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A weak line inclusion model in a nonlinear elastic solid is proposed to analytically
quantify and investigate, for the first time, the stress state and growth conditions of a
finite-length shear band in a ductile prestressed metallic material. The deformation is
shown to become highly focused and aligned coaxial to the shear band—a finding that
provides justification for the experimentally observed strong tendency towards rectilinear
propagation—and the energy release rate to blow up to infinity, for incremental loading
occurring when the prestress approaches the elliptic boundary. It is concluded that the
propagation becomes ‘unrestrainable’, a result substantiating the experimental
observation that shear bands are the preferential near-failure deformation modes.

Keywords: failure of ductile materials; strain localization; energy release rate;
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1. Introduction

Localized deformations in the form of shear bands emerging from a slowly varying
deformation field are known to be the preferential near-failure deformation
modes of ductile materials (e.g. Fenistein & van Hecke 2003; Bei et al. 2006;
Lewandowski & Greer 2006; Rittel et al. 2006). Therefore, shear band formation is
the key concept to explain failure in many materials and, according to its
theoretical and ‘practical’ importance, it has been the focus of an enormous
research effort in the last 30 years. From the theoretical point of view, this effort
has been mainly directed in two ways,1 namely the dissection of the specific
constitutive features responsible for strain localization in different materials2 and
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atures of strain localization occurring after its onset have scarcely been theoretically explored.
instance, there is almost nothing about post-localization behaviour. Research devoted to this
ic has been developed by Hutchinson & Tvergaard (1981), Tvergaard (1982), Petryk &
rmann (2002) and Gajo et al. (2004).
is line of research has been initiated by Rudnicki & Rice (1975) and developed in a number of
ctions (including gradient effects (Aifantis 1987; Aifantis & Willis 2005), temperature effects
oia & Ortiz 1996; Benallal & Bigoni 2004), anisotropy effects (Bigoni & Loret 1999) and yield-
tex effects (Petryk & Thermann 2002)).
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the struggle for the overcoming of difficulties connected with numerical
approaches.3 Although these problems still seem far from being definitely solved,
the most important questions in this research area have only marginally been
approached and are therefore still awaiting explanation. They are as follows.

(i) The highly inhomogeneous stress/deformation state developing near a
shear band tip is unknown from an analytical point of view (and numerical
techniques can hardly have the appropriate resolution to detail this).

(ii) It is not known if a shear band tip involves a strong stress concentration.
(iii) The fact that shear bands grow quasi-statically and rectilinearly for

remarkably long distances under mode II loading conditions, while the same
feature is not observed in the akin problem of crack growth, remains
unexplained.

(iv) Finally, and most importantly, the reason why shear bands are preferential
failure modes for quasi-statically deformed ductile materials has no
justification.

Surprisingly, analytical investigation of the above problems and even of the
stress field generated by a finite-length shear band, possibly including near-tip
singularities, has never been attempted. Moreover, shear band growth has been
considered only in a context pertaining to slope-stability problems in soil
mechanics (Palmer & Rice 1973; Rice 1973), an approach recently developed by
Puzrin & Germanovich (2005).

A full-field solution is given here for a finite-length shear band4 in an
anisotropic, prestressed, nonlinear elastic material, incrementally loaded under
mode II and revealing: stress singularity; high inhomogeneity of the deformation
and its focusing parallel and coaxially aligned to the shear band. Moreover, the
incremental energy release rate is shown to blow up when the stress state
approaches the condition for strain localization (i.e. the elliptic boundary). These
general findings are applied to the so-called ‘J2-deformation theory material’,

the most important constitutive model for the plastic response of ductile metals,5

and provide justification to the above-mentioned aspects of shear banding in
ductile materials.
3 Reviews on the numerical work developed in these years have been given by Needleman &
Tvergaard (1983) and Petryk (1997).
4 In addition to the shear band solution, we provide in appendix B the full-field solution for a finite-
length crack in a prestressed material loaded incrementally under modes I and II. This solution is
new in the case when the crack is inclined with respect to the material’s orthotropic axes and is
fundamental to the understanding of the shear band problem. Although based on the assumption
that dead loading tractions are present inside the crack to equilibrate the assumed prestress state,
this solution is interesting in itself, when used near the boundary of ellipticity loss, since it reveals
features related to the interaction between shear bands and crack tip fields, so that it may explain
experimental observations relative to crack growth in ductile materials (McClintock 1971;
Hallbäck & Nilsson 1994).
5 The finite-strain J2-deformation theory of plasticity has been proposed by Hutchinson & Neale
(1979). This theory accounts for the most important features of plastic flow in metals (except for
the possibility of elastic unloading, which is a priori ruled out) and correctly predicts the onset of
shear banding (see Hutchinson & Tvergaard 1981).
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Figure 1. Sketch of (b) a weak interface to model (a) a shear band (inspired by a deformation
band observed in dry sandstone by Sulem & Ouffroukh (2006)). The hinged quadrilateral
should be thought to have zero thickness, so that materials in contact can freely slide
incrementally along a weak surface, across which normal incremental displacement remains
continuous. Scale bar, 1 mm.
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2. The shear band model

A shear band of finite length, formed inside a material at a certain stage of
continued deformation, is a very thin layer of material across which the normal
component of incremental displacement and of nominal traction remain
continuous, but the incremental nominal tangential traction vanishes, while
the corresponding displacement becomes unprescribed (figure 1). Therefore, it
results spontaneous to model such a shear band as a weak surface along which
neighbouring materials can freely slide, but are constrained to remain in contact.
Note that this slip surface is different from a crack since it can carry normal
tractions, so that only under special symmetry conditions on the prestress state it
may behave as a crack when subjected to shear parallel to it (the so-called ‘mode
II’ loading in fracture mechanics).

Models of slip bands similar to the weak line model have been proposed in
metal plasticity (e.g. Cottrell 1953, §10) and geomechanics (Palmer & Rice 1973;
Rice 1973; Puzrin & Germanovich 2005), although the neighbouring materials
assumed in these models are free of prestress and linear elastic so that there is
no correlation between the shear band and the surrounding stress that has
generated it.

The key to the analysis of the stress/deformation fields near a shear band and
its advance under load increments is a perturbative approach similar to that
proposed by Bigoni & Capuani (2002, 2005) and Piccolroaz et al. (2006). In
particular, an infinite, incompressible, nonlinear elastic material is considered,
homogeneously deformed under the plane strain condition. According to the Biot
(1965) theory, the response to an incremental loading is expressed in terms of the
nominal (unsymmetrical) stress increment _t , related to the gradient of incremental
displacement Vv (satisfying the incompressibility constraint tr VvZ0) through the
linear relation

