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A B S T R A C T

The bifurcation problem of a circular Euler–Bernoulli rod subject to a uniform radial force distribution is
investigated under three distinct loading conditions: (i.) hydrostatic pressure, (ii.) centrally-directed, and (iii.)
dead load. Previous studies on this apparently ‘familiar’ structural problem have yielded controversial results,
necessitating a comprehensive clarification. This study shows that results previously labelled as ‘correct’ or
‘wrong’ simply refer to different external constraints, whose presence becomes necessary only for the two
latter loads, (ii.) and (iii.). Moreover, the paper presents the first experimental realization of a circular rod
subjected to centrally-directed loads. The experimental findings align with the theoretical predictions and show
the exploitation of a new type of load acting on a continuous structural element. The feasibility of this load
is demonstrated through the use of inextensible cables and opens the way to applications in flexible robotics
when cables are used for actuation.
1. Introduction

The in-plane bifurcation problem of circular elastic rods and arches,
assumed axially-inextensible and loaded by hydrostatic pressure, is an
old topic, which attracted considerable attention in civil and mechan-
ical engineering (see the initial works by Bresse [1] and Lévy [2]
and later among many others, [3–10]). Driven by new applications
on minimal surfaces [11] and the biology of several different natural
structures [12–14], the issue has seen renewed interest.

Radial and uniform loads, leave an axially-inextensible circular rod
undeformed and subject to a trivial state of pure normal compressive
force until buckling occurs, usually in the form of an ovalization. How-
ever, initially identical load distributions may differ in the way they
react to the deformation. In particular, hydrostatic pressure is just one
type of uniform and radial load that a ring can experience. Specifically,
the following three types of loads have been so far investigated for the
circular rod [15–17].

(i) Hydrostatic pressure, which remains orthogonal to the tangent to
the deformed configuration of the rod. Moreover, the resultant
force acting on the elementary arc of the rod changes propor-
tionally to a variation in its length (which cannot occur for axial
inextensibility).

∗ Corresponding author.
E-mail address: bigoni@ing.unitn.it (D. Bigoni).

(ii) Centrally-directed load, which remains directed towards the initial
centre of the ring. Moreover, the resultant force acting on the ele-
mentary arc of the rod is independent of a variation in its length.
This load can be visualized (and implemented in practice, as
demonstrated in the present article) as several inextensible ropes
pulling the rod and passing through a fixed point, coincident with
the initial centre of the ring.

(iii) Dead load, which remains directed along the normal to the rod
in its undeformed configuration. Moreover, the resultant force
acting on the elementary arc of the rod is independent of its
deformation.

All loads (i.)–(iii.) become critical for buckling at a sufficiently high in-
tensity, and infinite bifurcations arise at increasing values. The critical
radial load 𝛱cr, corresponding to bifurcations, occurring in all possible
modes and under every constraint externally applied to the rod, can, in
any case, be expressed as [18]

𝛱cr = 𝑘2 𝐵
𝑅3

, (1)

where 𝑅 is the radius of the circle defining the undeformed configu-
ration of the rod, 𝐵 = 𝐸𝐽 its bending stiffness (equal to the product
between the Young’s modulus 𝐸 and the second moment of inertia of
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Fig. 1. Left: An ancient children’s toy, a sort of wooden automaton in which a small oscillating mass moves the hens to peck at the feed. The toy (Italian manufacture, early 20th
century, courtesy of the F. Bigoni private collection) resembles the device on the right. Right: the basic idea behind the device’s design for transmitting the centrally-directed load
to the ring.
its cross-section 𝐽 ), and 𝑘2 is a dimensionless constant depending on
the type (i.)–(iii.) of radial load, on the selected mode of bifurcation,
and on the constraints applied to the rod (differences in external
constraints have been considered in [17,19–21]). In particular, the
following values have previously been reported:

• 𝑘2 = 3 for hydrostatic pressure (i.) [18],
• 𝑘2 = 9∕2 or 𝑘2 ≈ 6.47 for centrally-directed load (ii.) [15],
• 𝑘2 ≈ 0.701 or 𝑘2 = 4 for dead load (iii.) [19].

The latter values (ii.) and (iii.) are controversial and are reported in the
literature as ‘correct’ or ‘wrong’ [18,19].

The purpose of the present article is twofold:

• first to show that all the values for the buckling radial loads (ii.)
and (iii.) so far presented are correct, but refer to different ex-
ternal constraints, imposed to prevent rigid-body displacements.
In particular, while any system of statically-determined exter-
nal constraints leaves the bifurcation problem under hydrostatic
pressure (i.) unaffected, consideration of constraints becomes im-
portant for loads (ii.) and (iii.), because their application strongly
changes the bifurcation loads and modes. Moreover, differently
from centrally-directed load (ii.), the dead load (iii.) makes the
structure unstable with respect to rigid-body rotations, so that in
this case external constraints cannot be avoided;

• second, an experimental set-up is proposed to realize the load
(ii.), showing that the experimental values of the critical load
match with accuracy the theory. The realization of the centrally-
directed load provides the design of a structure subject to a type
of load proposed a long time ago and never achieved before. The
device’s scheme designed to reproduce the centrally-directed load
is reported in Fig. 1, together with an ancient toy based on a
similar idea.

The present article’s results reiterate the importance of modelling
external loads and clarify a controversial structural problem. Moreover,
a new experimental strategy is introduced to attain centrally-directed
loads. Though recently reconsidered [22], centrally-directed loads have
been only scarcely analysed, but they are of interest in the design of
flexible robotic arms driven by cables, or pulley systems applied to
deformable elements.

