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Abstract

It is shown that second-order homogenization of a Cauchy-elastic dilute suspension of
randomly distributed inclusions yields an equivalent second gradient (Mindlin) elastic mate-
rial. This result is valid for both plane and three-dimensional problems and extends earlier
findings by Bigoni and Drugan (Analytical derivation of Cosserat moduli via homogenization
of heterogeneous elastic materials. J. Appl. Mech., 2007, 74, 741-753) from several points of
view: (i.) the result holds for anisotropic phases with spherical or circular ellipsoid of iner-
tia; (ii.) the displacement boundary conditions considered in the homogenization procedure
is independent of the characteristics of the material; (iii.) a perfect energy match is found
between heterogeneous and equivalent materials (instead of an optimal bound). The con-
stitutive higher-order tensor defining the equivalent Mindlin solid is given in a surprisingly
simple formula. Applications, treatment of material symmetries and positive definiteness of
the effective higher-order constitutive tensor are deferred to Part II of the present article.

Keywords: Second-order homogenization; Higher-order elasticity; Effective non-local contin-
uum; Characteristic length-scale; Composite materials.

1 Introduction

Due to the lack of a characteristic length, local constitutive models are unsuitable for mechani-
cal applications at the micro- and nano-scale, since size-effects evidenced by experiments cannot
be described and the modelling fails when large strain gradient are present, as in the case of
shear band formation (Dal Corso and Willis, 2011). Therefore, many nonlocal models have been
formulated and developed, starting from the pioneering work by the Cosserat brothers (1909)
and by Koiter (1964) and Mindlin (1964). Despite their evident connection to the microstruc-
ture, nonlocal models are usually introduced in a phenomenological way, so that attempts of
explicitly relating the microstructure to nonlocal effects are scarce (theoretical considerations
were developed by Achenbach and Hermann, 1968; Beran and McCoy, 1970; Boutin, 1996;
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Dal Corso and Deseri, 2013; Forest and Trinh, 2011; Li, 2011; Pideri and Seppecher, 1997;
Wang and Stronge, 1999; numerical approaches were given by Auffray et al. 2010; Forest, 1998;
Ostoja-Starzewski et al. 1999; Bouyge et al. 2001; experiments were provided by Anderson
and Lakes, 1994; Buechner and Lakes, 2003; Lakes, 1986; Gauthier, 1982).

Bigoni and Drugan (2007) have provided a technique to identify Cosserat constants from
homogenization of a heterogeneous Cauchy elastic solid. Their approach shows how a nonlo-
cal material can be realized starting from a ‘usual’ Cauchy elastic composite and opens the
way to the practical realization of nonlocal materials. Their methodology has two important
limitations, namely, that (i.) the obtained characteristic lengths for the Cosserat material do
not allow a complete match of the elastic energies between the Cauchy heterogeneous and the
Cosserat homogeneous materials, but minimize the energy difference between these two, and
(ii.) that the homogenization is performed by imposing boundary displacements on the RVE
and on the equivalent material depending on the Poisson’s ratio of the material (so that the
boundary conditions considered are not exactly equal). These two limitations are overcome in
the present article, by using a higher-order ‘Mindlin’ nonlocal elastic material which provides
a perfect match between the elastic energies of a dilute suspension of Cauchy-elastic inclusions
(randomly distributed in a Cauchy-elastic matrix) and a homogeneous non-local elastic mate-
rial, obtained through application of the same displacement field at the boundary. Moreover,
although our results remain confined to the dilute assumption, we also generalize Bigoni and
Drugan (2007) by relaxing (iii.) the restriction of isotropy and (iv.) the shape of the inclusions,
which may now have a generic form (though subject to certain geometrical restrictions to be
detailed later).

Description of the proposed identification procedure of the Mindlin elastic constants and
the relative closed-form formulae are reported in this article, while a discussion about positive-
definiteness, material symmetries and applications to explicit cases are deferred to Part II.

2 Preliminaries on Second-Gradient Elasticity (SGE)

The equations are briefly introduced governing the equilibrium of the second-gradient elastic
(SGE) solid proposed by Mindlin and Eshel (1968)! that will be employed in the homogenization
procedure.

Considering a quasi-static deformation process, defined by the displacement field u (function
of the position ), the primary kinematical quantities of the SGE are defined as

€ij = =, Xijk = Uk,ij, (1)

where a comma denotes differentiation, the indices range between 1 and N (equal to 2 or 3,
depending on the space dimensions of the problem considered), and € and x are the (second-
order) strain and the (third-order) curvature tensor fields, respectively, satisfying the following
symmetry properties

€ij = €jiy  Xijk = Xjik- (2)
Defining the statical entities Cauchy stress o;;=0;; and double stress 7;;,=7;;1, respectively
work-conjugate to the kinematical entities € and x, eqn (1), the principle of virtual work can
be written for a solid occupying a domain €2, with boundary 9€) and set of edges I', in the

!Note that the linear elastic second-gradient (of the displacement) model is fully equivalent to the linear
elastic first-gradient (of the strain) model (Mindlin and Eshel; 1968).
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absence of body-force as
/(Uij5€ij + TijkOXijk) Z/ (tidu; + TiDou,) +/®i6uia (3)
Q o9 r

where repeated indices are summed, ¢ represents the surface traction (work-conjugate to ),
while T and © denote the generalized tractions on the surface 0€2 and along the set of edges I
(work-conjugate respectively to Du and u), and D = n;0; represents the derivative along the
outward normal direction to the boundary m (only on 99 but not on I'). Through integration
by parts, the equilibrium conditions, holding for points within the body €2, can be obtained as