_t ZK½VvT�C _pI ; ð2:1Þ
where T denotes the transpose; _p is the incremental in-plane mean stress; and
the fourth-order tensor K is a function of the current state of stress (expressed
through the principal components of Cauchy stress, s1 and s2) and material
Proc. R. Soc. A (2008)
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Figure 2. (a) Regime classification as a function of the orthotropy ratio x versus the prestress
parameter k, taken as positive. Shear bands (planes across which the incremental displacement
gradient is discontinuous) aligned parallel to the principal tensile stress direction emerge at (b) the
EI/P boundary, while inclined shear bands become possible at (c) the EC/H boundary. The path
leading to the EC/H boundary and corresponding to the continued deformation of a ductile low-
hardening metal (modelled as a J2-deformation theory material with hardening exponent NZ0.3)
is shown as dashed curve and occurs for a proper choice of the parameter h, when the Hill exclusion
condition (whose right boundary is shown as dotted line) holds (appendix A).
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response to shear (m for shear parallel and m� for shear inclined at p/4 with
respect to s1) describing orthotropy (aligned parallel to the current principal
stress directions; see appendix A for details). All parameters defining K and
representing the current state of the material can be condensed into the
following dimensionless quantities:

xZ
m�
m
; hZ

s1 Cs2

2m
; k Z

s1K s2

2m
; ð2:2Þ

where m and m� may be arbitrary functions of the current stress and/or strain.
The differential equations governing incremental equilibrium can be classified

according to the values assumed by parameters x and k, to distinguish between
elliptic imaginary (EI), elliptic complex (EC), parabolic (P) and hyperbolic (H)
regimes (figure 2a).

According to the conventional approach (Biot 1965; Rudnicki & Rice 1975),
shear bands are understood as planes across which incremental velocity gradient
becomes discontinuous and may emerge only in a continuous deformation path
as soon as either the EC/H or EI/P boundary is ‘touched’. Two equally inclined
(with respect to the principal stress directions) bands are generated in the former
case (figure 2c), while only one band forms aligned with the principal maximum
tensile stress, say s1, in the latter case (figure 2b). Following the alternative
approach (Bigoni & Capuani 2002, 2005; Piccolroaz et al. 2006), shear bands
spontaneously emerge as the response to a perturbation applied inside the elliptic
regime, but in the vicinity of either the EI/P or EC/H boundary. Since
experiments suggest that shear banding is strongly influenced by the presence of
Proc. R. Soc. A (2008)
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Figure 3. Finite-length (2l ) shear band in a prestressed orthotropic material inclined at an angle w0

(positive when anticlockwise) with respect to the orthotropy axes x1 and x2. The prestress state
is expressed through the two in-plane principal Cauchy stresses s1 and s2, aligned parallel to the
x1–x2 reference system. The null shear stiffness at the band boundaries has to be understood in an
incremental sense.
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randomly distributed defects (Xue & Gray 2006), it is assumed that during
homogeneous deformation of an infinite medium subjected to remote stress with
kO0, a defect is present in the form of a thin zone of material that has touched
the EI/P or EC/H boundary and has been transformed into a shear band of
length 2l (in other words, the weak line inclusion in the proposed modelling),
leaving the surrounding material uniformly deformed/stressed and still in the
elliptic regime, although near the elliptic boundary. (This uniform state of
stress has to satisfy the Hill exclusion condition, to avoid ‘spurious’ interfacial
instabilities; see appendix A.) The shear band of length 2l is inclined with
respect to the x1-axis at an angle w0 that can be determined from a known
formula (Hutchinson & Tvergaard 1981), thus providing the inclination of the
weak line inclusion with respect to the material orthotropy x1-axis (figure 3).
Taking this configuration as the initial state, the response of the shear band to
an incremental perturbation is analysed.

According to the weak line model, under an incremental mode I perturbation
the shear band does not alter the incremental response of the surrounding material
(so that it is ‘neutral’), but under a mode II perturbation the shear band behaves
as a slip surface of length 2l (prestressed both longitudinally and transversely), and
strongly non-uniform and singular fields are generated.
3. Analytical solution for a shear band of finite
length loaded incrementally

The analytical solution for a finite-length crack incrementally loaded by a uniform
mode II far field in a prestressed material similar to that described by equation
(2.1) was available only when the crack is aligned parallel or orthogonal to the
orthotropy axes, a situation corresponding to a shear band forming at the EI/P
boundary, where symmetry implies that a crack behaves as a slip surface, so that
the crack and the weak line become equivalent models. The solution for an inclined
crack in a prestressed material (obtained in appendix B) is interesting in itself
(since it shows features of interactions between shear bands and crack tip fields)
and of fundamental importance for the understanding of the shear band problem
addressed here.
Proc. R. Soc. A (2008)
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For shear bands occurring at the EC/H boundary, the solution for a weak line
inclusion inclined with respect to the orthotropy axes, not previously available
for the material under consideration, is given here. Developing this solution
for constitutive equations (2.1) and employing it to analyse a shear band, a 1=

ffiffiffi
r

p

singularity is found. Moreover, a full-field representation is obtained for the
incremental stress/strain field near a shear band of finite length.

The solution for an inclined shear band in an infinite medium can be expressed
in a x̂1–x̂2 reference system located at the shear band centre, with the x̂1-axis
aligned parallel to the shear band, and rotated at an angle w0 with respect to
the reference system in which constitutive equations (2.1) are expressed (figure 3).

The stress components in the x̂1–x̂2 reference system can be obtained through a
rotation of the components in the prestress principal reference system x1–x2, so
that, since the two systems are rotated at an angle w0 (taken positive when
anticlockwise), we have

x̂ ZQTx; ½Q�Z
cos w0 sin w0

Ksin w0 cos w0

" #
; ð3:1Þ

so that the nominal stress increment, incremental displacement and its gradient
can be expressed in the x̂1–x̂2 reference system as

t̂ ZQT _tQ; v̂ ZQTv; V̂v̂ ZQTVvQ; ð3:2Þ

while the constitutive equations (2.1) transform to

t̂ Z K̂½V̂v̂T�C _pI ; ð3:3Þ

where the transformed fourth-order tensor K̂ is given by

K̂ijhk ZQliQmjKlmnoQnhQok ; ð3:4Þ

where the indices range between 1 and 2.
In the x̂1–x̂2 reference system, the so-called ‘perturbed problem’ is solved in

which the traction at infinity t̂
N
21 is applied with reversed sign along the shear band

surfaces. In terms of perturbed stream function ĵ8, defined to provide the
incremental displacements as

v̂18Z
vĵ8

vx̂2
; v̂ 28ZK

vĵ8

vx̂1
; ð3:5Þ

the full-field solution for a shear band of length 2l can be written as

ĵ8ðx̂1; x̂2ÞZ
t̂
N
21

2m

X2
jZ1

Re BII
j f ðẑ jÞ

� �
; ð3:6Þ

where

f ðẑ jÞZ ẑ2j Kẑj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2j Kl 2

q
C l 2 ln ẑ j C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2j Kl 2

q� �
ð3:7Þ
Proc. R. Soc. A (2008)
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and (Uj is purely imaginary in EI and complex in EC and Re denotes the real part
of its argument)

ẑ j Z x̂1 CWjx̂2; Wj Z
sin w0 CUj cos w0

cos w0KUj sin w0

;

U2
j Z

1K2xCðK1ÞjL
1Kk

; LZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2K4xCk2

p
:

9>>>>=
>>>>;

ð3:8Þ

The unknown complex constants BII
j ( jZ1, 2) in equation (3.6) can be determined

by imposing boundary conditions at the shear band surfaces, namely

—null incremental nominal shearing tractions

t̂ 21ðx̂1; 0GÞZ 0; c jx̂1j! l; ð3:9Þ

—continuity of the incremental nominal normal traction

Et̂ 22ðx̂1; 0ÞFZ 0; c jx̂1j! l; ð3:10Þ

—continuity of normal incremental displacement

Ev̂2ðx̂1; 0ÞFZ 0; c jx̂1j! l; ð3:11Þ

where the brackets E$F denote the jump of the relevant argument across the
shear band.