2. Governing equations for the annular rod

Consider an inextensible and unshearable circular rod, character-
ized by a radius 𝑅, a bending stiffness 𝐵, and a Cartesian reference
2

system with axes 𝑥1 and 𝑥2 centred at the centre 𝑂 of the structure.
The arc length 𝑑𝑠 = 𝑅𝑑𝜃 is defined with respect to a polar coordinate
system (𝑟, 𝜃). At every point of the rod, a tangential 𝐭0 and a radial
𝐦0 = 𝐭0 × 𝐞3 unit vectors are introduced, where 𝐞3 is the out-of-plane
unit vector, Fig. 2. In the Cartesian frame of reference (𝑥1, 𝑥2) described
by the unit vectors 𝐞1 and 𝐞2, the tangent and the normal unit vectors
at a point on the rod assumes the form

𝐭0 = − sin 𝜃𝐞1 + cos 𝜃𝐞2, 𝐦0 = cos 𝜃𝐞1 + sin 𝜃𝐞2. (2)

The displacement vector describing points belonging to the rod is

𝐮 = 𝑢𝜃 𝐭0 + 𝑢𝑟 𝐦0, (3)

where 𝑢𝑟 and 𝑢𝜃 are the radial and tangential components, with respect
to the orthogonal unit vectors

𝐞𝑟 = cos 𝜃 𝐞1 + sin 𝜃 𝐞2, 𝐞𝜃 = − sin 𝜃 𝐞1 + cos 𝜃 𝐞2, (4)

which define the radial and circumferential directions.
The axial deformation 𝜖, the cross-section rotation 𝛷 and the change

of curvature 𝜒 at every point of the rod are governed by [23]

𝜖 =
𝑢𝑟
𝑅

+
𝜕𝑢𝜃
𝜕𝑠

, 𝛷 =
𝜕𝑢𝑟
𝜕𝑠

−
𝑢𝜃
𝑅
, 𝜒 = − 𝜕𝛷

𝜕𝑠
, (5)

respectively. Assuming the inextensibility of the rod, 𝜖 = 0, and
introducing the constitutive equation for in-plane deflection, it follows
from (5)1

𝑢𝑟 = −
𝜕𝑢𝜃
𝜕𝜃

, 𝜒 = 𝑀
𝐵

, (6)

where 𝑀 is the bending moment internal to the rod. When external
pressure is applied, the ring is only subject to a uniform internal
compressive force 𝑁0 = −𝛱𝑅, while both the shearing force 𝑇0 and
the bending moment 𝑀0 are null. The equilibrium equations of any
curved rod (not necessarily circular), subject to the load 𝐪, are (see
details in [24])
𝜕𝑁0
𝜕𝑠

+
𝑇0
𝑅

= −𝐪 ⋅ 𝐭0,
𝑁0
𝑅

−
𝜕𝑇0
𝜕𝑠

= 𝐪 ⋅𝐦0,

𝜕𝑀0
𝜕𝑠

= 𝑇0

(

𝑢𝑟
𝑅

+
𝜕𝑢𝜃
𝜕𝑠

+ 1
)

−𝑁0

(

𝜕𝑢𝑟
𝜕𝑠

−
𝑢𝜃
𝑅

)

,
(7)

so that, assuming the curved configuration as reference in a relative
Lagrangian description (𝑢𝑟 = 𝑢𝜃 = 0), the material time derivative leads
to the incremental equilibrium equations

𝜕�̇�0
𝜕𝑠

+
�̇�0
𝑅

= −�̇�⋅𝐭0,
�̇�0
𝑅

−
𝜕�̇�0
𝜕𝑠

= �̇�⋅𝐦0,
𝜕�̇�0
𝜕𝑠

= �̇�0+𝛱𝑅
(

𝜕�̇�𝑟
𝜕𝑠

−
�̇�𝜃
𝑅

)

,

(8)
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Fig. 2. An elastic circular rod, centred in a Cartesian frame of reference 𝑂 − (𝑥1 , 𝑥2) and subjected to a radial load uniformly distributed 𝛱 . At every point of the rod, a tangent
and a normal unit vectors, are defined, in the undeformed and deformed configurations, 𝐭0, 𝐦0, and 𝐭, 𝐦, together with a local polar coordinate system with unit tangent and
normal vectors 𝐞𝜃 and 𝐞𝑟. Depending on the direction that the resultant force 𝑃 of the applied radial load on a deformed element assumes in the deformed configuration it is
possible to define (i.) a hydrostatic load, where 𝑃 is directed along 𝐦, (ii.) a centrally-directed load where 𝑃 points towards point 𝑂, and (iii) a dead load where 𝑃 is directed along
𝐦0.
where a superimposed dot denotes an increment, while the load in-
crement, �̇�, depends on the type of load (i)-(iii). The material time
derivative of Eq. (6)2 and the use of the relation (5)2−3 yield

𝜕�̇�0
𝜕𝑠

= −𝐵
(

𝜕3�̇�𝑟
𝜕𝑠3

+
𝜕�̇�𝑟
𝜕𝑠

1
𝑅2

)

. (9)

Therefore, a substitution of Eq. (9) into Eq. (8)3, allows to reduce all
Eqs. (8) into one equation describing the incremental response of a
circular rod [24] as
𝜕6�̇�𝜃
𝜕𝜃6

+
(

2 + 𝑘2
) 𝜕4�̇�𝜃
𝜕𝜃4

+
(

1 + 2𝑘2
) 𝜕2�̇�𝜃
𝜕𝜃2

+ 𝑘2�̇�𝜃 +S = 0,

̇ 𝑟 +
𝜕�̇�𝜃
𝜕𝜃

= 0,
(10)

where

S = 𝑅4

𝐵

(

𝜕�̇�
𝜕𝜃

⋅𝐦0 + 2�̇� ⋅ 𝐭0
)

. (11)

The incremental load �̇� in Eq. (11) is one of the incremental loads
corresponding to (i)–(iii). These can be written as the equations (3.18)-
(3.20)2 derived and reported in [24] and leading to

�̇� = −𝛱
𝑅

×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝜕2�̇�𝜃
𝜕𝜃2

+ �̇�𝜃

)

𝐭0 for hydrostatic pressure (i.),

�̇�𝜃 𝐭0 for centrally-directed load (ii.),
𝟎 for dead load (iii.).

