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Abstract. Mode 1T fracture propagation is analyzed in a J»-flow theory elastoplastic material characterized by a
mixed isotropic/kinematic law of hardening. The asymptotic stress, back stress and velocity fields are determined
under small-strain, steady-state, fracture propagation conditions. The increase in the hardening anisotropy is shown
to be connccted with a decrease in the thickness of the elastic sector in the crack wake and with an increasc of
the strength of the singularity. A second order analytical solution for the crack fields is finally proposed for the
limiting case of purc kinematic hardening. It is shown that the singular terms of this solution correspond to fully
plastic ficlds (without any elastic unloading sector), which formally are identical to the leading order terms of a
crack steadily propagating in an elastic medium with shear modulus equal to the plastic tangent modulus in shear.

1. Introduction

There is no need to emphasize the conceptual and practical importance of the ./,-flow theory
of plasticity. In the context of fracture mechanics, it may be noted that, since the appearance of
the fundamental works by Hutchinson [1, 2] and Rice and Rosengren [3], where a stationary
crack was analyzed adopting the .J,-deformation theory of plasticity, a number of solutions of
fracture problems have been obtained for .J,-type elastoplastic materials. As a matter of fact,
even if the discussion is confined to asymptotic solution of steady-state, rectilinear fracture
propagation problems, many contributions should be mentioned. In particular, fracture growth
in perfectly plastic material was analyzed under mode III [4] and mode I, II [5, 6] (see the
discussion by Rice [7]). In the case of linear isotropic hardening, Ponte Castafieda [8] was
successful in generalizing the asymptotic analysis of Amazigo and Hutchinson [9] by including
plastic reloading on crack flanks. Inspired by his solving technique, the authors have obtained
solutions for fracture propagation in materials characterized by pressure-sensitive yielding
with isotropic hardening [10-12] and, quite recently, with anisotropic hardening [13]. Despite
the importance of employing an anisotropic hardening law to model the Bauschinger effect,
which is commonly exhibited by ductile metals and alloys, the only available asymptotic
solution for crack propagation in a material characterized by the J;-flow theory with mixed
isotropic/kinematic hardening is due to Zhang et al. [14], who analyzed mode I propagation.
These results can be obtained as a particular case of a porous elastoplastic solid analyzed by
the authors in [13], to which the interested reader is referred. However, an asymptotic solution
for mode I1I is still lacking; this is obtained in the present paper.

We give the asymptotic solution for a crack propagating steadily under antiplane shearing
conditions in a material obeying the .J,-flow theory of plasticity with a linear combination of
isotropic and kinematic hardening. We seek the first order solution in the separable-variable
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form proposed in [9], which, in addition to stress and velocity fields, is extended to represent
the internal variables governing the hardening behaviour.

We take into account elastic unloading and subsequent plastic reloading in the crack wake
by using the technique proposed in [8]. This can be considered appropriate under the hypothesis
of the infinitesimal theory, where the trajectories of the material points, with respect to the
crack tip, can be approximated as rectilinear.

The results obtained are consistent with the finite element simulation of mode III crack
growth of Narasimhan et al. [15] and show that the kinematical component of hardening plays
an important role on the crack-tip field. Among other effects of the hardening anisotropy,
we note that the solution tends to a solution corresponding to a crack steadily propagating in
an elastic medium in the limiting case of pure kinematic hardening. Aiming to clarify this
issue, we solve analytically the case of pure kinematic hardening, employing a higher order
representation of crack-tip fields. In this limiting case, it is shown that no elastic unloading
occurs in the crack wake. Moreover, the most singular crack-tip fields are identical to the
corresponding fields of a crack propagating in an isotropic elastic medium having shear
modulus equal to the plastic tangent modulus in shear. The solution represents the first effort
to obtain a second order solution for crack-propagation in elastoplasticity.

