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Abstract

Infinite-body three-dimensional Green’s function set (for incremental displacement and mean
stress) is derived for the incremental deformation of a uniformly strained incompressible,
nonlinear elastic body. Particular cases of the developed formulation are the Mooney-Rivlin
elasticity and the J2-deformation theory of plasticity. These Green’s functions are used to
develop a boundary integral equation framework, by introducing an ‘ad hoc’ potential,
which paves the way for a boundary element formulation of three-dimensional problems of
incremental elasticity. Results are used to investigate the behaviour of a material deformed
near the limit of ellipticity and to reveal patterns of shear failure. In fact, within the investi-
gated three-dimensional framework, localized deformations emanating from a perturbation
are shown to be organized in conical geometries rather than in planar bands, so that failure
is predicted to develop through curved and thin surfaces of intense shearing, as can for
instance be observed in the cup-cone rupture of ductile metal bars.

Keywords: nonlinear elasticity; shear bands; boundary element method; prestressed material;
anisotropy; incompressible elasticity.

1 Introduction

The response of a homogeneously deformed nonlinear elastic solid to a perturbing agent is
the key to the investigation of several important problems, such as for instance, bifurcation of an
elastic block [1, 2], or layered structures [3–6], wave propagation [7, 8], near-crack stress field de-
termination [9–12], and shear band development [13, 14]. In these investigations, the availability
of an infinite-body Green’s function allows the treatment of ‘complex’ problems (for instance,
the stress field near a dislocation in a prestressed solid [15]) and permits the development of
boundary integral equations and the related boundary element techniques. Despite its impor-
tance, the first Green’s function set for incompressible homogeneously deformed elastic solids
has been provided by Willis [16] and explicitly derived for two-dimensional elasticity by Bigoni
& Capuani [17]. Later, Green’s functions have been derived for time-harmonic problems [18, 19]
and boundary element formulations have been proposed [20–22]. However, all these results are
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Figure 1: Conical fracture produced by a spherical indenter (14mm diameter) at an indentation speed of 8mm s−1

in a polycarbonate cylindrical specimen at 0 ◦C (experiment performed by the authors at the Instabilities
Lab. of the University of Trento).

restricted to plane elasticity, so that the only contribution valid for a three-dimensional context
still remains that of Willis [16].

The purpose of the present article is to derive infinite-body Green’s functions for incremental
displacement and incremental mean stress for a nonlinear elastic incompressible solid deformed
homogeneously. Based on these Green’s functions, the boundary integral equation set for the
incremental response of a homogeneously prestressed elastic solid is derived, which provides
the basis for boundary element techniques. These results 1 generalize Bigoni & Capuani [17]
to three-dimensional elasticity and apply, as particular cases, to Mooney-Rivlin elasticity and
J2–deformation theory of plasticity. The latter case allows for the analysis of localized shear
deformation as induced by a perturbing force dipole in a three-dimensional elastic context. In
this case, the incremental displacements are shown to be localized along cones of concentrated
incremental shear strains, which differ from the ‘usual’ planar shear band geometry. This result
may explain the well-known cup-cone failure of ductile metal bars (see for instance [24]) and the
conical failure zone observed by Desrues et al. [25] in cylindrical specimen of granular material.
Moreover, it may be related to the mechanisms of conical fracturing observed in brittle materials
(such as glass, see Lawn [26], and/or polycarbonate, Figure. 1) and rocks subjected to impact
(for instance, the shatter cones found in shocked rocks near meteorite impact or underground
nuclear test sites, see French [27] and Sagy et al. [28]).