(12)

A substitution of Eqs. (12) into Eq. (11) yields

S = −𝑘2 ×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕2�̇�𝜃
𝜕𝜃2

+ �̇�𝜃 for hydrostatic pressure (i.),

�̇�𝜃 for centrally-directed load (ii.),
0 for dead load (iii.).

(13)

The internal axial �̇�0 and tangential �̇�0 incremental forces and
ending moment �̇�0 in Eqs. (10) have the following form

̇ 0 =
𝐵
𝑅3

(

𝜕5�̇�𝜃
𝜕𝜃5

+
𝜕3�̇�𝜃
𝜕𝜃3

)

+𝛱
(

𝜕3�̇�𝜃
𝜕𝜃3

+
𝜕�̇�𝜃
𝜕𝜃

)

,

̇ 0 =
𝐵
𝑅3

(

𝜕4�̇�𝜃
𝜕𝜃4

+
𝜕2�̇�𝜃
𝜕𝜃2

)

+𝛱
(

𝜕2�̇�𝜃
𝜕𝜃2

+ �̇�𝜃

)

,

�̇�0 =
𝐵
𝑅2

(

𝜕3�̇�𝜃
𝜕𝜃3

+
𝜕�̇�𝜃
𝜕𝜃

)

.

(14)

. Bifurcation analysis

Depending on the behaviour of the externally applied radial load
uring the deformation, [16,17] the following cases have to be anal-
sed.
3

(i) For hydrostatic pressure, the governing equation is [18]

𝜕6�̇�𝜃
𝜕𝜃6

+ (2 + 𝑘2)
𝜕4�̇�𝜃
𝜕𝜃4

+ (1 + 𝑘2)
𝜕2�̇�𝜃
𝜕𝜃2

= 0, (15)

and its general solution can be written as

�̇�𝜃(𝜃) = 𝑎1 + 𝑏1𝜃 + 𝑎2 cos 𝜃 + 𝑎3 sin 𝜃 + 𝑏2 cos𝜔𝜃 + 𝑏3 sin𝜔𝜃, (16)

where 𝑎1–𝑎3 and 𝑏1–𝑏3 are integration constants and

𝜔 =
√

𝑘2 + 1. (17)

(ii) For centrally-directed load, the governing equation is [18]

𝜕6�̇�𝜃
𝜕𝜃6

+ (2 + 𝑘2)
𝜕4�̇�𝜃
𝜕𝜃4

+ (1 + 2𝑘2)
𝜕2�̇�𝜃
𝜕𝜃2

= 0, (18)

and its general solution can be written as

�̇�𝜃(𝜃) = 𝑎1+𝑏1𝜃+𝑏2 cos𝜔1𝜃+𝑏3 sin𝜔1𝜃+𝑏4 cos𝜔2𝜃+𝑏5 sin𝜔2𝜃, (19)

where 𝑎1 and 𝑏1–𝑏5 are integration constants and

𝜔1 =
√

1 + 𝑘
2
(𝑘 +

√

𝑘2 − 4), 𝜔2 =
√

1 + 𝑘
2
(𝑘 −

√

𝑘2 − 4). (20)

Note that for a fixed value of 𝜔1 = 𝜔0
1 >

√

3, Eq. (20)1 has only a
unique solution 𝑘0 for 𝑘. Then −𝑘0 solves Eq. (20)2 for 𝜔2 = 𝜔0

1.
Finally, 𝜔1 = 𝜔2 when 𝑘2 = 4. In this particular case, the solution
of the differential equation becomes

�̇�𝜃(𝜃) = 𝑎1 + 𝑏1𝜃 +
(

𝑏2 + 𝑏3𝜃
)

cos
√

3𝜃 +
(

𝑏4 + 𝑏5𝜃
)

sin
√

3𝜃, (21)

(iii) For dead load, the governing equation is [18]

𝜕6�̇�𝜃
𝜕𝜃6

+ (2 + 𝑘2)
𝜕4�̇�𝜃
𝜕𝜃4

+ (1 + 2𝑘2)
𝜕2�̇�𝜃
𝜕𝜃2

+ 𝑘2�̇�𝜃 = 0. (22)

and its general solution can be written as

�̇�𝜃(𝜃) = 𝑎2 cos 𝜃 + 𝑎3 sin 𝜃 + 𝑏1 cos 𝑘𝜃 + 𝑏2 sin 𝑘𝜃 + 𝑏3𝜃 cos 𝜃 + 𝑏4𝜃 sin 𝜃,

(23)

where 𝑎2–𝑎3 and 𝑏1–𝑏4 are integration constants. Note that in the
particular case 𝑘 = 1, the solution becomes

�̇�𝜃(𝜃) = 𝑎2 cos 𝜃+𝑎3 sin 𝜃+(𝑏1𝜃2+𝑏2𝜃) cos 𝜃+(𝑏3𝜃2+𝑏4𝜃) sin 𝜃. (24)

