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Chapter 5

BIFURCATION OF ELASTIC MULTILAYERS

Davide Bigoni, Massimiliano Gei and Sara Roccabianca

Department of Mechanical and Structural Engineering
University of Trento, Via Mesiano 77, I-38123 Trento, Italy

Abstract

The occurrence of a bifurcation during loading of a multilayer sets a limit on
structural deformability, and therefore represents an important factor in the
design of composites. Since bifurcation is strongly influenced by the contact
conditions at the interfaces between the layers, mechanical modelling of these is
crucial. The theory of incremental bifurcation is reviewed for elastic multilayers,
when these are subject to a finite strain before bifurcation, corresponding
to uniform tension/compression and finite bending. The interlaminar contact
is described by introducing linear imperfect interfaces. Results are critically
discussed in view of applications and available experiments.

5.1 Introduction

Natural (geological formations, biological materials) and man-made
(sandwich panels, submarine coatings, microelectronic devices, ceramic
capacitors) structures are often made up of layers of different materials
glued together, the so-called ‘multilayers’. Large strain in these structures
is achieved (i) as an industrial need (for instance when forming metallic
multilayers [1], ‘wrapping’ of an engineered tissue around a tubular support
to create an artificial blood vessel [2] or bending of multilayer flexible solar
cells [3]), (ii) under working conditions (for instance when multilayer films
are employed for flexible packaging) or (iii) as a natural process (for instance
during morphogenesis of arteries or geological formations or when the leaf of
a plant bends to trap an insect, to disperse seeds or to resist dehydration).
In all these cases, the occurrence of various forms of bifurcation sets limits
to deformation performance. For instance compressive strain is limited
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Fig. 5.1. Left: A stiff (30 mm thick, neoprene) layer bonded by two compliant (100 mm
thick foam) layers in a rigid-wall, confined compression apparatus (note that separation
between sample and wall has occurred on the right upper edge of the sample).
Centre: Creases on the compressive side of a rubber strip, coated on the tensile side with
a 0.4mm thick polyester transparent film, subject to flexure. Right: Bifurcation of a two-
layer rubber block under finite bending, evidencing long-wavelength bifurcation modes
(the stiff layer, made of natural rubber, is on the compressive side of a neoprene block).

by buckling and subsequent folding (see the example Fig. 5.1 on the
left-hand side of), uniform tensile strain may terminate with shear band
formation and growth, while uniform flexure may lead to the formation
of bifurcation modes such as creases and undulations (see the example
Fig. 5.1 in the centre and on the right-hand side of). Bifurcation is therefore
an important factor in the design of multilayered materials, and so it
has been the focus of a thorough research effort, which was initiated by
Maurice A. Biot [4] and continued by many others. In particular, elastic
layered structures deformed in plane strain and subject to a uniform state
of stress have been analysed by Dorris and Nemat-Nasser [5], Steif [6–9],
Papamichos, Vardoulakis and Muhlhaus [10], Dowaikh and Ogden [11],
Benallal, Billardon and Geymonat [12], Triantafyllidis and Lehner [13],
Triantafyllidis and Leroy [14], Shield, Kim and Shield [15], Ogden and
Sotiropoulos [16] and Steigmann and Ogden [17] as a bifurcation problem of
an isolated layer subject to uniform tension or compression [18–20]. Layered
structures subject to finite bending have been considered by Roccabianca,
Bigoni and Gei [21,22], who found solutions both for the non-uniform state
of stress that develops during flexurea and for the related incremental

aThe solution of finite flexure of an elastic multilayered structure is interesting from
different points of view, since the stress state induced by bending is complex (it may
involve for instance the presence of more than one neutral axis) and strongly influences
bifurcation.
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Fig. 5.2. Bifurcation through compression of a finely layered metamorphic rock has
induced severe folding. This is an example of a so-called ‘accommodation structure’
(Trearddur Bay, Holyhead, N. Wales, UK; the coin in the photo is a pound).

bifurcation problem. These findings relied on a generalization of previous
results for plane-strain bending of an elastic block given by Rivlin [23] and
on analyses of incremental bifurcations [24–30]).

The bifurcation loads and modes are strongly sensitive to the bonding
conditions between the layers, which may be perfect (as in the case of the
rock shown in Fig. 5.2), but often they may involve the possibility of slip
and detachments, the so-called ‘delaminations’ (as in the cases shown in
Fig. 5.3). A simple way to account for this crucial behaviour is to introduce
interfacial laws at the contact between layers. The simplest model of these
laws is linear and can be formulated by assuming that the interface has
null [31–33] or finite [34–36] thickness. We will limit our attention to zero-
thickness linear interfaces, across which the nominal traction increment
remains continuous, but linearly related to the jump in incremental
displacement, which is unrestricted. For simplicity, the materials forming
the multilayer are assumed hyperelastic and incompressible, according to
the general framework laid by Biot [4], in which Mooney–Rivlin and Ogden
materials [37], as well as the J2-deformation theory of plasticity materials,
are particular cases. Therefore, the constitutive laws are broad enough to
embrace the behaviour of rubber, plastics, geological materials, but also
ductile metals subject to proportional loading, as they can be represented
in terms of the J2-deformation theory.
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Fig. 5.3. Bifurcation through compression with detachment of layers: Left: A stiff (1 mm
thick) plastic coating has detached from the foam substrate to which it was initially glued.
Right: Three layers of foam subject to compression show folding with detachment, clearly
visible near the edges of the sample.

After the introduction of the constitutive laws for the material and
the interfaces (Section 5.2), we start with the problem of an elastic
incompressible structure made of straight layers connected through linear
interfaces and deformed in a state of uniform biaxial stress, for which
incremental bifurcations are sought (Section 5.3). We conclude with the
case of finite bending of a layered elastic block, deformed under plane strain
(Section 5.4).

5.2 Notations and Governing Equations

The notations employed in this chapter and the main equations governing
equilibrium in finite and incremental elasticity are now briefly reviewed.
Let x 0 denote the position of a material point in some stress-free reference
configuration B0 of an elastic body. A deformation ξ is applied, mapping
points of B0 to those of the current configuration B indicated by x =
ξ(x 0). We identify its deformation gradient by F , i.e. F = gradξ, and we
define the right C and the left B Cauchy–Green tensors as C = FTF and
B = FFT .

For isotropic incompressible elasticity, the constitutive equations can
be written as a relationship between the Cauchy stress T and B as

T = −πI + α1B + α−1B
−1, detB = 1, (5.1)
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where π is an arbitrary Lagrangian multiplier representing hydrostatic
pressure and α1 and α−1 are coefficients (such that α1 > 0 and α−1 ≤ 0),
which may depend on the deformation.