0j (ojk — OiTiji) = 0, in Q, (4)

while for points on the boundary 0€), and along the set of edges I',, (where statical conditions
are prescribed in terms of ¢, T' and @) as

’I’LjO'j]C — nmjDTijk — 2njDiTijk + (nmlenl — D]TLZ) Tijk = tk,
on 0y, (5)
nin;Tije = T,

and
lemijnismmiTij]]= O, onl’, (6)

where e,,;; is the Ricci ‘permutation’ tensor, D; = (65 — njn;) 0;, s is the unit vector tangent
to I and [[-]] represents the jump of the enclosed quantity, computed with the normals n defined
on the surfaces intersecting at the edge I'. Finally, kinematical conditions? are prescribed for

points on the remaining boundary 0, = 0Q\0, as

Ui = U4,

on 0€,. (7)

Dui = Dui,

Introducing the strain energy density w®“F = wS“F (e, x), the ¢ and 7 fields can be

obtained as
6wSGE awSGE

) Tijk = (8)

o —
“ OXijk

so that, restricting attention to centrosymmetric materials within a linear theory?, it follows
that

861‘3'

1 1
w5 (e, x) = §Cijhk5ij5hk + §AijklmnXiijlmna 9)

-/

wSGE,L(E) wSGETJrVL(X)

where C and A are the local (fourth-order) and non-local (sixth-order) constitutive tensors, each
generating respectively a strain energy density contribution, say ‘local’, wS“% (corresponding
to the energy stored in a Cauchy material, w*“®L = %) and ‘non-local’, w*“F-NL Therefore,
the linear constitutive equations for the stress and double stress quantities are obtained as

oij = CijnkEnk, Tijk = AijkimnXimn, (10)

2In the proposed homogenization procedure only kinematical boundary conditions will be imposed (99, = 0,
so that 9Q, = 90Q).

3Centrosymmetry is coherent with the fact that the elastic energies at first- and at second- order are decoupled
under the geometrical assumptions that will be introduced in Section 3.1.
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which, from eqns (1) and (8), have the following symmetries
Cijnk = Cjink = Cijen = Chiij, Aijkimn = Ajikimn = Aijkmin = Aimnijk- (11)

In the case of isotropic response, the constitutive elastic tensors C and A can be written in the
following form

Cijhk = )\5ij5hk + H((Sih(sjk + 5ik5jh)7

a
51 [6ij (OniOmmn + OnmOin) + Oim (Sindjn + Gindjn)]

52 [0 (8518 + Smin) + St (16 + G111 (12)

+2 a3 (6;0hn0im) + a4 (6:105m + 0im0j1) Onn
as

+ [0in (0510mm + 0jmOnt) + Ojn (8i10nm + dimdn1)]

where ¢;; is the Kronecker delta, A and p are the usual Lamé constants, defining the local
isotropic behavior, while a; (i =1, ...,5) are the five material constants (with the dimension of
a force) defining the nonlocal isotropic behavior. Considering the constitutive isotropic tensors
(12), the strain energy density (9) becomes

Aijhlmn =

5
A
wSGE(e, X) = 5] + pEijgij + Z arZy(x), (13)
~ k=1
wSGE,L(E)

wSGE,NL(X)

where the invariants Zy(x

&
@

I

T1(X) = Xiik Xjkj (= Xiik Xkjj)s

T2(X) = Xiki Xjkj (= Xwii Xjkj = Xkii Xkjj = Xiki Xkijj)»

Z5(Xx) = Xiik Xjjk> (14)
T4(X) = Xijk Xijk(= Xjik Xijk = Xjik Xjik = Xijk Xjik)»

Is(X) = Xijk iji(: Xjik Xkji = Xgik Xjki = Xijk Xjkz')v
so that the linear constitutive relations (10) reduce to
oy = Aeudij + 2peij,

a

5 (X1i0jk + 2Xku6:5 + Xujdik) + a2 (Xiudjn + Xjudir) + 2a3X11k0:; (15)

Tijk =

+2asXijk + as (Xkji + Xkij) -
Since the invariants defined by eqns (14) satisfy the following inequalities
271(x) + Zo(x) + Z3(x) 20,  Za(x) 20,  ZIs(x) =0,

(16)
I4(X) >0, I4(X) +I5(X) >0,

the positive definiteness condition for the isotropic strain energy density w*“ (e, x), eqn (13),

corresponds to the usual restraints for the local parameters (given by the positive definiteness
of wSGE,L(E))
3N+2u >0, p>0, (17)

4
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which are complemented by the following conditions (Mindlin and Eshel, 1968) on the nonlocal
constitutive parameters (given by the positive definiteness of w “# N (x))

—ay < az < 2a4, €1 >0, ey >0, 56% < 2eqe9, (18)

where

e1 = —4ay + 2a2 + 8as + 6ay — 3as, ez = 5(a1 +az + a3) + 3(as + as), 19)
es = a1 — 2a2 + 4as.

3 Homogenization procedure

The proposed homogenization procedure follows Bigoni and Drugan (2007). In particular, the
same? (linear and quadratic) displacement is applied on the boundary of both the representa-
tive volume element RVE and the homogeneous equivalent SGE material. Then, the equivalent
local C* and non-local A°? tensors are obtained imposing the vanishing of the elastic energy
mismatch between the two materials. Since the strain energy in the homogeneous SGE mate-
rial is given only by the local contribution when linear displacement boundary condition are
applied (because no strain gradient arises), the equivalent local tensor C*? corresponds to that
obtained with usual homogenization procedures. Thus, the remaining unknown of the equiva-
lent SGE material (namely, the non-local equivalent constitutive tensor A®?) can be obtained
by imposing the vanishing mismatch in strain energy when (linear and) quadratic displacement
are considered. A chief result in the current procedure is that a perfect match in the elastic
energies is achieved, while Bigoni and Drugan (2007) only obtained an ‘optimality condition’
for the mismatch.