3.1. Effect of the boundary conditions on the bifurcation

Boundary conditions are to be imposed on solutions (16), (19), and

(23).
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3.1.1. The role of rigid-body roto-translations on the equilibrium of the
circular rod

As it has been so far presented, the circular rod is free in the
plane and can suffer, in principle, a rigid-body roto-translation. This
displacement is governed by the constants 𝑎1, 𝑎2, and 𝑎3 in Eqs. (16),
(19), (23) and can be represented as

̇ 𝜃 = 𝑎1 + 𝑎2 cos 𝜃 + 𝑎3 sin 𝜃,

̇ 𝑟 = 𝑎2 sin 𝜃 − 𝑎3 cos 𝜃,
(25)

where 𝑎1 corresponds to a rigid-body rotation, while 𝑎2 and 𝑎3 rule the
vertical and horizontal rigid-body translations, respectively. However,
not all the rigid-body displacements are compatible with the applied
radial loads (i.)–(iii.), so that in some cases, work is produced during
the rigid-body displacements.

(i.) For hydrostatic pressure. All rigid-body displacements do not pro-
duce any work (for the undeformed, but also for an arbitrarily de-
formed, configuration of structure), so that the expressions (25) triv-
ially satisfy the governing Eq. (15). Therefore, in the bifurcation prob-
lem, constants 𝑎1, 𝑎2, and 𝑎3 remain arbitrary in Eq. (16) and any
(strictly necessary) external constraint system, which eliminates rigid
body motions (for instance a clamp or three rollers), can be applied
without changing the bifurcation loads and modes.

(ii.) For centrally-directed radial load. Only the rigid-body rotation 𝑎1
does not produce work, trivially satisfying Eq. (18), and thus remains
undetermined in the incremental problem, Eq. (19). However, it will
be shown below that rigid-body translations always produce negative
work, so that the structure will not move, even without constraints.
The latter condition is compatible with certain external constraints (for
instance three axial rollers inclined at angles 0, 𝜋∕2 and 𝜋). In this
way, 𝑘2 = 9∕2 is obtained. If the external constraints are changed, for
instance introducing a clamp, certain bifurcation modes are excluded
and the bifurcation load increases at 𝑘2 ≈ 6.47. When a rigid-body
translation is applied, Fig. 3, the centrally-directed load performs a
non-null work. In particular, a rigid-body translation of a finite amount
𝑎 < 𝑅 is postulated for the ring, aligned parallel to the horizontal axis
𝑥1, so that the centre of the circular rod is displaced from 𝑂 to 𝑂′. After
this displacement, the resultant 𝑑𝐟 of the radial force 𝛱 applied on an
elementary arch of length 𝑑𝑠 = 𝑅𝑑𝜃 is

𝑑𝐟 = −𝛱
(cos 𝜃 + 𝑎∕𝑅) 𝐞1 + sin 𝜃 𝐞2
√

𝑎2∕𝑅2 + 2𝑎∕𝑅 cos 𝜃 + 1
𝑑𝑠. (26)

he work 𝑊 (𝑎) done by the centrally-directed load during the appli-
ation of the rigid-body translation of amount 𝑎 is obtained through a
ouble integration of the scalar product of Eq. (26) with 𝐞1 as

(𝑎) = −𝛱𝑅2
∫

𝑎∕𝑅

0

(

∫

2𝜋

0

cos 𝜃 + 𝛼
√

𝛼2 + 2𝛼 cos 𝜃 + 1
𝑑𝜃

)

𝑑𝛼. (27)

Recalling that 𝑎 < 𝑅, the sign of the work may be estimated by
onsidering the bounds

∫

𝜋

0

cos 𝜃
1 + 𝛼

𝑑𝜃+∫

2𝜋

𝜋

cos 𝜃
1 − 𝛼

𝑑𝜃+ 2𝜋𝛼
1 + 𝛼

≤ ∫

2𝜋

0

cos 𝜃 + 𝛼
√

𝛼2 + 2𝛼 cos 𝜃 + 1
𝑑𝜃, (28)

and

∫

𝜋

0

cos 𝜃
1 − 𝛼

𝑑𝜃+∫

2𝜋

𝜋

cos 𝜃
1 + 𝛼

𝑑𝜃+ 2𝜋𝛼
1 − 𝛼

≥ ∫

2𝜋

0

cos 𝜃 + 𝛼
√

𝛼2 + 2𝛼 cos 𝜃 + 1
𝑑𝜃, (29)

so that eventually

0 < 2𝜋𝛼
1 + 𝛼

≤ ∫

2𝜋

0

cos 𝜃 + 𝛼
√

𝛼2 + 2𝛼 cos 𝜃 + 1
𝑑𝜃 ≤ 2𝜋𝛼

1 − 𝛼
, (30)

nd therefore

∕𝑅 + log(1 − 𝑎∕𝑅) ≤ 𝑊 (𝑎)
2𝜋𝑅2𝛱

≤ −𝑎∕𝑅 + log(1 + 𝑎∕𝑅) < 0. (31)

It follows from the bounds (31) that the work is always negative for
compressive radial forces. It can be concluded that for compressive (for
4

Fig. 3. A rigid-body translation from point 𝑂 to point 𝑂′ of an annular rod (one half is
reported), loaded with a centrally-directed pressure, breaks equilibrium. The symmetric
configuration (shown grey in the background) is stable for a compressive radial load, so
that when displaced, the structure spontaneously returns to the original configuration.

tensile) centrally-directed radial load, 𝛱 > 0 (𝛱 < 0), the ring is stable
(is unstable) to rigid-body translations, so that experiments on the ring
are possible for 𝛱 > 0 even without external constraints.

