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Abstract

A model of crack bridging and reinforced elliptical voids is proposed, in which the fibers joining

the surfaces of the void or crack are modelled as discrete, linear elastic bars. We show that a theory

recently developed by us to analyze structural interfaces permits analytical attack and solution of

multiple important previously unsolved problems of stress concentration and fracture. In particular,

an analytical solution is provided for a reinforced elliptical void, which, by superposition, allows

treatment of arbitrary fiber distributions, which can be even randomly distributed and oriented. In

the special case of small or null ratio between a void’s axes, new stress intensity factor expressions are

obtained, which account for fibers’ inclination and geometry.

r 2006 Elsevier Ltd. All rights reserved.
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Reinforced cracks
1. Introduction

In fiber-reinforced materials, such as short-glass-fiber-reinforced polypropylene (Fig. 1),
fibers joining the surfaces of cracks or voids are usually observed. These fibers strongly
see front matter r 2006 Elsevier Ltd. All rights reserved.
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influence the stress distribution and provide important stress relief. The quantification of
the stress redistribution due to the presence of the fibers and the evaluation of the relevant
stress intensity factors have been the focus of a number of studies. Initially, crack bridging
was modelled by Rose (1987) as a continuous distribution of springs, a model thoroughly
analyzed by Movchan and Willis (1993, 1996, 1997). However, the discrete nature of the
bridging is of fundamental importance, so that Meda and Steif (1992) considered the case
of one fiber bridging the crack, focusing on the fiber slipping along its interface, and
Rubinstein (1994) analyzed a crack reinforced by discrete fibers orthogonal to the crack.
However, multiple important aspects remain unaddressed, namely the effects of inclined
reinforcing fibers on a crack under both Modes I and II loading, and of general reinforcing
fibers on an elliptical void. The present article addresses these issues.

Fibers bridging the surfaces of a crack or an elliptical void represent an example of a
structural interface and can therefore be analyzed within the framework given by Bigoni
and Movchan (2002) and Bertoldi et al. (2007a, b). We show that for two-dimensional
linear elasticity, it is possible to solve the case of an elliptical void in an infinite sheet,
subject to arbitrary uniform stress at infinity, when a generic geometry of fibers (with linear
behavior) are bridging the surfaces of the void. In the limiting case when an axis of the
ellipse is either small or is reduced to zero, the ellipse becomes either a bridged thin void or
a bridged crack. In these cases we derive the relevant stress intensity factors. For fibers
orthogonal to the crack surface, we provide rigorous proof that a single fiber (of
appropriate stiffness) at the crack tip causes the stress intensity factor to vanish, a situation
consistent with results from the Dugdale–Barenblatt model (Dugdale, 1960; Barenblatt,
1962). Moreover, consideration of fiber inclination, not previously studied, allows us to
quantify new effects, as for instance the optimal fiber distribution and orientation to
minimize the stress intensity factors under both Modes I and II loading.

2. Elliptical voids reinforced by bridging fibers

Our study of crack bridging and toughening of brittle materials with fibers is initiated in
this section by addressing the problem of an elliptical hole in an infinite linearly elastic
sheet deformed in plane strain or plane stress, reinforced with discrete linear fibers and
loaded by a remote, uniform loading. As illustrated in Fig. 2, let us denote by qO the
boundary of an elliptical void in an infinite sheet (having Lamé moduli l and m and loaded
Fig. 1. A bridged fracture in short-glass-fiber-reinforced polypropylene.
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at infinity by a uniform loading) and with xj the jth junction between fibers and the
continuous body on qO. At a junction, the load is transmitted as if the fibers were a ‘linear,
filamentary structure’ connecting the junctions of central points xh and xj, defined by the
direction specified by the unit vector eðhjÞ

eðhjÞ ¼
xh � xj

jxh � xjj
. (1)

At the jth junction where M different fibers converge, the traction tj transmitted to the
infinite matrix is a linear function of the displacement difference uð ~xÞ � uðxÞ between points
~x and x of the opposite junctions xh and xj

tjðxÞ ¼
XM
h¼1

kðhjÞ½ðuð ~xÞ � uðxÞÞ.eðhjÞ�eðhjÞ; x 2 xj ; ~x 2 xh, (2)

where kðhjÞ denotes the stiffness of the filament hj.
The stress field r in the infinite matrix (in the absence of body forces) satisfies

divrðxÞ ¼ 0; x 2 infinite sheet;

rðxÞnðxÞ ¼
PM
h¼1

kðhjÞ½ðuð ~xÞ � uðxÞÞ.eðhjÞ�eðhjÞ; x 2 xj ; ~x 2 xh;

uniform stress applied at infinity;