The homogenization procedure is described in the following three steps, where reference is
made to a generic RVE, although results will be presented for a diluted distribution of randomly
located inclusions.

Step 1. Consider a RVE made up of a heterogeneous Cauchy material (C), Fig. 1 (left),
occupying a region
C — 0C C
where an inclusion, phase ‘2’ (occupying the region QQC and with elastic tensor C(2)), is
fully enclosed in a matrix, phase ‘1’ (occupying the region Q? and with elastic tensor
CM), so that the constitutive local tensor C(z) within the RVE can be defined as the
piecewise constant function
1
cV zeqf,
C(z) = (20)
2
c? zecqf,
and the volume fraction f of the inclusion phase can be defined as
C
f=2

== .
QRVE

(21)

4Bigoni and Drugan (2007) impose a linear and quadratic displacement field on the boundaries of the RVE
and of the homogeneous equivalent material, whose quadratic part depends on the Poisson’s ratio of the material
to which the displacement is applied, so that the applied displacements are not exactly equal. Furthermore, the
equivalent material considered by Bigoni and Drugan is a non-local Koiter material (1964), which does not permit
the annihilation, but only a minimization of the elastic energy mismatch between the RVE and the equivalent
material.
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The equivalent material is a homogeneous SGE material, Fig. 1 (right), occupying the
region Q;quE

QeSqGE = Q%VE’ (22)
and constitutive elastic tensors C*? (local part) and A°? (nonlocal part). Since the region
quG E of the equivalent SGE material corresponds by definition to the region Q%V p of the
heterogeneous RVE, in the following both these domains may be identified as €.

C SGE
QRVE Qeq

+

Figure 1: Left: Heterogeneous Cauchy-elastic RVE where a matrix of elastic tensor C™Y contains a generic
inclusion of elastic tensor C?. Right: Homogeneous equivalent SGE material with local tensor C*? and nonlocal
tensor A%,

Step 2. Impose on the RVE boundary the following second-order (linear and quadratic) dis-
placement field uw, Fig. 2 (left)

w=1a, ondNy,p, (23)
with
U = i + PijkTiT, (24)
-

where «a;; and 3;;, are constant coefficients, the latter having the symmetry 3;;x=08x;-

Impose on the equivalent homogeneous SGE boundary again the displacement (24), but
together with its normal derivative, Fig. 2 (right), so that

U=,
on 8quGE. (25)
Du = Du,

Note that the mean value of the local strain gradient, which cannot be controlled solely by
Dirichlet conditions, is defined by imposing the Neumann condition (25)3. This condition
can be justified through consideration of the dilute assumption, so that the influence of
the inclusion on the normal derivative is negligible near the boundary of the RVE.

The imposition of the boundary conditions (23) on the RVE and (25) on the equivalent
SGE corresponds, respectively, to the two strain energies

C _ C C SGE __ SGE
WRVE = /QC w |C(1) + /QC w ‘C(Q) 5 Weq = /QSGE w }ceq’Aeq s (26)
1 2 eq

so that for a generic quadratic displacement field, eqn. (24), an energy mismatch (or ‘gap’)
G between the two materials arises as a function of the unknown equivalent constitutive
tensor A

g (C(l), c(2)’ ce, Aeq) _ W}%/E - WéS('ZGE' (27)
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Figure 2: Imposition of the same linear (top) and quadratic (bottom) boundary displacement conditions on the
heterogeneous Cauchy RVE (left) and on the homogeneous equivalent SGE (right). In the homogeneous equiva-
lent SGE (right) the normal derivative of displacement (Neumann condition) is also imposed at the boundary.

Step 3. Find the unknown equivalent constitutive tensor A®? by imposing a null energy mis-
match G
g (c(1>, c?® ce, Aeq) —0. (28)

Note that in the case of purely linear displacements (3 = 0) the energy mismatch G is null
by definition of C*?. On the other hand, when quadratic displacements are considered,
an energy mismatch G is different from zero and can be tuned to vanish by changing the
value of the unknown tensor A®?.

The above-procedure is general, but subsequent calculations will be limited to the dilute
approximation, and the results will be an extension of Bigoni and Drugan (2007) since (i.)
the inclusions are of arbitrary shape and, more interestingly, (ii.) the comparison material, a
Mindlin elastic second-gradient material, allows a perfect match of the energies (while Bigoni
and Drugan (2007) did consider only cylindrical or spherical inclusions and were only able to
provide a minimization of the energy gap).

3.1 Assumptions about geometrical properties of matrix and inclusion phases

Henceforth the following geometrical properties for both the subsets Qfand QF will be as-
sumed:®

®Note that, by definition of static moment vector S and Euler tensor of inertia E, eqn (33), the geometrical
properties GP1, eqn (31) and GP2, eqn (32), of the subsets Qfand Qf are also necessarily satisfied by Q% z,
so that

S(QgVE) =0, E(QgVE) = PQQgVEL (29)
where the radius p = p(QgV ) is related to the radii of the matrix p(l) and the inclusion p(2) as follows
2 2
pP=01-1) [p(l)} +f [/J@)} : (30)



Published in International Journal of Solids and Structures 50 (2013) 4010-4019
doi: http://dx.doi.org/10.1016/j.ijsolstr.2013.08.014

GP1) The centroids of the matrix and of the inclusion coincide and correspond to the origin
of the x;—axes, so that both the static moments of the inclusion and of the matrix are null

SQf)y=0, SQF)=o0. (31)

GP2) The x;—axes are principal axes of inertia for both the matrix and the inclusion and the
ellipsoids of inertia are a sphere (or a circle in 2D)

B©S) =[] ofr.  B©S) =[] o, (32)

where I is the identity second-order tensor and the second-order Euler tensor of inertia
FE relative to the z;—axes, defined for a generic solid occupying the region V as

By(V) = [ @i, (33)

while p() = p(Qf) and p?® = p(QF) are the radii of the spheres (or circles in 2D) of
inertia of the matrix and the inclusion. Note that the assumption of spherical tensors of
inertia yields a spherical tensor for the RVE, which is coherent with the assumption of
randomness of the distribution of inclusions.