2 The infinite body Green’s function set

2.1 Constitutive assumptions and field equations

In a relative Lagrangean description, a prestressed elastic solid is characterized by a linear
relation (see Bigoni [29] for details) between the increment (denoted with a superposed dot) of
nominal stress tij and the gradient of incremental displacement vi,j

ṫij = ṗδij + Kijkl vl,k , (1)

where δij is the Kronecker delta and ṗ represents the incremental mean stress (p = trT /3, with
T being the Cauchy stress), which plays the role of a Lagrangean multiplier, related to the

1 The results presented in this paper can be applied as a particular case (with a change in notation) to the linearized
viscous flow of an incompressible orthotropic fluid, for which we give for the first time infinite body Green’s function
and boundary equation sets. This may open a perspective in the development of boundary element techniques for
liquid crystals or nematic elastomers [23].
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incompressibility constraint, namely, the requirement that the velocity field vi be solenoidal

vk,k = 0 . (2)

Note that the incremental constitutive tensor Kijkl does not possess the minor symmetries and
the major symmetry follows from an incremental potential W (∇v), namely,

Kijkl =
∂2W

∂vj,i∂vl,k
, (3)

which is assumed to exist in the following.
The incremental equilibrium equations are

ṫij,i + ḟj = 0 , (4)

where ḟ is the increment of body force.

2.2 The Green’s function set

The Green’s function set encloses a Green’s function for incremental displacements vgi and
one for incremental mean stress ṗg, so that the Green’s stress can be evaluated as

ṫgij = ṗgδij + Kijkl v
g
l,k , (5)

and satisfies the field equation
ṫgij,i + δjgδ(x) = 0 , (6)

where δ(x) is the three-dimensional delta function, and x is the generic material point.
Taking into account the definition of the Green’s function set, equation (5), the equilibrium

equation (4), with the incremental body force replaced by a Dirac delta function, can be rewritten
as

Kijkl v
g
l,ki + ṗg,j + δjgδ(x) = 0 . (7)

The plane-wave expansion on the unit sphere |ω| = 1 of the delta function

δ(x) = − 1

8π2

∫
|ω|=1

δ
′′
(ω · x) dω , (8)

and of the Green’s incremental displacement and mean stress

vgk(x) = − 1

8π2

∫
|ω|=1

v̂gk(ω · x) dω , (9a)

ṗg(x) = − 1

8π2

∫
|ω|=1

p̂g(ω · x) dω , (9b)

can be used to convert equation (7) into

Ajl(ω)(v̂gl )
′′
(ω · x) + ωj(p̂

g)
′
(ω · x) + δjgδ

′′
(ω · x) = 0 , (10)

where Ajl is the acoustic tensor,
Ajl(ω) = ωiKijkl ωk , (11)

which is symmetric since the incremental constitutive tensor Kijkl possesses the major symmetry.
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The incompressibility constraint, equation (2), in the transformed domain assumes the form

ωk(v̂
g
k)
′
(ω · x) dω = 0 , (12)

which can be differentiated with respect to the coordinate xs to yield the following useful relation

ωsωk(v̂
g
k)
′′
(ω · x) dω = 0 . (13)

In the elliptic range, the acoustic tensor is invertible, so that equation (10) can be written as

(v̂gk)
′′
(ω · x) +A−1

kj (ω)ωj(p̂
g)
′
(ω · x) +A−1

kg (ω)δ
′′
(ω · x) = 0 , (14)

but from equation (13) a projection on ω yields

ωkA
−1
kj (ω)ωj(p̂

g)
′
(ω · x) + ωkA

−1
kg (ω)δ

′′
(ω · x) = 0 , (15)

an equation which allows to obtain the expression for the derivative of the mean stress

(p̂g)
′
(ω · x) = −

ωkA
−1
kg (ω)

ωrA
−1
rs (ω)ωs

δ
′′
(ω · x) , (16)

and therefore the mean stress in the transformed domain

p̂g(ω · x) = −
ωkA

−1
kg (ω)

ωrA
−1
rs (ω)ωs

δ
′
(ω · x) . (17)

A substitution of equation (16) into equation (14) provides the second-order derivative of
the velocity in the following form