Alternatively, the principal stresses Ti (i = 1, 2, 3), which are aligned
with the Eulerian principal axes, can be obtained in terms of a strain-energy
function W , which can be viewed as a function of the principal stretches
λi (i = 1, 2, 3). For an incompressible material, these relationships take the
form (index i not summed)

Ti = −π + λi
∂W (λ1, λ2, λ3)

∂λi
, λ1λ2λ3 = 1. (5.2)

Equations (5.1) and (5.2) are linked through the following equations [33]

α1 =
1

λ2
1 − λ2

2

[
(T1 − T3)λ2

1

λ2
1 − λ2

3

− (T2 − T3)λ2
2

λ2
2 − λ2

3

]
,

α−1 =
1

λ2
1 − λ2

2

[
T1 − T3

λ2
1 − λ2

3

− T2 − T3

λ2
2 − λ2

3

]
,

(5.3)

which express the coefficients α1 and α−1 in terms of the strain-energy
function of the material.

In the absence of body forces, equilibrium is expressed in terms of the
first Piola–Kirchhoff stress tensor S = TF−T (note that for incompressible
materials detF = 1) as divS = 0, an equation defined on B0.

The loss of uniqueness of plane-strain incremental boundary-value
problems is investigated, so that the incremental displacements are given
by

u(x ) = ξ̇(x 0), (5.4)

where, as in the following, a superposed dot is used to denote a first-order
increment and an updated Lagrangian formulation (where the governing
equations are defined in the current configuration B) is adopted. The
incremental counterpart of equilibrium is expressed by divΣ = 0, where
the updated incremental first Piola–Kirchhoff stress is given by

Σ = ṠFT , Ṡ = ṪF−T −TLTF−T . (5.5)

The linearized constitutive equation is

Σ = CL − π̇I , (5.6)
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where L = gradu and C is the fourth-order tensor of instantaneous elastic
moduli (possessing the major symmetries). Incompressibility requires that
trL = 0. Since Σ = Ṫ − TLT (see Eq. (5.5)), the balance of rotational
momentum yields Σ12 − Σ21 = T2L12 − T1L21, and a comparison with
Eq. (5.6) shows that (no sum on indices i and j)

Cijji + Ti = Cjiji (i �= j). (5.7)

For a hyperelastic material, the components of C can be defined in terms
of the strain-energy function W .

For the plane problem addressed here they depend on two incremental
moduli [4], namely

µ =
λ

2

(
λ4 + 1
λ4 − 1

dŴ

dλ

)
, µ∗ =

λ

4

(
dŴ

dλ
+ λ

d2Ŵ

dλ2

)
, (5.8)

where Ŵ =W (λ, 1/λ, 1), due to incompressibility. In the following,
examples are given for two specific materials both of which are initially
isotropic elastic solids. One is the Mooney–Rivlin material, for which

W =
µ0

2
(λ2

1 + λ2
2 − 2), (5.9)

where λ1 and λ2 are the principal in-plane stretches and µ0 is the shear
modulus in the undeformed configuration. Due to incompressibility λ = λ1

and λ2 = 1/λ, so that

T1 = µ0(λ2 − λ−2) and µ = µ∗ =
µ0

2
(λ2 + λ−2), (5.10)

where the former is the uniaxial tension law (along axis x1). Notice that
the ratio between T1 and µ is:

T1

µ
=

2(λ2 − λ−2)
λ2 + λ−2

, (5.11)

and its value always ranges between −2 (infinite compression) and 2 (infinite
tension). The other material analysed in this section is the J2-deformation
theory solid introduced by Hutchinson and Neale [38], for which

W =
K

N + 1
εN+1, µ =

KεN coth(2ε)
2

, µ∗ =
KNεN−1

4
, (5.12)
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where K is a material parameter, N ∈ ]0, 1] is the hardening exponent
and ε is the maximum principal logarithmic strain (ε = ln λ). The uniaxial
stress-strain law turns out to be T1 = KεN . For this material, the governing
equilibrium equations become hyperbolic when [39]

εsb =
√

N [2εsb coth(2εsb) − N ], (5.13)

a threshold which corresponds to the emergence of shear bands in the
deformed solid.

At the interfaces between layerswe employ the compliant interface model
of Suo, Ortiz and Needleman [31] and Bigoni, Ortiz and Needleman [32] for
which the jump between incremental stress and incremental displacement can
be written, in components (in a reference system with the axis 1 orthogonal to
the interface), as

Σ11 = S1m(u+
m − u−

m), Σ21 = S2m(u+
m − u−

m); (5.14)

here Sij , the instantaneous stiffness of the interface, is a 2 × 2 constant
matrix whose components have dimension [stress/length]. It is important
to notice that the model depends on the situation, as in the present case, in
which the stress vector at the interface is null for the fundamental path. The
limiting cases of a traction-free and perfectly bonded interface correspond
to Sij ≡ 0 and to Sij → ∞, respectively. S11 represents the normal stiffness
and S22 the shear stiffness of the interface. S12 and S21 are the coupling
between the normal and shear responses and, in the applications, will be
chosen equal to zero. In (5.14), the terms ()+ and ()− indicate quantities for
the two sides of the interface. In addition to (5.14), continuity of traction
across the interface has to be imposed, namely

Σ+n = Σ−n . (5.15)

5.3 Uniaxial Tension/Compression of an Elastic Multilayer

In this section bifurcation is analysed for a multilayered elastic structure
with straight interfaces separating orthotropic, incompressible layers
deformed in plane-strain tension and compression. The fundamental path
is characterized by finite, uniform deformations, and the loss of uniqueness
in the form of waves of vanishing velocity is considered. The materials
in the layers obey a general hyperelastic incompressible constitutive law
and specific results are presented for Mooney–Rivlin and J2-deformation
theory materials. Different boundary conditions are imposed at the external



June 8, 2013 13:44 9in x 6in Mathematical Methods and Models in Composites b1507-ch05 2nd Reading

180 D. Bigoni, M. Gei and S. Roccabianca

surfaces of the multilayered structure, namely, traction free, and bonding
to an elastic or undeformable substrate. The possibility of shear-band
instability, due to the loss of ellipticity as seen in the equilibrium equations,
is also analysed.

5.3.1 Equations for a layer

A laminated structure composed of n-layers is considered, subject
to homogeneous large deformation in the fundamental path, so that
equilibrium and compatibility are trivially satisfied. Plane-strain conditions
are assumed with the principal directions of deformation aligned normal and
parallel to the layers (Fig. 5.4), with the additional assumption that each
layer, along the fundamental path, is subjected to a uniaxial stress along
direction x2. The possibility of bifurcation from the homogeneous state is
investigated by adopting an updated Lagrangian formulation of the field
equations where the current configuration is taken as a reference.