GP3) The radius of the sphere of inertia for the inclusion phase vanishes in the limit of null
inclusion volume fraction
lim p®®(f) =0, (34)
f—=0
or, equivalently, all the dimensions of the inclusion (and therefore the radius of the smallest
ball containing the inclusion) are zero for f = 0.

Examples of two-dimensional RVE, characterized by the geometrical properties GP1-GP2
and GP3 are reported in Figs. 3 and 4, respectively.

OO A

Figure 3: Some examples of two-dimensional RVE satisfying the geometrical properties GP1, eqn (31), and
GP2, eqn (32), for plane strain condition.

4 Equivalent nonlocal properties from homogenization in the
dilute case

The following proposition is the central result in this article, providing the nonlocal effective
tensor from second-order homogenization of a heterogeneous Cauchy RVE containing a small
inclusion.
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decreasing inclusion volume fraction f

x Satisfying
X x
X >< >< \< Not satisfying
4 GP3

decreasing inclusion volume fraction f

Figure 4: Examples of two-dimensional RVE satisfying (upper part) or not (lower part) the geometrical property
GP3, eqn (34). In the lower part, the radius of inertia of the inclusion does not vanish in the limit of vanishing
volume fraction.

Homogenization proposition. For a dilute concentration of the inclusion phase (f < 1)
and assuming the geometrical properties GP1 - GP2 - GP3 for the RVE, the nonlocal sixth-
order tensor A of the equivalent SGE material is evaluated (at first-order in f) as

2

p
A:j[:lhlmn = _fz

(éihlndjm + éz’h777,715j'l + éjhlndim + éjhmn(sil) + O(f), (35)
where p is the radius of the sphere (or circle in 2D) of inertia of the RVE cell, and C is
introduced to define (at first-order in f) the difference between the local constitutive tensors
for the effective material C? and the matrix CV), so that

c=cW 4 fC, (36)

which is assumed to be known from standard homogenization, performed on linear displacement
boundary conditions.

Eqn (35) represents the solution of the homogenization problem and is obtained by imposing
the vanishing of the energy mismatch G, eqn (28), when the same second-order displacement
boundary conditions are applied both on the heterogeneous Cauchy material and on the homo-
geneous equivalent SGE material, eqns (23) and (25), respectively.

From the solution (35), in agreement with Bigoni and Drugan (2007), it can be noted that:

e the equivalent SGE material is positive definite if and only if Cis negative definite;

e the constitutive higher-order tensor A®? is linear in f for dilute concentration.

Proof of the homogenization proposition

i) Consider the second-order (linear and quadratic) displacement boundary condition (25)
applied on the boundary of a homogeneous SGE material with constitutive tensors C and
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i)

A. In the absence of body force, b = 0, let us consider the extension within the body of
the quadratic displacement field u, eqn (24), applied on the boundary

U; = QT + ﬁijkxjxk, xin ), (37)
—— N —
[
Uy u?

7
providing the following deformation € and curvature x fields

Qi + o

€ij = — 5 Tt (Bijk + Bjiw )k, Xijk = 2Bkij (38)

and the following stress o and double-stress 7 fields,

oij = Cijnkonk + 2CijnkBruixi, Tijk = 2AjkimnBrim.- (39)

The stress field (39) follows from the displacement field (37) and satisfies the equilibrium
equation (4) if and only if ©
CijnikBrrj =0, (40)

which for isotropic homogeneous materials reduces to the condition obtained by Bigoni and
Drugan (2007)

Bjji = —(1 = 2v) Bikk, (41)
(with Poisson’s ratio v = A/2(X + pu)).

In the following we will use the superscript © for 3 (namely, 3°) to denote the components
of the third-order tensor 3 satisfying eqn (40), or (41) for isotropy.

Consider an auxiliary material with local constitutive tensor C*, defined as a first-order
perturbation in f to the equivalent local constitutive tensor C®?, namely,

c*:ceuf(é—(:), (42)
so that using eqn (36) we can write
c*=cW 4 fC, (43)

where é, together with C*, define an arbitrary material with properties ‘close’ to both the
matrix and the equivalent material, an arbitrariness which will be used later to eliminate
the constraint (40). By definition, the displacement field

ui = Qi+ BT T, x in (. (44)
S~ Ne——
« %
u; B
i u;

is equilibrated [in other words satisfies eqn (40)] in a homogeneous material characterized
by the constitutive tensor C* and corresponds to the following quadratic displacement field
on the boundary

u; = qujTj + ﬁf]?"kg:ja:k, x on 0S). (45)
—Q O*
u; =5
) ’LLZ-

SNote that the constraint (40) arises independently of whether the material is Cauchy elastic or SGE.

