting with an elliptical and two circular voids in glaze:

simulation of the crack path.
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(voids of smaller dimensions have been neglected in the simulation). The
crack trajectory is de�ected initially by the elliptical void and subsequently
by the void closest to the crack path. The analytical result gives the prediction
shown in Fig. 3.7.

Figure 3.8 is relative to a crack propagated in a glaze sample containing
a number of voids having di�erent dimensions. It is possible to compare the
situation shown in Fig. 3.8 with the simpli�ed geometry proposed in Fig. 3.9.

It may be observed in Fig. 3.10 that in a nearly symmetric distribution of
defects the e�ects of each void tend to be compensated for the others. The

Figure 3.8. Crack interacting with several voids in glaze: SEM micrograph

(bar = 12.5 �m).
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Figure 3.9. Crack interacting with several voids in glaze: simulation of the crack path.
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Figure 3.10. Crack interacting with several voids in glaze: SEM micrograph

(bar = 10 �m).
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Figure 3.11. Crack interacting with several voids in glaze: simulation of the crack path.

resulting trajectory is in fact weakly de�ected from the straight direction, a
result once more consistent with the simulation shown in Fig. 3.11.

Figure 3.12 is relative to a slip cast TZP material, with a 130�m-diameter
spheroidal voids. This is much larger than those present in the glaze. The
crack trajectory results clearly attracted by the void and is simulated in
Fig. 3.13.

A general conclusion evidenced from the performed experiments is that
the crack trajectories appear to be de�ected, in particular attracted, by the
voids. Moreover, the qualitative model predictions result to be in fairly good
agreement with the experiments.
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Figure 3.12. Crack interacting with a void in a slip cast TZP ceramic: SEM micrograph

(bar = 100 �m).
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Figure 3.13. Crack interacting with a void in a slip cast TZP ceramic: simulation of the

crack path.

3.4. Conclusions

Results obtained with a simple experimental setting on crack trajecto-
ries in ceramics containing nearly spherical voids have been presented. These
results have been compared to the predictions of an analytical model. De-
spite of the limitative assumptions on which the model is based, a satisfactory
agreement has been found. This encourages, on one hand, a systematic exper-
imental investigation on various materials and, on the other hand, a practical
use of the model in design and reliability analyses of ceramic components.
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Chapter 4

Failure of silicon nitride in uniaxial

compression

Massimiliano Gei 1), Stefano Guicciardi 2)

and Davide Bigoni 3)

Failure modes of silicon nitride cylinders have been investigated

under uniaxial compression at 1200ÆC in air. Samples with di�er-

ent aspect ratios (h/d) have been tested: 5/2, 4/2, 2/2, and 1/2

(mm/mm). In all cases, the stress/strain curves evidence an initial

linear portion followed by a peak and a slight softening, denoting a

plastic behaviour. Most of the tests were interrupted at about 3-4%

of load drop after the peak, and the samples observed with optical

and electronic microscope. Two samples catastrophically broke in

correspondence of the test stop and further observations were pre-

cluded. In all the other cases, the observed failure patterns involve

modes presenting interesting symmetries. Particularly, surface ex-

foliation seems to play a central role in limiting the load-bearing

capacity of the sample. The reason of such a behaviour may be in-

terpreted in di�erent ways, though we believe that a surface bifur-
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3) Dipartimento di Ingegneria Meccanica e Strutturale, Università di Trento, Via

Mesiano 77, 38050 Trento, Italy.
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cation mechanism is the more likely to have occurred. In addition

to this surface mode, traces of localized patterns of deformations

� which initiated and propagated macro-cracks � can be found in

some samples. A bifurcation analysis, which takes into account the

surface residual stress induced by machining, has been carried out

in order to describe the speci�c failure mode in terms of surface

instability. The �rst failure mode predicted by this approach is an

antisymmetric mode, while symmetric modes almost immediately

follow. However, antisymmetric modes may be partially hampered

by friction at the specimen/cushion contact. Moreover, the bifur-

cation analysis does not provide information for the post-critical

behaviour, so that a possible interpretation of the observed failure

mode is that the exfoliation mechanism may result as an evolution

of a �rst antisymmetric mode into a symmetric one and that local-

ized patterns of deformations follow to produce �nal macrocracks

growth.

4.1. Introduction

Advanced ceramics are known to be a good candidate as materials for
high temperature structural applications (Larsen et al. 1985; Ichinose, 1987;
Davidge and van de Vorde, 1990; Meetham, 1991; Raj, 1993). Unfortunately,
the large use of ceramic components is restricted by intrinsic limits, like
the low fracture toughness, and by a poor knowledge of the mechanical be-
haviour under the particular conditions in which the material will operate.
Being brittle materials, advanced ceramics are mainly tested in tension, as
this is considered the most harmful stress condition. However, this does not
mean that failure cannot occur when compression loads are involved. For
instance, a picture (taken with an optical microscope) is shown in Fig. 4.1
where an alumina water jet pump plunger is shown, which failed during ser-
vice as a consequence of the seizure caused by the presence of hard dust
particles in the water, a situation involving compressive rather than tensile
stresses. From scienti�c point of view, failure in compression is an intrigu-
ing mechanism, much less investigated than fracture in tension (Horii and
Nemat-Nasser, 1985; Ashby and Hallam, 1986; Sammis and Ashby, 1986;
Meyers and Chawla, 1999).
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Figure 4.1. Failure of a pump plunger (external diameter 32mm).

Of interest here for us is the behaviour of ceramic materials at high tem-
perature and subject to compressive uniaxial stresses. For the speci�c ce-
ramics under investigation, sometimes sintering aids are needed to obtain
fully dense components. Usually, these sintering aids remain as intergran-
ular vitreous phase in the �nal microstructure of the material. Being less
refractory than the ceramic itself, at high temperature this phase becomes
viscous promoting viscous �ow and grain sliding when a stress is applied
(Tsai and Raj, 1982; Wilkinson and Chadwick, 1991; Chan and Page 1993;
Lueke et al. 1995). Moreover, under stress, due to the high hydrostatic pres-
sure which sets up at the triple grain boundary junction, the intergranular
glassy phase is the place where cavitation occurs mostly, even in compres-
sion (Lange et al. 1980; Crampon et al. 1997). At high temperature, when the
above-mentioned relaxing mechanisms come into play, both the tensile and
the compressive strengths of the material drop. The ratio of the tensile to the
compressive strength, which at room temperature is about 1/10 (Atkins and
Mai, 1988), could be higher when the temperature is increased, depending
on which failure mechanism prevails.

A few works on short-term tensile tests appeared in the literature on
advanced ceramics at high temperature (Ohji et al. 1990; Lin et al. 1993;
Ohji and Yamauchi, 1994), while little or nothing can be found about short-
term compression tests. This study represents an initial contribution in this
almost unexplored �eld. In particular, we observe peculiar modes of failure of
our tested cylindrical specimen and we propose an interpretation in terms of
bifurcation theory, in which initiation of failure is explained by the occurrence
of a surface bifurcation mode.
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4.2. Experimental

The selected material was prepared by mechanically mixing an �-Si3N4

powder (S-Stark LC 12 SX, H. C. Stark, New York, NY) with 8 wt% Y2O3

and 3 wt% Al2O3 as sintering aids. The mixture was uniaxially hot-pressed in
a graphite crucible under a pressure of 30MPa at 1810ÆC. X-ray di�ractom-
etry of the as-sintered material revealed that the main phases were �-Si3N4

with � 10% residual �-Si3N4. Some relevant microstructural and mechani-
cal properties are summarised in Table 4.1 (measured at room temperature
unless otherwise indicated). Further information can be found in Biasini et
al. (1992).

Table 4.1. Microstructural and mechanical properties of the tested silicon nitride.