The material is a non-linear, orthotropic, incompressible elastic solid
and obeys the incremental constitutive equation (5.6). In the absence of
body forces, incremental equilibrium requires divΣ = 0. In each layer, non-
homogeneous incremental solutions are considered in the form

uj = wj(x1)eikx2(j = 1, 2), ṗ = q(x1)eikx2 . (5.16)

The functions wj(x1) and q(x1) will, in general, differ from layer to layer,
but the wave number k is taken to be the same for all layers. A chain
substitution of Eq. (5.16) into the constitutive law (5.6) and, finally, into
the incremental equilibrium equations yields a system of three constant-
coefficient ordinary differential equations for the three unknown functions

layer 1

layer n

x1

x2

layer p-1

layer p

layer p+1

Fig. 5.4. Sketch of the laminated structure. Note that a linear interface is present at
each junction between layers.
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wj(x1) and q(x1). The solution is

w1(x1) = b1e
τ1x1 + b2e

τ2x1 + b3e
τ3x1 + b4e

τ4x1 ,

w2(x1) =
i

k
[τ1b1e

τ1x1 + τ2b2e
τ2x1 + τ3b3e

τ3x1 + τ4b4e
τ4x1 ],

q(x1) =
1
2
[(C2222 − C1111 + M)(τ1b1e

τ1x1 + τ2b2e
τ2x1)

+ (C2222 − C1111 − M)(τ3b3e
τ3x1 + τ4b4e

τ4x1)],

(5.17)

in which M =
√

L2 − 4C1212C2121 and L = 2C1221+2C1122−C1111−C2222.
Coefficients τs (s = 1, . . . , 4, τ2 = −τ1, τ4 = −τ3) are the eigenvalues
of the equilibrium equations and depend on k, µ, µ∗ and T2. Using the
standard classification of regimes, coefficients τs may be: (i) real numbers
in the elliptic imaginary regime, (ii) two complex conjugate pairs in the
elliptic complex regime, (iii) purely imaginary numbers in the hyperbolic
regime and (iv) two purely imaginary and two real numbers in the parabolic
regime. Departure from the elliptic range corresponds to the occurrence
of shear bands. In the following, examples are given for two previously
introduced materials, namely, the Mooney–Rivlin and the J2-deformation
theory constitutive models.

Focusing now on the conditions at the interface between layers p and
p + 1 in Fig. 5.4, a substitution of wj(x1) and q(x1) into Eqs. (5.14) and
(5.15) yields the interfacial conditions in terms of coefficients bp

s and b
(p+1)
s .

In matrix form these are

H p−
bp = H (p+1)+b(p+1), (5.18)

where vectors bp and b(p+1) collect coefficients bs for the two layers sharing
the interface, while H p−

and H (p+1)+ are the interfacial matrices for layer
− and +, respectively

H p−
=2

66666664

(eτx1τΓ)p−
1 (eτx1τΓ)p−

2 (eτx1τΓ)p−
3 (eτx1τΓ)p−

4

(eτx1∆)p−
1 (eτx1∆)p−

2 (eτx1∆)p−
3 (eτx1∆)p−

4

(eτx1 [τΓ + Θ])p−
1 (eτx1 [τΓ + Θ])p−

2 (eτx1 [τΓ + Θ])p−
3 (eτx1 [τΓ + Θ])p−

4

(eτx1 [ik∆ + Ξ])p−
1 (eτx1 [ik∆ + Ξ])p−

2 (eτx1 [ik∆ + Ξ])p−
3 (eτx1 [ik∆ + Ξ])p−

4

3
77777775
,
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H (p+1)+ =

2
6666666664

(eτx1τΓ)
(p+1)+

1 (eτx1τΓ)
(p+1)+

2 (eτx1τΓ)
(p+1)+

3 (eτx1τΓ)
(p+1)+

4

(eτx1∆)
(p+1)+

1 (eτx1∆)
(p+1)+

2 (eτx1∆)
(p+1)+

3 (eτx1∆)
(p+1)+

4

(eτx1Θ)
(p+1)+

1 (eτx1Θ)
(p+1)+

2 (eτx1Θ)
(p+1)+

3 (eτx1Θ)
(p+1)+

4

(eτx1Ξ)
(p+1)+

1 (eτx1Ξ)
(p+1)+

2 (eτx1Ξ)
(p+1)+

3 (eτx1Ξ)
(p+1)+

4

3
7777777775

,

(5.19)

where the entries in the matrices are

(eτx1τΓ)p−
s = eτp

s xp−
1 τp

s Γp
s, (eτx1∆)p−

s = eτp
s xp−

1 ∆p
s,

(eτx1[τΓ + Θ])p−
s = eτp

s xp−
1 [τp

s Γp
s + Θp−

s ],

(eτx1 [ik∆ + Ξ])p−
s = eτp

s xp−
1 [ik∆p

s + Ξp−
s ],

(5.20)

and the expressions for Γp
s, ∆p

s, Θp−
s and Ξp−

s are, respectively,

Γp
1 = Γp

2 =
[
Cp

1111

2
+

Cp
2222

2
− Cp

1122 +
Mp

2

]
,

Γp
3 = Γp

4 =
[
Cp

1111

2
+

Cp
2222

2
− Cp

1122 −
Mp

2

]
,

∆p
s =

[
Cp

1221 + Cp
1212

(
τp
s

k

)2
]
,

Θp−
s = Sp−

11 + iSp−
12

τp
s

k
, Ξp−

s = Sp−
21 + iSp−

22

τp
s

k
.

(5.21)

Relation (5.18) holds at every interface. To complete the analysis, the
boundary conditions at the external surfaces 1+ and n− need to be set.

5.3.1.1 Traction free at the external surface of the multilayer

With reference to the external surface 1+ of the multilayer, vanishing of
the nominal tractions requires

Σ1+

11 = 0, Σ1+

21 = 0, (5.22)
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which can be written in matrix form as

C 1+
b1 = 0,

C 1+
=

[
(eτx1τΓ)1

+

1 (eτx1τΓ)1
+

2 (eτx1τΓ)1
+

3 (eτx1τΓ)1
+

4

(eτx1∆)1
+

1 (eτx1∆)1
+

2 (eτx1∆)1
+

3 (eτx1∆)1
+

4

]
.

(5.23)

A similar result can be obtained for the free boundary n−.

5.3.1.2 Bonding to an elastic half-space at the external surface of the
multilayer

When an elastic half-space is coated with a multilayer, the elastic solution
has to decay within it with depth x1 → +∞ (or x1 → −∞), a
condition implying vanishing of the two coefficients bs corresponding to the
eigenvalues τs with positive (or negative) real part. Therefore, the interfacial
matrices for half-spaces at the upper (label 1) and lower (label n) external
surfaces of the multilayer are

H 1−
=




(eτx1τΓ)1
−

1 (eτx1τΓ)1
−

3

(eτx1∆)1
−

1 (eτx1∆)1
−

3

(eτx1[τΓ + Θ])1
−

1 (eτx1 [τΓ + Θ])1
−

3

(eτx1 [ik∆ + Ξ])1
−

1 (eτx1 [ik∆ + Ξ])1
−

3


,

H (n+1)+ =




(eτx1τΓ)(n+1)+

2 (eτx1τΓ)(n+1)+

4

(eτx1∆)(n+1)+

2 (eτx1∆)(n+1)+

4

(eτx1Θ)(n+1)+

2 (eτx1Θ)(n+1)+

4

(eτx1Ξ)(n+1)+

2 (eτx1Ξ)(n+1)+

4



.