2. Constitutive model

The J»-flow theory of plasticity is based on the constitutive assumptions which are summarized
in this section. Yielding can occur for stress states lying on the von Mises yield surface

f(G,k) = 3|deve]? — o2 = 0, (1)

where dev is the linear operator which associates to any second order tensor its deviatoric
component (VX € Lin, devX = X — (tr X)I/3, Lin being the set of second order tensors and
tr denoting the trace), o, is the yield stress under unixial tension proportional to the radius of

the current yield surface by a factor \/g , and & is the reduced stress tensor
g=0g-—a«, (2)

namely, the difference between the stress o and the back stress c.
When the stress state satisfies the yield condition (1), the hardening variables o. and «
have the following evolution laws

(devé-a) .

. (devé-6)
= p o, 4
7 |dev & |? Te: @

where & is the stress rate, and b € [0, 1] is the parameter governing the mixity of hardening,
ie. b = 0and b = 1 correspond to the extreme cases of pure kinematic and pure isotropic
hardening. The Macaulay brackets () denotes the operator & — R1 U {0},Vz € R,(z) =
(z+ |z])/2.

It should be noted that the Prager [16] and Ziegler [17] hardening rules coincide in the
present context, where the von Mises yield function and the associative flow rule have been
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Figure 1. Isotropic and kinematic hardening modcls: uniaxial stress-strain response in shear.

adopted. Moreover, Prager consistency [18] is automatically satisfied by (3) and (4), which
represent a linear combination of isotropic and kinematic hardening.
The total deformation rate is the sum of the elastic and plastic parts

£ =&+ E7, (5)

and the incremental elastic and plastic constitutive laws are

2GE¢ = & — (tro), ()

14+ v

1—a(devo.o)

2GEP = devao, @)

|dev &|?
where v is the Poisson ratio and « is the ratio of the tangent modulus in shear G to the elastic
shear modulus . The coefficient o is assumed constant and strictly positive (strain softening
and perfectly plastic behaviors are excluded) and can be directly related to the response of
material in pure shear (Figure 1).
Equations (1), (3-8), completely specify the elastoplastic material behavior.

3. Mode III propagation

We consider a mode III rectilinear fracture growth problem, in which a crack propagates at
constant velocity in an infinite medium. The medium is characterized by the .J-flow theory of
plasticity with linear mixed isotropic/kinematic hardening. In a cylindrical coordinate system
r, 4, 3, moving with the crack tip towards ¥ = 0 and having the z3-axis directed along the
straight crack front, the only non zero stress, back stress and velocity components are, in
antiplane shearing, 03,, 039, &3,, @39 and v3. Therefore, the stress and back stress tensors are
deviatoric, i.e.: devo = o, deveo = o.

3.1. FIELD EQUATIONS

Under mode 11T loading conditions, the quasistatic equilibrium equations reduce to

r03r + 0399 + 03, = 0, (8)
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and the constitutive equations (3—~7) to

2G5, = 63 + (@™ = 13, 2Gég = d39 + (™" = 1)asg, ©)
(.‘/3'r = 7(1 - b)&37“7 Gy = 7(1 - b)&379’ oo = b’)’CTC, (10)
where
_ <03rc~r3zr + 73;”3”- (11)
0379 + 0”3_7'

The strain rate components are related to the out-of-plane velocity through the kinematic
compatibility conditions

1

. l .

£3, = FV3r, €39 = 5-U39. (12)
2r

The steady-state condition yields the following time derivative rule, for stress rates

. c .
o3 = [(03r0 — 039) sin ¥ — ros,, cos V],
c (13)
O3y = " [(o39,9 + 03:) sin ¥ — royg, cos V],
and for the rates of hardening variables
. C : ¢ :
G = ~ (o309 — a3g) sin ¥ — ras,, cos 9],
, ¢ . ,
a3 = [(a39.9 + a3,) sin ¥ — razg,, cos 9], (14)
. ¢ . . a°
G = — (0¢9 sin ¥ — ro., cos 9),
7 ’

where ¢ is the (constant) crack-tip speed.

Equations (12-14) can be substituted into (9) and (10) to obtain, together with (8), a system
of six PDEs for the six unknowns functions o3, 01y, v3, @3,, @34, and o.. The PDEs system
can be reduced to a system of ODEs when a solution is sought of the separable variable form
proposed in |9]

r

) P 8 S i
rr )= G (5) T )= G (3) o)

asy(r, ) =G (75) A (), aszg(r,d) =G (é) Ag (), (15)

wr) =S (5) w) adni=<(5) T
B 8

where s is the exponent of the fields singularity and B denotes any characteristic dimen-
sion of the plastic zone. Having assumed the representations (15), the angular functions
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T, Ty, w, A, Ay, T and the field singularity s become the unknowns of the problem (the
present asymptotic problem is homogeneous and thus the amplitude factor B remains undeter-
mined). The representations (15) may be considered the most singular term in an asymptotic
expansion of the near crack-tip fields.