Employing equation (3.6) and imposing the boundary conditions (3.9)–(3.11)
at the sliding surface yields the following algebraic system for the unknown

constants BII
j :

Kc21 c11 Kc22 c12

c31 c41 c32 c42

Kc41 c31 Kc42 c32

0 1 0 1

2
6664

3
7775

Re ½BII
1 �

Im ½BII
1 �

Re ½BII
2 �

Im ½BII
2 �

2
666664

3
777775Z

0

K1

0

0

2
66664

3
77775; ð3:12Þ

where coefficients cij are defined by equations (B 6). The determinant of the
coefficient matrix in equation (3.12) vanishes both when the surface bifurcation
condition, equation (A 18), is met and at the EC/H boundary.

Similar to the crack solution, the asymptotic fields near the shear band tip result
to be given in polar coordinates (centred at the shear band tip ðx̂1Z l; x̂2Z0Þ) by

t̂ 22ðr; 0ÞZK
Y _K IIffiffiffiffiffiffiffiffi
2pr

p ; t̂ 21ðr ; 0ÞZ
_K IIffiffiffiffiffiffiffiffi
2pr

p ; ð3:13Þ

for the incremental nominal stress ahead of the tip, where

YZ
t̂ 228

t̂
N
21

Z c11 Re ½BII
1 �Cc12 Im ½BII

1 �Cc13 Re ½BII
2 �Cc14 Im ½BII

2 �; ð3:14Þ
Proc. R. Soc. A (2008)
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while for the incremental displacements we have (where constants have been
neglected)

v̂1ðDlKr ; GpÞZG
t̂
N
21

ffiffiffiffi
2l

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
DlKr

p

2m
Im W1B

II
1 CW2B

II
2

� �
;

v̂2ðDlKr ; GpÞZH
t̂
N
21

ffiffiffiffi
2l

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
DlKr

p

2m
Im BII

1 CBII
2

� �
;

9>>>>=
>>>>;

ð3:15Þ

holding at the shear band surfaces, for ‘small’ Dl.6

In the particular case of a shear band aligned parallel to the prestress principal
direction s1 (i.e. w0Z0), solution (3.6) simplifies to

ĵ8ZK
t̂
N
21

2m
Re

" P2
jZ1

ðK1Þjð2xKhKðK1ÞjLÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xK1CðK1ÞjL

q
f ðẑ jÞ

ð2xKhCLÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xK1KL

p
Kð2xKhKLÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xK1CL

p

#
: ð3:16Þ
4. Rectilinear shear band growth is a preferred failure mode

Solution (3.6) is employed to obtain results shown in figure 4, where level sets of
incremental deviatoric strain are reported for a shear band (inclined at 29.38) in a
ductile low-hardening metal, modelled through the J2-deformation theory with
NZ0.3, at null prestrain 3Z0 (figure 4a) and at a prestrain 3Z0.548 (figure 4b),
taken close to the EC/H boundary. It can be noted from the figure (additional
results are reported in appendix C) that, while at null prestrain (far from the
elliptic boundary in figure 4a) the incremental strain field is not particularly
developed and does not evidence focusing, near the elliptic boundary (figure 4b) the
incremental strain field is localized and elongated, and evidences a strong focusing
in the direction aligned parallel to the shear band. This finding suggests that, while
mode II rectilinear crack propagation in a homogeneous material does not usually
occur (since in first approximation cracks deviate from rectilinearity following the
maximum near-tip hoop stress inclination), shear band growth is very likely to
occur aligned with the shear band itself. This observation explains the strong
tendency that shear bands evidence towards the rectilinear propagation for long
(compared with their thickness) distances (e.g. Korbel & Bochniak 2004; Bei et al.
2006). Moreover, the focusing of incremental deformation and the stress
singularity strongly promotes shear band growth.
6 The following properties of function Y

Yðk Z 0;w0ÞZYðk;w0 Z 0ÞZYðk;w0 Zp=2ÞZ 0

have been proven, while the properties

YZYðk;w0ÞZKYðKk;p=2Kw0Þ

have been numerically found to hold, from which the identities

Yðk;w0 Zp=4ÞZ 1K
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kk2

p

k
and Yðk;w0 Zp=3ÞZ

ffiffiffi
3

p
ð2CkK2

ffiffiffiffiffiffiffiffiffiffiffiffi
1Kk2

p
Þ

4C5k

follow with the help of a symbolic manipulator.
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Figure 4. Level sets of the modulus of incremental deviatoric strain, near a shear band of length 2l
(demonstrated by a thin rectangle, providing the scale bar of the representation) in a low-
hardening ductile metal (a J2-deformation theory material with NZ0.3). (a) Null prestrain, 3Z0,
and (b) uniform prestrain near the EH/C boundary, 3Z0.548, are considered for mode II
incremental loading parallel to the shear band (inclined at w0Z29.38 with respect to the principal
Cauchy stress direction s1). Parameter h has been taken as equal to 0.52k, so that the Hill
exclusion condition holds.
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To further analyse shear band growth, the incremental energy release rate for an
infinitesimal shear band advance (see appendix Bc) can be calculated for an
orthotropic prestressed material, equation (2.1), by employing the asymptotic

near-tip representations (3.13) and (3.15) in equation (B 19)7

_G
sb
Z _K

2
II

Im W1B
II
1 CW2B

II
2

� �
4m

; ð4:1Þ

where the complex constants BII
j are the solutions of equation (3.12). Equation

(4.1) becomes, for a shear band aligned parallel to the principal direction of
prestress s1 (w0Z0),

_G
sb
Z

_K
2
II

m

L
ffiffiffiffiffiffiffiffiffiffiffi
1Ck

p

ð2xKhCLÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xK1KL

p
Kð2xKhKLÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xK1CL

p : ð4:2Þ
7Note that the perturbed solution for the shear band model can be alternatively obtained providing
a mixed-mode loading to an inclined crack (see appendix Ba). The mode I loading component is
‘calibrated’ with respect to the mode II component in such a way as to eliminate the jump in
normal incremental displacement along the crack faces generated by a pure mode II loading, in
other words, to satisfy condition (3.11). All these procedures bear on the special feature found
in the solution of the crack problem that a mode I uniform loading along the crack faces is sufficient
to eliminate a mode II transversal mismatch in incremental displacements. In particular equation
(4.1) can be obtained from equation (B 23), considering a mixed mode defined by t̂

N
22ZKYt̂

N
21, so

that the condition of continuity of transversal incremental displacement yields

Im ½AII
1 CAII

2 �KY Im ½AI
1 CAI

2�Z 0;

and the constants defining the crack and shear band solutions are related through

BII
j ZAII

j KYAI
j ; j Z 1; 2:

Therefore, the difference between the crack and shear band problems lies in a uniform nominal
normal stress increment applied at the crack surfaces.