(5.24)

5.3.1.3 Bonding to an undeformable substrate at the external surface
of the multilayer

In the case when the external surface of the multilayer is jointed to a smooth
undeformable constraint, the normal component of the velocity and the
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tangential nominal traction have to vanish. With reference to the surface
1+ these conditions are

v1+

1 = 0, Σ1+

21 = 0, (5.25)

which in matrix form become

C 1+
b1 = 0,

C 1+
=


 eτ1

1 x1+
1 eτ1

2 x1+
1 eτ1

3 x1+
1 eτ1

4 x1+
1

(eτx1∆)1
+

1 (eτx1∆)1
+

2 (eτx1∆)1
+

3 (eτx1∆)1
+

4


. (5.26)

5.3.1.4 Bonding to an undeformable substrate with a compliant
interface at the external surface of the multilayer

In this case, the interfacial constitutive law, Eq. (5.14), is used between the
external elastic layer of the multilayer and an undeforming substrate, which
behaves as a rigid constraint. At the external surface 1+, this boundary
condition is

C 1+
b1 = 0,

C 1+
=

2
64

(eτx1 [τΓ − Θ])1
+

1 (eτx1 [τΓ − Θ])1
+

2 (eτx1 [τΓ − Θ])1
+

3 (eτx1 [τΓ − Θ])1
+

4

(eτx1 [ik∆ − Ξ])1
+

1 (eτx1 [ik∆ − Ξ])1
+

2 (eτx1 [ik∆ − Ξ])1
+

3 (eτx1 [ik∆ − Ξ])1
+

4

3
75,

(5.27)
whilst when imposed at the external surface n−, it becomes

Cn−
bn = 0,

Cn−
=

2
64

(eτx1 [τΓ + Θ])n−
1 (eτx1 [τΓ + Θ])n−

2 (eτx1 [τΓ + Θ])n−
3 (eτx1 [τΓ + Θ])n−

4

(eτx1 [ik∆ + Ξ])n−
1 (eτx1 [ik∆ + Ξ])n−

2 (eτx1 [ik∆ + Ξ])n−
3 (eτx1 [ik∆ + Ξ])n−

4

3
75.

(5.28)

5.3.2 Bifurcation criterion

The set of equations for interfacial and boundary conditions forms a linear
system, where the coefficients bs of all layers are the unknowns. When elastic
half-spaces are not present, the dimension of the linear system is 4n × 4n.
When one elastic half-space or two half-spaces are considered as external
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boundary conditions, the order of the linear system becomes 2(2n − 1) or
4(n − 1), respectively.

A critical bifurcation condition is attained when a non-trivial solution
is possible. This occurs when the system is singular. In terms of interfacial
matrices the system can be written as:



C 1+
: 0

H 1− −H 2+
:

.. .. .. .. ..

: H (n−1)− −H n+

0 : −Cn−







b1

b2

..

bn−1

bn




= 0 ⇒ Yb = 0,

(5.29)

and the bifurcation criterion becomes det(Y ) = 0. The system can be
reduced using the transfer matrix method [40,41]. In particular, using the
interfacial condition (5.18), the vector bp can be expressed in terms of bp+1

as

bp = (H p−
)−1H (p+1)+bp+1, (5.30)

so that, as a consequence, b1 can be given as a function of bn

b1 = Ωbn, Ω = (H 1−
)−1H 2+

(H 2−
)−1H 3+

. . . (H (n−1)−)−1H n+
,

(5.31)

where Ω is the transfer matrix. The linear system is therefore reduced to
four equations in four unknowns:

C 1+
b1 = 0

C n−
bn = 0

⇒
C 1+

Ωbn = 0

Cn−
bn = 0

⇒

C 1+

Ω

C n−


 bn = 0 ⇒ Xbn = 0,

(5.32)

and the bifurcation criterion becomes det(X ) = 0. Finally notice that,
when the number of the layers increases, numerical difficulties due to
ill-conditioning may be encountered using the transfer matrix method. An
investigation of these problems, well known in the case of infinitesimal
elasticity [42–44], would be interesting, but falls beyond the scope of this
chapter.
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5.3.3 Results and discussion

The above described general formulation is applied now to a few simple
bifurcation problems. As already remarked, S12 = S21 = 0 is assumed.
Moreover, the analysis is limited for simplicity to S11 = S22. Results for
different interfacial compliances are calculated in terms of the ratio c/h,
where h is the thickness of a representative layer and c is given by

c =
µ∗

1

S11
, (5.33)

where µ∗
1 is for layer 1. Parameter c/h is zero for perfect bonding and infinite

when the interface becomes a separation surface between two disjointed
layers.

In Figs. 5.5 and 5.8, the logarithmic strain ε versus k̄h (where k̄ = k/2π

is the inverse of the wavelength of the bifurcation mode) is shown for a J2-
deformation theory material. Cauchy stress replaces ε in Fig. 5.6 for the
Mooney–Rivlin material. A null transversal stress T1 = 0 has been imposed
in the fundamental path for all analysed cases. For the J2-material, loss of
ellipticity may occur before bifurcation into a diffuse mode. In particular,
condition (5.13) gives εsb = 0.3216 for N = 0.1.
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0.3216, loss of ellipticity in the layer

single layer

Fig. 5.5. Bifurcation logarithmic strain for a layer bonded to a half-space and loaded
under plane-strain uniaxial tension for a J2-deformation theory material.
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Fig. 5.6. Bifurcation stress for a periodic multilayer in which the representative cell is
made of three layers jointed through an imperfect interface and externally bonded to
a smooth undeformable substrate. The structure, made of Mooney–Rivlin material, is
loaded under plane-strain uniaxial compression.

5.3.3.1 Layer bonded to a half-space

The compression case was analysed by Bigoni, Ortiz and Needleman [32]
and therefore only the behaviour under tension is investigated here, for a
J2-deformation theory material (Fig. 5.5). The substrate is stiffer than the
layer: Ksub/Klay = 2, Nsub = 0.4, Nlay = 0.1. The effect of the interfacial
compliance gives a strong reduction in the bifurcation critical strain. In the
short wavelength limit (k̄h → ∞) all curves tend to the surface instability
value for the layer (ε = 0.2524). For sufficiently large wavelength modes
shear bands occur in the layer.

5.3.3.2 Periodic multilayered structures

Following [7,13], a periodic multilayered structure can be analysed under
certain restrictions as a bifurcation problem of a representative cell
(Fig. 5.7), subject to the boundary conditions of contact with smooth
undeformable substrates. We consider the layers joined with the imperfect
interface defined by Eq. (5.14).