By substituting (12-14) into (8-10) and employing the representation (15), we obtain the
final system of ODEs

Tow = =(1 + )T, (16.1)
1,5 sin ¥ =Ty sin ¥ + sT, cos # + X, (16.2)
A~
wy =5 (E@ + }—Tﬂ) , (16.3)
)
Apg sin 9 = Ay sin 9+ sA, cos ¥+ A(1 — b)T, (16.4)
Aggsind = —A, sin 94 sAy cos 9+ M1 —b)Ty, (16.5)
T, sin ) = (scos J+ Ab)T,, (16.6)
where
Tﬂ =Ty~ Aﬂa Tr =T, - A'r: (17)
- - 2oy —1
AT T, AT?
Yy = —s(T; sin 9 + Ty cos ), 3, = (w % T; Eg) (1 + h-{?) , (18)
h=_% (19)
1 —a

and parameter A is defined in such a way that the plastic loading and elastic unloading
conditions are automatically accounted for, i.e.

[ .3, . ah e 5
A :3@t—>, if 3(T24+7T3)-T2=0, (20.1)
whereas
A=0, if 3(T?24+T3)-1%<0. (20.2)

With definition (20), Eqns. (16) become valid for plastic loading, neutral loading and elastic
unloading. In (16), the singularity coefficient s is unknown and is to be determined as an
eigenvalue of the nonlinear problem.

3.2. BOUNDARY CONDITIONS

In order to solve system (16) for the unknown angular functions 1, Ty, w, A,, Ay, and 7,
the mode III boundary conditions are necessary. These are

a3.(r,0) = v3(r,0) = 0, a3g(r,m) =0, 21)
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or, in terms of angular functions
T,(0) = w(0) =0, Te(m) = 0. (22)

The initial boundary conditions on A,, Ay and T, can be obtained by evaluating (16.4—
16.6) at ¥ = 0. In fact, since plastic loading occurs ahead of the crack tip, T¢(0) does not
vanish at ¥ = 0, so (16.6) yields

A(0) = ,%_ (23)
Hence a substitution of (23) into (16.4) and (16.5), both evaluated at ¥ = 0, yields
A(0)=(1-0)T.(0)=0,
) = (1-0)T:(0) "

Ag(0) = (1 = b)Ty(0),

which define the boundary conditions on A, and Ay as functions of the values assumed by
the stress at ¥ = 0. Finally, 7..(0) can be obtained by (1), using representation (15)

T.(0) = V3[T5(0) — Ag(0)] = bV3T(0). (25)

In order to avoid the trivial solution (the differential problem (16), with boundary conditions
(22), is homogeneous), we assume T9(0) = 1. Therefore, Ay(0) is known from (24). A
numerical integration of (16) can be preformed with a tentative value of s, which can be made
precise by iterating on the basis of a check on (22.2).

3.3. VALUES OF ANGULAR FUNCTIONS FOR SMALL 9

Due to the term sin 7 multiplying the highest derivative term in (16.2) and (16.4-16.6), system
(16) is singular at ¥ = 0 and at ¥ = 7. The problem caused by the singularity at 7 can be
easily overcome, noting that T is well-behaved near 7, and observing that the system of
PDEs can be integrated to © — ¢, where ¢ can be made as small as needed to obtain accurate
results. In order to avoid the difficulty at ¥ = 0, the integration has to be started at ¢ 4 ¢, with
¢ sufficiently small. This is possible if all angular functions are known at J = ¢. These values
of angular functions can be obtained through a Taylor series expansion at the origin. For this
purpose, we need the values of the derivatives of angular functions evaluated at ) = 0. From
(16.1) and (16.3) the following two derivatives can be readily obtained
&2

Ty,9(0) =0, w(0) = - (26)
If we differentiate with respect to ¥ both members of (16.2), (16.4), (16.5), and of (1),
transformed with (15), and evaluate the resulting functions at ¥ = 0, we obtain

T,9(0) = 1+ s2=5,

Ars(0) = (1=0) (14 :25)
Ags(0) = 0,

Te9(0) = 0.