(v̂gk)
′′
(ω · x) =

[
A−1
kj (ω)ωj ωtA

−1
tg (ω)

ωrA
−1
rs (ω)ωs

−A−1
kg (ω)

]
δ
′′
(ω · x) . (18)

An integration of equations (18) and (16) and a subsequent anti-transformation yield

the Green’s function set for an incompressible, elastic, prestressed solid

vgk(x) = − 1

8π2r

∫
|ω|=1

[
A−1
kj (ω)ωj ωtA

−1
tg (ω)

ωrA
−1
rs (ω)ωs

−A−1
kg (ω)

]
δ(ω · er) dω , (19)

ṗg(x) =
1

8π2r2

∫
|ω|=1

ωkA
−1
kg (ω)

ωrA
−1
rs (ω)ωs

δ
′
(ω · er) dω , (20)

where r = |x|, er = x/r, holding for a symmetric and invertible, acoustic tensor Aij(ω).

The Green’s incremental nominal stresses can be obtained from equation (5) employing the
gradient of Green’s incremental displacements

vgk,l(x) = − 1

8π2r2

∫
|ω|=1

ωl

[
A−1
kj (ω)ωj ωtA

−1
tg (ω)

ωrA
−1
rs (ω)ωs

−A−1
kg (ω)

]
δ
′
(ω · er) dω . (21)

Note the following:

• If instead of the constitutive equation (3) and of the equilibrium equation (1), the following
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Ṡij = ṗδij + Gijkl vk,l , (22a)

Ṡij,j + ḟi = 0 , (22b)

(where Ṡij = ṫji is the increment of the first Piola-Kirchhoff stress) are employed, the
Green’s functions (19) and (20) do not change, but the acoustic tensor changes its definition
into

Aik(ω) = ωjGijkl ωl . (23)

• To obtain equations (19) and (20), the well-known property (see, for example, Gel’fand
and Shilov [30, p. 213, equation (20)]) of the delta function was used

δ
′
(ω · x) =

1

r2
δ
′
(ω · er) . (24)

• From equation (19), we can note that the following symmetry between indices k and g

holds
vgk = vkg , (25)

if and only if the acoustic tensor Aij is symmetric, a property following from the major
symmetry of Kijkl.

3 Evaluation of the plane wave expansion integrals

The application of equations (19)–(21) requires the evaluation of integrals containing the
delta function and its first and second derivatives. To this purpose, it is useful to introduce the
two reference systems shown in Figure 2, where the system defined by the unit vectors triad
{ ẽ1, ẽ2, ẽ3 } is centred at x and chosen as

ẽ1 =
x2e1 − x1e2√

x2
1 + x2

2

, (26a)

ẽ2 =
x1x3e1 + x2x3e2 −

(
x2

1 + x2
2

)
e3

r
√
x2

1 + x2
2

, (26b)

ẽ3 =
x1e1 + x2e2 + x3e3

r
= er , (26c)

where e1, e2 and e3 are the unit vectors defining the reference system with the origin at the
application point of the concentrated force. In the following the components in the reference
system ei (reference system ẽi) will be denoted with Latin (Greek) letters, so that the unit vector
ω can be written as

{ ωα } = { cos θ sinφ, sin θ sinφ, cosφ } . (27)

Introducing the rotation matrix

[Q] =
1

r
√
x2

1 + x2
2

 rx2 x1x3 x1

√
x2

1 + x2
2

−rx1 x2x3 x2

√
x2

1 + x2
2

0 −x2
1 − x2

2 x3

√
x2

1 + x2
2

 , (28)
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Figure 2: Reference system for the evaluation of the plane wave expansion integrals (19), (20) and (65). The unit
vector ω, shown in red, defines a unit spherical surface centred at x. The dashed circle and the dashed
arc define, respectively, the equator and the meridian related to ω within the local reference system
{ ẽ1, ẽ2, ẽ3 }.

the integral in the Green’s function for incremental displacement (19) can be expressed as∫
|ω|=1