8>>><
>>>:

(3)

where n is the outward unit normal to the elliptical void boundary. Note that the
displacements, and therefore the tractions transmitted by the fibers to the infinite matrix at
the junctions, have an initially unknown distribution.
Problem (3) is an example of a multistructure (see Kozlov et al., 1999 and references

cited therein); a simplification of it is pursued here by working with averaged quantities at
the junctions between the fibers and the infinite matrix, as explained in detail by Bertoldi
et al. (2007a). Briefly, we introduce the averaged tractions and displacements at junctions
as

tj ¼
1

jxjj

Z
xj

tðxÞ ¼ tðxjÞ þOðjxjj
2Þ; uj ¼

1

jxjj

Z
xj

uðxÞ ¼ uðxjÞ þOðjxjj
2Þ, (4)
Fig. 2. Elliptical hole in a plane linearly elastic infinite sheet reinforced with discrete linear fibers and loaded by a

remote, uniform loading.
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so that the boundary value problem (3) is replaced by

divrðxÞ ¼ 0; x 2 infinite sheet;

rðxÞnðxÞ ¼
PM
h¼1

kðhjÞ½ðuðxhÞ � uðxjÞÞ.eðhjÞ�eðhjÞ; x 2 xj ;

uniform stress applied at infinity;

8>>><
>>>:

(5)

where the initially unknown traction distributions over the junctions are replaced by
uniform distributions, calculated as linear functions of the displacement differences at the
central points xh and xj of opposite junctions xh and xj.

Problem (5), replacing the more difficult problem (3),2 is employed as the basis for
analyzing an elliptical void reinforced by fibers. We proceed as follows:
�

2

zon

ene
The solution in the infinite sheet for uniform traction distributions over the junction
regions xj is constructed (via Muskhelishvili–Kolossoff complex potentials), so that the
displacements at the junction points uðxhÞ are written as functions of the (for the
moment unknown) uniform tractions tðxhÞ applied at joint regions and of the remote
applied stress.

�
 Since a displacement/force relationship is now known at each junction, the structure

representing the fibers is solved as a linear structure on elastic supports via the usual
methods of structural mechanics.

The problem of an infinite elastic sheet with an elliptical void reinforced by linear fibers
is attacked by employing the Muskhelishvili–Kolossoff (Muskhelishvili, 1953) complex
potentials fðzÞ and cðzÞ. In terms of these potentials, the general solution to plane
equilibrium problems for homogeneous, isotropic linear elastic materials can be expressed
in polar components as

2mður þ iuyÞ ¼ e�iy½kfðzÞ � zf0ðzÞ � cðzÞ�,

srr þ syy ¼ 4Re ½f0ðzÞ�,

syy � srr þ 2isry ¼ 2e2iy½zf00ðzÞ þ c0ðzÞ�, (6)

where z ¼ x1 þ ix2 ¼ reiy, prime denotes derivative with respect to a function’s argument,
overbar denotes complex-conjugate, k ¼ 3� 4n for plane strain and k ¼ ð3� nÞ=ð1þ nÞ for
plane stress, and m and n are the elastic shear modulus and the Poisson ratio, respectively.

In order to analytically solve the problem of an infinite elastic sheet with an elliptical
void reinforced by linear fibers, we need some preliminary results. These are the two
solutions corresponding to
�

A

r

An elliptical hole in an infinite elastic sheet, loaded by a remote uniform stress.
Employing the conformal mapping

z ¼ oðzÞ ¼ R zþ
m

z

� �
, (7)
ssuming that the size of the junction zones is small when compared to the dimension of the void, so that these

es ‘contract’ onto the points xj , it has been shown in Appendix A of Bertoldi et al. (2007a) that the elastic

gy evaluated by solving (3) differs from that evaluated by solving (5) by terms of O(jxj j
2).
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where