Density (g/cm3) 3.28

Mean grain size (�m) 0.8

��grain aspect ratio � 7

Thermal expansion coe�cient (10�6 ÆC�1) 3.25

Hardness (GPa) 20:7 � 0:9

Young modulus (GPa) 301

Toughness (MPa
p
m) 4.8�0.15

Flexural strength (MPa) R.T. 895�35
1000ÆC 603�39
1300ÆC 281�22

From the pellet (45mm in diameter and 15mm height), cylinders with a
diameter of 2mm were obtained by machining with their axis parallel to
the hot-pressing direction. Samples with di�erent heights were prepared:
1mm, 2mm, 4mm and 5mm, respectively. The tests were conducted in air at
1200ÆC using an Instron machine mod. 6025 (Instron Ltd., High Wycombe,
U.K.). To avoid excessive friction at the interface, two larger Si3N4 cylinders
(6mm in diameter and 3mm in height) machined from the same billet of the
samples were inserted between the sample and the alumina pushrods. All
the tests were conducted at a nominal strain rate of 5� 10�5s�1. The strain
rate was calculated from the specimen height and the crosshead displace-
ment rate. The heating rate was 10ÆC/min and, before loading, the sample
was allowed to soak for 18 min to insure thermal equilibrium. Most of the
tests were stopped after a load drop of about 3-4% of the peak load. The load
was removed before the cooling down. Two out of nine samples broke just
after the test stop. To observe the full evolution of damage, one thick sam-
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ple, 1mm height, was deformed up to 0.12. The sample failure patterns were
observed by optical (Leitz DMRME, Leica, Wetzlar, Germany) and scanning
electron microscope (Cambridge Instruments, Cambridge, U.K.).

4.3. Results and discussion

Values of the peak loads for the investigated specimens are reported in
Fig. 4.2, with reference to the sample height. The peak load shows a slight
tendency to lower when the height of the sample is increased, Fig. 4.2. This
slenderness e�ect will be later explained in terms of bifurcation theory and
has been also documented for concrete (Hudson et al. 1971). Including all the
values reported in Fig. 4.2, the peak load averages 4509N with a standard
deviation of 303N.
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Figure 4.2. Compression peak loads vs. sample height for Si3N4 cylinders tested at

1200ÆC in air.

A standard procedure may be applied to the load-displacement curves in
order to evaluate the e�ective strain of the sample. The system compliance
can be estimated according to the following relationship:

CT =
h

E S
+ Cs; (4.1)

where CT is the total compliance, h the initial height of the sample, E the
Young modulus, S the cross section of the sample and Cs the system com-
pliance. Using at least three samples with di�erent heights, it is possible to
evaluate, by a linear regression analysis, the Young modulus of the material
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and the system compliance. Subtracting the system compliance from the mea-
sured total compliance, the true load-displacement curve of the sample (and
whence the nominal stress-deformation behaviour) is obtained. The stress-
strain curves calculated in this way are reported in Fig. 4.3. The regression
analysis gives a Young modulus value of about 105GPa.
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Figure 4.3. Compression stress-strain curves for Si3N4 cylinders tested at 1200ÆC

in air; h is the sample height.

The general shape of the stress-strain curve does not indicate any signif-
icant di�erence among samples with di�erent height [this is also consistent
with results presented in Hudson et al. (1971) for concrete, where the strong
di�erence in the stress/strain curves is relative to the post-peak behaviour].

SEM micrographs of the samples are reported in Figs. 4.4�4.8, for di�er-
ent aspect ratios. Figures 4.4 and 4.5 pertain to aspect ratios 2/2 and 1/2,
respectively. In both cases a surface exfoliation is evident. The exfoliation
layer was quanti�ed to be about 30-35�m, Fig. 4.4. Internal cracks can also
be observed, Fig. 4.5. Surface exfoliation is also very clear from Fig. 4.6 (as-
pect ratio 4/2). However, this sample was longitudinally sectioned and cracks
almost parallel to the loading direction were observed, Fig. 4.7.

These may be interpreted as a localized axial-splitting failure mode. The
thick sample (aspect ratio 1/2), Figs. 4.8 and 4.9, shows once more the sur-
face exfoliation failure mode. Interestingly, this exfoliation is, in this case,
a progressive mechanism: at least four exfoliated layers can be detected in
Fig. 4.9 (particular of Fig. 4.8), with almost equal thickness of about 70�m.

Summarizing, axially-symmetric surface exfoliation is the dominant fail-
ure mechanism (also consistent with the failure pattern of the pump plunger
reported in Fig. 4.1). This is a well-known mechanism in rock mechanics (Var-
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Figure 4.4. SEM micrograph of a sample 2mm height after test. Top view.

Figure 4.5. SEM micrograph of a sample 1mm height after test.

doulakis and Sulem, 1995, their Fig. 1.2.6) and also found in axial compres-
sion of concrete (Hudson et al. 1971). The observed failure can be interpreted
from a number of perspectives. It can be related to the e�ect of friction at
the specimen/cushion contact, but in our case the test set up was speci�cally
arranged to minimize this e�ect. Another possibility is to explain failure as
an axial splitting phenomenon occurring as consequence of a branching of an
inclined crack into a vertical fracture (Horii and Nemat-Nasser, 1985). This
explanation appears rather weak in our case for di�erent reasons. First, the
crack branching mechanism would generate vertical, planar cracks instead of
the observed axisymmetric modes. Second, that mechanism is typical of brit-
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Figure 4.6. SEM micrograph of a sample 4mm height after test.

Figure 4.7. Longitudinal section of sample 4mm height after test (Fig. 4.6).

tle materials, but in our case there is an evident ductility, so that behaviour
of our material can be classi�ed as �brittle-cohesive�. Third, the presence
of microcracks in the material before the test initiation cannot be a priori

excluded in our case, but is strongly unlikely.
Alternatively, failure of our samples can be interpreted as the analogous

for, say, a brittle-cohesive material of the surface e�ects observable in metal
specimens (Rittel, 1990; Rittel et al. 1991). From this point of view, it may
be interpreted as a bifurcation phenomenon: the homogeneous deformation
pattern corresponding to the cylindrical shape may cease to be unique and
bifurcate into an inhomogeneous pattern with surface undulations, which de-
cay rapidly away from free surface. The problem of bifurcation of a cylindrical
specimen subject to uniaxial compression was analyzed by Chau (1992) for
rock-like materials and by Bigoni and Gei (2001) for metals. An analysis of
these results reveals that the surface mode corresponds usually to bifurca-
tion loads higher than those corresponding to barrelling or antisymmetric
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Figure 4.8. SEM micrograph of a sample 1mm height deformed up to 0.12. Top view.

Figure 4.9. Detail of micrograph 4.8. Note the successive exfoliations formed during

the test.

modes. Therefore, the explanation of the experimental results needs often to
resort to some peculiar physical mechanisms. In rock mechanics, the pres-
ence of cracks parallel to the free surface is often invoked for bifurcation to
occur (Vardoulakis and Sulem, 1995). For the analyzed material, such type
of cracks are �rst unlikely and, second, they would not produce failure in
a axisymmetric fracture mode. On the other hand, due to the fabrication
process, a thin layer of material subject to residual stress may exist close
to the free surface due to machining. This layer, often detected in ceramic
materials (Samuel et al. 1989), could give rise to a surface bifurcation mode
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occurring before other modes, a situation that can be anayzed in our case
using models developed in (Bigoni et al. 1997; Bigoni and Gei, 2001).

In closure of the present discussion, it may be worth noting that the failure
modes observed in our specimens share some similarities with modes rela-
tive to the triaxial compression of sand specimens (Desrues et al. 1996). In
those specimens, failure has been attributed to a localization of deformation
organized in a conical geometry. Although we do not completely agree with
that conclusion 4), strain localization still remains a possibility of explaining
our experimental results. Strain localization may be analyzed in terms of a
bifurcation of the response of an in�nite medium subject to increasing homo-
geneous strain (Rudnicki and Rice, 1975; Rice, 1977). For the material under
consideration, there is not enough experimental evidence to adopt a de�nite
constitutive framework. Anyway, a rough modelling may correspond to the
Drucker-Prager model (Rudnicki and Rice, 1975). For this model strain local-
ization was thoroughly analyzed. In our case, to interpret strain localization,
a localized band must be found (almost) parallel to the loading direction. For
the material under consideration, the ratio between tensile and compressive
uniaxial yield stresses may be estimated to be around 1/7. This value lies
beyond the range of parameters analyzed in (Rudnicki and Rice, 1975). How-
ever, simple calculations show that a band parallel to the loading direction
is predicted during softening and for values of plastic dilatancy su�ciently
close to the value corresponding to associativity, so that localization does not
appear to be excluded in the present context. To clarify this and the related
issue of di�use bifurcation modes � remaining the most likely explanation
for the observed surface exfoliation � we present in the next section explicit
calculations of di�use and localized bifurcations.

4.4. Bifurcation analysis

Testing of materials at high temperature poses such di�culties that the
presumption of extracting enough data from experiments to build a re�ned
constitutive model for our material is simply illusory. Therefore, we propose
a simple, hyperelastic model taken from the framework of J2-deformation

4) For �xed top of the testing machine, we think that strain localization should occur

along the two weaker planes, inevitably present in any real specimen. Therefore, we be-

lieve that the localization observed in the sand specimens should have occurred after an

axisymmetric bifurcation mode has occurred.
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theory of plasticity, to describe our uniaxial experiments. The model will be
tailored on our experimental results to describe a smooth transition from
hardening to softening behaviour in uniaxial compression.