10
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iii) Apply on the boundary 8Q%V p of the heterogeneous Cauchy material (RVE) the displace-
ment boundary condition (45),

aVE =7, ondNG, 5. (46)

According to Lemma 1 (Appendix A.1), the strain energy in the RVE at first-order in
f is the sum of the strain energy due to the linear () and nonlinear (3) displacement
boundary conditions, and the mutual strain energy, say, the ‘a — 3 energy term’ is null at
first-order in f,” so that

Whve (@) = Wiy (@) + Whyp (@77) +o(/). (48)

iv) Apply on the boundary BquG E of the homogeneous SGE material the same displacement
boundary condition w*, eqn (45), imposed to the RVE and complemented by the higher-
order boundary condition in terms of displacement normal derivative taken equal® to Dw*

on dQSGE (49)
D" = Du, b

where D" is the normal derivative of the displacement field (44).

According to the result presented in Lemma 2 (Appendix A.2), the oo — 3 energy term is
null and the strain energy in quGE is

WCSqGE (ﬂ*, DH*) _ WgIGE (ﬂa,Dﬂa) + WS;GE (HIBQ*,DHBQ*> 7 (50)
where Dw® and D@”"" are the contributions of the imposed normal derivative depending
on o and 3 terms in Du*, respectively.

v) The energy minimization procedure, eqn (28), can be performed using the energy stored
in the heterogeneous Cauchy material WI%/E, eqn (48), and in the homogeneous SGE
material W%GE , eqn (50), so that the energy mismatch is given by

G (cu)’ c®, ce, Aeq) _go (c<1>,c<2>, Cced, Aeq> + b (cu), c®, e, Aeq) (51)
where

Ge (C(l)7 C(Q)’ (o3 Aeq) — WgVE (ﬁa) _ WEQGE (ﬁa’ Dﬁa) 7
(52)
G5 (€, €, co, A) — W, (@) - WECE (@, Du").

"Considering that the RVE satisfies geometrical symmetry conditions, in addition to the geometrical properties
GP1 and GP2, it can be proven that the mutual energy is identically null even in the case of non-dilute
suspension of inclusion

Wive (") = Wive (B%) + Whve (ﬁﬁo*) ) v f. (47)

8The displacement field eqn (44) is the solution for a homogeneous SGE when boundary conditions (49) are
imposed. It can be easily proven that the result of the proposed homogenization procedure holds when the
higher-order boundary condition changes as Du’“? = DGRV since the strain energy developed in the SGE

material is the same at the first order

WP (ﬂ*, DHRVE) = W57 F (@*, Du") + o( f).

11
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vi)

vii)

viii)

5

Since only the local contribution (depending on C®?) arises in the SGE strain energy when
the linear boundary displacement condition (3°* = 0 and w ¢F = @~, Du’F = Du®)
is imposed (while the non-local contribution depending on A®? is identically null because
higher-order stress and curvature are null), the energy mismatch G* due to the a terms is

null by definition of C*? (which is known from the first-order homogenization procedure)
g (€™, c®, e, a) = g (€, ¢, c7) —o. (53)

Therefore, the proposed energy minimization procedure, based on linear and quadratic
displacement boundary condition and leading to the definition of A®?  can be performed
referring only to the 5°* terms,

G ((:(1)7 (:(2)7 ce, Aeq> —gh” (C(l)7 C(Q), ce, Aeq> ) (54)

Keeping into account the results presented in Lemma 3 (Appendix A.3) and Lemma 4
(Appendix A.4), the energy mismatch (54) is given by the difference of the following two
terms

—3°* 1 * QO*
Weyp(@”) = QIOQQC'EjF)Lk 1B+ o(f)- (55)
and
WECE@™", DT"") = 20 (02C5f0im + At ) BB + 0(f): (56)
Therefore, from eqns (36), (55) and (56), the annihilation of the strain energy gap G,

eqn (54) (between the real heterogeneous Cauchy and the equivalent homogeneous SGE
materials) is represented by the condition

(£7*Ciguadin + At ) B85 + 0(F) = 0. (57)

The energy annihilation (57) has been obtained for a nonlinear displacement field 3°%, in
equilibrium within a homogeneous material with local constitutive tensor C*. But, accord-
ing to eqn (43), tensor C* defines an arbitrary material, so that using this arbitrariness we
obtain

<fp2éz‘jhk5lm + A;lqikmh) BijtBrkm + o(f) = 0, (58)

where the components of 3 are unrestricted, except for the symmetry (;;,=03;;. Even-
tually, the annihilation of energy mismatch G, eqn (58), defines the non-local constitutive
tensor A® for the equivalent SGE material as in eqn (35). O

Conclusions

Micro- or nano-structures embedded in solids introduce internal length-scales and nonlocal
effects within the mechanical modelling, leading to higher-order theories. We have provided
an analytical approach to the determination of the parameters defining an elastic higher-order
(Mindlin) material, as the homogenization of a heterogeneous Cauchy elastic material, eqn
(35). This result, obtained through the proposed homogenization procedure, is limited to
the dilute approximation, but is not restricted to isotropy of the constituents and leaves a
certain freedom to the shape of the inclusions. A perfect match between the elastic energies of

12
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the heterogeneous and homogeneous materials is obtained. Examples and results on material
symmetry and positive definiteness are deferred to part II of this article (Bacca et al., 2013).
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A Proofs of lemmas 1-4

A.1 Lemma 1: Null mutual a—3 energy term for the RVE at the first-order
in concentration f

Statement. When a quadratic displacement w*, eqn (45), is applied on the boundary of a
RVE satisfying the geometrical properties GP1 and GP3, the strain energy at first-order in f
is given by eqn (48).