(iii.) For dead radial load. Only the rigid-body translations 𝑎2 and 𝑎3 do
not produce work, trivially satisfying Eq. (22), and therefore remain
undetermined in the incremental problem, Eq. (23). It will be shown
below that any rigid-body rotation always produces positive work
for compressive radial load, so that the structure will move and this
movement has to be eliminated with a constraint. The latter condition
has to leave unaffected the involved bifurcation mode, so that the first
bifurcation mode is obtained with a clamp, 𝑘2 ≈ 0.701, while three axial
rollers determine 𝑘2 = 4. When a finite rigid-body rotation 𝛼 is applied
to the annular rod, Fig. 4, every point of its axis (determined by the
angle 𝜃) suffers the finite displacement 𝐮

𝐮(𝜃, 𝛼) = −𝑅(1 − cos 𝛼) 𝐞𝑟(𝜃) + 𝑅 sin 𝛼 𝐞𝜃(𝜃). (32)

The resultant 𝑑𝐟 of the radial force 𝛱 applied on an elementary arch
of length 𝑑𝑠 is

𝑑𝐟 = −𝛱𝑑𝑠 𝐞𝑟, (33)

thus the work done by the whole dead radial load associated with the
rotation 𝛼 becomes

−𝛱𝑅∫

2𝜋

0
𝐞𝑟 ⋅ 𝐮(𝜃, 𝛼) 𝑑𝜃 = 2𝜋𝑅2𝛱(1 − cos 𝛼). (34)

It follows from Eq. (34) that the work is always positive for the
compressive radial load (or null in the trivial case 𝛼 = 2𝜋). It can
be concluded that for compressive (tensile) dead radial load, 𝛱 > 0
(𝛱 < 0), the ring is unstable (stable) to rigid-body rotations, in analogy
to a rigid rod subject to two equal and opposite dead forces at its ends.

3.1.2. Circular rod: fully continuous bifurcation modes
Solutions (16), (19), and (23) and their derivatives are continuous

functions of 𝜃 ∈ [0, 2𝜋], so that continuity of the structural element
is enforced by requiring that the function assumed the same value
in 0 and in 2𝜋. In this Section, solutions are sought that respect the
continuity of the incremental kinematic descriptors �̇�𝜃 , �̇�𝑟, �̇�

�̇�𝜃(0) = �̇�𝜃(2𝜋), �̇�𝑟(0) = �̇�𝑟(2𝜋), �̇�(0) = �̇�(2𝜋), (35)

and of the incremental internal forces, �̇� , �̇� , and �̇�

�̇�(0) = �̇�(2𝜋), �̇� (0) = �̇� (2𝜋), �̇�(0) = �̇�(2𝜋). (36)

Therefore, an application Eqs. (5) and (14), shows that continuity
Eqs. (35) and (36) become equivalent to
𝜕𝑛�̇�𝜃 (0) =

𝜕𝑛�̇�𝜃 (2𝜋), 𝑛 = 0,… , 5, (37)

𝜕𝜃𝑛 𝜕𝜃𝑛
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Fig. 4. A rigid-body rotation about the centre 𝑂 of an annular rod (one half is reported) subject to a dead radial load breaks equilibrium. The symmetric configuration (left) is
unstable upon rotations (right).
c

where 𝑛 = 0, 1, 2 for the continuity of the kinematic descriptors and
= 3, 4, 5 for the internal forces.

The solutions (16)–(23) show that, when present, all coefficients 𝑎1,
2, and 𝑎3 remain unaffected by the continuity conditions (37), because
hey represent rigid-body motions, which a-priory satisfy the continuity
f any order. Therefore, only a limited number of Eqs. (37) are to be
sed, in particular, six conditions minus the number of constants 𝑎𝑖.
he conditions which are not imposed are automatically satisfied.

(i) For hydrostatic pressure, Eq. (16) shows that 𝑏1 = 0 and that
[

cos 2𝜋𝜔 − 1 sin 2𝜋𝜔
sin 2𝜋𝜔 −cos 2𝜋𝜔 + 1

] [

𝑏2
𝑏3

]

= 0, (38)

so that non-trivial solutions may exist when

sin2 𝜔𝜋 = 0, ⟹ 𝜔 integer. (39)

When 𝜔 is an integer, all the items in the matrix (38) vanish,
so that the constants 𝑏2 and 𝑏3 remain undetermined. Therefore,
at bifurcation, 𝑎1, 𝑎2, 𝑎3, 𝑏2, and 𝑏3 are all left arbitrary by the
conditions of continuity (37). The bifurcation modes, Eq. (16),
become

�̇�𝜃(𝜃) = 𝑎1 + 𝑎2 cos 𝜃 + 𝑎3 sin 𝜃 + 𝑏2 cos 𝜃𝜔 + 𝑏3 sin 𝜃𝜔. (40)

Note that 𝜔 = 1 is a solution of Eq. (39) leading to 𝑘 = 0, a trivial
condition which has to be disregarded, because it corresponds to
rigid-body displacements. Therefore, the smallest value of critical
load can be obtained from Eq. (39) as 𝜔 = 2, leading to 𝑘2 = 3.