Loss of uniqueness in the incremental response of an incompressible, elas-
tic cylinder subject to uniaxial compression is examined. A bifurcation point
is detected when, at a certain stage of the primary path of equilibrium, an in-
homogeneous �eld (called bifurcation mode) is found to satisfy the incremen-
tal equilibrium equations (in addition to the trivial homogeneous response).

In order to reproduce the physical conditions of the tested samples two
problems have been considered:

� bifurcation of incompressible, homogeneous cylinders of 2mm diameter
and heights equal to 1, 2, 4 and 5mm;

� bifurcation of cylinders with the above geometry and constitutive law,
but with a circumferential residual stress of �200MPa distributed in
an external layer of the specimen of 10�m thickness.

Compared to the former, the latter analysis did not give appreciably di�er-
ent results, so that we have concluded that residual stress does not in�uence
signi�cantly our problem. Therefore, only the former setting is considered be-
low. Here, we brie�y summarize the equations and the methodology, referring
the interested reader to Bigoni and Gei (2001) for further details.

Let us consider a cylinder of radius R and height h in the undeformed,
natural con�guration (C), whose points are labelled by x, subject to a pre-
scribed homogeneous deformation '. The current con�guration �C = '(C),
whose points are denoted by �x, is described by a cylindrical coordinates
system (r; �; z), with z coincident with the axis of the cylinder and origin
at the lower base of the body. The incompressibility constraint (detF = 1,
where 5) F = Grad') allows us to express the current state in terms of a
single parameter, the logarithmic axial strain " (" < 0 in compression), so
that the current radius, �r, and height, �h, are given by �r = exp(�"=2)R and
�h = exp(")h, respectively. In the context of small deformations " reduces to
the axial principal strain.

The lateral surface of the cylinder is traction-free and a uniaxial stress is
present directed along its axis. The following expression for the true stress �
is particularly suited to �t the experimental stress-strain curves reported
in Fig. 4.3

5) The operator Grad is calculated with respect to C.
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� = K exp

�
"

c "0

�
tanh

�
"

"0

�
; (4.2)

with K = 1650 MPa; c = 30; and "0 = 0:007. Equation (4.2) corresponds to
a nominal stress s of the form

s =
�

exp(")
= K exp

�
"

c "0
� "

�
tanh

�
"

"0

�
: (4.3)

Let us consider now an incremental displacement �eld u(�x) = _�x superim-
posed upon the current deformation. In an updated Lagrangian formulation,
the incremental equilibrium equations may be expressed in terms of incre-
ment in the �rst Piola-Kirchho� stress tensor, _S 6), as

div _S = 0 : (4.4)

The boundary conditions that complete the formulation of the incremental
boundary-value problem are:

� null tractions at the lateral surface,

_Srr = _S�r = _Szr = 0; at r = �r; (4.5)

� perfectly smooth contact with a rigid, �at constraint on the faces z = 0

and �h,
_S�z = _Srz = uz = 0; at z = 0; �h: (4.6)

The constitutive equations are taken to be linear relationships between
_S and L = gradu and are expressed in terms of three incremental moduli,
�i (i = 1; 2; 3). In cylindrical components, these are

_Srr = _p+ 2�2Lrr + 2(�1 � �2)L��;

_S�� = _p+ 2�2L�� + 2(�1 � �2)Lrr;

_Szz = _p+ (2�1 � �)Lzz;

_Sr� = _S�r = (2�2 � �1)(Lr� + L�r);

_Srz =
�
�3 +

�

2

�
Lrz +

�
�3 � �

2

�
Lzr;

_Szr =
�
�3 � �

2

�
Lrz +

�
�3 � �

2

�
Lzr;

(4.7)

6) The �rst Piola-Kirchho� stress tensor is de�ned as S = det(F )�F�T .
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_S�z =
�
�3 +

�

2

�
L�z +

�
�3 � �

2

�
Lz�;

_Sz� =
�
�3 � �

2

�
L�z +

�
�3 � �

2

�
Lz�;

(4.7)
[cont.]

where _p is the Lagrange multiplier associated with the incompressibility con-
straint.

The incremental moduli are functions of the pre-stress which a�ects the
incremental response of the solid. In the framework of the �nite strain gen-
eralization of the J2�deformation theory (Hutchinson and Tvergaard, 1980;
Neale, 1981), they depend on the tangent modulus (Et = d�=d") and secant
modulus (Es = �=") of the curve (4.2) at � 7), namely

�1 =
1

3
Et; �2 =

1

6
(Es +Et); �3 =

1

2
Es" coth

�
3

2
"

�
: (4.8)

In order to simplify the formulation, we note that, exploiting the condition
of incompressibility of the incremental deformation [ur;r + (ur + u�;�)=r +

uz;z = 0], the components of u can be written in terms of two displacement
potentials, 
 = 
(r; �; z) and 	 = 	(r; �; z), as

ur = 
;rz +	;�=r; u� = 
;�z=r �	;r; uz = �M(
); (4.9)

where M(�) = (�);rr + (�);r=r + (�);��=r2 is the two-dimensional Laplacian
operator in polar coordinates.

Bifurcations are sought in the separate variables form

8>>><
>>>:


(r; �; z) = !(r) cosn� sin �z;

	(r; �; z) =  (r) sinn� cos �z;

_p(r; �; z) = q(r) cosn� cos �z;

(4.10)

where � = k�=�h (k = 1; 2; : : : ) and n (n = 0; 1; 2; : : : ) are, respectively,
the longitudinal and the circumferential wave numbers. The de�nition of �
assures that boundary conditions (4.6) are satis�ed.

7) In general, Es and Et are calculated with respect to the equivalent stress (�e =p
3�dev ��dev=2) � uniaxial logarithmic strain (j"j) curve, where (�)dev denotes the devi-

atoric part of the relevant argument. In our case �e = j�j.



72 4. Failure of silicon nitride in uniaxial compression

Substitution of (4.10)1;2 into (4.9), (4.7), and (4.4) yields two ordinary
di�erential equations for !(r) and  (r) and an expression for q(r). The so-
lutions for the three functions are

8>>><
>>>:

!(r) = a1Jn(�1�r) + a2Jn(�2�r);

 (r) = bIn(�3�r);

q(r) = (2�1 � �3 � �=2)�Ln(!)� (�3 � �=2)L2

n(!)=�;

(4.11)

where ai (i = 1; 2) and b are arbitrary constants, Jn(x) and In(x) are �
respectively � the ordinary and the modi�ed Bessel functions of order n,
Ln(�) = (�)00 + (�)0=r � n2(�)=r2 is the Bessel operator, �2i (i = 1; 2) are the
solutions of the characteristic equation

(�3 � �=2)�4 + 2(�1 + �2 � �3)�
2 + (�3 + �=2) = 0; (4.12)

and

�23 =
�3 + �=2

2�2 � �1

: (4.13)

It is worth noting that the nature of roots ��1 and ��2 of (4.12) de�nes
the classi�cation of regimes: complex conjugate ��1 and ��2 in the elliptic
complex regime (EC); pure imaginary ��1 and ��2 in the elliptic imaginary
regime (EI); real ��1 and ��2 in the hyperbolic regime (H); two real and
two pure imaginary ��1 and ��2 in the parabolic regime (P). It should be
noted that failure of ellipticity corresponds to localization of deformation.
Therefore, the investigation of bifurcation is restricted to the elliptic range,
where �3 + �=2 > 0; 2�2� �1 > 0, so that the coe�cient �23 (4.13) is always
positive either in (EI) or in (EC) regimes.

Equations (4.9)�(4.11) fully specify the displacement �eld and,
through (4.7), the incremental stress state. The imposition of the bound-
ary conditions on the lateral surface (4.5) provides a homogeneous algebraic
system for the constants ai (i = 1; 2) and b. Non trivial solution are obtained
if the determinant of the associated matrix vanishes (bifurcation condition).
Once the current geometry and state is known, the bifurcation mode has to
be selected in terms of the circumferential wave number n and of the di-
mensionless parameter ��r, so that the bifurcation condition determines the
critical logarithmic strain "bif .
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4.4.1. Results

Bifurcation points and modes for samples with aspect ratios 1/2, 2/2, 4/2
and 5/2 have been computed and reported in Figs. 4.10 and 4.11. The bifur-
cation points are marked in Fig. 4.10 on the uniaxial stress vs. logarithmic
strain curves with vertical segments, since they correspond to two di�erent
values of Cauchy (or true) and nominal stresses, but to the same value of
strain.