Proof. By the superposition principle, the fields originated by the application of w* = u® +
@ are given by the sum of the respective fields originated from the boundary conditions u®
and w?"”

e(z) = e(z) + %7 (z), o(z) =oc%z) + 0" (z), (A.1)

(the latter calculated through the constitutive eqn (10);) so that the strain energy (26); becomes

Whyp(*) = Wiy p(@®) + Wiy (@) + Wiy p(@; ") (A.2)
mutual energy
where )
WRVE 2/ )Cijnk(z)ehy (),
O* 1 O % Ok
W p(@) = / 2 (@) Com(@)ely (@), (A3)

Ok

WgVE(ﬁa§ﬁﬁo*) :/Q E%(m)cijhk(m)ggk (z).
R

Through two applications of the principle of virtual work? the mutual energy (A.3)3 can be
computed as

Whyp(@®a”") = az’j/Q ol (), (A.5)
R

In the first application, the fields corresponding to the solution (A.1) are considered
o 2)o? (z) = % (z)t? A.4)
eij(w)oy; (@) u; (z)t; (o), (A.
Qg 29573

while in the second application, the kinematical field generated by the admissible displacement u® (44) within
the RVE is considered so that the mutual energy (A.5) is obtained.

13
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which, using the constitutive relation (10); and the symmetries of the local constitutive tensors
c® and C(Q), can be decomposed as the sum of two contributions

—a —[B°* 1 O 2 1 O*
Wevp(@ @) = oyl | i@ vay (€hi-cll) [ wli@. @o
R Ry

Through two further applications of the divergence theorem and using the geometrical
property GP1 for the RVE,!° the first term on the right-hand-side of eqn (A.6) results to
be null

1 O %
aijcz(j/)zk/ “gk (z) = 0. (A.9)
Qr

Introducing the mean value over a domain € of the function f(x) as

@l =g | o) (A10)

the second term on the right-hand-side of eqn (A.6) can be rewritten as

o (S~ i) o ()

(A.11)

Qr,

Assuming the geometrical property GP3 for the RVE, the displacement field in the presence
of the inclusion is given by the asymptotic expansion in the volume fraction f

W= LTy + 1l +o(f), (A.12)

7

subject to the constraint
0<qg<1, (A.13)

and considering the geometrical property GP1 for the RVE, together with the definition of
volume fraction f, eqn (21), expression (A.11) becomes

Fray (€5, - i) (g (@)] (A.14)

Qr,

from which, considering the restriction on the power ¢ (A.13), the second term on the right-
hand-side of eqn (A.6) is null at first-order in f

i (Ch = Ch) [ iy (@) = o), (A.15)
Qp,

Considering results (A.9) and (A.15), the mutual energy in the RVE (A.3)3 is null at first-order
in f and proposition (48) follows. [J

0Tn the first application of the divergence theorem, u? = Eﬁo*, eqn (45), is considered on the boundary
0QRr, so that

[ i @) = Biim [ i, (A7)
QR 121977

while, in the second application, the kinematically admissible displacement field EBO*, eqn (44), is considered
within the RVE, yielding

5§7m/ NETLTm = 2/522}/ x, (A.8)
09R Qn

so that the geometrical property GP1 for the RVE leads to eqn (A.9).

14



Published in International Journal of Solids and Structures 50 (2013) 4010-4019
doi: http://dx.doi.org/10.1016/j.ijsolstr.2013.08.014

A.2 Lemma 2: Null mutual a—3 energy term for the homogeneous SGE

Statement. When a quadratic displacement @*, eqn (45), and the normal component of its
derivative Du* are applied on the boundary of a SGE satisfying the geometrical property GP1,
the strain energy is given by eqn (50).

Proof. By the superposition principle, the fields originated by the application of the boundary
conditions (@* = w*+a’", D@* = Du*+Dw”"") can be obtained as the sum of the respective
fields arising from the boundary conditions (@®, D@®) and (@””", D@”"") in the forms

e(z) = e%(z) + 7 (), x(@) = x"(e) +x"" (@), (A.16)
o(z) =o%(x)+ 0" (), T(z)=712)+ 7" (2), '

(the latter calculated through the constitutive eqn (10)) so that the strain energy (26)s becomes

WE;JGE(H*, Dﬂ*) — WS]G’E(HOJ’DWOC) + WgJGE(ﬂﬁo*’DHBo*) —|—W§ZGE(HQ’ Dﬂa;ﬂﬁo*,Dﬂﬁo*)

N~

direct energy mutual energy
(A.17)
where
1
SGE (- —
Wey E(UaaDua) = 2/(2 [5%(9”)(:?;%5%(%) + X%l(m)AZ]lhka%km(m)} )
eq
O% Ok 1 Q% Ok Ok Ok
SGE (— —
WaEE @, Du’") = 2/Q [55 (w)cffhkefk (w)JFijz (z) Z'thkmxfkm(‘”)]v

eq

SG — — 0% _ ROx Ok Ok
Wi D@ Dw) = [ [e@)Chue (@) + X @A (@)
eq
(A.18)
Application of the boundary condition (uw®, Du®) on €, leads to the displacement field
u(x), eqn (44), so that x“(x) = 0 and, considering the symmetries of the equivalent local

constitutive tensor C*, the mutual energy simplifies in the local contribution

WECE (@, Du; @, D) = ;€Y / ul (). (A.19)
Qeq
Through two applications of the divergence theorem and using the geometrical property GP1
of the SGE, the mutual energy (A.19) is null and then proposition (50) follows. [J

A.3 Lemma 3: 8 term in the strain energy WS, , at first-order in f

Statement. When a quadratic displacement @%°", eqn (45) with e = 0, is applied on the
RVE boundary, the strain energy at first-order in the concentration f is given by eqn (55).