In the example, a ratio µa/µb = 3 is assumed for the Mooney–Rivlin
material (Fig. 5.6, where T replaces the uniaxial stress T2). In the case of
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Fig. 5.7. Periodic multilayer structure and representative cell.
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Fig. 5.8. Bifurcation logarithmic strain for a periodic multilayer in which the
representative cell is made of three layers jointed through an imperfect interface and
externally bonded to a smooth undeformable substrate. The representative cell analysed
to model a periodic multilayer is made of J2-deformation theory material and is loaded
under plane-strain uniaxial compression.

perfect bonding, bifurcation is impossible when k̄h < 1.1 and the interface
instability (T/µ = −1.9216) is approached when k̄h → ∞. When the
interfacial compliance increases, the bifurcation load reduces, and the single
layer solution [18] is recovered in the limit case of complete separation. The
case of compression for J2-deformation theory material is analysed for the
values Ka/Kb = 2, Na = 0.4, Nb = 0.1 (Fig. 5.8). In all cases, a portion
of the curves falls beyond the loss of ellipticity threshold. This portion, in
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which homogeneous deformation is terminated by strain localization in the
weaker layer, becomes larger as the interface becomes stiffer.

5.4 Bending of Elastic Multilayers with Imperfect
Interfaces

In this section we consider elastic multilayers subject to finite flexure, in
which the different layers are jointed with imperfect interfaces allowing for
full transmission of normal traction and imperfect transmission of shear
traction, which are linearly related to a possible jump in the tangential
incremental displacement. These conditions are again given by Eqs. (5.14),
written now in a cylindrical coordinate system, but with normal stiffness
Sr → ∞. Note that such an interface is not ‘activated’ during finite
bending of a multilayer (since shear tractions are not present at the
interfaces between different layers), so that the solution for finite flexure
is identical both for perfect and imperfect bonding when Sr → ∞, but the
bifurcation thresholds are strongly affected by the tangential stiffness of the
interface Sθ.

The solution for pure bending of an elastic layered thick plate (of initial
‘global’ dimensions l0×h0, see Fig. 5.9) made up of N layers jointed through
interfaces, which allow complete transmission of normal tractions, follows
from an ‘appropriate assembling’ of solutions relative to the bending of all
layers taken separately, a problem analysed by Rivlin [23]. This solution

h
(1

)

h(3)
0

l 0

θ
θ

e r

r

e θ

x1x0
1

x2

h
(2

) h
(3

)

r
i

h

x0
2

h(2)
0h(1)

0

h0

Reference
configuration

Deformed
configuration

xx0

Fig. 5.9. Sketch of a generic layered elastic thick plate subject to finite bending.
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is now briefly explained, with reference to a generic layer (the s-th) of the
considered multilayer (see [21] for more details).

5.4.1 Kinematics

With reference to Fig. 5.9, the generic layer, denoted by the superscript
‘(s)’ (s = 1, . . . , N), is considered in the reference stress-free configuration
of a Cartesian coordinate system O

(s)
0 x

0(s)
1 x

0(s)
2 x

0(s)
3 , centred at its centroid,

with basis vectors e0
i (i = 1, 2, 3), x

0(s)
1 ∈ [−h

(s)
0 /2, h

(s)
0 /2], x

0(s)
2 ∈

[−l0/2, l0/2], and with x
0(s)
3 denoting the out-of-plane coordinate.

The deformed configuration of each layer is a sector of a cylindrical tube
of semi-angle θ̄, which can be referred to as a cylindrical coordinate system
O(s)r(s)θ(s)z(s), with basis vectors er, eθ and ez, r(s) ∈ [r(s)

i , r
(s)
i + h(s)],

θ(s) ∈ [−θ̄, +θ̄], and with out-of-plane coordinate z(s) (Fig. 5.9).
The deformation is prescribed so that a line at constant x

0(s)
1 transforms

to a circular arc at constant r(s), while a line at constant x
0(s)
2 remains

straight but inclined at constant θ(s). The out-of-plane deformation is null,
so that x

0(s)
3 = z(s). The incompressibility constraint means that

r
(s)
i =

l0h
(s)
0

2θ̄h(s)
− h(s)

2
, (5.34)

where h(s) is the current thickness of the circular sector, to be determined.
The deformation is described by the functions

r(s) = r(s)(x0(s)
1 ), θ(s) = θ(s)(x0(s)

2 ), z(s) = x
0(s)
3 , (5.35)

so that the deformation gradient takes the form

F (s) =
dr(s)

dx
0(s)
1

er ⊗ e0
1 + r(s) dθ(s)

dx
0(s)
2

eθ ⊗ e0
2 + ez ⊗ e0

3, (5.36)

and we can therefore identify the principal stretches as

λ(s)
r =

dr(s)

dx
0(s)
1

, λ
(s)
θ = r(s) dθ(s)

dx
0(s)
2

and λ(s)
z = 1. (5.37)

Imposition of the incompressibility constraint with Eq. (5.35) yields

r(s) =

√
2

α(s)
x

0(s)
1 + β(s), θ(s) = α(s)x

0(s)
2 , (5.38)
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so that, using Eq. (5.37), the principal stretches can be evaluated as

λ(s)
r =

1
α(s)r(s)

, λ
(s)
θ = α(s)r(s) and λ(s)

z = 1, (5.39)

where α(s) and β(s) (Eq. (5.38)) are constants which can be determined
by imposing the boundary conditions, which for the s-th layer, are the
following:

• At x
0(s)
2 = ±l0/2, θ(s) = ±θ̄, which from Eq. (5.38)2, θ(s) = ±α(s)l0/2,

yield

α(s) =
2θ̄

l0
, (5.40)

where it is worth noting that α(s) is now independent of the index s;
• At x

0(s)
1 = −h

(s)
0 /2, r(s) = r

(s)
i , which from Eqs. (5.34) and (5.38)1,

r
(s)
i = r(s)(−h

(s)
0 /2), yield

β(s) = r
(s)2

i +
l0h

(s)
0

2θ̄
. (5.41)

The N layers are assumed to be imperfectly bonded to each other
as previously explained, so that continuity of the radial displacements is
preserved, and therefore the interfaces do not affect the bending solution.
Therefore, we have

r
(s)
i = r

(s−1)
i + h(s−1) (s = 2, . . . , N), (5.42)

with r
(1)
i given by r

(1)
i = l0h

(1)
0 /(2θ̄h(1))−h(1)/2 (see Eq. (5.34)). Repeated

use of Eqs. (5.34) and (5.42) can be employed to express all thicknesses
h(s) (s = 2, . . . , N) in terms of the thickness of the first layer h(1), which
remains the sole kinematical unknown of the problem. In particular, since
Eq. (5.42) is imposed at each of the N − 1 interfaces between layers,
all radial coordinates r(s) share the same origin O of a new cylindrical
coordinate system Orθz, common to all deformed layers (Fig. 5.9 on the
right); therefore, the index s on the local current coordinates will be omitted
in the following, so that the deformed configuration of the multilayer will be
described in terms of the global system Orθz. From the kinematic analysis,
all the stretches are obtained in the multilayer and represented as

λr =
l0

2θ̄r
, λθ =

2θ̄r

l0
and λz = 1; (5.43)



June 8, 2013 13:44 9in x 6in Mathematical Methods and Models in Composites b1507-ch05 2nd Reading

192 D. Bigoni, M. Gei and S. Roccabianca

moreover, the current thickness of the s-th layer h(s) becomes a function of
h(s−1), namely

h(s) = − l0h
(s−1)
0

2θ̄h(s−1)
− h(s−1)

2
+

√√√√( l0h
(s−1)
0

2θ̄h(s−1)
+

h(s−1)

2

)2

+
l0h

(s)
0

θ̄

(s = 2, . . . , N). (5.44)

We may conclude that all current thicknesses are known once the thickness
of the first layer h(1) is known (and this will be determined from the solution
of the boundary-value problem described in the following section).