Proc. R. Soc. A (2008)
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Figure 5. Incremental energy release rate _G
sb

(made dimensionless by multiplying by 4m= _K
2
II) for

an infinitesimal growth of a shear band (inclined at w0Z29.38) in a low-hardening ductile metal (a
J2-deformation theory material with NZ0.3 and hZ0.52k), as a function of the prestrain
parameter 3, equal to 0.577 at the EC/H boundary, so that shear band growth becomes
‘unrestrainable’ when this boundary is approached.
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In equations (4.1) and (4.2) constant _K II is the incremental mode II stress intensity
factor, defining the intensity of the singularity in terms of applied incremental
loading t̂

N
21 and equal to

_K II Z t̂
N
21

ffiffiffiffiffi
pl

p
; ð4:3Þ

for a rectilinear shear band of length 2l in an infinite material (inclined with
respect to the orthotropy and prestress axes).

The release rate (4.1) represents the energy released for an infinitesimal advance
of the shear band and has the typical behaviour shown in figure 5, referred to the
same material considered in figure 4 (there are no qualitative changes when other
values of the hardening exponent N are considered, see appendix C).

It is assumed in fracture mechanics that a crack advances under small-scale
yielding when the energy release rate exceeds a critical threshold, believed to be a
characteristic of the material. Whether this criterion can be generalized to the
present context or not can still be a matter of discussion, but the important point
is that the incremental energy release rate blows up to infinity when the elliptic
boundary is approached. In these conditions, a shear band can drive itself on and
overcome possible barriers; in other words, it can grow ‘unrestrainable’, a finding
which, together with the previous results on near-tip stress/deformation states,
legitimizes for the first time the common experimental observation that shear
bands are the preferred near-failure deformation modes.
5. Conclusions

The modelling of a finite-length shear band in an infinite prestressed material
presented in this article keeps into account stress-induced and inherent anisotropy,
and large strain effects. Quasi-statically loaded ductile materials have been
addressed exhibiting incompressible flow, typically metals, and the modelling
permits the first explicit closed-form evaluation of all mechanical fields near a shear
band of finite length and provides justification to the fact that shear bands are
preferred modes growing rectilinearly for long distances, as experimentally found by
Proc. R. Soc. A (2008)



2375Unrestrainable growth of a shear band
Korbel & Bochniak (2004) among others. A number of features in the modelling of
the material (the possibility of elastic unloading outside the shear band, dynamic
loading and thermal effects and, for granular materials and soils, pressure sensitivity
of yielding and plastic flow dilatancy) and of the shear band (the possibility of
introducing cohesive tangential forces between the weak line surfaces) have been
sacrificed for mathematical tractability, although their incorporation can certainly
be pursued. In particular, elastic unloading near the shear band and thermal effects
have been found to be important (the latter when dynamic loading is involved,
Guduru et al. (2001), while the former even for quasi-static loading, Gajo et al.
(2004)) and the development of weak cohesive forces at the shear band surfaces
might prelude the extreme loss of (incremental) stiffness assumed in our model.
However, considering our previous treatment of various perturbations in materials
prestressed near the boundary of ellipticity loss (Bigoni & Capuani 2002, 2005;
Piccolroaz et al. 2006), we believe that the results presented in this article have
general validity and can be extended to include much more complicated effects.

Financial support of Trento University is gratefully acknowledged.
Appendix A. Incremental constitutive equations for incompressible
nonlinear elasticity

According to the Biot (1965) theory, the response of a nonlinear elastic,
incompressible and uniformly deformedmaterial subjected to an incremental loading
is expressed in terms of the nominal (unsymmetrical) stress increment _t , related to
the gradient of incremental displacement Vv (satisfying the incompressibility
constraint tr VvZ0) through the linear relation (2.1) where the components of
constitutive fourth-order tensor K (possessing the major symmetry KijhkZKhkij) are

K1111 ZmðxKkKhÞ; K1122 ZKmx; K1112 ZK1121 Z 0;

K2211 ZKmx; K2222 ZmðxCkKhÞ; K2212 ZK2221 Z 0;

K1212 Zmð1CkÞ; K1221 ZK2112 Zmð1KhÞ; K2121 Zmð1KkÞ:

9>=
>; ðA 1Þ

The components of the constitutive fourth-order tensor K depend on the current
state of stress (expressed through the principal components of Cauchy stress, s1
and s2) and material response to shear (m for shear parallel and m� for shear
inclined at p/4 with respect to s1) describing orthotropy (aligned parallel to the
current principal stress directions), see Bigoni & Capuani (2002, 2005) for details,
through the dimensionless quantities (2.2).

(a ) Positive definiteness of K

The Hill exclusion condition for bifurcation (Hill 1958) is the condition of
positive definiteness of the constitutive fourth-order tensor K (Hill & Hutchinson
1975, eqn (3.9)). Assuming mO0, in terms of dimensionless constants (2.2), this
condition becomes

0!h!2x;
k2 Ch2

2h
!1; ðA 2Þ

defining a region in the space x, k and h, which bound has been reported in figure 2
for h/kZ0.52, see also the electronic supplementary material.
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(b ) Regime classification

Since the material response described by equations (2.1) and (2.2) is
incompressible, we can introduce a stream function j(x1, x2), with the property
(where a comma means differentiation with respect to the corresponding spatial
variable)

v1 Zj;2; v2 ZKj;1; ðA 3Þ
so that the incompressibility constraint is automatically satisfied. Assuming zero
body forces, the elimination of _p in the incremental equilibrium equations ( _tij;iZ0)
gives the fourth-order partial differential equation

ð1CkÞj;1111 C2ð2xK1Þj;1122Cð1KkÞj;2222 Z 0; ðA 4Þ

derived by Biot (1965, p. 193, eqn (3.7), see also Hill & Hutchinson 1975, eqn (3.3)).
Following Lekhnitskii (1981), Guz (1999), Radi et al. (2002), Cristescu et al.

(2004) and Dal Corso et al. (2008), a solution of (A 4) can be represented in terms
of the analytic function F

jðx 1; x 2ÞZFðx1 CUx2Þ; ðA 5Þ
where U is a complex constant satisfying the biquadratic equation obtained
inserting representation (A 5) in equation (A 4),

1CkC2ð2xK1ÞU2 Cð1KkÞU4 Z 0: ðA 6Þ
The four roots Uj ( jZ1,., 4) of equation (A 6) satisfy equation (3.8)3 and are

real or complex depending on the values of x and k. In compact form, we write

Uj Zaj C ibj ; j Z 1;.; 4; ðA 7Þ

and define the four complex variables

zj Z x1 CUjx 2 Z x1 Cajx2 C ibjx 2; j Z 1;.; 4; ðA 8Þ

where iZ
ffiffiffiffiffiffiffi
K1

p
is the imaginary unit, ajZRe [Uj] and bjZIm [Uj].

Employing equations (A 5) and (A 8), the general solution of the differential
equation (A 4) can be written as

jðx1; x2ÞZ
X4
jZ1

FjðzjÞ: ðA 9Þ

The roots Uj, defined by equation (3.8)3 change their nature according to the
values of parameters x and k, so that the differential equation (A 4) can be
classified as reported by Dal Corso et al. (2008). The regime classification in the
k–x plane has been given by Radi et al. (2002) and is sketched in figure 2.