Vgk(ω) δ(ω · er) dω = QgαQkβ

∫ 2π

0
dθ

∫ π

0
Vαβ(θ, φ) δ(cosφ) sinφ dφ , (29)

where

Vgk(ω) =
A−1
kj (ω)ωj ωtA

−1
tg (ω)

ωrA
−1
rs (ω)ωs

−A−1
kg (ω) , (30)

which, in the reference system centred at x, has the components Vαβ with the transformed
acoustic tensor

Aβδ = ωαQiαQjβKijklQkγQlδωγ , (31)

so that the Green’s function for incremental displacements (19) can be expressed as

vgk(x) = − 1

8π2r
QgαQkβ

∫ 2π

0
Vαβ(θ, π/2) dθ . (32)

The integral in the Green’s function for incremental mean stress (20) can be rewritten as∫
|ω|=1

Pg(ω) δ
′
(ω · er) dω = Qgα

∫ 2π

0
dθ

∫ π

0
Pα(θ, φ) δ

′
(cosφ) sinφ dφ , (33)

where

Pg(ω) =
ωkA

−1
kg (ω)

ωrA
−1
rs (ω)ωs

, (34)

with the change in variable y = cosφ and using the property of the derivative of the delta
function we arrive at the Green’s function for incremental mean stress

ṗg(x) =
1

8π2r2
Qgα

∫ 2π

0

∂Pα(θ, φ)

∂φ

∣∣∣∣
φ=π/2

dθ . (35)

The integral in the gradient of the incremental displacement field (21) can be written as∫
|ω|=1

Dgkl(ω) δ
′
(ω · er) dω = QgαQkβQlγ

∫ 2π

0
dθ

∫ π

0
Dαβγ(θ, φ) δ

′
(cosφ) sinφ dφ , (36)
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so that the Green’s function for the gradient of incremental displacements becomes

vgk,l(x) = −
QgαQkβQlγ

8π2r2

∫ 2π

0

∂Dαβγ(θ, φ)

∂φ

∣∣∣∣
φ=π/2

dθ . (37)

3.1 Application to incompressible isotropic elasticity or Stokes flow

As a particular case, the Green’s function and boundary integral equation sets are valid for
incompressible isotropic elasticity, where equation (22) reduces to

σ̇ij = ṗδij + µ
(
vi,j + vj,i

)
, (38)

so that
Kijkl = µ

(
δikδjl + δilδjk

)
, (39)

where µ is the shear modulus and

Ajl(ω) = µ(ωjωl + δjl) , (40a)

A−1
jl (ω) = − 1

2µ
ωjωl +

1

µ
δjl . (40b)

The Green’s function set becomes

vgk(x) =
δgk
4πr
− 1

8π2r

∫
|ω|=1

ωg ωk δ(ω · er) dω , (41a)

ṗg(x) =
1

8π2r2

∫
|ω|=1

ωg δ
′
(ω · er) dω . (41b)

In particular, we may write

v(x) =
1

4πr

1 0 0

0 1 0

0 0 1

− 1

8π2r

∫ 2π

0

 cos2 θ cos θ sin θ 0

cos θ sin θ sin2 θ 0

0 0 0

dθ , (42)

and

ṗ(x) =
1

8π2r

∫ 2π

0

 0

0

−1

dθ , (43)

which, integrated and rotated to the system ei, provide

vgk(x) =
1

8πµ r

(
δkg +

xkxg
r2

)
, (44a)

ṗg(x) =
xg

4π r3
, (44b)

representing, for Stokes flow, the well-known Stokeslet.