5.4.2 Stress

Let us analyse now the stress state within the multilayer and consider that
the Cauchy stress tensor in a generic layer s can be written as

T (s) = T (s)
r er ⊗ er + T

(s)
θ eθ ⊗ eθ + T (s)

z ez ⊗ ez, (5.45)

where, from the constitutive equations (5.2),

T (s)
r = −π(s) + λr

∂W (s)

∂λr
, T

(s)
θ = −π(s) + λθ

∂W (s)

∂λθ
, (5.46)

T (s)
z = −π(s) +

∂W (s)

∂λz

∣∣∣∣
λz=1

.

Since the stretches only depend on r, the chain rule of differentiation

d ·
dr

=
∂ ·
∂λr

dλr

dr
+

∂ ·
∂λθ

dλθ

dr
, (5.47)

together with Eqs. (5.46) and the derivatives of stretches with respect to r

(calculated from Eq. (5.39)), can be used in the equilibrium equations

∂T
(s)
r

∂r
+

T
(s)
r − T

(s)
θ

r
= 0,

∂T
(s)
θ

∂θ
= 0, (5.48)

to obtain the identities

dW (s)

dr
= −T

(s)
r − T

(s)
θ

r
=

dT
(s)
r

dr
. (5.49)
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Therefore, identifying λθ with λ, for a Mooney–Rivlin material
(Eq. (5.9)), we arrive at the expressions

T (s)
r = Ŵ (s) + γ(s) =

µ
(s)
0

2

(
λ2 +

1
λ2

)
+ γ(s),

T
(s)
θ =

(
λŴ (s)

)′
+ γ(s) =

µ
(s)
0

2

(
3λ2 − 1

λ2

)
+ γ(s),

(5.50)

where Ŵ (s)(λ) = W (s)(1/λ, λ, 1), γ(s) is an integration constant and ()′

denotes differentiation with respect to the stretch λ. The component T
(s)
z

can be inferred from Eq. (5.46).
Constants γ(s) (s = 1, . . . , N) and thickness h(1) can be calculated

by imposing: (i) continuity of tractions at interfaces between layers (N −
1 equations) and (ii) traction-free boundary conditions at the external
boundaries of the multilayer (two equations). Considering N layers, the
traction continuity at the interfaces is

T (s−1)
r (r(s−1)

i + h(s−1)) = T (s)
r (r(s)

i ) (s = 2, . . . , N), (5.51)

while null traction at the external surfaces of the multilayer yields

T (1)
r (r(1)

i ) = 0, T (N)
r (r(N)

i + h(N)) = 0. (5.52)

Therefore, γ(N) can be calculated from Eq. (5.52)2 and specified for a
Mooney–Rivlin strain-energy function as

γ(N) = −µ
(N)
0

2

[
(αr(N)

e )2 +
1

(αr
(N)
e )2

]
, (5.53)

while employing Eq. (5.51), the following recursive formulae are obtained

γ(s−1) =
µ

(s)
0 − µ

(s−1)
0

2

[
(αr(s−1)

e )2 +
1

(αr
(s−1)
e )2

]
+ γ(s) (s = 2, . . . , N),

(5.54)

where r
(s)
i = r

(s−1)
e (see Eq. (5.42)).
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Considering now Eq. (5.52)1 and evaluating γ(1) from Eq. (5.54) written
for s = 2, we obtain an implicit expression to be solved for h(1)

µ
(1)
0

2

[
(αr

(1)
i )2 +

1

(αr
(1)
i )2

]
+

µ
(2)
0 − µ

(1)
0

2

[
(αr(1)

e )2 +
1

(αr
(1)
e )2

]
+ γ(2) = 0,

(5.55)

in which r
(1)
i , r

(1)
e and γ(2) are all functions of h(1), through Eqs. (5.44) and

(5.54).
The obtained solution allows determination of the complex stress and

strain fields within a thick, multilayered plate, when subject to finite
bending. For instance, we show in Fig. 5.10 the deformed geometries
for a four-layer structure (with l0/h0 = 1, thickness ratios: h

(b)
0 /h

(a)
0 = 2,

h
(c)
0 /h

(a)
0 =3 and h

(d)
0 /h

(a)
0 =4 and stiffness ratios: µ(a)/µ(d) =27,

µ(b)/µ(d) = 9 and µ(c)/µ(d) = 3), together with graphs of the dimensionless
Cauchy principal stresses Tr(r)/µ(a) (the transverse component) and
Tθ(r)/µ(a) (the circumferential component).

Note that the transverse stress is always compressive, while the
distribution of Tθ(r) strongly depends on the stiffness of the layer under
consideration and always has a null resultant, so that it is equivalent to the
bending moment loading the plate. For all cases, the neutral axis (the line
corresponding to vanishing circumferential stress) is drawn. Note that in
the sketch on the right two neutral axes are visible, an interesting feature,
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Fig. 5.10. Undeformed and deformed shapes and internal stress states for finite bending

of a Mooney–Rivlin four-layer structure with l0/h0 = 1, thickness ratios: h
(b)
0 /h

(a)
0 = 2,

h
(c)
0 /h

(a)
0 = 3 and h

(d)
0 /h

(a)
0 = 4 and stiffness ratios: µ(a)/µ(d) = 27, µ(b)/µ(d) = 9 and

µ(c)/µ(d) = 3. Dashed lines represent the neutral axes. Note that two neutral axes are
visible in the figure on the right.
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which may occur, depending on the geometry and on the properties of
layers, for a multilayered plate under finite bending (see [22] for details).

