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Lubricated sliding contact between soft solids is an
interesting topic in biomechanics and for the design
of small-scale engineering devices. As a model of
this mechanical set-up, two elastic nonlinear solids
are considered jointed through a frictionless and
bilateral surface, so that continuity of the normal
component of the Cauchy traction holds across
the surface, but the tangential component is null.
Moreover, the displacement can develop only in a
way that the bodies in contact do neither detach,
nor overlap. Surprisingly, this finite strain problem
has not been correctly formulated until now, so this
formulation is the objective of the present paper. The
incremental equations are shown to be non-trivial
and different from previously (and erroneously)
employed conditions. In particular, an exclusion
condition for bifurcation is derived to show that
previous formulations based on frictionless contact
or ‘spring-type’ interfacial conditions are not able to
predict bifurcations in tension, while experiments—
one of which, ad hoc designed, is reported—show that
these bifurcations are a reality and become possible
when the correct sliding interface model is used.
The presented results introduce a methodology for
the determination of bifurcations and instabilities
occurring during lubricated sliding between soft
bodies in contact.

1. Introduction
Lubricated sliding along an interface between two
deformable bodies is typically characterized by very low
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Figure 1. A sequence of photos showing a tensile bifurcation involving sliding contact between two soft solids. A silicon rubber
suction cup is applied on a lubricant oil film to the upper part of a ‘T-shaped’ silicon rubber (grey in the photo), clamped at the
lower end. The suction cup is pulled vertically, so that the straight configuration of the ‘T’ is a trivial equilibrium configuration
(a) and a tensile bifurcation occurs when this element starts bending (b) and the suction cup slips, as shown in the sequence of
photos. Note that in this system, rigidmechanical devices such as rollers or sliding sleeves are avoided. (Online version in colour.)

friction and arises, for instance, in several biotribological systems [1], such as the contact-lens/
cornea [2] and the articular cartilage [3] complexes, or in various engineering devices, such as
windscreen wipers, aquaplaning tyres and elastomeric seals [4]. These soft and slipping contacts
are often characterized by large elastic or viscoelastic deformations so that it is not obvious how
to formulate the Reynolds equation to adequately model the fluid flow between two contact
surfaces that undergo large time-dependent deformations [5]. Moreover, a distinctive feature of
lubricated soft contacts is that they are capable of sustaining tensile contact tractions during sliding,
particularly in transient conditions, a phenomenon clearly visible when a suction cup is moved
on a lubricated substrate. Indeed, as long as the pressure does not drop below the cavitation
pressure, a soft contact can be loaded in tension, possibly imposing large deformations in a highly
compliant solid. As an example of this situation, the sequence of photos shown in figure 1 refers to
an experiment (performed at the Instabilities Lab of the University of Trento) on tensile buckling
involving a sliding contact between two soft solids. This system has been designed and realized
to obtain a compliant sliding element, and thus to buckle in tension, without using rigid parts
such as rollers or sliding sleeves. In particular, a ‘T-shaped’ silicon rubber element is clamped at
the lower end and connected at the upper flat end to a silicon rubber suction cup, which has been
applied with a lubricant oil. The system is pulled in tension and displays a tensile bifurcation
in which the ‘T’ bends while the suction cup slides along the upper flat end of the ‘T’. This
bifurcation resembles that analysed in [6], but involves here soft solids.

A bilateral and frictionless sliding contact condition has been often employed to model the
above-mentioned problems (for instance, in geophysics [7], or for sliding inclusions [8], or roll-
bonding of metal sheets [9]), where two bodies in a current configuration share a common surface
along which shear traction and normal separation/interpenetration must both vanish, but free
sliding is permitted.

Another model is based on a ‘spring-like’ interface, in which the incremental nominal traction
is related to the jump in the incremental displacement across the interface (see [10,11]). This
model, in the limit of null tangential stiffness and null normal compliance should reduce to the
sliding interface model. While these models are elementary within an infinitesimal theory, they
become complex when the bodies in contact suffer large displacement/strain (and may evidence
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bifurcations, as in the case of the soft materials involved in the experimental set-up shown in
figure 1). As a matter of fact, the freely sliding interface model has never been even formulated so
far and the ‘spring-like’ model will be shown not to reduce to the freely sliding interface in the
above-mentioned limit of vanishing tangential stiffness and normal compliance.

The correct formulation for a sliding interface, together with the derivation of incremental
conditions, is the focus of the present article: the former turns out to be non-trivial and the latter
corrects previously used conditions, which are shown to lead to incorrect conclusions. Moreover,
a generalization of the Hill’s exclusion condition for bifurcation ([12]; see appendix A) to bodies
containing interfaces shows that the ‘spring-like’ interface cannot explain bifurcations which can
in fact be obtained with the correct formulation of the sliding contact and which exist in reality,
as the above-mentioned experiment shows.