Proof. The strain energy ng E(ﬁﬁo*) stored in the RVE, when a quadratic displacement
field @#°" (45) is applied on its boundary dQpy g, is bounded by (see Gurtin, 1972)

/E)Q UZSJAWH? —Ugy (™) < Wy @) < Wiy g(e"), (A.20)
RV E

KA is a kinematically admissible (satisfying the kinematic compatibility relation (1);

S4 g a statically admissible

where €
and the imposed displacement boundary conditions) strain field, o
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(satisfying the equilibrium condition, eqn (4) with 7 = 0) stress field, while U$%; (%) and
W]%/ E(EKA) are respectively the following stress and strain energies
1 _
Urplo™) =5 [ oS @C @) @),
Qr
(A.21)

1
Wevs(e) = 3 | i @)Cum(@)eli (=),
R

Considering the kinematically admissible strain field

6 (510]*k + ]zk)xka (A22)

and assuming the geometrical properties GP2 and GP3, an estimate for the upper bound in
eqn (A.20) is the strain energy W, (€%4) given by eqn (B.5); (Appendix B.1), so that

Whyp(@”") <2 Zﬁcijli)zkﬁzjlﬁhkl +o(f). (A.23)

Considering now the statically admissible stress field

ot = 2Ch Bk, (A.24)

where C* is a first-order perturbation in f to the material matrix C(l), eqn (43), and assuming

the geometrical property GP2, the stress energy Z/{gv E(O'SA) is given by eqn (B.5)2 (Appendix

B.1). Moreover, since the application of the divergence theorem yields
/8Q ‘TgAn%“f = 4PQQ (Cljhk + fcljh/f) Bz]lﬁhil? (A25)
R

an estimate is obtained for the lower bound in eqn (A.20) as

Whyp@™") > 2029(:1];1;@5;]15%1 +o(f), (A.26)
which, together with the upper bound (A.23), leads to eqn (55). O

A.4 Lemma 4: 3 term in the strain energy W;?;GE at first-order in f.

Statement. When a quadratic displacement @”°", eqn (45) with a = 0, and the normal com-
ponent of its gradient D@’ are imposed on the boundary of the homogeneous SGE equivalent
material, the strain energy at first-order in the concentration f is given by eqn (56).

Proof. The strain energy WquE (ﬁﬁo* , Dﬁﬁo*) stored in the SGE, when a quadratic displace-
ment field @*”" (45) and the normal component of its gradient Dw?" are imposed on its
boundary 0, is bounded as (Appendix C)

/8 ) (t?AHiBO* +T¢SAD@BO*) n /F T USG5 54 <
eq

eq (A.27)
WSGE( * DE < WgIGE(EKA’XKA)’
with
th = njajs,,;4 n,n]DT —2n;D; Tjk + (ninjDinyg — Djn;) Z‘jf,

on 0, (A.28)
T = gy,
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and
@fA lemijniSmm ??]] onTl'eq, (A.29)

where X4 and x4 are kinematically admissible strain and curvature fields (satisfying the
kinematic compatibility relation (1) and the imposed displacement boundary conditions), o34
and 794 are statically admissible stress and double-stress fields (satisfying the equilibrium
equation (4)), while UgIGE(aSA,TSA) and WquE(eKA,xKA) are respectively the stress and
the strain energies given by

1 1 1

SGE( _SA _SA SA SA

ueq (U y T ) = 2\/9 ( )Czethk; hk / Zjh Aze]qhklmTklm(w)
eq

. . (A.30)
WZJGE(EKA,XKA) = 2/9 ij e )nghk i () 2/ zyh Afgqhklmxgvﬁ( )-
eq

Considering the kinematically admissible strain e%X4 (A.22) and curvature field

ijk: = 2/8sz7 (Agl)

and assuming the geometrical property GP2, an estimate for the upper bound in eqn (A.27) is
the strain energy W2 (e KA KA given by eqn (B.8); (Appendix B.2) as

WECE (@™, D&)< 208585k (P2C5dim + A - (A.32)

Considering the statically admissible stress o4 (A.24) and double-stress field

Tid = 25 B (A.33)

where C* is a first-order perturbation in f to the material matrix C®, eqn (42), and assuming the
geometrical property GP2, the stress energy USIGE (654, 754) is given by eqn (B.9) (Appendix
B.2). Moreover, since the application of the divergence theorem yields

/a ) (thaf "+ 14D’ ) + /F o747 = 4p*Q [Cffhk +f (éijhk‘ - Cz’jhkﬂ i Bk
eq eq

(A.34)
an estimate is obtained for the lower bound in eqn (A.27) as

WECE@™, DT") = 208587k (PC5hdim + A ) + o)), (A.35)

which, together with the upper bound (A.32), leads to eqn (56). O

B Elastic energies based on the kinematically admissible dis-
placement field " (44)

In this Appendix it is assumed a = 0. The field u”°", eqn (44), is a kinematically admissible
displacement for both boundary conditions @*", eqn (46), and (@?*", D@®""), eqn (49), applied
on the boundary of the RVE and the SGE, respectively. The related strain and stress energies
in the RVE and in the SGE are obtained below.

e In Section B.1 the strain energies are computed with the kinematically admissible defor-
mation €54, eqn (A.22), and curvature x54, eqn (A.31), originated by the kinematically
admissible displacement u?°", eqn (44);
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e In Section B.2 the stress energies are computed with the statically admissible stress o4,

eqn (A.24), and double-stress 754 eqn (A.33), originated by the above mentioned kine-
matically admissible fields ¢4 and x*4 within a homogeneous material with constitutive
tensors C* and A®?.