In the EI regime, defined as

k2!1 and 2xO1C
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kk2

p
; ðA 10Þ

we have four imaginary conjugate roots Uj, so that

a1 Za2 Z 0;
b1

b2

)
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xK1G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2K4xCk2

p
1Kk

s
O0; ðA 11Þ
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while in the EC regime, defined as

k2!1 and 1K
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kk2

p
!2x!1C

ffiffiffiffiffiffiffiffiffiffiffiffi
1Kk2

p
; ðA 12Þ

we have four complex conjugate roots Uj, so that

bZ b1 Zb2

aZKa1 Za2

�
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kk2

p
Gð2xK1Þ

2ð1KkÞ

s
O0: ðA 13Þ

(c ) Specific cases of material behaviour

The assumption of a specific material model determines the relation between x
and k. For instance, a Mooney–Rivlin material coincides with a neo-Hookean
material for plane isochoric deformations, so that parameters k and x become
(where l is the logarithmic stretch, representing a prestrain measure)

k Z
l2KlK2

l2 ClK2
; xZ 1; ðA 14Þ

while for a J2-deformation theory material (Hutchinson & Neale 1979),
particularly suited to analyse the plastic branch of the constitutive response of
ductile metals, we have

k Z
l4K1

l4 C1
; xZ

Nðl4K1Þ
2ðln lÞðl4 C1Þ

; ðA 15Þ

where N is the hardening exponent. The curve in the x versus k plane described by
equation (A 15) for NZ0.3 is reported in figure 2.
(d ) Shear bands inclination

At the EC/H boundary, two shear bands become simultaneously possible, their
inclinations are given by the angles Gw0 between the shear band and the x1-axis
and solutions of (Hill & Hutchinson 1975)

cot2 w0 Z
1C2 signðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1KxÞ

p
1K2x

: ðA 16Þ

At the EI/P boundary, we have only one shear band possible, aligned parallel to
the x1-axis (x2-axis), when kZ1 (kZK1)

w0 Z 0; for k Z 1; or w0 Z
p

2
; for k ZK1: ðA 17Þ
(e ) Surface bifurcation

Surface instability occurs (Needleman & Ortiz 1991, eqn (48)) when

4xK2hZ
h2K2hCk2ffiffiffiffiffiffiffiffiffiffiffiffi

1Kk2
p ; ðA 18Þ
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which, in the particular case of stress parallel to the free surface x1Z0 (hZk),
becomes

xZ
k

2
1K

ffiffiffiffiffiffiffiffiffiffiffiffi
1Kk

1Ck

r !
: ðA 19Þ

Surface bifurcation, equation (A 18), and the Hill exclusion condition, equation
(A 2), are reported in figure 2 for h/kZ0.52.

In our model of a shear band, a sliding surface abruptly (but affecting only
incremental fields) forms when the thin layer of material representing the shear
band touches the elliptic boundary, while in a refined model a weak thin layer of
material should approach the elliptic boundary becoming incrementally less stiff in
a continuous way. The abrupt formation of a sliding surface within an infinite solid
may, depending on the stress conditions, generate a sudden ‘spurious’ interfacial
instability, so that in this condition our shear band model becomes oversimplified.
Therefore, themodel has to be employed only in situationswhere surface instabilities
are a priori excluded until the elliptic boundary is met, a circumstance that can be
attained employing the Hill (1958) exclusion condition (see also Hill & Hutchinson
(1975), eqn (3.9)). However, this condition is so general that all points of the EC/H
and EI/P boundaries can be explored, by taking kO0 and selecting appropriate
values for the prestress parameter h, as can be noted from figure 2, see also the
electronic supplementary material.
Appendix B. Finite-length crack in a prestressed material

A homogenously prestressed and prestrained, incompressible elastic infinite plane
is considered, characterized by the constitutive equations (2.1) of incremental,
incompressible orthotropic elasticity, containing a crack of current length 2l, taken
parallel to the x̂1-axis in the x̂1–x̂2 reference system, and loaded at infinity by a
uniform nominal stress increment t̂

N
2n, where nZ1 corresponds to mode II and

nZ2 to mode I loading (see figure 3, in which the shear band should be thought
to represent a crack of length 2l ).

Obviously, the crack faces cannot be free of tractions, since a dead loading is
required to ‘provide’ the prestress state (with principal Cauchy components s1
and s2, assumed to be aligned parallel to the x1–x2 reference system, rotated at
an angle w0 with respect to the x̂1–x̂2 system). An interesting exception to this
rule occurs when the crack is aligned parallel to the x1-axis and the prestress
is aligned parallel to the crack surfaces, namely when the x̂1–x̂2 and x1–x2
systems coincide, i.e. w0Z0, and s2Z0, corresponding to hZk. This situation has
been considered by Guz (1999, and references therein), Radi et al. (2002) (in the
near-tip asymptotic limit) and Cristescu et al. (2004). The case of a generic
inclination w0 has never been treated in the case of a prestressed material, but
it is well known in linear, infinitesimal, anisotropic elasticity (Savin 1961; Sih &
Liebowitz 1968).

Solution to the above-formulated crack problem is obtained by superimposing
the trivial unperturbed solution to the perturbation induced by the crack, the
latter denoted with the apex 8.
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The unperturbed solutions are obtained defining the uniform nominal stress
field in the x̂1–x̂2 reference system

t̂ 22 Z t̂
N
22; t̂ 11 Z 0; t̂ 12 Z t̂ 21 Z t̂

N
21; ðB 1Þ

so that t̂
N
21Z0 t̂

N
22Z0

� �
for mode I (mode II).

The nominal stress increment, incremental displacement and its gradient are
expressed in the x̂1–x̂2 reference system through equations (3.1)–(3.4).

Note that the above definition (B 1) of mode I and II loading is fully meaningful
only when the constitutive equations (2.1) are positive defined, so that the Hill
exclusion condition (A 2) holds true. For a non-positive definite constitutive
equation, definition (B 1) would be better changed to one concerning the
components of the incremental displacement gradient.

Assuming that condition (A 2) holds true, we can directly obtain from equations
(2.1), (2.2) and (A 1) the components of the incremental displacement gradient
and the incremental in-plane mean stress in the x1–x2 reference system

_pZ
t̂
N
22

2
Kmkv2;2;

v2;2 ZKv1;1 Z
t̂
N
22 cos 2w0K2t̂

N
21 sin 2w0

2mð2xKhÞ ;

v1;2 ZK
ðkChÞ t̂

N
22 sin 2w0C2t̂

N
21 cos 2w0

� �
2mðk2K2hCh2Þ ;

v2;1 Z
ðkKhÞ t̂

N
22 sin 2w0C2t̂

N
21 cos 2w0

� �
2mðk2K2hCh2Þ :

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðB 2Þ

The components of the incremental displacement gradient in the x̂1–x̂2 reference
system can be obtained through a rotation of equations (B 2), by employing
equation (3.2)3.