R ¼
aþ b

2
; m ¼

a� b

aþ b
, (8)

that conformally maps the infinite matrix with an elliptical void of semi-axes a and b

into an infinite matrix with a circular void of unit radius, it can be shown that the
solution of the problem is given by (Muskhelishvili, 1953)

fðzÞ ¼ G1R z�
m

z

� �
�

G2R

z
,

cðzÞ ¼ G2Rz�
G1R

z
�

R

zðz2 �mÞ
½G2 þmG1 þ ðG1 þmG2 þ 2m2G1Þz

2
�, (9)

with

G1 ¼
s111 þ s122

4
; G2 ¼

s122 � s111
2

þ is112. (10)
�
 A self-equilibrated but otherwise arbitrary distribution of uniform loadings acting on
separated portions of an elliptical hole in an infinite elastic sheet. The solution for an
infinite matrix containing an elliptical hole on which N piecewise uniform traction

distributions having normal and tangential components pk and sk act on the parts z�k zþk

_
,

see Fig. 3 (with null total resultant) is given by Bertoldi et al. (2007a)

fðzÞ ¼ �
1

2pi

XN

k¼1

ðpk þ iskÞ R sþk � s�k �
m

z
log

sþk
s�k
þ zþ

m

z

� ���

� log
sþk � z
s�k � z

� ��
þ z�k logðs�k � zÞ � zþk logðsþk � zÞ

�
,

cðzÞ ¼ �
1

2pi

XN

k¼1

ðpk � iskÞ R msþk �ms�k �
1

z
log

sþk
s�k
þ mzþ

1

z

� ���

� log
sþk � z
s�k � z

� ��
þ z�k logðs�k � zÞ � zþk logðsþk � zÞ

�
�

zð1þmz2Þ

z2 �m
f0ðzÞ, ð11Þ
3. Elliptical hole in an infinite elastic matrix with N applied uniform normal and tangential traction

ributions in the z-plane, and its conformal mapping in the z-plane.
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where the polar form for z is used

z ¼ reib, (12)

so that s�k ¼ eib
�
k and sþk ¼ eib

þ

k denote points on the circular void of unit radius r ¼ 1,
again having employed the conformal mapping (7) with (8).
Employing solutions (9)–(11), the displacements at the junction points uðxhÞ are written
as functions of the (for the moment unknown) uniform tractions tðxhÞ (having normal and
tangential component pk and sk, respectively) applied at joint regions and of the applied
remote stress:

u1ðe
ibÞ þ iu2ðe

ibÞ ¼
ð1þ kÞRe�ib

8m
4is112 þ

X2
a¼1

½e2ib �m� 2ð�1Þa�s1aa

( )

þ
XN

k¼1

X2
a¼1

iðpk þ iskÞR

4pm
ð�1Þa

i

2
ð1þ kÞ eib �

m

eib

� 	
bka

�

þ
kþ 1

2
eib þ

m

eib
� eibka �

m

eibka

� 	
log½1� cosðbka � bÞ�

� iðk� 1Þ eibka þ
m

eibka

� 	
argðeibka � eibÞ

�
, ð13Þ

where bk1 ¼ b�k , bk2 ¼ bþk .
Eq. (13) provides the relation between applied tractions and the resulting displacements

at the junctions; with this relation any linear elastic structure connecting the junctions can
be solved as a linear structure on elastic supports.

As a first example, we consider an infinite matrix with an elliptical void characterized by
a=b ¼ 5

2
and reinforced by fibers characterized by a nondimensionalized thickness

tb=a ¼ 1
1000

. The dimensionless fiber compliance parameter introduced by Rubinstein
(1994)

L ¼
2m

ðkþ 1Þktb

, (14)

is employed, which is null (infinite) when fibers are rigid (have vanishingly small stiffness).
A uniform uniaxial stress s122 ¼ m=100 is applied at infinity. The largest stress
concentration, namely, s22 at point A, is plotted in Fig. 4 as a function of the fibers,
inclination a (see detail in Fig. 4) for a hole reinforced by six fibers. It can be seen from the
figure that the stress concentration decreases as a function of the fiber inclination and
reaches a minimum for fibers having an inclination near a ¼ 80� (depending on the L
value).