In the present problem, localization of deformation occurs when the
(EC)/(H) boundary is touched, i.e. at j"locj = 0:0693, as can be calculated
from Eq. (4.12). The point corresponding to strain localization is reported in
the �rst plot of Fig. 4.10, where it can be clearly appreciated that localization
occurs in the strain softening regime.

The critical, i.e. occurring at lowest strain, bifurcation point for each of
the four aspect ratios considered are reported in the �rst plot of Fig. 4.10.
All the four critical bifurcations correspond to an antisymmetric mode, char-
acterized by n = 1. Note that the critical bifurcation occurs

� when the material is still in the hardening regime, for the aspect ratios
h=d = 4=2 and 5/2,

� at around the peak of stress/strain curve, for the aspect ratio
h=d = 2=2,

� during softening, for the aspect ratio h=d = 1=2.

However, bifurcation modes with n 6= 1 become available at strains
slightly higher than the critical, specially for thick samples. In order to
present a complete picture of the bifurcation landscape, the �rst six modes
for every aspect ratio are indicated in Fig. 4.10 and the relative parameters
listed in Table 4.2.

For h=d = 1=2 (second plot in Fig. 4.10), the mode P, following the
mode M, is a surface-type mode with double longitudinal wave number �
corresponding to half wavelength � and n = 4. Moreover, the mode H (ax-
isymmetric) is almost coincident with the mode G (antisymmetric) for the
aspect ratio 2/2 (third plot in Fig. 4.10).

After the sixth mode is attained, in�nite bifurcation modes follow one
upon other and become closer and closer towards the point S, representing the
surface instability threshold (j"sij = 0:0349). Continuing along the uniaxial
curve, strain localization occurs as a �nal instability.
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Figure 4.10. True (Eq. 4.2) and nominal (Eq. 4.3) stress vs. logarithmic strain curves

(the former is dashed), with superimposed critical points for bifurcation. S denotes

surface instability that occurs at j"sij = 0:0349. Characteristics of modes A through U are

reported in Table 4.2.
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Mode n=4, =2� �r
Antisymmetric mode

n=1, = /2� �r

Mode G Mode P

Figure 4.11. Sketch of mode G (critical mode for the specimen h=d=2/2) and mode P.

Table 4.2. Bifurcation mode parameters of Fig. 4.10.

Mode n ��r j"bif j Mode n ��r j"bif j
A 1 �=5 0.0131 K 1 3�=4 0.0204

B 1 �=4 0.0143 L 0 3�=4 0.0205

C 1 2�=5 0.0165 M 1 � 0.0245

D 0 �=4 0.0175 N 2 3�=2 0.0273

E 0 �=5 0.0176 O 3 3�=2 0.0278

F 0 2�=5 0.0177 P 4 2� 0.0282

G 1 �=2 0.0178 Q 2 � 0.0285

H 0 �=2 0.0179 R 3 3� 0.0298

I 0 3�=5 0.0185 T 6 3� 0.0299

J 1 3�=5 0.0188 U 8 4� 0.0315

From the reported results it can be clearly understood that

strain localization will never occur in a homogeneously deformed

specimen, but will take place on a bifurcated deformation path 8).

We observe that the surface mode S corresponds to an �orange-peel� pat-
tern where both n and ��r diverge. Something similar was found, for a simpler

8) Therefore a calculation of strain localization performed assuming homogeneity may

retain some validity only when the bifurcated path followed by the specimen does not

involve high strain inhomogeneities.
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uniaxial stress-strain law than (4.2), by Bigoni and Gei (2001) for uniaxial
tension, but not for compression.

In terms of total compression loads, the nominal peak load calculated
from the constitutive law (4.3) is equal to 4788 N. For h=d = 4=2 and 5/2
bifurcation occurs for a load of about 4749 N and 4706 N, respectively, in-
dicating the presence of the slenderness e�ect noticed in the experimental
results (Fig. 4.2). This e�ect, that is a consequence of loss of uniqueness in
the hardening branch, may be observed in specimens having h=d > 1.

4.5. Conclusions

Experimental results have been presented, relative to uniaxial compres-
sion at 1200ÆC in air of silicon nitride cylinders. Results pertain to di�erent
diameter/height ratios. In the experiments, this parameter did not in�uence
much the overall features of the stress-strain curve (which in the present
case were interrupted just after the peak) and of the failure modes. For all
investigated diameter/height ratios, failure was initiated by surface exfolia-
tion followed by the formation and growth of macrocracks. Three possible
interpretations of this behaviour seem to cover all possibilities. These are:

1. e�ects related to specimen/cushion friction;

2. e�ects related to the presence of microcracks;

3. e�ects related to a bifurcation mechanism emerging during deforma-
tion.

The �rst possibility should be minimized with the assumed experimental
setup and microcracks can also be excluded, so that the second possibility
is also ruled out. Only the last possibility appears relevant to our situation.
Bifurcations fall within the following classes:

� di�use bifurcations:

� axisymmetric modes,

� antisymmetric modes;

� surface modes;

� localized modes.

Presented calculations, performed with a material model suitable to de-
scribe our uniaxial experiments, show that:

� the �rst bifurcation mode occurs around (before for slender specimens,
after for thick) the peak of the uniaxial stress/strain curve, in agreement
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with the observed failure. This explains the observed slight decrease
in the peak load, as related to the increase of the slenderness of the
specimen;

� the �rst possible bifurcation mode is always antisymmetric for all con-
sidered geometries;

� the surface modes follow after di�use mode, but occur �not far� from
the �rst mode;

� localized modes always follow after surface modes;

� the above results remain practically unchanged even if a circumferential
residual stress is considered.

Following the bifurcation approach, it can be concluded that the observed
failure starts at around the peak of the stress-strain curve as an antisymmet-
ric mode 9) and degenerate during postcritical behaviour to a surface mode,
leading to �nal failure, with possible strain localization.
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Chapter 5

Forming of advanced ceramics

Andrea Piccolroaz 1), Alessandro Gajo 1)

and Davide Bigoni 1)

Cold compaction of powders is a basic process in ceramics forming.

After a review of existing phenomenological models for mechani-

cal behaviour of powders, experiments are presented, which were

performed on a commercial alumina powder. These are used to cal-

ibrate a plasticity model for soils, namely, the Cam-clay. F.E. simu-

lations are �nally presented of a simple forming process and results

are shown to be in qualitative agreement with experiments.

5.1. Introduction

Powder compaction is a process in which granular materials are made
cohesive through mechanical densi�cation. These may or may not involve
temperature and permit an e�cient production of parts ranging widely in
size and shape to close tolerances with low drying shrinkage (Reed, 1995).

1) Dipartimento di Ingegneria Meccanica e Strutturale, Università di Trento, Via

Mesiano 77, 38050 Trento, Italy.
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Metallurgical (German, 1984) and pharmaceutical (Lordi and Cuitiño,
1997) applications are common; moreover, forming of traditional (for in-
stance: ceramic tiles, porcelain products) and structural ceramics (for in-
stance: chip carriers, spark plugs, cutting tools) involves essentially powder
compaction. The focus of this chapter is the analysis of cold compaction of
ceramic powders to obtain a constitutive model capable of describing green
body formation.

In the case of advanced ceramics, a ceramic powder is usually obtained
through spray-drying and is made up of particles (granules) of dimensions
ranging between 50 and 200�m (Fig. 5.1), coated with the binder system.
The granules are aggregates of crystals having dimensions on the order 1�m.

Figure 5.1. SEM micrograph of the analyzed alumina powder (bar = 100�m).

Figure 5.1 refers to the speci�c material analyzed in the present article.
This is a commercial ready-to-press alumina powder (96% purity), manu-
factured by Martinswerk GmbH (Bergheim, Germany) and identi�ed as 392
Martoxid KMS-96. The data presented by the manufacturer are given in Ta-
ble 5.1. It can be noted from Fig. 5.1 that the granules have a mean diameter
of 250�m.

Densi�cation of ceramic powders induced by cold pressing can be divided
in three main stages (Matsumoto, 1986; Reed, 1995; Bortzmeyer, 1996):

� Phase I granule sliding and rearrangement,

� Phase II granule deformation,

� Phase III granule densi�cation.
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Table 5.1. Granulometric and density properties of the tested alumina powder.