It should be noted from equations (B 2) that in the absence of prestress, kZhZ
0, equations (B 2) fully determine the incremental displacement gradient.
However, in this case, the incremental stress is only related to the symmetric
part of the incremental displacement gradient, so that an arbitrary incremental
rotation can be added without altering the state of stress, a circumstance not
possible when the prestress is different from zero. In other words, when the
prestress is present, loading (B 1) completely defines the incremental displacement
gradient (and incremental mean stress) through equations (B 2), so that the
incremental rigid-body rotations remain determined.

(a ) The inclined crack

We consider a crack inclined with respect to the x1–x2 axes defining the
prestress directions and the orthotropy axes (see figure 3 in which the shear band
should be thought to represent a crack). Therefore, the x1–x2 reference system has
to be distinguished from the system x̂1–x̂2, where the x̂1-axis is aligned parallel to
the crack. The transformation between the two systems is expressed by equation
(3.1), while the transformations between incremental displacement, its gradient,
nominal stress and constitutive tensor are given by equations (3.2)–(3.4).
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The trick to solve the inclined crack problem can be deduced from Savin (1961,
see also Sih & Liebowitz 1968) and consists in the introduction of a function
analogous to that for an aligned crack (obtained in the electronic supplementary
material, see eqns (40), (48), (57) and (63)), but now defined in the x̂1–x̂2 reference
system, namely (which automatically satisfies the decaying conditions of fields
at infinity)

ĵM8 ðx̂1; x̂2ÞZ
t̂
N
2n

2m

X2
jZ1

Re AM
j f ðẑ jÞ

� �
; ðB 3Þ

where nZ1 and MZII for mode II (nZ2 and MZI for mode I), so that t̂
N
21 t̂

N
22

� �
is

the traction component parallel (orthogonal) to the crack line. Moreover, f ðẑ jÞ and
ẑ j are defined by equations (3.7) and (3.8)1, respectively.

Constants AM
j in equation (B 3) can be obtained by imposing the boundary

conditions on the crack faces, which are

t̂ 218 ðx̂1; 0GÞZ 0; t̂ 228 ðx̂1; 0GÞZK̂t
N
22; c jx̂1j! l; for mode I

t̂ 218 ðx̂1; 0GÞZK̂t
N
21; t̂ 228 ðx̂1; 0GÞZ 0; c jx̂1j! l; for mode II:

)
ðB 4Þ

Imposing the conditions (B 4) yields a linear algebraic system for the real

and imaginary parts of constants AM
j

c11 c21 c12 c22

Kc21 c11 Kc22 c12

c31 c41 c32 c42

Kc41 c31 Kc42 c32

2
6664

3
7775

Re½AM
1 �

Im½AM
1 �

Re½AM
2 �

Im½AM
2 �

2
666664

3
777775Z

K1

0

0

0

2
66664

3
77775

|fflfflfflffl{zfflfflfflffl}
for mode I

or

0

0

K1

0

2
66664

3
77775

|fflfflfflffl{zfflfflfflffl}
for mode II

; ðB 5Þ

where MZI for mode I (MZII for mode II) and coefficients cij are

2mc1j Z K̂1112KK̂1222KRe ½Wj �½K̂1111K2K̂1122KK̂1221CK̂2222

CRe ½Wj �ð2K̂1121K2K̂2122 CRe ½Wj �K̂2121Þ�

C Im ½Wj �2ð2K̂1121K2K̂2122C3 Re ½Wj �K̂2121Þ;

2mc2j Z Im ½Wj �½K̂1111K2K̂1122KK̂1221 CK̂2222

CRe ½Wj �ð4K̂1121K4K̂2122C3 Re ½Wj �K̂2121ÞKIm½Wj �2K̂2121�;

2mc3j ZKK̂1221CRe ½Wj �½K̂1121KK̂2122CRe ½Wj �K̂2121�KIm½Wj �2K̂2121;

2mc4j Z Im½Wj � KK̂1121CK̂2122K2 Re ½Wj �K̂2121

� �
; j Z 1; 2;

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ðB 6Þ

and depend on the crack inclination w0 and on the prestress and orthotropy
parameters x, k and h.
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The determinant of the coefficient matrix in equation (B 5) is null only when the
surface instability condition, equation (A 18), is met, so that in all other cases,
system (B 5) can be solved and the solution of the inclined crack follows. Note that
when the surface bifurcation condition is approached, the fields, solution of the
crack problem, tend to blow up, a peculiarity first noted by Guz (1999 and
references quoted therein).

For values of parameters x, k and h beyond the surface instability threshold, the
obtained solution still works, from a purely mathematical point of view. However,
the crack faces cannot be maintained straight after a surface bifurcation point has
been passed, so that the solution looses its physical meaning (the incremental
energy release rate, obtained in appendix Bc, becomes negative in this situation).

The perturbed incremental displacement along the crack faces can be obtained
in the form

v̂8M1 ðx̂1; x̂2 Z 0GÞZ t̂
N
2n

2m
Re ðW1A

M
1 CW2A

M
2 Þ x̂1Hi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2Kx̂21

q
 �� 
;

v̂8M2 ðx̂1; x̂2 Z 0GÞZK
t̂
N
2n

2m
Re AM

1 CAM
2

� �
x̂1Hi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2Kx̂21

q
 �� 
;

9>>>>=
>>>>;

ðB 7Þ

so that the jump in incremental displacements across the crack surfaces (x̂2Z0,
jx̂1j! l) takes the form

Ev̂M1 FZ
t̂
N
2n

m
Im W1A

M
1 CW2A

M
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2Kx̂21

q
;

Ev̂M2 FZK
t̂
N
2n

m
Im AM

1 CAM
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2Kx̂21

q
;

9>>>>=
>>>>;

ðB 8Þ

where nZ1 and MZII (nZ2 and MZI) for mode II (mode I).
It is worth noting that the following conditions, proven in the particular cases of

null prestress or crack parallel to the orthotropy axes, have been in general verified
numerically to hold

Re AI
1 CAI

2

� �
Z 0; Re W1A

II
1 CW2A

II
2

� �
Z 0; ðB 9Þ

showing that the incremental perturbed displacement along the x1-axis outside

the crack is only longitudinal, i.e. v̂82Z0 (transversal, i.e. v̂81Z0) for mode I (for
mode II), a circumstance noted also by Broberg (1999, his §4.14) for infinitesimal
anisotropic elasticity.

In addition to equation (B 9), the following conditions are obtained in the
particular case of a crack parallel to the orthotropy x1-axis, w0Z0,

Im W1A
I
1 CW2A

I
2

� �
Z 0; Im AII

1 CAII
2

� �
Z 0; ðB 10Þ

from which the solution obtained in the electronic supplementary material can be
easily recovered.
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Finally, we note that the incremental stress intensity factors, defined as

_K I Z lim
x 1/lC

_t22ðx1; x2 Z 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx 1KlÞ

p ; _K II Z lim
x 1/lC

_t21ðx1; x2 Z 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1KlÞ

p ; ðB 11Þ

follow immediately from the above calculations. These are

_K I Z _t
N
22

ffiffiffiffiffi
pl

p
; _K II Z _t

N
21

ffiffiffiffiffi
pl

p
; ðB 12Þ

for modes I and II loading, respectively. Note that equations (B 12) coincide with
their counterpart in elasticity without prestress, except that now the nominal
stress replaces the Cauchy stress.