In Fig. 5, the level sets of the von Mises stress, defined as

sVM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðs1 � s2Þ

2
þ ðs1 � s3Þ

2
þ ðs3 � s2Þ

2
�=2

q
, (15)

with si denoting the principal stresses, are plotted in a region near the elliptical void (note
that sVM has been normalized by the remote stress) for both Mode I loading (left) and
Mode II loading (right). The fibers are characterized by an inclination a ¼ 80� and a
compliance L ¼ 1; the number of fibers N has been taken equal to f0; 6; 12; 24g.
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Fig. 4. Stress concentration (at point A) for an elliptical void (a=b ¼ 5
2
) reinforced by six fibers and loaded under

uniaxial (vertical) stress, as a function of the fibers’ inclination a. Different values of the fiber compliance

parameter L are considered.

K. Bertoldi et al. / J. Mech. Phys. Solids 55 (2007) 1016–10351022
As a second example, we consider the same elliptical void just analyzed, but with 8, 16
and 32 randomly disposed fibers. Mode I loading is shown at left and Mode II at right in
Fig. 6, for the same fiber distributions.
3. Elliptical thin voids reinforced by bridging fibers

In order to determine the stress field near the tip of an elliptical thin void (having semi-
axes b and a, with b5a), a coordinate system is introduced having the origin at a distance
r=2 from the void end, as shown in Fig. 7, where r denotes the radius of curvature at the
end (y ¼ 0)

r ¼
b2

a
. (16)

Regarding the thin void as a crack having a finite tip radius, two loading systems
are considered (Fig. 7): one symmetric (representing Mode I loading) and one skew-
symmetric (representing Mode II loading) with respect to the two axes x1 and x2.
Employing this setting, and expanding in Taylor series the solution (given by Eq. (11), see
also Appendix C of Bertoldi et al., 2007a) for the infinite matrix with an elliptical hole
loaded as in Fig. 7 near r ¼ 0 and near r ¼ 0, we obtain the leading-order terms of the
displacement and stress fields near the crack tip (for b=a51) in terms of stress intensity
factors K I and K II
�
 Mode I
u1 ¼
K I

2m

ffiffiffiffiffiffi
r

2p

r
cos

y
2

k� 1þ 2 sin2
y
2
þ

r
r

� �
,

u2 ¼
K I

2m

ffiffiffiffiffiffi
r

2p

r
sin

y
2

kþ 1� 2 cos2
y
2
þ

r
r

� �
,
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Fig. 5. Von Mises stress (normalized by remote stress) for an elliptical void (a=b ¼ 5
2
) reinforced by N fibers,

loaded by a uniform remote uniaxial vertical stress s122 (left) and a uniform remote shear stress s112 (right). The

fibers are characterized by an inclination a ¼ 80� and a compliance L ¼ 1.

K. Bertoldi et al. / J. Mech. Phys. Solids 55 (2007) 1016–1035 1023



ARTICLE IN PRESS

Fig. 6. Von Mises stress distribution (normalized by remote stress) for an infinite matrix with an elliptical void

(a=b ¼ 5/2) reinforced by N randomly disposed fibers, loaded by a uniform remote uniaxial vertical stress s122 (left
figures) and a uniform remote shear stress s112 (right figures). The fibers are characterized by L ¼ 1.

K. Bertoldi et al. / J. Mech. Phys. Solids 55 (2007) 1016–10351024
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Fig. 7. Coordinate system for determination of stress field near the tip of an elliptical void.

K. Bertoldi et al. / J. Mech. Phys. Solids 55 (2007) 1016–1035 1025
s11 ¼
K Iffiffiffiffiffiffiffi
2pr
p cos

y
2

1� sin
y
2
sin

3y
2

� �
�

r
2r

cos
3y
2

� �
,

s12 ¼
K Iffiffiffiffiffiffiffi
2pr
p sin

y
2
cos

y
2
cos

3y
2
�

r
2r

sin
3y
2

� �
,

s22 ¼
K Iffiffiffiffiffiffiffi
2pr
p cos

y
2

1þ sin
y
2
sin

3y
2

� �
þ

r
2r

cos
3y
2

� �
. (17)
�
 Mode II
u1 ¼
K II

2m

ffiffiffiffiffiffi
r

2p

r
sin

y
2

kþ 1þ 2 cos2
y
2
�

r
2

� �
,

u2 ¼
K II

2m

ffiffiffiffiffiffi
r

2p

r
cos

y
2

1� kþ 2 sin2
y
2
þ

r
2

� �
,

s11 ¼
K IIffiffiffiffiffiffiffi
2pr
p � sin

y
2

2þ cos
y
2
cos

3y
2

� �
þ

r
2r

sin
3y
2

� �
,

s12 ¼
K IIffiffiffiffiffiffiffi
2pr
p cos

y
2

1� sin
y
2
sin

3y
2

� �
�

r
2r

cos
3y
2

� �
,

s22 ¼
K IIffiffiffiffiffiffiffi
2pr
p sin

y
2
cos

y
2
cos

3y
2
�

r
2r

sin
3y
2

� �
. (18)