4 Boundary integral equations for homogeneously prestressed three-
dimensional solids

The boundary integral equation for the incremental displacement of a uniformly prestressed
nonlinear elastic body in the absence of body forces and subjected to mixed boundary conditions
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has been given by Bigoni & Capuani [17], with reference to a two-dimensional deformation.
However, their result can be immediately generalized to three-dimensional deformation. In fact,
with reference to a uniformly prestressed body subjected to the following incremental boundary
conditions holding on non-overlapping parts ∂Bv and ∂Bτ of the boundary ∂B

v = v̄ on ∂Bv , ṫijni = τ̇j on ∂Bτ , (45)

the Betti identity written on incremental fields yields for the incremental displacement at the
interior point y

vj(y)Cgj (y) =

∫
∂B

[
ṫijniv

g
j (x,y)− ṫgij(x,y)nivj

]
dSx , (46)

where
Cgj (y) = lim

ε→0

∫
∂Cε

ṫgij(x,y)ni dSx , (47)

is the C-matrix defined in the limit of vanishing radius ε of the sphere Cε.
Note that the equilibrium equation (6) yieldsCgj = δgj , so that the boundary integral equation

for incremental displacements is obtained

vg(y) =

∫
∂B

[
ṫijniv

g
j (x,y)− ṫgij(x,y)nivj

]
dSx . (48)

For points y on the boundary ∂B, where a corner can be present, we use the Green’s stress (5),
together with equations (34) and (37), and denote with

n = −

cos ζ sin ξ

sin ζ sin ξ

cos ξ

 , (49)

the components of the inward normal to Cε (enclosing the point y), to obtain the following
expression for the C-matrix

Cgj (y) =
1

8π2

∫ Ξ

0
dξ

∫ ℵ
0

[
njQgα

∫ 2π

0

∂

∂φ
Pα(θ, φ)

∣∣∣
φ=π/2

dθ

−KijklniQgαQkβQlγ

∫ 2π

0

∂

∂φ
Dαβγ(θ, φ)

∣∣∣
φ=π/2

dθ

]
sin ξ dζ , (50)

where Ξ and ℵ are the angles defining the corner in the boundary ∂B at y. For a smooth
boundary Ξ = π/2 and ℵ = 2π, so that Cgj = δjg/2.

Although equations (46)–(48) are formally identical to equations (57)–(59) of Bigoni & Ca-
puani [17], the boundary integral equation for the incremental mean stress ṗ(y) requires a
complex derivation (since the result shown in Appendix B of Bigoni & Capuani is strictly limited
to two-dimensional deformation), which is provided in the following through the introduction
of an ad hoc potential Φ.

4.1 Boundary integral equation for the incremental mean stress

The boundary integral equation for the mean stress increment ṗ(y) is the necessary comple-
ment to the equation for incremental displacements (48). This can be obtained with reference
to the incremental mixed boundary conditions (45), through a double differentiation of equa-
tion (48) with respect to y and use of the incremental equilibrium equations (4) with null body
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forces to obtain

ṗg,h(y) = −
∫
∂B

Knhsg

[
ṫijniv

g
j,sn(x,y)− ṫgij,sn(x,y)nivj

]
dSx . (51)

Repeated use of the incremental equilibrium equations (4) yields

ṗg,h(y) =

∫
∂B

[
ṫigniṗ

g
,h(x,y)− nivjKijkgṗ

g
,hk(x,y) + niviKnhsgṗ

g
,sn(x,y)

]
dSx , (52)

which, introducing the potential Φ defined as

Ksirg ṗ
g
,rs = Φ,i , (53)

becomes

ṗg,h(y) =

∫
∂B

[
ṫigniṗ

g
,h(x,y)− nivjKijkgṗ

g
,hk(x,y) + niviΦ,h(x,y)

]
dSx , (54)

Equation (54) can be integrated to obtain the boundary integral equation for the incremental mean
stress

ṗg(y) =

∫
∂B

[
ṫigniṗ

g(x,y)− nivjKijkgṗ
g
,k(x,y) + niviΦ(x,y)

]
dSx , (55)

complementing equation (48) and thus providing the boundary integral equation set for incom-
pressible, prestressed elasticity. Now, the existence of potential Φ has to be proven and its form
has to be determined.