The inclined crack solution becomes particularly simple in the case when the
prestress is null, kZhZ0. In particular, for mode I we have

AI
j ZKðK1Þ j cos 2w0

2
ffiffiffiffiffiffiffiffiffiffi
1Kx

p K i
1KxKðK1Þj

ffiffiffiffiffiffiffiffiffiffi
1Kx

p
sin 2w0

2ð1KxÞ
ffiffiffi
x

p ; j Z 1; 2; ðB 13Þ

while for mode II we have

AII
j Z ðK1Þ j sin 2w0

2
ffiffiffiffiffiffiffiffiffiffi
1Kx

p C i
cos 2w0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1KxÞx

p
" #

; j Z 1; 2: ðB 14Þ

The following properties can also be proven:

W1A
I
1CW2A

I
2 Z 0; AII

1 CAII
2 Z 0: ðB 15Þ

An interesting feature that does not hold when the prestress is present and the
crack is inclined can be deduced from equations (B 8), (B 15)1 and (B 14), namely
that a mode I (mode II) loading does not produce longitudinal, v1 (transversal, v2),
incremental displacements along the crack line, so that for x̂2Z0 and jx̂1j! l,
we have

Ev̂FZ
t̂
N
21

m
ffiffiffi
x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2Kx̂21

q
;

t̂
N
22

m
ffiffiffi
x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2Kx̂21

q� �
; ðB 16Þ

which is independent of the crack inclination w0.
(b ) Shear bands interacting with a finite-length crack

In the spirit of the perturbative approach proposed by Bigoni & Capuani (2002,
2005), the role of shear banding in the incremental deformation fields around a
crack of length 2l is investigated. The crack is considered in a J2-deformation
theory material near the EC/H boundary, aligned parallel to the principal stress
axis x1 (lying therefore in a symmetry axis with respect to the conjugate band
directions), and loaded under incremental mode I. In particular, for the value of
hardening exponent NZ0.8, the critical logarithmic strain for localization (and the
shear band inclination with respect to the x1-axis) is 3z1.032 (w0z19.608).

The level sets of the modulus of incremental deviatoric strain have been mapped
in figure 6 with a choice of h, namely h/kZ0.775, such that the Hill exclusion
condition (A 2) is satisfied.
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Figure 6. Level sets of the modulus of incremental deviatoric strain evidencing interaction of shear
bands and mechanical fields near a crack of length 2l under mode I incremental loading.
A J2-deformation theory material has been considered at high-strain hardening NZ0.8, prestrained
near the elliptic border 3Z0.981. The crack is horizontal, while the shear bands are inclined at
G19.608. Note that four shear bands emerge.

(a) (i) (ii) (b)

Figure 7. (a(i),(ii)) Two elastic prestressed bodies are compared, having identical shape, boundary
conditions, elastic properties, prestress and prestrain, but voids of different size. (b) The detail of the
void and its surface is reported; note the unit normal vector, defined to point outward from the elastic
body and towards the void. Incremental deformation of prestressed solids are considered, so that the
surface of the void can be subjected to finite dead loading and surface DS �

i must be subjected to the
nominal tractions present on the same surface embedded in the material in the configuration in (a(i)).

2383Unrestrainable growth of a shear band
Results are qualitatively analogous for different values of strain hardening and
for mode II loading; in particular, the mode II incremental deformation fields are
dominated near the elliptic border by localized deformations aligned parallel to the
two shear band conjugate directions, in a way quite similar to figure 6.

We can observe that two symmetric shear bands emerge near the crack tip,
and their interaction may lead to failure of the material under shear in front of the
crack, a situation compatible with mode I growth, to be interpreted as a sort of
‘alternating sliding off and cracking’, as suggested by McClintock (1971) and
Kardomateas & McClintock (1989). The situation is more complicated for mode II
loading, but our results agree with the consideration made by Hallbäck & Nilsson
(1994) that ‘mode II failure results when the direction of the prospective shear band
coincides with the crack surface direction, while mode I-type failure occurs when the
shear bands are inclined to the direction of crack surfaces’.
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(c ) Incremental energy release rate for crack growth

We slightly generalize Rice (1968) and start referring to figure 7 and com-
paring two incremental boundary-value problems (for finite bodies subjected to
identical conditions on the external boundaries SsgSv, namely prescribed
incremental nominal tractions _s0 on Ss and incremental displacements vZ �v
on Sv) differing only in the sizes of the void that they contain. Note that we are
addressing an incremental problem, so that the surface of the void can be loaded
by dead loading.

In particular, the void in the body on figure 7a(ii) (of volume VigDVi, enclosed
by surface S �

i gDS �
i ) has been obtained by increasing the size of the void in the

body on figure 7a(i) (of volume Vi, enclosed by surface Si).
Since we want to include prestress in an incremental formulation, nominal

(finite) dead tractions identical to those existing within the material containing
the void Vi must be applied on the surface DS �

i of the material containing the
void VigDVi.

We define the incremental displacement and nominal traction fields, solutions to
the two problems, as v0 and _t

0
for the problem in figure 7a(i) and vZv0C ~v and

_tZ _t
0
C~t for the problem in figure 7a(ii). Since the void surfaces are subjected to

dead loading, _t
0T
nZ0 and _t

T
nZ0, within Vi and VigDVi, respectively.

The two bodies are assumed to be identically prestressed and prestrained,
although not necessarily in a homogeneous way. If the expedient of prescribing ‘ad
hoc’ dead tractions onDS �

i is not considered and the void surface is free of tractions,
in order to have identical prestress and prestrain, the two current configurations
shown in figure 7 must have special geometries and loadings, as will be the case of a
crack aligned parallel to a principal stress direction with the other principal stress
to be null and, more important, of our shear band model (§3).

The incremental potential energy decrease for a void growth in an elastic
(incompressible or compressible, generically anisotropic and prestressed) body takes
an expression analogous to that reported byRice (1968, p. 207, his eqn (55)), namely

KD _P Z

ð
DVi

fðVv0Þ dVK
1

2

ð
DS �

i

n$t0~v dS; ðB 17Þ

a quantity which when positive implies void growth. Note that the scalar function
f is the incremental gradient potential defined as

_tij Z
vfðVvÞ
vvj;i

C _pdij; fðVvÞZ 1

2
vj;iKijhkvk;h: ðB 18Þ

Turning now the attention to a thin void inclusion, namely a crack aligned parallel
to the x̂1-axis (figure 3), the volume integral in equation (B 17) vanishes, so that
taking the limit of the length increase Dl/0 at fixed incremental stress intensity
factor _K , equation (B 17) becomes

_G ZK
d _P

dl
Z lim

Dl/0

1

2Dl

ðDl
0
t̂ 2iðr ; 0ÞEv̂iðDlKr ;pÞF dr ; ðB 19Þ

where the symbol ^ denotes that we are using the inclined crack solution, the
repeated index is summed; r denotes the radial distance from the crack tip and 0
and p indicate values of the polar coordinate (anticlockwise) angle singling out r
from the x̂1-axis (so that qZ0 corresponds to points ahead of the crack tip).
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Equation (B 19) defines the incremental energy release rate for a mixed-mode
growth of a crack in an elastic incompressible or compressible body, generically
anisotropic and prestressed.