[l

(27)
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crack-tip

Figure 2. Plastic and elastic unloading sectors near a growing crack tip and loading history of a generic material
point.

A Taylor series expansion of angular functions ahead of the crack tip yields the following
values of functions at J = ¢

Ty(e) = 1+ ofe),

T.(e}y = T, 5(0) + o(e),
w(e) = ewy(0)+ o(e).
Agle) = 1 =b+o(e),

A, (e) = €A 9(0) + o(e),
Tu(e) = v/3b+ole),

(28)

where the values of the dertvatives at = 0 are known from (26) and (27). It may be important
to remark that (26-28) have been obtained under the hypothesis of non-singular behavior of
angular functions at ¥ = 0. This regularity condition may be justified by using physical
arguments, as discussed in Appendix B of [19], for a similar crack propagation problem.

The numerical integration can, at this point, be performed by using the Runge-Kutta—
Verner fifth-order and sixth-order method (IMSL Library, subroutine DIVPRK), and, in order
to satisfy the boundary condition (22.2) at ¥ = m, iterations are performed by using the
medified Powell hybrid algorithm (IMSL Library, subroutine DNEQNF).

3.4, ELASTIC UNLOADING AND PLASTIC RELOADING IN THE CRACK WAKE

As in [8], the motion of the material points close to the trajectory of the crack tip can be
assumed, in the spirit of the infinitesimal theory approximation, to be rectilinear and parallel to
the crack-tip trajectory (Figure 2). A generic material point near the trajectory of the crack tip,
which experiences plastic loading, elastic unloading and, finally, plastic reloading, is singled
out by the angular coordinate ). The conditions under which elastic unloading and plastic
reloading occur for the generic material point are the standard loading/unloading conditions of
plasticity (20). Consequently, a material particle leaves the plastic loading sector, of angular
location #{, when A becomes zero. In the elastic unloading sector, the hidden variables « and
k keep the same values they had at unloading. Therefore, (16) reduces to the ODEs governing
stationary crack propagation in a linear isotropic elastic material ((16.4-16.6) simply give the
conditions & = &, = 0). Finally, plastic reloading adjacent to the crack flanks occurs at angle
115, when the yield condition (1) is satisfied.
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Table 1. Values of the singularity exponent s, elastic unloading and plastic reloading angles ¥, and ¥, for different
values of the hardening ratio: @ = 0.1,0.01 and 0.001

o 0.1 0.01 0.001
b 5 'I) 1 192 8§ 19 1 172 8 9 1 172
.00 —-0.20716 69.823 —0.07325 52874 179947 —0.02444 42916 179.837

0.80 —0.18436 80.852 179999 —-0.06334 65.069 179.821 —0.02089 55.681 179.603
0.60 —0.15920 99.596 179.804 —0.05327 84515 178.785 —0.01740 76.166 178.125
0.55 —0.15462 105.826 179318 —0.05180 90.669 177.349 —0.01690 82568 176274
0.50 —0.15226 112892 177420 —0.05197 98494 171.500 -0.01728 92524 165.129

045 —0.15519 122.482 160399 —0.06178 —0.04227
040 —0.16550 —0.09035 —0.08143
0.30 —0.18911 —0.15842 —0.15555
020 —0.22641 -0.21937 —0.21898
0.10 —0.26182 —0.27070 —-0.27190

3.5. CONTINUITY OF THE STRESS FUNCTION

It may be observed that the stress component 7. could, in principle, suffer jumps. If this were
the case, the above described solution procedure should be modified to take these possibilities
of jumps into account. However, these jumps have been exculded for elastoplastic materials
obeying the Drucker stability postulate, initially for a wide class of hardening rules [20] and
recently for any kind of non-softening hardening rules [21]. Therefore, stress jumps are a
priori excluded in the present context, and we will find in fact continuous solutions in all our
numerical results.