(ii) For centrally-directed load, Eq. (19) shows that continuity re-
quires 𝑏1 = 0. In addition, the continuity of �̇�𝜃 up to its fifth
derivative leads to an eigenvalue problem becoming singular
when one of two independent conditions similar to Eq. (38) are
satisfied, one involving 𝑏2 and 𝑏3 and the other 𝑏4 and 𝑏5, these
respectively are

sin2 𝜔1𝜋 = 0, or sin2 𝜔2𝜋 = 0, (41)

leading to integer values of 𝜔1 and 𝜔2. The two conditions (41)
are equivalent, so that bifurcation can be reduced to the re-
quest that 𝜔1 be an integer and the bifurcation modes, Eq. (19),
becomes

�̇�𝜃(𝜃) = 𝑎1 + 𝑏2 cos 𝜃𝜔1 + 𝑏3 sin 𝜃𝜔1. (42)

Note that the solutions 𝜔1 = 1 and 𝜔2 = 1 of Eqs. (41) are
to be disregarded as they lead to 𝑘 = 0, corresponding to a
trivial bifurcation characterized by a rigid-body rotation governed
by the arbitrary coefficient 𝑎1. Additionally, the case 𝑘2 = 4
corresponds to 𝜔1 = 𝜔2, thus the corresponding general solution
is given by Eq. (21), which is not compatible with the required
continuity conditions (37). The smallest value of critical load can

2

5

be obtained from Eq. (41)1 for 𝜔1 = 2, leading to 𝑘 = 9∕2. l
Fig. 5. The first three bifurcation modes for (i.) hydrostatic pressure (upper row),
(ii.) centrally-directed load (middle row) and (iii.) dead load (lower row), when the
full continuity expressed by the relations (35) and (36) is enforced. Two independent
modes always occur, one sketched blue and the other red. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

(iii) For dead load, Eq. (23) shows that 𝑏3 = 𝑏4 = 0, while

sin2 𝑘𝜋 = 0, (43)

leading to integer values for 𝑘. Therefore, at bifurcation load
𝑏3 = 𝑏4 = 0, while 𝑎2, 𝑎3, 𝑏1, and 𝑏2 remain unprescribed. The
bifurcation modes, Eq. (23), become

�̇�𝜃(𝜃) = 𝑎2 cos 𝜃 + 𝑎3 sin 𝜃 + 𝑏1 cos 𝑘𝜃 + 𝑏2 sin 𝑘𝜃. (44)

Note that the solution 𝑘 = 1 of Eq. (43) is to be disregarded,
because Eq. (24) does not admit continuous solutions. As a
conclusion, the smallest value for the critical load can be obtained
from Eq. (43) as 𝑘2 = 4.

The first three bifurcation modes corresponding to the above ‘fully-
ontinuous’ solutions are reported in Fig. 5, for all types of investigated
oads.
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Fig. 6. Bifurcation modes under centrally-directed radial load, for different (statically determined) external constraints, in particular, from left to right: one clamp, a (vertically
and horizontally) movable clamp and a pin, a horizontal roller and a pin, a vertical roller and a pin. From the upper to the lower row: 1st to 3rd mode. The smallest bifurcation
load is obtained with a vertical roller and a pin (upper row on the right).
All the bifurcation modes shown in the figure are double, so that one
is depicted as blue and the other red. It should also be noted that the
first mode of bifurcation can be obtained without external constraints
only in the cases of hydrostatic pressure and centrally-directed loaded.
The first mode for the dead load cannot be realized without a strong
external constraint system, as detailed in the next section.

3.2. External constraints

In the presence of external constraints, the solutions corresponding
to fully continuous bifurcation’s modes may no longer be valid. In fact,
constraints introduce discontinuities; for instance, at a clamp, all the
internal forces and moments may jump. When external constraints are
present, the solutions (16), (19), and (23) are valid only within the
intervals of 𝜃 comprised between each pair of constraints, so that six in-
tegration constants are to be obtained for each interval, by imposing the
relevant conditions. For instance, a pin enforces the displacement com-
ponents to vanish for both connected intervals (four conditions), plus
the continuity of rotation and bending moment (two conditions). In
the following, the possibility of achieving a fully continuous bifurcation
solution is scrutinized with a view to external constraints.

3.2.1. (i) Hydrostatic pressure
For hydrostatic pressure, the fully continuous solution (16) contains

all the rigid-body displacement components, constants 𝑎1, 𝑎2, and 𝑎3.
Therefore, any well-assigned system of external constraints, which is
statically determinate, is compatible with all fully continuous bifur-
cation modes. For instance, three rollers, or two rollers and a pin,
or a clamp, are all possible external constraints compatible with the
attainment of all fully continuous bifurcation modes. In particular,
the first mode becomes visible, while the attainment of higher-order
modes requires the use of statically-indeterminate external constraints,
selected in a proper way. However, the equilibrium neutrality of every
possible deformed shape of the ring under pressure loading, implies
that the first bifurcation load and mode can be obtained even in the
absence of external constraints (for instance depressurizing a tube,
6

Fig. 1 of [24]).
3.2.2. (ii) Centrally-directed load
When subject to centrally-directed load, the ring is in neutral equi-

librium only under rigid-body rotations. Consequently, constraints re-
stricting this movement, such as a movable clamp, do not affect bi-
furcation modes. However, this is not true for rigid-body translations,
so that limiting these displacements influences the bifurcation loads
and modes. It has been shown in Section 3.1.1 that the equilibrium
configuration of the circular rod is stable and, therefore, the first fully
continuous mode of bifurcation can be realized even in the absence
of external constraints. Generally, the bifurcation is sensitive to exter-
nal constraints for centrally-directed load, even when these realize a
statically-determined system. This is shown in Fig. 6, where different
bifurcation modes are reported (critical values of 𝑘2 are also included),
corresponding to four constraint systems. From left to right, these are
one clamp, a (vertically and horizontally) movable clamp plus a pin, a
horizontal roller plus a pin, and a vertical roller plus a pin. The upper
row of the figure reports the first bifurcation mode, while the second
and third modes are sketched in the central and lower rows.