MWM 28 Vibration sieving

sieve residue > 300 �m 3.9%

sieve residue > 150 �m 56.3%

sieve residue < 63 �m 2.5%

Bulk density (g/cm3) 1.219

Green density (p = 50MPa) (g/cm3) 2.39

Fired density (T=1600ÆC, 2h) (g/cm3) 3.77

The three phases of densi�cation can be distinguished by the changes in
the inclination of the semi-logarithmic plot of density versus applied pressure.
These determine the �breakpoint pressure� and �joining pressure� points. The
Phase I always occurs in early volumetric deformation of granular materials
(at low stress), so that it has been thoroughly investigated for geomateri-
als. However, densi�cation process in ceramic powders is often highly non
homogeneous, so that usually at least two phases coexist. With reference to
continuum mechanics modelling, phases II and III of deformation are related
to the gain in cohesion of the material and have been scarcely investigated.

5.1.1. The need of research

Many technical, unresolved di�culties arise in the forming process of
ceramic materials (Brown and Weber, 1988; Bortzmeyer, 1996). In fact, if on
one hand the compact should result intact after ejection, should be handleable
without failure and essentially free of macro defects, on the other hand,
defects of various nature are always present in the greens (Deis and Lannutti,
1998; Ewsuk, 1997; Hausner and Kumar-Mal, 1982; Glass and Ewsuk, 1997;
Thompson, 1981b), badly in�uencing local shrinkage during sintering (Deis
and Lannutti, 1998; Hausner and Kumar-Mal, 1982). Defects can be caused
by densi�cation process, that may involve highly inhomogeneous strain �elds,
or by mold ejection, often producing end and ring capping, laminations, shape
distortions, surface defects, vertical cracks, and large pores (Glass and Ewsuk,
1997).

In view of a reduction in the defects � crucial in setting the reliability
of the �nal piece � simulations of the forming process become an important
tool to optimize ceramics design (in terms of shape of �nal piece and type
and composition of the powder).
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5.1.2. A state-of-the-art

Though compaction of granular materials has been the focus of intense
research, ceramic powders have been scarcely considered. We review vari-
ous contributions and methodologies developed for mechanical modelling of
granular materials of di�erent nature.

Metallic powders. Several phenomenological or micromechanical mod-
els have been developed to describe Phases I and II densi�cation for various
metallic powders. Some of them are reviewed below.

Compaction of metallic powders under isostatic pressure was considered by Arzt

(1982) and Helle et al. (1985). Other models describe the powder compaction into

cylindrical dies with axial loading and concern generic powders (Thompson, 1981a;

Kenkre et al., 1996).

Brown and Weber (1988) develop an elastic-plastic model at large strains based

on an ad hoc yield function. Both experiments and numerical simulations are pre-

sented.

Micromechanical approaches have been developed by Fleck et al. (1992), Ak-

isanya et al. (1994) and Fleck (1995). Akisanya et al. (1994) derive a relationship

between pressure and density de�ned within the context of Phase II. Fleck et al.

(1992) and Fleck (1995) obtain analytical expressions for yield surfaces at the level

of a phenomenological theory of plasticity. The analyses are based on a ductile

behaviour, typical of metallic powders. Other works, based on the micromechani-

cal approach are hardly extendible to the simulation of industrial processes with

complex geometries (Cuitiño and Gioia, 1999; Kuhn et al. 1991; Pavanachand and

Krishnakumar, 1997; Subramanian and Sofronis, 2001; Ng, 1999; Parhami et al.

1999).

Gurson and McCabe (1992) show experimental results concerning high pressure

triaxial tests on tungsten-nickel-iron powders and discuss possibility of simulating

the cohesion increase by using a particular hardening mechanism.

Tran et al. (1993) use an elastic-plastic model analogous to those developed for

sands, in a large strain formulation. Even if the model is limited to Phase I, the

approach allows the numerical simulation of the forming process of simple compo-

nents.

Lewis et al. (1993) propose a computer-aided simulation procedure for metal

powder die compaction. They develop the model within the large deformation the-

ory, using a modi�ed von Mises criterion for porous material as proposed by Oyane

et al. (1973). The friction between the powder compact and the rigid die wall is

taken into account. Simulations of the die compaction of powder compact having

variable cross-sections are presented. The main limits in this approach are the as-
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sumptions of a rigid-plastic behaviour and a yield surface independent of the third

stress invariant.

Jernot et al. (1994) propose a microstructural approach to simulate metallic

powder compression, based on tools of mathematical morphology (erosion and di-

lation).

Brown and Abou-Chedid (1994) illustrate pressing experiments and present an

elastic-plastic model. They claim that in the �eld of metallic powders there are no

experimental tests enabling to clarify the issue of �ow-rule associativeness or lack

of it.

Lippmann and Iankov (1997) describe the process of compaction and sintering

by means of a rigid-plastic model, which cannot describe the so-called �springback�

e�ect.

The large strain elastic-plastic model proposed by Oliver et al. (1996) is em-

ployed in f.e. simulations accounting for friction between powder and cast. In the

constitutive modelling a yield surface independent of the third stress invariant is

assumed.

Ari�n et al. (1998), Lewis and Khoei (1998) and Khoei and Lewis (1999) use

a large strain formulation of a constitutive model which combines Mohr-Coulomb

criterion with an elliptical cap model. Friction between powder and cast is accounted

for and remeshing is used to follow complex geometries. This model does not describe

the increase in cohesion when the material is subjected to hydrostatic stress states.

Using several elastic-plastic models, Sun and Kim (1997) analyze the compaction

of iron and copper powders and conclude that a modi�ed Cam-Clay model is the

more suited.

Geindreau et al. (1999a;b) present experiments on lead powder for investigating

the constitutive behaviour during hot pressing.

Numerical simulations of the powder compaction of a cup have been performed

by Redanz (1999; 2001), using two di�erent porous material models: that by Fleck

et al. (1992a) and a material model including interparticle cohesive strength (Fleck,

1995).

Gu et al. (2001) have developed a constitutive model where the plastic �ow

is assumed to be representable as a combination of a distortion mechanism and

a consolidation mechanism. For the distortion mechanism a Mohr-Coulomb type

yield criterion with a non-associative �ow rule is used, whereas for the consolida-

tion mechanism an elliptical shape yield function with an associative �ow rule is

employed.

A simple isotropic and two anisotropic micromechanical models of compaction

are compared in Henderson et al. (2001).

Subramanian and Sofronis (2001) present a micromechanical model for interac-

tion between densi�cation mechanisms in powder compaction. Elastic deformation,

power-law creep deformation, di�usional mass transport on the interparticle contact

areas and pore surfaces are taken into account.
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Sands and granular materials. The constitutive models developed in
this �eld are concerned with the behaviour of geotechnical materials and refer
essentially to low pressures, corresponding to Phase I compaction. Despite
microstructural di�erences, sands and clays have similar macroscopic prop-
erties, so that constitutive models have been developed for both materials,
assuming that the behaviour of sands and clays is governed by di�erent zones
of the same yield surface. For instance, it is common to assume that a dense
sand behaves as a strongly overconsolidated clay. Other models have been
speci�cally developed for sands. A fundamental feature of granular materials
is the presence of plastic strains at low load levels, and the occurrence of a
notable anisotropy induced by the loading process. The main elastic-plastic
models which can describe these aspects are very brie�y summarized in the
following.

Mróz et al. (1978) and Prevost (1977) propose the use of vector-valued yield

functions coupled with kinematic hardening to describe the mechanical behaviour of

granular materials, in such a way extending to soils an approach originally proposed

for metals by Mróz (1967) and by Iwan (1967).

Dafalias and Popov (1975) and Krieg (1975) simplify the Mróz approach, by sug-

gesting the use of two surfaces only: an inner one, describing the elastic behaviour,

is subjected to kinematic hardening and an outer one, modelling the extent of the

plastic strains, is �xed and named �bounding surface�. A similar approach has been

proposed also by Hashiguchi and Ueno (1977) with the so-called �subloading surface�

model.

More speci�cally oriented towards sands at low loading levels are the models

proposed by Ghaboussi and Momen (1982) and by Poorooshasb and Pietruszczak

(1985), based on two surfaces only, shaped as two open cones with non circular

cross-section and with vertices coinciding with the origin of the stress space.