4.1.1 The potential Φ

The necessary and sufficient condition for the existence of potential (53) is that

ejti
∂

∂xt

(
Ksirg ṗ

g
,rs

)
= 0 , (56)

where ejti is the Ricci alternating tensor, providing the vanishing of the following determinant∣∣∣∣∣∣∣∣∣
e1 e2 e3

∂

∂x1

∂

∂x2

∂

∂x3

Ks1rg ṗ
g
,rs Ks2rg ṗ

g
,rs Ks3rg ṗ

g
,rs

∣∣∣∣∣∣∣∣∣ = 0 . (57)

Condition (57) is equivalent to

Ksirg ṗ
g
,rsu = Ksurg ṗ

g
,rsi , (58)

a condition which can be proven to be true by differentiating the equilibrium equation

Ktipq v
g
q,pt + ṗg,i + δigδ(x) = 0 , (59)

to obtain
Ktipq v

g
q,ptrs + ṗg,irs + δigδ(x),rs = 0 , (60)

so that
KsurgKtipq v

g
q,ptrs + Ksurg ṗ

g
,irs + Ksuriδ(x),rs = 0 . (61)
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The symmetry with respect to indices i and u in equation (61) follows from the identity (25),
which is a consequence of the symmetry of the acoustic tensor (which is directly related to the
symmetry of the incremental elastic tensor Kijkl). In this way the existence of Φ is proved under
the condition that the incremental elastic tensor has the major symmetry, namely, Kijkl = Kklij .

4.1.2 The form of the potential Φ:

Equation (53) in the transformed domain becomes

ωiΦ̂
′
(ω · x) = Aig(ω) [p̂g(ω · x)]

′′
, (62)

so that the scalar product with ωkA−1
ki yields

Φ̂
′
(ω · x) =

ωg [p̂g(ω · x)]
′′

ω ·A−1(ω)ω
, (63)

and integration and use of the derivative of the mean stress, equation (16) leads to

Φ̂(ω · x) = − δ
′′
(ω · x)

ω ·A−1(ω)ω
. (64)

Equation (64) can be antitransformed to provide the representation of function Φ

Φ(x) =
1

8π2r3

∫
|ω|=1

δ
′′
(ω · er)

ω ·A−1(ω)ω
dω , (65)

where r = |x|, er = x/r, holding for a symmetric and invertible acoustic tensor Aij(ω).
The integral in the potential function Φ, equation (65), can be rewritten as∫

|ω|=1
Z(ω) δ

′′
(ω · er) dω =

∫ 2π

0
dθ

∫ π

0
Z(θ, φ) δ

′′
(cosφ) dφ , (66)

where
Z(ω) =

1

ω ·A−1(ω)ω
, (67)

with the change in variable y = cosφ and using the property of the derivative of the delta
function we arrive at the expression for the potential Φ

Φ(x) =
1

8π2r3

∫ 2π

0

∂2Z(θ, φ)

∂φ2

∣∣∣∣
φ=π/2

dθ . (68)

5 Conical localization of deformation

The aim of this section is to use the Green’s function (19) as a perturbing agent to explore the
conditions of a material prestressed near the boundary of ellipticity loss, corresponding to the
formation of shear bands. To this purpose, a specific constitutive law for the material has to be
introduced. We will refer to the J2-deformation theory of plasticity.

5.1 J2-deformation theory of plasticity

For the sake of simplicity, we consider here an elastic nonlinear material deformed and
stressed in an axisymmetric way about the x3–axis. In this case, following Bigoni & Gei [31],
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(a) Rotation of the map. (b) Corresponding solid field representation.