Creager and Paris (1967) report an identical asymptotic representation for the stress
field. In addition to the asymptotic representation (17) and (18), our solution also gives the
values of the stress intensity factors. These are the following functions of the loading
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distribution, with normal and tangential components p and s, applied on the boundary
portions delimited in the transformed domain by the angles ½b�;bþ�, ½p� bþ;p� b��,
½pþ b�; pþ bþ� and ½2p� bþ; 2p� b�� (Fig. 7)

K I ¼ �
2p

ffiffiffi
a
pffiffiffi
p
p ðbþ � b�Þ; K II ¼ 0, (19)

K I ¼ 0; K II ¼
2s

ffiffiffi
a
pffiffiffi
p
p ðbþ � b�Þ, (20)

for symmetric and skew-symmetric traction distributions, respectively.
In the limiting case of concentrated loads with normal and tangential components P and

S applied at points defined in the transformed domain by the angles b, p� b, pþ b and
2p� b, Eqs. (19) and (20) reduce to

K I ¼ �
2Pffiffiffiffiffiffi

ap
p

sin b
; K II ¼ 0 (21)

and

K I ¼ 0; K II ¼
2Sffiffiffiffiffiffi

ap
p

sin b
, (22)

respectively.
As an example, we consider the fiber geometries shown in Fig. 8 for an ellipse

with a=b ¼ 20 and junctions characterized by jxj=a ¼ 1
1000

. The inclined fibers are oriented
at an angle of 5� with respect to the horizontal direction. For the arrangements considered
b ¼ p=3, so that the four junctions central points in the transformed domain are defined
by the angles fp=3; 2p=3; 4p=3; 5p=3g, whereas the (finite-width) junctions are delimited
in the transformed domain by the angular ranges ½1:0466; 1:0478�, ½2:09382; 2:09497�,
½4:18821; 4:18937� and ½�1:0478;�1:0466�. Therefore, from Eqs. (19) and (20), we
obtain

K I ¼ �0:0058208p; K II ¼ 0:0058208s, (23)

whereas considering the resultant force of p and s, respectively, P ¼ pjxj and S ¼ sjxj,
concentrated in the junction center, we can employ Eqs. (21) and (22) to get

K I ¼ �0:291346P ¼ �0:0058232p; K II ¼ 0:291346S ¼ 0:0058232s, (24)

values that are very close to those given by Eq. (23).
Fig. 8. Two fiber geometries with vertical and inclined (at 5� with respect to the horizontal direction) fibers.
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3.1. Elliptical thin void reinforced by two central inclined fibers

We analyze the influence of reinforcing fibers’ inclination on the stress intensity factor,
by considering an elliptical void of semi-axes a and b (with abb) reinforced by two central
fibers inclined at an angle a with respect to the horizontal direction (see detail in Fig. 9). In
this case, the tractions transmitted by the fiber to the matrix are related to the fiber
elongation as

p cosðyn � aÞ � s sinðyn � aÞ ¼ 2k½U1 cos aþU2 sin a�; 0pbp
p
2
, (25)

where yn denotes the angle between the unit inward (pointing towards the matrix) normal
and the x1-axis at the fiber central point, and the displacement at the fiber central point U
is the sum of the displacements produced by the remote loading u1 and by the
(distribution of four) normal p and tangential s tractions acting on the junctions

U ¼ u1 þ pup þ sus. (26)

In addition, since the force transmitted at each node of the elastic matrix has the same
inclination as the fiber, its normal and tangential components are related through

s ¼ �p tanðyn � aÞ. (27)

Substitution of Eqs. (26) and (27) into Eq. (25) yields

p ¼
2k cosðyn � aÞðu11 cos aþ u12 sin aÞ

1� 2ktb cosðy
n
� aÞ½up

1 cos aþ u
p
2 sin a� tanðyn � aÞðus

1 cos aþ us
2 sin aÞ�

. (28)

As an application, we have considered an elliptical thin void characterized by a=b ¼ 20
and tb=a ¼ 1

1000
. The stress intensity factors K I and K II (normalized by s122

ffiffiffiffiffiffi
pa
p

and
s112

ffiffiffiffiffiffi
pa
p

, respectively) are reported in Fig. 9 versus the fibers’ inclination angle a, for
different values of the dimensionless fiber compliance parameter L.