5.4.3 Incremental bifurcations superimposed on finite

bending of an elastic multilayered structure

We address in this section the plane-strain incremental bifurcation problem
of the multilayered thick plate subject to the previously solved (Section 5.4)
finite bending deformation. For simplicity we consider the problem of a
bilayered structure made of Mooney–Rivlin material, but consideration
of additional layers or different constitutive equations is straightforward.
The incremental equilibrium is again expressed in terms of the updated
incremental first Piola–Kirchhoff stress Σ by

divΣ = 0, (5.56)

where Σ is given by Eq. (5.5) in terms of the gradient of incremental
displacements L, which in cylindrical components can be written as

L = ur,rer ⊗ er +
ur,θ − uθ

r
er ⊗ eθ + uθ,reθ ⊗ er +

ur + uθ,θ

r
eθ ⊗ eθ,

(5.57)

and is subject to the constraint trL = 0 (incremental incompressibility),
namely,

rur,r + ur + uθ,θ = 0. (5.58)

The linearized constitutive equation is given by Eq. (5.6) and for a
Mooney–Rivlin material, the components of C can be written as functions of
two incremental moduli, denoted by µ and µ∗, Eq. (5.10), and depending on
the value of the current strain. In cylindrical coordinates, the non-vanishing
components of C are [18,45]

Crrrr = Cθθθθ = 2µ∗ + p, Cθrθr = µ − Γ,

Crθrθ = µ + Γ, Crθθr = Cθrrθ = µ + p,
(5.59)

where Γ and p are given by

Γ =
Tθ − Tr

2
, and p = −Tθ + Tr

2
, (5.60)
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describing the state of prestress. Therefore, the incremental constitutive
equations (5.6) take, for each layer, the explicit form

Σrr = −π̇ + (2µ∗ + p)ur,r,

Σθθ = −π̇ + (2µ∗ + p)
ur + uθ,θ

r
,

Σrθ = (µ + Γ)
ur,θ − uθ

r
+ (µ + p)uθ,r,

Σθr = (µ + p)
ur,θ − uθ

r
+ (µ − Γ)uθ,r.

(5.61)

We seek bifurcations represented by an incremental displacement field
in the form 


ur(r, θ) = f(r) cos nθ,

uθ(r, θ) = g(r) sin nθ,

π̇(r, θ) = k(r) cos nθ,

(5.62)

so that Eq. (5.58) can be reformulated as

g = − (f + rf ′)
n

, (5.63)

and the incremental equilibrium equations as

k′ = Df ′′ +
(

C,r + D,r +
C + 2D

r

)
f ′ +

E(1 − n2)
r2

f,

k =
r2C

n2
f ′′′ +

F + 3C

n2
rf ′′ +

(
F

n2
− D

)
f ′ − 1 − n2

n2

F

r
f,

(5.64)

where coefficients C, D, E and F can be expressed (for a Mooney–Rivlin
material) as

C = µ − Γ =
µ0

λ2
, D = 2µ∗ − µ =

µ0

2
λ4 + 1

λ2
,

E = µ + Γ = µ0λ
2, F = rC,r + C = −µ0

λ2
.

(5.65)

By differentiating Eq. (5.64)2 with respect to r and substituting the
result into Eq. (5.64)1, a single differential equation in terms of f(r) is
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obtained

r4f ′′′′ + 2r3f ′′′ − (3 + n2(λ4 + 1))r2f ′′

+(3 + n2(1 − 3λ4))rf ′ + (n2 − 1)(3 + n2λ4)f = 0,

(5.66)

defining the function f(r) within a generic layer. Once f(r) is known
for each layer, the other functions, g(r) and k(r), can be calculated by
employing Eqs. (5.63) and (5.64)2, respectively, so that function f(r)
becomes the primary unknown.

The differential Eq. (5.66) for the functions f (s)(r) (s = 1, . . . , N) is
complemented by the following boundary conditions:

• Continuity of incremental tractions at interfaces:

Σ(s)
rr

∣∣∣
r=r

(s)
e

= Σ(s+1)
rr

∣∣∣
r=r

(s+1)
i

, Σ(s)
θr

∣∣∣
r=r

(s)
e

= Σ(s+1)
θr

∣∣∣
r=r

(s+1)
i

; (5.67)

• Continuity of the radial component of the incremental displacement at
the interfaces:

u
(s)
r

∣∣∣
r=r

(s)
e

= u
(s+1)
r

∣∣∣
r=r

(s+1)
i

; (5.68)

• Imperfect ‘shear-type’ interface (obtained from Eq. (5.14) taking Sr →
∞)

Σ(s)
θr

∣∣∣
r=r

(s)
e

= Sθ

(
u

(s+1)+

θ − u
(s)−

θ

)
, (5.69)

where Sθ is a positive shear stiffness coefficient, so that perfect bonding
is recovered in the limit Sθ → ∞;

• For dead-load tractions on the external surfaces, the boundary conditions
at r = r

(1)
i and r = r

(N)
e are

Σ(1),(N)
rr

∣∣∣
r=r

(1)
i ,r

(N)
e

= 0, Σ(1),(N)
θr

∣∣∣
r=r

(1)
i ,r

(N)
e

= 0. (5.70)

On the boundaries θ = ±θ̄ we require that shear stresses and
incremental normal displacements vanish

Σ(s)
rθ

∣∣∣
θ=±θ̄

= 0, u
(s)
θ

∣∣∣
θ=±θ̄

= 0, (5.71)
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a condition which is achieved if sinnθ̄ = 0 (see Eq. (5.62)) or equivalently
using Eq. (5.40), if

n =
2mπ

αl0
(m ∈ N). (5.72)

5.4.4 An example: bifurcation of a bilayer

The critical angle θ̄cr and the critical stretch λcr (on the compressive side
of the specimen) for a bilayer at bifurcation are shown in Fig. 5.11 as
functions of the aspect ratio l0/h0 (the unloaded height of the specimen is
l0 and global thickness is h0, see Fig. 5.9), for the thickness and stiffness
ratios h

(lay)
0 /h

(coat)
0 = 10 and µ(coat)/µ(lay) = 20, respectively. In the figure,

bifurcation curves are shown for different values of the integer parameter
m which, through Eq. (5.72), defines the circumferential wave number n.
Obviously, for a given value of l0/h0 the bifurcation threshold is set by the
value of m providing the minimum (or maximum) value of the critical angle
(or stretch).

In the same figure, the threshold for surface instability of the ‘soft’
layer material (λsurf ≈ 0.545 [4]) is also shown. It can be deduced from
the figure that a diffuse mode, which set the bifurcation thresholds, always
exists before surface instability for each aspect ratio l0/h0. It is important
to observe that the occurrence of the critical diffuse mode is very close
to the surface instability when the coating is located on the tensile side
of the specimen (Fig. 5.11). The critical angle at bifurcation is given in
Fig. 5.12 as a function of the aspect ratio l0/h0, for two values of the
coating thickness, h

(lay)
0 /h

(coat)
0 = {10, 20}, and when the coating layer is

on the tensile side. In the same figure, results for the uncoated layer are
also shown for comparison.

It is evident from the figures that the bifurcation solution for a
single layer is approximated by a straight line, so that we can define an
approximate solution

θ̄cr = 0.712 l0/h0, (5.73)

which is very useful for applications. We may also notice that a linear
relation between θ̄cr and l0/h0 is found for the bilayer (Figs. 5.11, 5.12
and 5.16); however, the inclination of such lines depends on the elastic and
thickness contrasts between the layer and coating, so that it is difficult to
obtain a simple formula like Eq. (5.73) in this case.