The proof that the incremental energy release rate coincides with the path-
independent incremental _J -integral

_J Z

ð
G

f̂n̂1Kn̂j t̂ ji
vv̂i
vx̂1


 �
dG ðB 20Þ

has not yet been explicitly obtained, but the validity of _GZ _J has been verified
numerically.

The incremental energy release rate (B 19) can be developed making use of the
asymptotic near-tip incremental nominal stress ahead of the crack

t̂ 22ðr; 0ÞZ
_K Iffiffiffiffiffiffiffiffi
2pr

p ; t̂ 21ðr ; 0ÞZ
_K IIffiffiffiffiffiffiffiffi
2pr

p ; ðB 21Þ

and incremental displacement on the crack faces (where constants have
been neglected)

v̂1ðDlKr;GpÞZG

ffiffiffiffi
2l

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
DlKr

p

2m
Im t̂

N
22ðW1A

I
1CW2A

I
2ÞC t̂

N
21ðW1A

II
1 CW2A

II
2 Þ

� �
;

v̂2ðDlKr;GpÞZH

ffiffiffiffi
2l

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
DlKr

p

2m
Im t̂

N
22ðAI

1CAI
2ÞC t̂

N
21ðAII

1 CAII
2 Þ

� �
;

9>>>>=
>>>>;

ðB22Þ
holding for ‘small’ Dl.

Employing the asymptotic near-tip representations (B 21) and (B 22) in
equation (B 19), we obtain

_G ZK _K
2
I

Im AI
1 CAI

2

� �
4m

C _K
2
II

Im W1A
II
1 CW2A

II
2

� �
4m

C _K I
_K II

Im W1A
I
1 CW2A

I
2KAII

1 KAII
2

� �
4m

; ðB 23Þ

representing the incremental energy release rate for an inclined crack loaded in
mixed mode in a prestressed, orthotropic and incompressible material.

From equation (B 23) the incremental energy release rate for a mixed-mode
loading of a crack parallel to the orthotropy axes (i.e. w0Z0) can be made explicit

_G Z
L

m

_K
2
I

ffiffiffiffiffiffiffiffiffiffi
1Kk

p
C _K

2
II

ffiffiffiffiffiffiffiffiffiffiffi
1Ck

p

2xKhCLð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xK1KL

p
Kð2xKhKLÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xK1CL

p ; ðB 24Þ

where there is no coupling between the two modes I and II.
Another interesting special case is that of null prestress, in which for an inclined

crack the following expression of the incremental energy release rate can be obtained:

_G Z
_K
2
I C _K

2
II

4m
ffiffiffi
x

p ; ðB 25Þ

which agrees with the known isotropic elasticity solution in the incompressible limit,
recovered for xZ1.
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Figure 8. Level sets of the modulus of incremental deviatoric strain, near a shear band of length 2l
(w0Z08) in an incrementally isotropic, xZ1, material (a) without prestress, kZ0, and (b)
prestressed near, kZhZ0.95, the EI/P boundary. Mode II incremental loading is considered.
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Appendix C. Further results on the stress state near a shear band

More results on the predicted incremental strain state near a shear band loaded
under incremental Mode II in ductile materials are provided here in the case of a
material approaching the parabolic boundary and of a J2-deformation theory
material at low- and high-strain hardening NZ0.1 and 0.8, respectively.
(a ) Shear band at the EI/P boundary

All points of the EI/P boundary can be approached while the Hill exclusion
condition holds true when hZkO0, corresponding to a uniaxial tensile stress
state, s1O0, s2Z0. In this situation, one shear band forms at the EI/P boundary,
kZ1, parallel to the tensile loading direction (A 17) so that the problem is
symmetric and the aligned crack solution (obtained in the electronic supple-
mentary material, eqn (57)), can be used. In fact, due to symmetry, the normal
displacement increment and all nominal incremental traction components are null
(and therefore a fortiori continuous) at the shear band boundary, under a mode II
loading increment.

The shear band solution has been used to obtain results shown in figure 8, where
the level sets of incremental deviatoric strain are reported at different levels of
prestress, namely at null prestress, kZ0, and at kZ0.95, a value very close to the
EI/P boundary. Results similar to those obtained in figure 8, but limited to fields
near the tip of the shear band can also be obtained employing the asymptotic
analysis presented by Radi et al. (2002).

It should be noted from figure 8 that the incremental deformation field
evidences a strong focusing in the direction of the shear band. Moreover, the
incremental energy release rate for shear band growth can be deduced from the
formula for crack advance under mode II, equation (B 24). The energy released for
an incremental advance of shear band has the typical behaviour shown in figure 5,
showing an asymptote at the EI/P boundary.
Proc. R. Soc. A (2008)
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(3Z0) and (b) near the EC/H boundary (3Z0.306). Mode II incremental loading is considered.
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Figure 10. Level sets of the modulus of incremental deviatoric strain, near a shear band of length 2l
(w0Z19.608) in aJ2-deformation theorymaterial at high (NZ0.8)-strainhardening, (a) notprestrained
(3Z0) and (b) near the EC/H boundary (3Z0.981). Mode II incremental loading is considered.
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(b ) Shear band at the EC/H boundary

Level sets of the modulus of incremental deviatoric strain for a J2-deformation
theory material (which is a particular case of the developed theory) are reported in
figure 9 for low (NZ0.1) and in figure 10 for high (NZ0.8) strain hardening.
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Figure 11. Incremental energy release rate for shear band growth in a J2-deformation theory
material at low (NZ0.1)- and high (NZ0.8)-strain hardening, as a function of the prestrain 3. The
curve presents an asymptote at the EI/P boundary (3z0.322 for NZ0.1 and 3z1.032 for NZ0.8),
so that shear band growth becomes ‘unrestrainable’ when prestress approaches this point.
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In both cases, null prestrain (and prestress) and a value of prestrain near the
EC/H boundary have been considered. Moreover, parameter h has been taken
equal to 0.311k for NZ0.1 and 0.775k for NZ0.8, to ensure the validity of the
Hill exclusion condition (A 2) near the EC/H boundary. Note that, for null
prestrain 3Z0, the shear band model behaves as a fracture, since the normal
component of incremental displacement remains continuous for a crack in an
orthotropic incompressible material at null prestress. Therefore, figures 9a and
10a are identical to the analogue cases reported for the inclined crack in
the electronic supplementary material (figs 4b and 5b ). The difference between the
shear band model and the crack becomes evident while comparing figs 4d and 5d
of the electronic supplementary material with figures 9b and 10b, where in the
former figures both conjugate directions of shear bands are activated under mode
II loading, while only the direction aligned to the shear band is activated in the
latter case.

Calculations of the incremental energy release rate for an infinitesimal
shear band advance _G

sb
(made dimensionless by multiplication by 4m= _K

2
II) for

shear band growth in a J2-deformation theory material at low (NZ0.1) and high
(NZ0.8) strain hardening are reported in figure 11.
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