Several features may be observed from Fig. 9. In particular:
�

Fig

rig

com
For Mode I loading (left in the figure), the normalized stress intensity factor assumes
values above unity (meaning that the fiber-reinforced elliptical void results in a higher
. 9. Stress intensity factor K I (normalized by s122
ffiffiffiffiffiffi
pa
p

, on the left) and K II (normalized by s112
ffiffiffiffiffiffi
pa
p

, on the

ht), for an elliptical void (a=b ¼ 20) reinforced by two central inclined fibers for different values of the fiber

pliance parameter L as function of the fiber inclination a.
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stress concentration than the unreinforced void) for nearly horizontal fibers; this is due
to the Poisson effect, since nearly-horizontal fibers are compressed, thus increasing K I.

�
 Also for Mode I loading, K I decreases as a function of the fiber inclination and reaches

a minimum for fibers having an inclination near a ¼ 3p=8 ¼ 67:5� (depending on the L
value).

�
 For Mode II loading (right in the figure), vertical (a ¼ p=2) or horizontal (a ¼ 0) fibers

remain unloaded and therefore are ineffective in reducing K II.

�
 Also for Mode II loading, the stress intensity factor undergoes a sudden drop for nearly

horizontal fibers and then increases with the fiber inclination angle a. The minimum K II

is attained for fibers having an inclination near a ¼ 0:5�.

From the above features we note that it is possible to combine nearly horizontal and nearly
vertical fibers to produce an ‘optimal’ reinforced void (assuming centrally-located fibers).
In particular, for L ¼ 1, we find thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
I=ðs

1
22

ffiffiffiffiffiffi
pa
p
Þ
2
þ K2

II=ðs
1
12

ffiffiffiffiffiffi
pa
p
Þ
2

q
(29)

is minimum when the elliptical void is reinforced by two fibers inclined at 2� with respect to
the horizontal direction and two fibers at 65�, as shown in Fig. 10. (We further find these
optimal fiber angles to be little changed for all hole aspect ratios a=b415.) For this fiber
arrangement the dimensionless stress intensity factor K I is equal to 0.91 whereas K II is
equal to 0.77.

3.2. Elliptical thin voids reinforced with generic structures

To explore the effects of fiber morphology and distribution, an elliptical void is
considered having the high aspect ratio a=b ¼ 20, so that the geometry approaches that of
a crack, bridged by different arrangements of fibers. In particular, two arrangements of
fibers are considered: purely vertical and inclined. The latter has been defined in such a way
as to provide the same vertical stiffness given by vertical fibers, with a double Warren truss
structure with fibers inclined at 30� with respect to the vertical (see the detail in Fig. 11).
The fibers are characterized by L ¼ 0:075 for the vertical case and L ¼ 0:075ð4 cos2 p=6Þ ¼
0:225 for the inclined case. An elastic matrix is considered, characterized by n ¼ 0:3, and
separately subjected to uniform uniaxial stress s122 ¼ m=100 and shearing stress s112 ¼
m=100 at infinity.
The stress intensity factor is plotted as a function of fiber density N=ð2acÞ in Fig. 11,

ranging between 0 and 25 for the vertical fiber model and 0 and 100 for the inclined
fiber model. It is assumed that the fibers join the crack faces within the segment
ð1� cÞ apjx1jpa (see details in Fig. 11). Three different situations are considered: c ¼ 1
. 10. Fiber reinforcement of an elliptical void (a=b ¼ 20) with centrally located fibers permitting minimization

both Modes I and II stress intensity factors. Fibers are inclined at 2� and 65� with respect to the horizontal

ction.
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Fig. 11. Stress intensity factors KI (left) and K II (right) (normalized by s122
ffiffiffiffiffiffi
pa
p