4. Results

The values of the field singularity s, of the elastic unloading angle ¥, and of the plastic
rcloading angle 95, are reported in Table 1 (for « = 0.1, 0.01, and 0.001), for various values
of the mixity parameter b. Note that for sufficiently small & the elastic sector vanishes. The
angular distributions of the functions 7, Ty, A,, Ay and T, are reported in Figure 3 (for
«a = 0.1) and in Figure 4 (for o = 0.001), for different values of the mixity parameter b.
Function w, divided by s, is reported in Figure 5, whereas the field singularity s and the
unloading and reloading angles are reported in Figure 6 and 7, respectively.

In the case of b = 1, the results reduce to those obtained in [8]. From tables and figures it
can be appreciated that the most evident effect of hardening anisotropy is the vanishing of the
elastic unloading sector in the crack wake. In contrast to the isotropic hardening case, when &
is small enough continued yielding occurs when the crack tip leaves the material point behind
it. This effect was noted [15], using a finite element simulation of crack growth. Moreover,
Lam and McMeeking [22] and Narasimhan et al. [15] found a radial variation of the near
crack-tip fields in the form of »*, which validates the assumption (15).

In Figure 8(a, b) (for « = 0.1 and 0.001, respectively) the stress and back stress history
is reported for a material particle at a fixed distance, say «, from the crack tip, displaying
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Figure 3. Near crack-tip angular distribution of stress T, Ty, back stress A,, Ay and current flow stress T. for
high hardening ratio o = 0.1. Different values of the mixed hardening parametcr b are considered.

isotropic (b = 1) and mixed (b = 0.1) hardening. In particular, the following relations can be
obtained from the condition of rectilinear path of the material particle

<%> = (T, cos ¥ — Ty sin 9)(sin J)™°,

73 (%) = (T, sin 9 + Ty cos #)(sin ¥)7,

(29)
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Figure 6. Variation of the stress and velocity singularity s with respect to the mixed hardening parameter b, for
different hardening coefficients @ = 0.1, « = 0.01, and o = 0.001.
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Figure 9. As for Figure 8, in the limiting case of pure kinematic hardening: leading order term.

Sl (%) — (A, cos U — Ag sin 9)(sin o))",

(30)

(,1('3'2 <%) = (A, sin ¥ 4+ Ay cos J)(sin 9)°.

Relations (29) and (30) have been used to obtain the plots of Figure 8 (o3; and «v3; have been
reported for simplicity in the figure, instead of terms on the left-hand side of (29) and (30)),
where small circles indicate the particle position at fixed angles (¢ = 0,7/4, 7 /2,37 /4 and
7). It can be observed that the material particle is in a stress-free state when it lies at an infinite
distance ahead of the crack tip (# = 0), it experiences almost proportional loading before
Y = /4, then it suffers a strongly non proportional stress history and, finally, it approaches
a finite value of stress at infinite distance behind the crack tip, for ¥ = 7 (this tendency to a
finitc value of stress on the crack flanks is clearly elucidated in [19}], and the same arguments
apply in the present context). If we consider that our asymptotic solution is known except for
an amplitude factor, Figure 9 shows impressive agreement with the numerical finite element
results of [15] (their Figure 4).

From the results above, it can be further observed that the angular stress distribution
for mixed hardening does not deviate significantly from isotropic hardening under mode I11
loading conditions. The main differences in the stress distribution occur ahead of the crack
tip, in the sector between 0° and 90°, where, for kinematic hardening, a decrease of Ty
with 9, corresponding to an increase of T, is observed. Moreover, when ¥ tends to w, 7,
approaches a negative value, as noted in [8] for isotropic hardening and in [15] for kinematic
hardening. There are however other effects related to an increase in the kinematic component
of hardening. In particular (Figure 6), the strength of the singularity (i.e. the modulus of s)
slightly decreases with b, it reaches a minimum for b around 0.5 and then it increases and
tends to the value of the elastic singularity (—0.5) in the limit & — 0. Moreover (see Figure 5),
the velocity angular function tends to increase with decreasing b at the crack flanks, and this
is consistent with the crack opening profiles obtained in [15], which suggest that the CTOD
is larger for kinematic than for isotropic hardening.
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It can be finally observed from Figures 4, 5 and 7 that the solution tends to an elastic
solution in the limit b — 0. This tendency is fully confirmed by the analytical solution
obtained in the next section.