The figure vividly shows that the lowest bifurcation load, 𝑘2 = 9∕2,
reported in [15,16], corresponds to the fully continuous bifurcation,
which can be realized without external constraints, but also with a
vertical roller and a pin. Changing the constraints varies the bifurcation
loads, so that 𝑘2 ≈ 6.769 is the first bifurcation mode for movable
clamp plus pin, but corresponds to the second mode for clamp and
for vertical roller plus pin. The loads 𝑘2 ≈ 5.356 and 𝑘2 ≈ 6.472 do
not correspond to any higher bifurcation mode occurring for other
constraint configurations.

3.2.3. (iii) Dead load
For the dead load, the fully continuous solution (44) contains the

two rigid-body displacement components, coefficients 𝑎2 and 𝑎3. The
structure has to be externally constrained, because otherwise, the dead
load would make the structure unstable to rigid-body rotations, Sec-
tion 3.1.1.

The bifurcation analysis becomes very sensitive to the specific sys-
tem of external constraints. This is shown in Fig. 7, similar to Fig. 4,
but with a further constraint system where four rollers are used (last
column on the right).
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Fig. 7. Bifurcation modes under dead radial load, for different (statically determined, plus one undetermined) external constraints, in particular, from left to right: one clamp, a
(vertically and horizontally) movable clamp and a pin, a horizontal roller and a pin, a vertical roller and a pin, 3 rollers, and 4 rollers (statically undetermined). From the upper
to the lower row: 1st to 3rd mode. The two modes sketched in red are multiple. The smallest bifurcation load is obtained with one clamp (upper row on the left) or a movable
clamp and a pin (upper row, second from the left). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
The four rollers define a statically undetermined situation, which is
included now because in this way the first fully continuous bifurcation
mode, 𝑘2 = 4, can be realized. All the other constraint configurations
ead to smaller bifurcation loads, initiating with that corresponding to a
lamp or a movable clamp plus pin, 𝑘2 ≈ 0.701 (the smallest bifurcation

load pointed out in [19]) and continuing with a roller plus pin and
three rollers 𝑘2 ≈ 3.271. Note also that the first fully continuous mode
corresponds to the second mode for all constraint systems, except the
four rollers.

As pointed out in [19], the bifurcation load 𝑘2 = 4, previously
derived by several authors, remains meaningless without a specification
of the external constraints applied to prevent rigid-body displacement
and rotational instability. Hence, the value reported in [16,17] only
refers to the continuous solution and can be obtained by imposing a
strong external constraint, as is the case of the four rollers. The value
𝑘2 ≈ 3.271 for roller plus pin constraint was obtained in [19] to correct
the wrong values 𝑘2 ≈ 3.265 provided in [18]. The fact that there is
a bifurcation load 𝑘2 ≈ 1.734, intermediate between 𝑘2 ≈ 0.701 and
𝑘2 ≈ 3.271, passed unnoticed in [19].

4. Experimental set-up for centrally-directed load

To validate the theoretical results obtained for the bifurcation of a
thin ring subject to centrally-directed load and to realize a new type
of force distribution never attempted so far, an experimental setup was
conceived, designed, realized, and tested in a collaboration between
the Laboratory of Integrated Mechanics and Imaging for Testing and
Simulations (LIMITS, University of Napoli) and the Instability Lab
(University of Trento).

A ring with radius 120.75 mm and rectangular (1.3 × 10.2 mm2)
cross-section, Fig. 8 A, was manufactured through 3D printing additive
technology (Stratsys Objet 30 Pro), by employing the thermoplas-
tic material Acrylonitrile Styrene Acrylate (ASA), a set-up minimizing
imperfections, so that possible out-of-roundness have been estimated
(through a camera-aided procedure) to be smaller than 10−4. The elas-
tic stiffness of the material was preliminary measured by manufacturing
a rod with a prescribed geometry, to be mechanically tested using
the electromechanical machine TA Instruments ElectroForce (200 N
4 motor Planar Biaxial Test Bench) in a cantilever configuration. In
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particular, its Young’s modulus, which resulted to be about 2500 MPa,
was determined under bending produced by imposing a dead loading
at the free end. The Young modulus was found in agreement with the
value declared in the technical datasheet of the material that feeds the
3D printer (see Fig. 8). With another use of additive manufacturing,
combined with CAD-based geometry design, components were realized
to produce the experimental set-up illustrated in Fig. 9, which was
stabilized by locking it inside a hole made in the central part of
a wooden table. To reduce friction effects at the interface between
the elastic ring and its support during the experiments, an ultra-high-
molecular-weight polyethylene (UHMHPE) surface was mounted on the
table.