B.1 Strain and stress energies in the RVE

The kinematically admissible deformation €54, eqn (A.22), and the statically admissible stress

a4, eqn (A.24), provide the strain and stress energies (A.21) in the RVE

Weyp(e™?) = /2Cijhk($)5fﬁﬁzzm$l$m,
" (B.1)

C SA
URVE(U ) - / 2C2jlm z]hk( ) hkrs lortmﬁrstxnwta
which, introducing the definition (33) of the Euler tensor of inertia E, can be rewritten as

1 2
W}%VE(‘?KA) = [Cz(gi)zkElm(QC) + cz(ji)zkElm(Qg)] zgzﬁhkma
(B.2)
1 2)~1 * * *
ugVE(USA) = 2C1]lm {CEﬂ)Lk nt(Qc) + Cgﬂ)ﬂc Ent(Qg)} Chkrs l<>mn ?st'

Assuming the geometrical property GP2 and considering the identity (30), the strain and stress
energies (B.2) simplify as

(2)
1 P 1
WgVE(EKA): 20%Q) Cz(j})zk_f<p> [cz(’j/)zk Cz(]i)zk} zglﬁhklv
9\ 2 (B.3)
1)t p 2)~1 -t * * *
ugVE(USA) = 2PQQCz]lm Cgﬂ)ﬂc _f (P) [Cgﬂ)ﬂc _Cgﬂ)ﬂc} Chkrs l<>mn 7?571'

Assuming the geometrical property GP3

p? =@ f+o(f), (B.4)

with 0 < r < 1, and C* as a first-order perturbation in f to the material matrix CV), eqn (43),
the strain and the stress energies are given in the dilute case (f < 1) by

W]'%VE(EKA) = 2QC1]hk:BZjlﬁh2l + O(f)7
: A (B.5)
U™ = 2020 (C) +27Cijn ) 85870 + o).

B.2 Strain and stress energies in the SGE

The kinematically admissible deformation and curvature fields [sKA, eqn (A.22); x54, eqn
(A.31)] together with the statically admissible stress and double-stress fields [6°4, eqn (A.24);
794 eqn (A.33)] provide the strain and stress energies (A.30) in the SGE

(B.6)
SGE( _SA _SA
z/{eq (U T ) = /92 { ijlm 1,]hk; Chkrsxnzt + Amnlstr} 5lmn rst’
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which, introducing the definition (33) for the Euler tensor of inertia E, can be rewritten as

SGE/ _SA _SA\ _ SGE SGE
z/{eq (U T ) - 2 { ijlm Uhk Chkrs nt(Q ) + Q Amnlstr} 5lmn rst

Assuming the geometrical property GP2, the strain and stress energies (B.7) simplify as

WquE( KA’XKA) = 20 [ Qijhkélm + A]hkmh} @ﬂﬁhlm,
SGE; _SA _SA -1 (B.8)
Z’{eq (U T ) - 2Q { nglmcwhk Zkrs(s t+ Amnlstr} ?;r‘m ?;t'

Finally, assuming C* as a first-order perturbation in f to the equivalent local tensor C*?, eqn
(42), the stress energy is given in the dilute case (f < 1) by

USIGE(O'SA, TSA) = 20 {p2 |:Cf]qhk -+ 2f (éijhk — (N:ijhk):| 6lm -+ A]lzkmh} /Bzglﬁhkm + O(f)
(B.9)

C Energy bounds for SGE Material

Statement. When boundary displacement conditions &, Du are imposed on the boundary
08¢y of a SGE, the strain energy WESQGE (w, Du) is bounded as

/ (thﬂi+ﬂSAmi) +/ @SA— uSGE( SA’TSA) < ngGE(ﬂ,m) < WquE( KAvXKA)
ageq ch

(C.1)
where €54 and x®4 are kinematically admissible strain and curvature fields (satisfying the
kinematic compatibility relation (1) and the imposed displacement boundary conditions), &4
and 754 are statically admissible stress and double-stress fields (satisfying the equilibrium
equation (4)) and the other statically admissible quantities 34, T4 and ©54 are given by
eqns (A.28) and (A.29), while Z/{E%GE(USA,TSA) and WquE( KA,XKA) are respectively the
stress and the strain energies, eqns (A.30); and (A.30),.

Proof. Considering the displacement field 4 solution to the displacement boundary condi-
tions w, Du and the related statical fields o¢? and 7°? in equilibrium, through the difference
fields Aef4, AxEA, Ao®4, AT54 the kinematically and statically admissible fields can be

defined as
EKA — g% —|—A€KA, XKA — Xeq +AXKA,
(C.2)
o4 = 0% + Ao®4, 754 = req 4 A4,

Using the discrepancy fields Ae®4 and Ax® 4 the term representing the upper bound in eqn
(C.1) can be rewritten as

Weg P4 x ) = WEFF(w, Du) + WEFP (8R4, AxR4)

(C.3)
—|—/ (CUthl] Aghk + Az]klmnXZJkAlen> ’

eq
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which provides a proof to the upper bound, since the strain energy is positive definite and the
third term in the RHS of eqn (C.3) is null by the principle of virtual work (3) with Au =
ADwu = 0 on the boundary.

Using the discrepancy fields Ao 4 and AT54 the term representing the lower bound in
eqn (C.1) can be rewritten as

[ 100 + [ o8 - o) — WEE (a D) - Ui (Aa 4, ArSY)
g

Teq
(C.4)
which provides a proof to the lower bound, since the strain energy is positive definite. [J
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