5. Pure kinematic hardening limit

It should be noted that the formulation presented in Section 3 does not hold in the limiting
case of pure kinematic hardening, i.e. for b = 0. In this case, the yield surface translates
— without any change in dimensions — in the stress space to an infinte distance from the
origin. It can therefore be appreciated that, in this limiting case, 7,(0) and T(0) coincide
with A, (0) and Ay(0), respectively, and the first order approximation (15) is not sufficient to
represent the asymptotic solution. A higher order analysis is required, which, as suggested by
numerical results of Section 4, yields for the lcading order term, the asymptotic solution for a
crack steadily running in a linear elastic material having shear modulus (. The analysis also
provides the second order terms, resulting independent of 7. This result, which represents the
first higher order analytical solution for a crack steadily moving in an elastoplastic material,
is obtained in the following.
Instead of representation (15), we adopt the higher order representation

il V) = G _<i)sTaw)+ S+ (5) Rali)+ } .,

B B
a’3a(’,7‘7 0) = G <%> Ta(l?) + ]Ia(l)) + (%) -I)Ct’(ﬂ) + - :l 1 (31)
?)3(‘7‘7 19) — [(é)b ’UJ(:)] + 'll(ﬂ’) 1. } :

where the index « stands for r or ¥. The two singular terms in the representation of the stress
and the back stress are identical, and this is necessary to keep the reduced stress finite, in the
limit » — 0. For pure kinematic hardening (b = 0), the current yield stress ¢, is a constant.
Moreover, the reduced stress becomes

Gan(r,¥) 5 PN L
— = Dy ) - o Y )
G 9<)+(B) Ra(9) (32)
where
So=S8,—Hy,,  Ry,=R,- P (33)

A substitution of (32) into the yield condition (1) gives

3]

2482202 SR+ Seks=o0. (34)

&

at second and third order, respectively. Note that terms O(7~2*) does not enter the yield
condition at third order, because the singular term is null in representation (32). In (34), the
non-dimensional parameter k = o,/ (\/5(}') has been introduced
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When the stress fields (31.1) are substituted in the quasistatic equilibrium equation (8),
Eqn. (16.1) is recovered for the singular term, and for the second order term we obtain

519719 + 5, =0. (35)
The constitutive equations (9) and (10), for pure kinematic hardening (6 = 0) give

2Gé34 = 030 + (@7 = 1)d3,, (36)

d3oz = m((}}rd?n' + 5-319d319>5-3a- (37)

Let us assume plastic loading everywhere in the crack flanks (we will show later that in
fact this condition can always be verified). The deformation, stress, and back stress rates,
(12-14) may be written in terms of fields (31), and these expressions can be substituted into
the constitutive equation (36) and (37). Therefore, at first order, (36) gives

aw = 8, oaw g = sy, (38)
and at second order

Srg = 8o+ a” (Hog — Hy) =0, (39)

wy = (@' = 1)+ II,) sin v. (40)
Moreover, (37) at first order gives

e = (5,5, + $985)54, (41)
and at seconds order

(Hy5 — Hg)k? sin 9 = (5,9 — $9)5% sin 9 4 (5,2, + SyT9)R,,

42

(Hgg+ M)k sin @ = (5,9 — 55)5,5 sin 9 + (5,2, + Sy¥g)Ry. @
It must be noted that (42) determines the higher order terms f{r and }qug, when 5., 5y, H, and
Hg are known.

From equilibrium and constitutive equations (16.1) and (38), it can be concluded that the
angular stress and velocity functions for the singular terms coincide with the crack-tip fields in
an elastic solid having shear modulus (; and stress intensity factor K. Taking into account
the mode III boundary conditions (21) we have

K
L VB = 2w
S = » — 9
2 GV 27 (43)
v 1 )
Ty = cos —, T, = sin —, w:——sm1,
2 20 2
VU )
Np==hsin s, Ny =dcos 2. (a4)
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Equations (44), (41) and (34) determine S5, and Sy, except for the sign, which is determined
by the plastic loading condition dev ¢ -0 > 0. Therefore

- 9 ~ 9

S, = —k sin = Sg = k —. 4

sin ok 9 cos 5 45)

Note that the plastic loading condition is verified at every value of . Therefore, the zone
around the crack tip is fully plastic, without any elastic unloading sector.