Zienkiewicz and Mróz (1984) and Pastor and Zienkiewicz (1986) propose a gen-

eralized plasticity model, in which the directions of plastic loading and unloading,

as well as the amplitude of the plastic strains, are de�ned at each point of the stress

space without making reference to a yield surface or to a consistency criterion.

De Boer (1988) has developed constitutive equations for granular materials

based on a �single-surface� criterion and a non-associative �ow rule. A review of

the state of the art of the macroscopic porous media theory can be �nd in de Boer

(2000).

Morland et al. (1993) describe a model for the uniaxial compaction of granular

materials valid at small strains.

Borja and Wren (1995), Wren and Borja (1997) present a methodology for de-

riving the overall constitutive relations for granular materials based on microme-
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chanical concepts. The overall response is obtained using particulate mechanics and

considers the particle-to-particle interaction at contact points. Finally, a methodol-

ogy for calculating the overall tangential moduli for periodic assemblies of circular

disks has been proposed.

Anand and Gu (2000) have been formulated a large deformation three-dimensio-

nal elasto-plastic constitutive model for dry granular materials at low pressure,

based on the classical Mohr-Coulomb criterion. The model is used to predict the

formation of shear bands in plane strain compression and expansion and to predict

the stress state in a static sand pile.

The main drawback of the described models is that the same sand behaves as

di�erent materials at di�erent densi�cation levels. Such problem becomes important

in the description of ceramic powders, where the density is a variable of the primary

importance, subjected to evolution during the forming process. Recently, Manzari

and Dafalias (1997) and Gajo and Muir Wood (1999a,b) have independently devel-

oped an approach originally proposed by Muir Wood et al. (1994) to account for

the dependence of the mechanical properties from the densi�cation level by means

of a state parameter (Been and Je�eries, 1985). Both models are based on two open

conical surfaces, with vertex coinciding with the origin of the reference system; in

particular, some restrictions existing in the model of Manzari and Dafalias (1997)

are overcome in the approach of Gajo and Muir Wood (1999a,b) by means of the

use of a normalized stress space. Recently Gajo et al. (2001) have extended this

model to include the elastic anisotropy induced during the deformation process. In

this way it has been possible to show how this model can describe the onset of

strain localization and the post-localization behaviour, both under axisymmetric

and biaxial conditions.

Ceramic powders. A general review of the powder pressing technology
is given in Volume 22 of the MRS Bulletin (1997). It is explicitly stated in
the introduction (Ewsuk, 1997) that the numerical modelling of densi�cation
phenomena is still an open problem, that there is a need of employing a large
strain formulation and that several techniques (slip-casting, pressure �ltra-
tion, centrifugal casting, injection molding, tape casting, gelcasting) are much
less known than the widely used dry-powder pressing. Similar conclusions are
reached by Schilling et al. (1998). It may be therefore appreciated that the
state-of-the-art of mechanical modelling of ceramic densi�cation process is
still rather poor. Some contributions to this speci�c �eld are reviewed below.

Shima and Mimura (1986) illustrate experimental results and formulate a yield

criterion for ceramic powders. They claim that the experimental evidence points

towards an associative �ow-law.



88 5. Forming of advanced ceramics

The model by Kuhn et al. (1991) reduces the problem of Phase I densi�cation

to the search for the critical load of an arch. This model may be useful both for

practical applications and in the description of experimental results. However, the

model may be too limited to allow an adequate extension for modelling an entire

compaction process.

Höhl and Schwedes (1992) discuss the possibility of extending to powders the

models used in geomechanics. However, they do not formulate a new model able to

improve on the limits of those currently used in geomechanics.

The relationship between density and tensile strength of ceramic powders are

discussed by Bortzmeyer (1992a). A micromechanical model to determine the mi-

croscopic behaviour of packing during tensile tests is also proposed. Bortzmeyer

(1992b) presents experimental results carried out on a zirconia powder with a stan-

dard triaxial apparatus and numerical simulations performed using a Cap-model

with non-associative �ow rule.

Experimental results are given in Shima and Saleh (1993), where it is proved

that a strong anisotropy is induced during pressing. This e�ect is then modelled in

terms of kinematic hardening.

Ahzi et al. (1993) employ crystal plasticity models for the analysis of the forming

of BSCCO superconductive powders. Owing to the peculiar lamellar microstructure

of their powders, their analysis is hardly extensible to powders with a di�erent

microstructural morphology.

A relationship is proposed by Santos et al. (1996) to describe the variation of

the density as function of the applied pressure, valid for alumina powders under

pressures above 150MPa.

Brandt and Nilsson (1998; 1999) present an elastic-plastic model for powder

compaction and sintering, with a kind of anisotropic hardening taken from models

used in geomechanics (DiMaggio and Sandler, 1971; Sandler and Rubin, 1979).

A comparison between the model of Shima and Oyane (1976) and the model of

Fleck et al. (1992a) is presented by Kim and Kim (1998), whereas Sun and Kim

(1997) and Sun et al. (1998) compare the same models to the Cam-clay. A similar

work is that of Park and Kim (2001), where a yield function is proposed, with

associative �ow-law and independent of the third stress invariant.

Phase I densi�cation is interpreted by Cuitiño and Gioia (1999) as a phase trans-

formation. Their model is based on a micromechanical approach and is applicable

to a wide class of granular materials. However, it may be di�cult to extend it to

Phases II and III.

The �CRADA group� (Aydin et al. 1997a,b; Ewsuk et al. 2001; Keller et al. 1998;

Zipse, 1997) reports about a model for powder compaction based on a proposal by

Sandler and Rubin (1979) for describing mechanical behaviour of concrete. Such

model appears to be not fully adequate to the description of the ceramic powder

behaviour in several respects (a small strain theory is used; the cohesion gain due

to densi�cation is not accounted for; the yield surface is independent of the third
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stress invariant; the elastic parameters do not depend on both the current stress

and the past history; hardening is present only in the cap region).

On the basis of the above reported state-of-the-art, we feel it is possible
to conclude as follows:

� the description of industrial processes, in the presence of complex ge-
ometries, still requires the use of phenomenological models and could
hardly be based upon micromechanical approaches;

� a realistic elastic-plastic model, able to describe the powder compaction
process, should include:
� a large strain formulation (during forming the material undergoes
strains exceeding 50%);

� description of elastic phenomena (a rigid-plastic model would miss
to capture several aspects which strongly a�ect the strength of the
green bodies);

� pressure-sensitivity of yielding;

� dependence of the yield function on the third stress invariant;

� non-associative �ow-law;

� closure of the yield function in compression, in order to simulate
compaction during isostatic pressing;

� hardening and softening. In particular, the hardening must de-
scribe the increase in cohesion of the material during the pressing
(Bortzmeyer, 1992a);

� explicit introduction of density as a state variable;

� variation of the elastic moduli with density (Brown and Weber,
1988), an e�ect which could be accounted for by using the theory
of elastic-plastic coupling (Hueckel, 1976);

� progressive anisotropy, both elastic and plastic, due to plastic
straining (Shima and Saleh, 1993; Uematsu et al. 1995).

� Moreover, the simulation of the forming process should include:
� e�ects of the deformability of the die (Matsumoto, 1986);

� e�ects of friction between powder and die (Song and Chandler,
1990);

� simulation of the complete mold extrusion process, which may
cause fracture upon unloading (Bortzmayer, 1996);

� analysis of strain localization and relevant numerical treatment.
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5.2. Experimental

Experimental investigation has been performed on the alumina powder
described in Section 5.1. Experiments include uniaxial strain tests in a cylin-
drical mold, direct shear tests and biaxial �exure tests on the tablets obtained
through uniaxial strain.

5.2.1. Uniaxial strain tests

Uniaxial deformation tests have been performed in a single-sided, cylin-
drical mold having inner diameter of 30mm. A universal MTS 810 machine
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Figure 5.2. Compaction behaviour of the tested alumina powder (in a natural and

semilog representation).
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Table 5.2. Measured density as function of the forming pressure.