Figure 3: Level sets of the modulus of the incremental displacement field (multiplied by Ka) generated by a force
dipole in an incompressible material subjected to a high uniaxial compressive stress, close to the elliptic
boundary. The dipole lies on the x3–axis, parallel to the prestress direction. Note that the incremental
displacement field is focused along four conical shear surfaces.

a general incremental constitutive equation can be written in terms of Jaumann increment of

Cauchy stress
∇
T and Eulerian strain increment D as

∇
T =

∇
pI + E[D] , (69)

where E is a fourth-order tensor possessing all symmetries, which can be represented in the
form

Eijkl =
Γ1

2

(
δikδjl + δilδjk

)
+ Γ2GijGkl + Γ3

(
Gikδjl + δikGjl

)
+ Γ4δijGkl , (70)

in which Gij = δi3δj3 is the dyad corresponding to the symmetry axis and the parameters Γi
(i = 1, . . . , 4), function of the state variables, are subjected to the constraint

Γ2 + 2Γ3 + 3Γ4 = 0 . (71)

In a relative Lagrangean description equation (69) can be transformed into a relation involv-
ing the increment of nominal stress as follows

ṫ = ṗ I + E[D]− TW −DT , (72)

which compared to equation (22) yields the definition of K in terms of E

Kijkl = Eijkl +
1

2

(
Tikδjl − Tilδjk

)
− 1

2

(
Tjlδik + Tjkδil

)
. (73)

It is expedient now [31] to re-write parameters Γi in terms of the three incremental moduli µ1,
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(a) The field is ‘cut’ with two orthogonal planes, one of which contains the force dipole and the
x3–axis.

(b) The field is ‘cut’ with a plane containing the force dipole and the x3–axis.

Figure 4: Two different views of the level sets of the modulus of the incremental displacement (multiplied by Ka)
field generated by a force dipole in an incompressible material subjected to a high uniaxial compressive
stress, close to the elliptic boundary. The dipole lies on the x1–x3 plane and is inclined at 30° with respect
to the x3–axis, which is parallel to the prestress direction. Note that the incremental displacement field is
focused along four conical shear surfaces.
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Figure 5: Section-cuts of the representation of the level sets of the modulus of the incremental displacement field
generated by a force dipole shown in Figure 4. Cuts have been taken orthogonally to the x3–axis.
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µ2 and µ3 as

Γ1 = 4µ2 − 2µ1 , (74a)

Γ2 = 2µ1 + 2µ2 − 4µ3 , (74b)

Γ3 = 2µ1 − 4µ2 + 2µ3 , (74c)

Γ4 = 2µ2 − 2µ1 , (74d)

so that the constraint (71) is automatically satisfied. Referring for simplicity to a state of uniaxial
Cauchy stress σ aligned parallel to the symmetry axis and introducing a cylindrical reference
system with the z–axis coincident with the x3–axis, tensor K can be shown to possess the
following non-null components

Krrrr = Kθθθθ = 2µ2 ,

Krrθθ = Kθθrr = 2(µ1 − µ2) ,

Kzzzz = 2µ1 − σ ,

Kzrzr = Kzθzθ = µ3 +
σ

2
,

Krzzr = Kzrrz = Krzrz = Kzθθz = Kθzzθ = Kθzθz = µ3 −
σ

2
,

Krθrθ = Krθθr = Kθrrθ = Kθrθr = 2µ2 − µ1 . (75)

For the J2-deformation of plasticity, defined by a hardening exponent N ∈ (0, 1] and a
constitutive parameter K/3 representing an initial shear modulus (Bigoni [29]), the coefficients
µi can be expressed as functions of the longitudinal stretch λ3 in the form

µ1 =
KN

3
εN−1

e , (76a)

µ2 =
K

6
(N + 1)εN−1

e , (76b)

µ3 =
K

2
εN−1

e
λ3

3 + 1

λ3
3 − 1

lnλ3 , (76c)

where the effective strain εe is defined as εe = |lnλ3|. Moreover, the axial Cauchy stress σ
(representing a state of prestress when a perturbation in terms of a concentrated force is applied)
can be written as

σ = KεN−1
e lnλ3 , (77)

so that the state of strain and the uniaxial stress are controlled by the axial stretch λ3.