and s112
ffiffiffiffiffiffi
pa
p

) for an elliptical void

having a=b ¼ 20 reinforced by N fibers (4N in the case of inclined fibers) with L ¼ 0:075 (L ¼ 0:225 in the case of

inclined fibers) and loaded by far-field uniaxial (vertical) tensile stress and shear stress, respectively. Effect of

morphology and number of fibers for full (c ¼ 1, upper part), partial (c ¼ 0:5, central part) and near-tip

reinforcement (c ¼ 0:1, lower part).
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(corresponding to full reinforcement), c ¼ 0:5 and c ¼ 0:1 (corresponding to near-tip
reinforcement). For the Mode I loading case, results are compared with similar results (but
for a smeared fiber model) obtained by Rose (1987). This author has calculated that

K I

s122
ffiffiffiffiffiffi
pa
p ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pcahð2� cÞ

p , (30)

when

h ¼
2k

E0
b1, (31)

where E0 is the reduced Young modulus, so that E0 ¼ E for plane stress and E0 ¼

E=ð1� n2Þ for plane strain.
It is evident from Fig. 11 that
�
 an increase in fiber density relieves the stress at the tip;

�
 while the two bridging structures perform more or less equivalently for uniaxial remote

tensile stress s122, there is a strong difference under remote shear stress s112;

�
 since the Rose model (valid for uniaxial tensile stress only) corresponds in essence to an

infinite fiber density, the comparison of our discrete model with this reveals that only a

low fiber density (about N=ð2acÞ ¼ 15) is needed to produce a stress relief nearly equal to

that corresponding to the smeared (Rose) model;

�
 for shear remote stress, vertical fibers do not affect the stress intensity factor;

�
 by comparing the cases c ¼ 1, 0:5 and 0:1, it may be concluded that the fibers become

particularly effective when located near the ends of the elliptical void (a conclusion
consistent with our Section 4 findings for the two vertical fibers model).

Finally, level sets of the von Mises stress (normalized by s122) are reported for different
fiber densities and c ¼ 1 in Fig. 12. In this figure, the number of fibers N has been taken
equal to f0; 2; 4; 10; 20g and f0; 8; 16; 40; 80g, respectively, in the left (vertical fibers case) and
right part (inclined fibers case). It can be seen that the inclined fiber model provides greater
stress relief around the elliptical void. The different behavior between the two different
interface structures becomes even more evident when a remote shear stress is applied,
Fig. 13. In this case the purely vertical fibers remain almost unstressed, providing
essentially no stress relief.

4. Sharp crack reinforced by two symmetrical transverse fibers under Mode I

A sharp crack of length 2a is defined in the limit when axis b vanishes, b ¼ 0. In this case,
the near tip fields are obtained from Eqs. (17) in the limit r! 0.
We consider now loading by a remote uniform stress s122 and a reinforcing structure

consisting of two fibers orthogonal to the fracture surfaces, with locations x and �x from
the central point of the crack (see the detail in Fig. 14). In this particular case, the traction
distribution transmitted from the fibers to the matrix has only the normal component p

different from zero, which, due to the Mode I symmetry, is proportional to the fiber
elongation expressed simply as

p ¼ 2k½u12 þ pu
p
2�. (32)
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Fig. 12. VonMises stress (normalized by remote stress) for an elliptical void (a=b ¼ 20) reinforced by N fibers (4N

in the case of triangles) and loaded by a uniaxial vertical stress s122. Parallel vertical fibers (left) and inclined fibers

(right) are considered, characterized by the compliances L ¼ 0:075 and 0:225, respectively.
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In Eq. (32), u12 is the displacement experienced by the junction central point (determined
by b 2 ½0; p=2� in the transformed plane of Fig. 7)

u12 ¼
ð1þ kÞas122 sin b

4m
, (33)

due to the uniform remote stress s122, and u
p
2 is the displacement at the same point due to

the four normal uniform traction distributions of unit magnitude applied over the four
junction regions.
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Fig. 13. Von Mises stress (normalized by remote stress) for an elliptical void (a=b ¼ 20) reinforced with N fibers