Forming pressure (MPa) Mean density (g/cm3) Standard deviation

5 1.76 0.007

10 1.89 0.007

20 2.03 0.006

30 2.13 0.002

40 2.15 0.003

50 2.19 0.007

60 2.26 0.005

80 2.31 0.007

100 2.36 0.002

120 2.38 0.003

(by MTS Systems Gmbh, Berlin, Germany) has been employed. Tests were
performed without lubricant at a 2mm/min velocity of moving punch, for
pressure levels ranging between 5 and 120MPa. Five tests have been per-
formed at given values of pressure, selected as 5, 10, 20, 30, 40, 50, 60, 80,
100, 120MPa. After uniaxial strain, tablets have been weighted and mea-
sured, so that the mean density has been evaluated. A quantity of 8 g of
powder has been used for each test, discharged in the mold from an height
of 10 cm and shaken. Experiments were performed at a relative humidity
of 28%. Results are reported in Fig. 5.2 (in a natural and semi-logarithmic
representation) and Table 5.2. As can be noted from Fig. 5.2, points in the
semi-logarthmic plot lies on a straight line, accordingly to DiMilia and Reed
(1983a,b) and Lukasiewicz and Reed (1978). A representative load F versus
vertical displacement s curve is reported in Fig. 5.3, from which the density �
versus pressure p curve can be obtained through the simple relationships

� =
M

A(h0 � s)
; p =

F

A
; (5.1)

(where A is the sample cross-section area, M its mass and h0 its initial
height), as shown in Fig. 5.4. The strong in�uence of the die and machine
deformations can be appreciated in Fig. 5.3. The changes in the slope of
the curve in Fig. 5.4 identify the three compaction phases. In particular,
the breakpoint and joining pressures are approximately 1MPa and 20MPa,
respectively. However, the latter point is much less evident from the graph
than the former. Note that results reported in Fig. 5.2 agree well with those
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Figure 5.3. Load vs. displacement curve in uniaxial strain.

0.1 1 10 100
1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Applied Pressure, MPa

D
e

n
s
it
y,

g
/c

m
^
3

Figure 5.4. Compaction diagram in uniaxial strain (semilog representation).

reported in Fig. 5.4, except that Phase I behaviour is not visible in the former
�gure.

5.2.2. Biaxial �exure strength tests

Biaxial �exure strength tests have been performed on the tablets obtained
through uniaxial strain, following the indications of ASTM F 394. For this
test the velocity of the cylindrical ram was 0.4mm/min. The increase in biax-
ial �exural strength as a function of the forming pressure is shown in Fig. 5.5.
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Figure 5.5. Biaxial �exure strength as related to forming pressure.

Results are in good agreement with existing data (Reed, 1995) and clearly
show the mechanism of cohesion increase, as related to densi�cation.

A SEM micrograph of the fracture surface after a biaxial �exural test of a
tablet formed at a pressure of 50MPa is shown in Fig. 5.6. Note that 50MPa
is the optimal forming pressure indicated by the powder manufacturer.

Figure 5.6. Fracture surface of a tablet formed at 50MPa pressure (bar = 100 �m).

Fracture results to be partially transgranular and partially intergranular.
It may be noted that there are clusters of deformed granules with low in-
tergranular porosity. Figure 5.7 is a detail of a fractured granule, where the
aggregate crystals are visible.
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Figure 5.7. Particular of Fig. 5.6 (bar = 10�m).

5.2.3. Direct shear tests

A few direct shear tests have been performed using a standard geotech-
nical apparatus. The apparatus consists of a shear box which contains the
sample and which is split in the mid-height. When a normal force is applied,
the horizontal force required to induce a movement of the upper half of the
sample with respect to the lower half is measured. This test is useful for
the evaluation of the friction angle of a granular material, like the alumina
powder in Phase I of densi�cation. In order to investigate the shear strength
of the cohesionless material, a low vertical pressure was applied: three values
were considered, namely, 200, 500, and 1000 kPa. The samples were formed
by carefully pouring the ceramic powder within the shear box. Shearing was
performed at a velocity of 0.2mm/min. The variation of the vertical dis-
placement of the sample upper surface and of the applied shear force during
shearing is shown in Figs. 5.8 and 5.9.

The samples have the typical behaviour of a loose sand, with compressive
volumetric strains during shearing, without a peak strength followed by a
softening phase. The fact that the samples sheared at 500 kPa and 1000 kPa
of vertical pressure have the same volumetric strains is probably related to a
slightly looser initial condition of the former sample. It can be observed that,
except for the test performed under a vertical stress of 200 kPa, the steady
state condition typical of the critical state is not reached and at the end of the
test the strength and the volumetric strains of the samples are still slightly
increasing. This e�ect is more pronounced at larger applied vertical pressures
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Figure 5.8. Vertical vs. horizontal displacements of three samples, for di�erent vertical

pressures (200, 500 and 1000 kPa).
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Figure 5.9. Shear force vs. horizontal displacement of three samples, for di�erent

vertical pressures (200, 500 and 1000 kPa).

and is probably connected to the progressive deformation and rupture of the
grains constituting the alumina powder occurring during shearing even at
low con�ning pressures. This is consistent with the experimental evidences
that very large shear strains are necessary to reach the steady state in sands
when grain crushing occurs.

The maximum shear force reached at the end of the test is plotted
in Fig. 5.10 as a function of the applied vertical load. The results clearly
lie on a straight line and may be interpreted following the Coulomb-Mohr
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Figure 5.10. Maximum shear force at di�erent vertical loads.

failure criterion, to yield a friction angle approximately equal to 32Æ. Accept-
ing a slight approximation, this angle was considered the critical state friction
angle in the following simulations. Moreover, since experimental information
on the shear strength of the cohesive material after compaction are missing,
the measured friction angle was assumed to characterise also the behaviour
of the material after compaction.

5.3. Modelling and calibration

It can be concluded from the above reported experiments that a plastic-
ity model is the best candidate for a phenomenological description of powder
compaction. First, in fact, an elastoplastic model is needed to simulate the
irreversible deformation representing the forming process itself, second, it
allows determination of residual stresses after forming, a fundamental pa-
rameter for design purposes.

In general, an elastoplastic model is formulated as a nonlinear relationship

between objective rates of stress
r

T and strain D

r

T=

8<
:

E[D ]� 1

H
< Q � E [D ] > E[P] if f(T ;K) = 0 ;

E[D ] if f(T ;K) < 0 ;
(5.2)

where E is the elastic fourth order tensor, the operator < � > denotes the
Macaulay brackets which associate to any scalar � the value<�>= max f�; 0g,
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f is the yield criterion, function of the stress measure T and of a generic col-
lection of state variables K (which may for instance describe the density of
the material), Q and P are the yield function and plastic potential gradi-
ents, respectively (Q = P for associative elastoplasticity). Finally, the plastic
modulus H is related to the hardening modulus h through

H = h+Q � E [P ]: (5.3)

Elastoplasticity as described by the rate equations (5.2) is a broad context
in which many constitutive assumptions are to be introduced. The similar-
ity of the Phase I compaction with the deformation of granular materials
suggests the possibility of using a model already developed for geomaterials.
In particular, on the basis of our experimental results, we have decided to
employ a �nite strain version of the Cam-clay model (Roscoe et al. 1958,
1963; Roscoe and Poorooshasb, 1963; Roscoe and Burland, 1968; Scho�eld
and Wroth, 1968). The model is based on the following assumptions:

A1: Yield function:

f(T ; pc) =M2p2 �M2pcp+ q2; (5.4)

where p = �trT=3 is the hydrostatic stress component, q =
p
3J2 (with

J2 = T �T � 3p2) is the Mises stress, M is a material constant and pc
is a hardening parameter.

A2: Associative plastic �ow rule:

Q =
M2

3
(pc � 2p)I + 3S ; (5.5)

where S = T � (trT )=3I is the stress deviator.

A3: Isotropic hardening rule:

pc = pc0 exp (1 + e0)
1� Jp

�� �Jp
; (5.6)

where Jp = detF p, being F p the plastic part of the deformation gra-
dient F , pc0 and e0 are the initial values of hardening parameter and
void ratio, respectively, (the void ratio is de�ned as the ratio between
the volume of voids and volume of solid phase). � is the logarithmic
hardening modulus and � the logarithmic elastic bulk modulus and are
represented by the slopes of plastic and elastic branches of the e vs.
log p curve obtained under isotropic compression.
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It may be anticipated, however, that the Cam-clay model has de�nitive
limitations when applied to the modelling of ceramic powders. In particular,
a more re�ned model should include the following features, not considered
in the Cam-clay:

� the yield function should depend also on the third stress invariant;

� a non-associative �ow-law should be introduced;

� the hardening should describe the increase in cohesion of the material
during the pressing;

� the elastic moduli should depend on the increase in cohesion during
densi�cation (an e�ect that could be accounted for by using the theory
of elastic-plastic coupling, Hueckel, 1976).

Among the above points, the dependence of the cohesion on the relative
density is the more important. In the Cam-clay model, in fact, the material
remains cohesionless during all the process of inelastic deformation. On the
contrary, the proper description of cohesion gain during forming is a funda-
mental aspect for design purposes.