The centrally-directed load was reproduced by attaching 12 equally
spaced cables to the ring. The number of cables used in the experi-
mental setup was selected based on the results obtained by Albano
and Seide for both cases of normal [25] and centrally directed [26]
concentrated forces, distributed symmetrically along an initially cir-
cular rod. They considered the distortion of the configuration due to
the discreteness of the loads and analysed the bifurcation from that
state. They showed that, when the loads are at least 5, the average
radial load for bifurcation does not differ substantially from that cor-
responding to the application of a uniform radial load, which leaves
the initial configuration undistorted. In particular, for centrally directed
radial forces, 12 equally spaced concentrated loads yield a buckling
coefficient 𝑘2 = 4.505, almost coincident with the value 𝑘2 = 9∕2
corresponding to the radial uniform load. The simultaneous application
of multiple forces, all of equal intensity, was obtained by designing the
device shown in Fig. 9, where a periodic arrangement of 12 pulleys
(introduced to minimize friction) allows to convey forces towards the
centre of the ring and then downwards through radially-oriented nylon
fishing cables (𝜙 = 0.6 mm, 𝐹𝑚𝑎𝑥 = 260 N). The setup ensures that the
cables connected to the ring and the pulleys are all lying on the same
horizontal plane. The centring of the ring and cables was checked with
a camera-aided procedure. All parts, including cables, were lubricated
with a lithium grease to reduce friction. The symmetrical distribution of
the load among the 12 cables was obtained by pouring water through
the central hole at the top of the system, from which the water is
channelled and brought to 12 independent buckets, through 12 rubber
tubes, progressively filling the tanks. The geometry of each bucket
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Fig. 8. (A) Dimensions of the cross-section of the elastic ring. (B) A photo taken during the bending test performed on a cantilever rod, to determine the bending stiffness of the
ring and in turn to derive its elastic modulus. (C) Experimental points (end force vs. end displacement) recorded during the bending test and showing a remarkable linearity.
Fig. 9. Upper part: CAD virtual model of the conceived experimental set-up, showing the ring (black), the supporting plane (grey), cables (red), pulleys, and the 12 buckets that
are filled with water during tests; Lower part, A1-A5: Photos of the experimental set-up, with details showing cable anchorages on the ring, and rubber tubes used to fill the
buckets with water. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
was sized to initiate tests with a prescribed pre-load still below the
instability of the ring (by locating iron weights inside the buckets in
a specifically designed housing), then allowing to fill these cylindrical
containers up to 40 gr of water.

As illustrated in Fig. 9, the loading process was executed by con-
trolling the amount of water poured with a graduated dosing glass into
the buckets. Experiments were recorded during their whole duration,
by positioning a camera on the top to follow the different deformation
8

stages of the ring as the applied weight increased, until the first
buckling occurred and the post-buckling initiated.

Two situations were investigated, one in which the ring is left free
from external constraints (𝑘2 = 9∕2, bifurcation mode shown in Fig. 5,
central part on the left) and the other in which the ring has been con-
strained with an external clamp (𝑘2 ≈ 6.472, bifurcation mode shown in
Fig. 6, upper part on the left). Therefore, two rings with nominally the
same characteristics were manufactured and connectors with lobster
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Fig. 10. Top views of four instants of the loading process and deformation response of the ring under radially-directed load, without constraints (B.1) and with a point clamped
(B.2). From left to right: undeformed configuration of the ring; the graduated dosing glass used to pour water is visible; the ring at a critical pressure (total applied weight 0.90 kg
for ring free from constraints and 1.32 kg in presence of a clamp), where the green lines highlight the initial circular shape of the undeformed rings against their corresponding
ovalization modes; photos of post-critical instants for each of the two cases B.1 and B.2 analysed at total applied loads of 1.02 kg and 1.44 kg, respectively, where the ovalization
of the rings become more evident (blue and red arrows in B.2 highlight how the ring tends to protrude and invaginate according to the theoretically predicted first deformation
mode). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
clasps for each cable were used to reduce manual operations. Adopting
the set of material and geometrical parameters reported in panel A
of Fig. 8, from Eq. (1), the expected value of buckling radial load is
𝛱c, r ≈ 0.0119 N/mm, corresponding to 𝑘2 = 9∕2.

Data reported in Fig. 10 (B.1) show that the experiment started from
an initial radial load 0.085 N/mm (𝑘2 = 3.2054), while bifurcation was
found at 0.012 N/mm (𝑘2 = 4.5253), and the post-critical behaviour
was clearly visible at 0.013 N/mm (𝑘2 = 4.9024), where the right
panel is in fact representative of the progression of the buckling shape.
The experimental results, in terms of both buckling mode (a simple
ovalization) and force-equivalent critical radial load (𝑘2 = 4.5253
instead of 𝑘2 = 4.5), show an excellent agreement with the theoretical
predictions, as highlighted by the values reported in Fig. 10. The
experimental results confirm that the bifurcation for centrally-directed
load, 𝑘2 = 9∕2, occurs at a remarkably greater intensity than that for
hydrostatic pressure, 𝑘2 = 3, to which a value 𝛱 = 0.0079 N/mm for
the radial load would correspond.

Confirmation of theoretical outcomes in comparison with experi-
mental findings, both in terms of critical pressure and (first) defor-
mation mode, were also obtained in the case of the clamped ring, as
illustrated in Fig. 10 (B.2).

From Eq. (1), the expected value of buckling radial load for the ring
clamped at a point is 𝛱cr ≈ 0.017 N/mm, corresponding to 𝑘2 ≈ 6.472.
For the clamped ring, the experiment started from an initial radial load
of 0.015 N/mm (𝑘2 = 5.6567), while the bifurcation was found at 0.017
N/mm (𝑘2 = 6.4109), and the post-critical behaviour was visible at
0.019 N/mm (𝑘2 = 7.1651), the right image in Fig. 10 (B.2) showing
the progression of the ring buckling shape for the case at hand. The
deformed shapes exhibited by the ring at critical and post-critical loads
can be compared with the undeformed shape highlighted by the green
dotted circles reported in Fig. 10.

5. Conclusions

The bifurcation problem of a circular Euler–Bernoulli rod subject
to a uniform radial load is highly sensitive not only to how the load
responds to the buckling deformation but, except for the hydrostatic
9

pressure, also to the applied external constraints, when these define a
statically-determined system. Different constraints can, in fact, change
the critical load by an order of magnitude for centrally-directed and
dead loads. This evidence reconciles previous apparently contradictory
statements. A new experimental setup demonstrates the feasibility of
applying a centrally-directed load to an annular rod. The experiments
not only confirm the theoretical predictions but also motivate a new
strategy for the design of cable-guided deformable structures.
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