The two (one corresponding to tension and another to compression) critical stretches for
ellipticity loss are the two solutions of the following nonlinear equation

1− 6ε

3N + 1
coth

(
3ε

2

)
+

(
3 ln ε

3N + 1

)2

= 0 , provided |ε| > N +
1

3
, (78)

where ε = lnλ3, so that for N = 0.4 the critical logarithmic strains for failure of ellipticity
are ε = ±1.0891, corresponding to the two critical stretches 2.9716 and 0.336 52. Once the
critical logarithmic strain for ellipticity loss is know from equation (78), coefficients (76) and the
prestress (77) can be calculated, so that the shear band inclination φ can be obtained by solving

14

http://dx.doi.org/10.1098/rspa.2014.0423


Published in Proceedings of the Royal Society A - 23 July 2014, vol. 470 no. 2169; doi:10.1098/rspa.2014.0423

the following equation(
1− σ

2µ3

)
tan4 φ+

(
µ1

µ3
+
µ2

µ3
− 1

)
tan2 φ+

(
1 +

σ

2µ3

)
= 0 . (79)

5.2 The perturbed displacement fields

We are now in a position to analyse the effect of a force dipole (two equal and opposite forces
at a distance a) as an agent perturbing an infinite elastic incompressible media, prestrained with
a stretch λ3 = 0.337 and obeying the J2-deformation theory of plasticity with a value of the
hardening parameter N = 0.4. For this hardening exponent the critical stretch for failure of
ellipticity in compression is 0.336 52, a value very close to that employed to generate the maps
of incremental displacements (that have been obtained through superposition and subsequent
implementation of equation (19)).

We consider first the situation in which the dipole is aligned with the x3–axis, as sketched
in Figure 3a. Due to the axisymmetric conditions, it is possible to plot the modulus of the
incremental displacements (made dimensionless through multiplication by Ka) only in the
planeOx2x3 (Figure 3a), so that a solid representation can be obtained through rotation about the
x3–axis (Figure 3b). Note that the modulus of the displacement field is focused along four cones,
representing localized conical zones of intense shear deformation. At ellipticity loss, equation (79)
provides an inclination for the shear bands equal to 66.16° with respect to the x3–axis, which
clearly agrees with the inclinations of the conical surfaces shown in Figure 3.

The perturbing force dipole has been assumed inclined at an angle of 30° to produce the
incremental displacement maps shown in Figure 4. Even if the symmetry is now broken, conical
shear surfaces are formed, again with an inclination almost coincident with that predicted at
failure of ellipticity.

The conical shear surfaces can also be appreciated from Figure 5, where three section-cuts of
Figure 4 are reported, taken orthogonal to the x3–axis at x3/a = 0.1, 1, 1.5, and 2 (Figures 5d,
5c, 5b, and 5a, respectively). We can note that higher shear deformations are localized in
correspondence with the applied forces, so that two sorts of ‘menisci’ are visible. Moreover, the
cones of intense deformations are not coaxial.

We may conclude that the formation of conical zones of intense shearing strain is a typical
feature of failure of ductile materials as induced by a small defect or perturbation (in this case
a force dipole). Therefore, the presented results may provide an explanation for the cup-cone
failure mechanism typically observed in ductile bars under tension.

6 Conclusions

The infinite-body Green’s function set (incremental displacements and incremental mean
stress) and the related boundary integral equations have been obtained for the incremental
response of a nonlinear elastic solid prestrained homogeneously. These results, essential to build
boundary element solutions for nonlinear elasticity, have been employed to show how a material
deformed near the boundary of ellipticity loss behaves when perturbed with a force dipole.
This perturbation reveals the formation of cones (instead of the usual ‘bands’) of localized
shear deformation, which may explain the formation of shear surfaces during failure of ductile
materials.
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