Calibration of the model has been performed on the basis of our experi-
ments (with the exception of the Poisson's ratio, which was estimated from
values available in the literature). In particular, the values of the parameters
� and � were deduced from the slopes of curves obtained by loading and un-
loading the samples in the uniaxial strain test. For this evaluation, we have
assumed a constant ratio between the horizontal �h and vertical �v stresses
equal to 0.47, as deduced from the formulae

�h
�v

= 1� sin�;

which is currently used for granular media (� is the angle of internal friction).
The values of parameters used in the subsequent numerical simulations are
summarized in Table 5.3.

Table 5.3. Values of material parameters estimated from experiments.

Elastic logarithmic bulk modulus � 0.040

Logarithmic hardening modulus � 0.290

Material constant M 1.287

Initial value of hardening parameter pc0 (MPa) 0.648

Initial values of void ratio e0 2.054

Initial con�ning pressure p0 (MPa) 0.063

Poisson's ratio � (taken from literature) 0.26
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5.4. Numerical simulations

Numerical simulations with �nite elements have been performed � within
the environment allowed by the commercial code ABAQUS (Hibbitt, Karls-
son & Sorensen, 2001) � to simulate forming of the (axisymmetric) piece
shown in Figs. 5.11 and 5.12. Four pieces where formed at a �nal mean pres-
sure of 100MPa starting from 5 g of powder. The axisymmetric mesh used in
the simulations is shown in Fig. 5.13. Axisymmetric 4-node elements (CAX4)
have been used.

Figure 5.11. Photograph of the formed piece.

�����
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���

�����

�����

Figure 5.12. Geometry of the formed piece (dimensions in mm).

The following assumptions have been introduced:

� the die is undeformable;

� the contact between powder and die walls is smooth;

� the initial con�guration is that shown in Fig. 5.13.
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Figure 5.13. Initial mesh.
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Figure 5.14. Deformed mesh at the end of step 1.
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Figure 5.15. Initial and deformed (end of step 1) meshes.
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It may be worth noting that the above assumptions are not particularly
strong in our speci�c analysis. In particular, we remark that, due to the
large strains that will be reached during pressing, the assumption that the
initial con�guration shown in Fig. 5.13 is homogeneous does not a�ect much
�nal results.

After the initial state � de�ned by initial values of void ratio and con�ning
pressure � has been de�ned, the loading history is assigned, which is divided
in the following three steps:

1. forming is prescribed by imposing the motion of the upper part of
the boundary (3.78mm, corresponding to the value measured during
forming at the �nal load of 50 kN);

2. unloading is simulated by prescribing null forces on the upper part of
the boundary;

3. ejection is simulated by prescribing null forces on all the boundary.

Due to the fact that the Cam-clay model is not de�ned for tensile stresses
and is singular for null mean stress, the last of the above steps cannot be con-
cluded and the analysis ends up when the applied external forces are reduced
to a minimal percent of the values at the beginning of the step. Obviously,
a more fundamental constitutive approach would require the de�nition of a
gain of cohesion and related variation of elastic properties, as mentioned in
Section 5.3.

The deformed mesh at the end of step 1 is shown in Fig. 5.14, whereas
the same mesh superimposed on the initial mesh is shown in Fig. 5.15. It can
be noted that the elements near the corner of the punch are unphysically
distorted so that results in this zone should not be considered realistic.

It is immediate to conclude from Figs. 5.14, 5.15 that the deformation
su�ered by the piece is quite high. The hydrostatic stress component p (taken
positive when compressive), the Mises stress q and the void ratio are reported
in Figs. 5.16�5.18, respectively, at the end of step 1.

Excluding the small, unrepresentative zone near the corner of the punch,
the hydrostatic stress p ranges from 25.3MPa to 108MPa and the Mises
stress q from 15.4MPa to 70.1MPa. These values show that the stress is
highly inhomogeneous. The q=p ratio ranges from 0.31 to 1.14, so that it is
always inferior than the value of M .

Values of the hydrostatic and Mises stress components at the end of step 2
are reported in Figs. 5.19 and 5.20, whereas the map of void ratio is shown
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Figure 5.16. Distribution of hydrostatic stress component (MPa) at the end of step 1.
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Figure 5.17. Distribution of Mises stress (MPa) at the end of step 1.
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Figure 5.18. Void ratio distribution at the end of step 1.
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Figure 5.19. Distribution of hydrostatic stress component (MPa) at the end of step 2.
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Figure 5.20. Distribution of Mises stress component (MPa) at the end of step 2.
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Figure 5.21. Void ratio distribution at the end of step 2.
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in Fig. 5.21. It may be important to note that residual stress is quite high,
due to the lateral constraint still present at the end of step 2. The knowledge
of the lateral stress is important for practical purposes since the force needed
for the ejection of the �nal piece can be estimated through Coulomb friction
law, when the lateral stress at the end of step 2 is known. A rough, but simple
evaluation can be immediately obtained from numerical output at the end of
step 2 employing the formula

ejection force= � tan� (mean lateral stress � lateral surface of the piece),

where � is the powder friction angle (equal to 32Æ in our case) and � is a
coe�cient dependent on the roughness of the die wall and ranging between
0 and 1, typically � = 0:6.

The deformed mesh at the end of step 3 is shown in Figs. 5.22 and 5.23.
In the latter �gure, the deformed mesh is superimposed on the initial. The
springback e�ect and the shape distortion are evident.
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Figure 5.22. Deformed mesh at the end of step 3.
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Figure 5.23. Initial and deformed (step 3) meshes.
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Figure 5.24. Distribution of hydrostatic stress component (MPa) at the end of step 3.
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Figure 5.25. Distribution of Mises stress component (MPa) at the end of step 3.
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Figure 5.26. Void ratio distribution at the end of step 3.



106 5. Forming of advanced ceramics

The residual stress distribution at the end of forming is reported in
Figs. 5.24 and 5.25, where the hydrostatic stress and the Mises stress compo-
nents are also shown. The void ratio distribution is �nally shown in Fig. 5.26.
Excluding the small, unrepresentative zone near the corner of the punch,
the hydrostatic stress p ranges now between 0.038MPa and 2.64MPa and
the Mises stress q between 0.32MPa and 5.22MPa. Moreover, the void ratio
varies between 0.54 and 0.95. It can be noted that the minimum void ratio is
usually associated with the maximum residual mean stress. The results sug-
gest that two annular, concentric zones of material are formed, the inner of
which is subject to high compressive mean stresses, whereas the outer tends
to be subject to tensile stresses. This can represent a potentially danger-
ous situation, in which the tensile stresses tend to open possible microcracks
induced by ejection on the external surface of the piece, leading to serious de-
fects formation in the green. However, even when the green is approximately
free of macro defects, its mechanical behaviour and shrinkage during future
sintering are deeply a�ected by the inhomogeneities in the residual stress and
density distributions.

Finally, we note from Figs. 5.24�5.26 that an annular zone of very dense
material forms near the bottom of the sample. This prediction is indeed
con�rmed by the visual inspection of the formed sample, clearly showing an
annular dark zone, Fig. 5.27.

Figure 5.27. Photograph of the bottom side of the formed samples.
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Experimental and simulated load displacement curves during forming of
the piece shown in Fig. 5.11 are compared in Fig. 5.28 (natural and semilog-
arithmic representations are reported), where a satisfying agreement can be
noted.
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Figure 5.28. Experimental and simulated load vs. displacement curves, in a natural and

semilog representation.

5.5. Conclusions

Results discussed in the present chapter represent a �rst step toward the
development of a model capable of realistically describing forming processes
of ceramic materials. Even if the experimental results are still incomplete and
the employed elastoplastic model, the Cam-clay, does not describe properly
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some important feature of material behaviour � as for instance the strong
relation between density and cohesion � our results demonstrate that it is
possible to realistically predict:

� the springback e�ect and related shape distortion,

� the force needed for mold ejection,

� the residual stress distribution,

� the density distribution and the related presence of defects in the green
body.

The �nal remark is related to the prediction of defects in the sintered piece
and therefore its investigation has an important practical meaning.

In closure, we mention that the modelling presented in this Chapter can
be extended in di�erent directions. Referring to thermoplasticity, the sin-
tering phase might be covered by modelling, so that simulation could be
extended to the entire production process. Moreover, both sintering aids and
powder characteristics might enter the elastic-plastic constitutive laws, so
that the optimal powder composition and morphology could be predicted for
di�erent forming problems.
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