By using the definition (31.1), a substitution of (45) for the stress components .5, and Sy,
into the equilibrium equation (37) gives the differential equation

Hyg+ H, =3k sin -723 (46)
Moreover, a substitution of the results in (45) into (39), gives

H,s— Il = 32ak cos g (47)
The system of ODEs (46-47) can be integrated to obtain

)
I, = Ay sin Y 4+ As cos ¥ + (2 — a)k sin %,
(48)

g

.
Iy = Ay cos ¥ — Ay sin J 4 (1 — 2a)k cos >

where A and A, are arbitrary constants. Finally, the boundary conditions (21) imply A, =
As = 0. Moreover, the second order stress function .S, and 5 can be obtained by substituting
(48) into (45), and the velocity function u can be obtained by integrating (40). Therefore the
stress, back stress and velocity fields (31) near to the crack tip become

K

V2rr

K
03y = [ il +k(G— Gt):| sin g, 039 = [

, 0
Nors: 5 + 2k(G - Gt)] cos -, (49)

K g ] .U [ K 1 ] V .

y = lm 2(1 —(J h ) = k G—2G ey 50

a3 [\/2—7r_r+ ( ¢) sin > a3y er( t) cos 2 (50)
c Ifm ] . ( . 1?)2 R,

= — | —+4+2k(G -G — -, 51

73 . [\/ﬁ + 2k( ¢) | sin 3 sin 3 &1))

where (43.2) has been used.

The form of leading order terms of fields (49-51) is identical to the leading order terms of
the linear isotropic elastic case. It is worth noting that the second order terms of fields (49-51)
are different from the linear elastic case, where terms independent of r are not present. In
particular, the stress and back stress components have the same dependence on 1 at first and
second order. The stress history of the generic particle is reported in Figure 9 for the leading
order term of the analytical solution (49), employing (29), with s = —% (o3; has been reported
in the figure, instead of terms on the left-hand side of (29)). The second order reduced stress
history of the generic particle is reported in Figure 10. In Figures 9 and 10, small circles
indicate the particle position at fixed angles (¢ = 0,7 /4,7 /2,37 /4 and 7; note that the two
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S,, 1 D,
_23_ ~g=0
k
0.5
0=m
0 ?
-0.5
-1 -0.5 0 0.5 ~ 1
S13
K

Figure 10. Reduced stress history experienced by a material particle in the limiting case of pure kincmatic hardening
(small circles denote the particle positions 9 = 0, /4, ©/2,37/4, 7).

points ¥ = Oand v = 7 coincide in Figure 9). Figure 9 is in very good agreement with Figures
8 (a) and (b). As a consequence of the fact that the section of the von Mises yield surface with
the 7-plane is a circumference, Figure 10 results as an arc of a circumference.

6. Conclusions

The asymptotic solution has been obtained for a crack steadily propagating, under antiplanar
shearing conditions in a material characterized by the J/>-flow theory of plasticity with mixed
isotropic-kinematic hardening. The solution completes the results on crack propagation in J
materials, where mode I, IT and III crack propagation solutions were known for isotropic hard-
ening [8—12], whereas only the mode I crack propagation solution was known for anisotropic
hardening [14]. Moreover, the limiting case of pure kinematic hardening has been solved,
which requires a higher order approximation of crack fields.

The results, which are in very good agreement with the finite element solution [15], show
that the anisotropic component of hardening influences in a non-negligible way the asymptotic
fields. In particular, it turns out that the elastic unloading sector in the crack wake tends to
disappear, and the strength of the singularity and the velocity in the crack wake increase,
when the anisotropic component of hardening is increased, namely, for b lower than 0.5.
These effects support the conclusion, which was motivated by finite element simulations [15],
and is now confirmed by asymptotic analysis, that isotropic hardening based models tend to
overcstimate the capacity of material to sustain stable crack growth.
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