(4N in the case of triangles) and loaded by a shear stress s112. Parallel vertical fibers (left) and inclined fibers (right)

are considered, characterized by the compliances L ¼ 0:075 and 0:225, respectively. Note that, as expected, the

vertical fibers remain unstressed, providing no stress relief.
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A substitution of Eqs. (33) and (13) into Eq. (32) yields the normal traction transmitted

by the fibers to the matrix, as a function of the (remote) loading s122 and the fiber position x,
thickness tb and stiffness k

p ¼ að1þ kÞkps122 sin b 2pm� að1þ kÞk cos b log
sinðbþ � bÞ sinðb� þ bÞ
sinðb� � bÞ sinðbþ þ bÞ

����
����

���

þ cos b� log
sin b� � sin b
sin b� þ sin b

����
����þ cos bþ log

sin bþ þ sin b
sin bþ � sin b

����
����� 2ðbþ � b�Þ sin b

��
,

ð34Þ
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Fig. 14. Stress intensity factor K I, normalized by s122
ffiffiffiffiffiffi
pa
p

, for a sharp crack of length 2a reinforced by two

symmetrical transverse fibers located at x and �x, for different values of the fibers’ compliance parameter L.
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where

b ¼ arccos
x

a

� 	
; b� ¼ arccos

x

a
þ

tb

2a

� 	
; bþ ¼ arccos

x

a
�

tb

2a

� 	
. (35)

The stress intensity factor can now be obtained by substitution of Eq. (34) into Eq. (19).
The variation of the stress intensity factor K I (normalized by s122

ffiffiffiffiffiffi
pa
p

) as a function of the
fiber position x=a is shown in Fig. 14 for tb=a ¼ 1

1000
. Different values of the dimensionless

fiber compliance parameter L are considered and we observe that the stress intensity factor
tends to that corresponding to an unreinforced crack when L grows.

The most striking feature visible in Fig. 14 is that the stress intensity factor decreases

when the fibers approach the tips of the crack and, in particular, there is a huge drop, almost

independent of the fiber stiffness, when x=a tends to 1.
In particular, the stress intensity factor is null for

L ¼
a

ptb

cos b log
sinðbþ � bÞ sinðb� þ bÞ
sinðb� � bÞ sinðbþ þ bÞ

����
����

�

þ cos b� log
sin b� � sin b
sin b� þ sin b

����
����þ cos bþ log

sin bþ þ sin b
sin bþ � sin b

����
����
�
, ð36Þ

which turns out to be positive for x=a! 1. We can therefore conclude that a fiber of the
appropriate stiffness (given by Eq. (36)) at the crack tip makes the stress singularity null, a
circumstance in agreement with the Dugdale–Barenblatt model (1960, 1962).

In the special case of a single central fiber, i.e. for x ¼ 0, Eq. (34) reduces to

p ¼
2að1þ kÞkps122

4pmþ ðkþ 1Þk½2aðp� 2 arccosðtb=2aÞÞ þ tb log jð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � t2b

q
þ 2aÞ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � t2b

q
� 2aÞj�

,

(37)

a situation also analyzed by Rubinstein (1994). In particular, the stress intensity factor
(made dimensionless by division by s122

ffiffiffiffiffiffiffi
ptb

p
) and the traction transmitted by the fiber to

the matrix are plotted in Fig. 15, for different values of the stiffness parameter L as a
function of the fiber spacing aspect ratio ð2a� tbÞ=2tb. These results appear to be identical
to those given by Rubinstein (1994, Fig. 2).
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Fig. 15. Stress intensity factor (left) and traction transmitted by the fiber to the matrix (right) for a single

transverse central fiber, for different values of the fibers stiffness parameter L.
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5. Conclusions

We have shown that the model of a structural interface developed by Bigoni and
Movchan (2002) and Bertoldi et al. (2007a, b) is a powerful tool to investigate cracks and
elliptical voids bridged by fibers. In particular, we have provided for the first time: (i) the
full-field solution for an elliptical void reinforced by an arbitrary (even random) fiber
distribution; (ii) the stress intensity factor for a bridged crack or a thin, bridged elliptical
void, accounting for fibers’ inclination and distribution. The solutions demonstrate the
effects of fibers’ geometry and stiffness. For instance, we have shown that a fiber (of
appropriate stiffness) orthogonal to the crack and very near the crack tip can reduce the
stress intensity to zero. On the other hand, a fiber almost parallel to the crack axis can
increase the stress intensity factor beyond 1. Fig. 10 shows an optimal fiber distribution
(for centered fibers) to minimize the stress intensity factor both for Mode I and Mode II
loadings.
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