The effects of an imperfect interface on bifurcations of a layered block
under bending have never been analysed, so we limit the discussion to a
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Fig. 5.11. Critical angle θ̄cr and critical stretch λcr (evaluated at the internal boundary,

r = r
(1)
i ) versus aspect ratio l0/h0 of a Mooney–Rivlin coated bilayer subject to bending

with h
(lay)
0 /h

(coat)
0 = 10 and µ(coat)/µ(lay) = 20. The coating is located on the tensile

side of the structure. In both plots, a small circle denotes a transition between two
different integer values of m (the parameter which sets the circumferential wave number).



June 8, 2013 13:44 9in x 6in Mathematical Methods and Models in Composites b1507-ch05 2nd Reading

200 D. Bigoni, M. Gei and S. Roccabianca

(coat) (lay)/ =20
coated layer:

h / =200
(lay) (coat)h0

h / =100
(lay) (coat)h0

0 2 4 6 8 10

annular configuration

0

0.5

1

1.5

2

2.5

3

θ

θ

3.5

1 3 5 7 9

uncoated
layer

m=9 m=10
m=10

8

9

7

6

5

3

2

4

1

cr

l /h0 0

Fig. 5.12. Comparison between the critical angle θ̄cr at bifurcation versus aspect ratio
l0/h0 of two Mooney–Rivlin coated bilayers subject to bending with the coating on

the tensile side of the structure, with µ(coat)/µ(lay) = 20 and h
(lay)
0 /h

(coat)
0 = 10

and 20, respectively. On each curve, a small symbol denotes a transition between two
different integer values of m (the parameter which sets the circumferential wave number).
Bifurcation angles for a single, uncoated layer are also shown.

simple situation, while a more detailed presentation will be the subject
of future research. The simple example analysed in Figs. 5.13 and 5.14
pertains to a uniform elastic block divided into two identical layers through
an imperfect interface of stiffness Sθ and Sr → ∞. Results presented
in Figs. 5.13 and 5.14 are in terms of the critical bending angle for
bifurcation θ̄cr versus the initial ‘global’ aspect ratio l0/h0, as a function
of the dimensionless interfacial stiffness parameter Sθh0/µ0. Results for
several values of this parameter (ranging between 0 and 1000) are shown
in Fig. 5.13, while those results for only two (namely, 0 and 10) are shown
in Fig. 5.14.

Only the smallest circumferential number m = 1 was considered for
Fig. 5.13, so that θ̄ is not always ‘critical’, since for low values of the aspect
ratio l0/h0 the onset of instability is associated with higher values of m.

A general conclusion that can be drawn from the results shown in
Figs. 5.13 and 5.14 is that the bifurcation threshold strongly depends on the
dimensionless parameter Sθh0/µ0, which yields an important decrease in
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a ‘shear-type’ imperfect interface of dimensionless stiffness Sθh0/µ0. Perfect bonding

corresponds to Sθh0/µ0 → ∞.

the bifurcation angles with respect to the perfectly bonded case, approached
when Sθh0/µ0 → ∞.

5.4.5 Experiments on coated and uncoated rubber blocks

under bending

To substantiate the theoretical results for the bifurcation of layered
structures subject to finite bending, Roccabianca, Bigoni and Gei [21,22]
designed and performed experiments, similar to those initiated by Gent
and Cho [46,47]. In these experiments, a finite flexure was imposed on
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onset of bifurcation

Fig. 5.15. Left: Device used to impose a finite bending (of semi-angle θ̄ equal to 35◦
in the photo). Right: Bifurcation of a 20 × 4 × 100 mm3 rubber block, coated with two
polyester 0.2mm thick films on the tensile side. Top: Onset of bifurcation (θ̄ = 40◦,
creases become visible). Lower: Post-bifurcation pattern (θ̄ = 50◦, creases invade the
whole specimen).
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(lay)
0 /h

(coat)
0 = 20) corresponding to bifurcation points Ωi (i = 1, . . . , 5) are

sketched the right on the figure.

uncoated and coated elastic blocks (made of natural rubber), glued to two
metallic platelets, which were forced to bend by a simple screw loading
device (Fig. 5.15 left; see also [21]).

Different coatings and blocks were tested. Bending results for three
uncoated rubber strips (made of natural rubber with a ground-state shear
modulus µ(lay) ∼= 1 N/mm2) and ten coated strips of the same dimensions
with two types of coating (both made of a polyester transparent film
having µ(coat) ∼= 500N/mm2 but with different thicknesses), all situated
on the tensile side of the structure, are shown in Fig. 5.16. At a certain
stage of finite bending, namely at a certain bending semi-angle θ̄cr,
creases can be detected on the surface of the sample, as in Fig. 5.15
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on the right (and in Fig. 5.1 in the centre). This has been identified
with the appearance of small wavelength bifurcations and compared with
theoretical predictions for uncoated layers and for a layer with a stiff
coating on the tensile side of the specimen, in terms of the critical bending
semi-angle (θ̄cr) at bifurcation versus the aspect ratio of the samples,
Fig. 5.16. Experiments demonstrate that the trend predicted by the
theory is qualitatively very well followed, while quantitatively experimental
values for bifurcation angles are often a bit lower than the theoretical
predictions, a result consistent with observations by Gent and Cho [46]. The
fact that experimental results substantiate theoretical predictions allows
us to conclude that bifurcation theory can be successfully employed to
predict the deformational capabilities of a composite plate subject to finite
bending.

In the case when the coating is applied to the compressed side,
long wavelengths become visible in the experiment, as qualitatively
demonstrated in Fig. 5.1 on the right (see also [22]), while quantitative
evaluation still requires further investigation.

5.5 Conclusions

The load-carrying capacity of laminated structures is often limited by the
occurrence of various instabilities at different structural levels. Among
these, delamination is the best known. Accordingly, there is a large
literature where bifurcations and instabilities of multilayers are analysed
from a variety of perspectives.

We have shown that the theory of incremental bifurcation of prestressed
elastic solids, in which each layer is treated as an elastic non-linear
continuum and plate-like approximations are not introduced, can be
effectively used to find threshold loads for delamination involving complex
bifurcation modes. The presented framework is broad enough to include
several constitutive laws modelling the mechanical response of (i) the
interfaces (for instance spring-like or shear-type junctions) and (ii) the
layers (for instance Mooney–Rivlin and J2-deformation theory of plasticity
materials).

The bifurcation analysis, carried out for different deformation paths
including finite tension/compression of straight layers and finite bending,
reveals a number of different instabilities that may occur in a multilayer,
including Euler buckling, necking, surface instability and various wave-like
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modes. The occurrence of one or another form of instability is strongly
related to the interfacial conditions between the layers.
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