The availability of analytical solutions for incremental bifurcations of nonlinear elastic solids is
crucial for many applications involving soft materials [13–20], so that the importance of the model
derived in this paper is that it allows to obtain solutions for bifurcations occurring in soft bodies
in contact with a frictionless planar interface. Several of these solutions, which are important for
applications, are obtained here, while other problems which do not admit an analytical solution
are solved by employing the finite-element method and a linear perturbation technique. The
obtained solutions show that sliding conditions strongly affect bifurcation loads and promote
tensile bifurcations (such as that visible in the experiment reported in figure 1), which are shown
to remain usually undetected by employing previously used, but incorrect, conditions.

2. Sliding interface conditions

(a) Problem formulation and kinematics of two bodies in frictionless contact
Two nonlinear elastic bodies (denoted by ‘+’ and ‘−’) are considered in plane-strain conditions,
jointed through a bilateral frictionless interface (figure 2). Points in the reference configurations
B+

0 and B−
0 are mapped to the current configurations B+ and B− via the deformations g± : B±

0 →
B±, so that

x+ = g+(x+
0 , t) and x− = g−(x−

0 , t), (2.1)

where t denotes the time and the subscript ‘0’ is used to highlight the referential description.
Therefore, the displacement vector u is related to the deformation through

u± = g±(x±
0 , t) − x±

0 , (2.2)

where ‘±’ denotes that the equation holds for both quantities ‘+’ and ‘−’.
The interface has the form of a regular surface Σ in the current configuration and is the

image of another regular surface Σ0 in the reference configuration, where it admits the arc-length
parametrization

x+
0 = x0(s+

0 ), (2.3)

so that, as the parameter s−
0 can be expressed as a function of s+

0 and time, the following expression
can be derived:

x−
0 = x0(s−

0 ) = x0(s−
0 (s+

0 , t)). (2.4)

The unit tangent vectors to the surface in the reference configuration, Σ0, can be expressed as

t+
0 = ∂x+

0

∂s+
0

1
|∂x+

0 /∂s+
0 | and t−

0 = ∂x−
0

∂s−
0

1
|∂x−

0 /∂s−
0 | . (2.5)

Note that a point x on the interface Σ in the current configuration is the image of two different
points x+

0 and x−
0 on Σ0. This condition, representing the fact that the two bodies in contact can neither
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Figure 2. Deformation of two nonlinear elastic bodies under plane strain conditions and jointed through a frictionless and
bilateral interface. The interface constitutive law enforces a bilateral constraint on the displacement (so that the two bodies
can neither detach, nor interpenetrate, during deformation) and continuity of the Cauchy traction, but with the tangential
component of the latter being null. A finite and unprescribed sliding of the two bodies can occur across the interface. (Online
version in colour.)

detach nor interpenetrate, can be expressed as x = x+ = x− so that

g+(x+
0 (s+

0 ), t) = g−(x−
0 (s−

0 (s+
0 , t)), t). (2.6)

The above condition defines the implicit dependence of s−
0 on s+

0 (and time) that has already
been exploited in equation (2.4). Introducing the deformation gradient

F± = ∂g±

∂x±
0

, (2.7)

taking the derivative of equation (2.6) with respect to s+
0 and applying the chain rule of

differentiation yields

F+ ∂x+
0

∂s+
0

= F− ∂x−
0

∂s−
0

∂s−
0

∂s+
0

, (2.8)

finally leading to the definition of the tangent vector t in the spatial configuration on Σ at x

t = F+t+
0

|F+t+
0 | = F−t−

0

|F−t−
0 | . (2.9)

The unit normal at x on Σ can be obtained through the Nanson’s rule of area transformation

n = A+
0

A+ J+(F+)−Tn+
0 = A−

0
A− J−(F−)−Tn−

0 , (2.10)

so that

n = (F+)−Tn+
0

|(F+)−Tn+
0 | = (F−)−Tn−

0

|(F−)−Tn−
0 | . (2.11)

Note that while n+
0 and n−

0 , as well as t+
0 and t−

0 , are different, there is only one n and one t.

(b) Tractions along the sliding interface
The interface is assumed to maintain a frictionless sliding contact, so that the normal component
of the Cauchy traction has to be continuous and the tangential component null. These conditions
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can be written as follows:

n · �T�n = 0 and t · T+n = t · T−n = 0, (2.12)

where T is the Cauchy stress and �ℵ� = ℵ+ − ℵ− is the jump operator of the quantity ℵ across
Σ . On introduction of the first Piola–Kirchhoff stress S = JTF−T (where J = det F) and using the
Nanson’s rule (2.10) yields

T±n = S±n±
0

ι±
, (2.13)

where ι± = A±/A±
0 is the ratio between the spatial and referential area elements, so that equations

(2.12) can be transformed to

n ·
(

S+n+
0

ι+
− S−n−

0
ι−

)
= 0 and t · S+n+

0
ι+

= t · S−n−
0

ι−
= 0. (2.14)

(c) Motion of two solids in frictionless contact
Before deriving the relations pertaining to the interface, the following relations are introduced
which are standard for continua and still hold for points at the left and right limit of Σ :

— The material time derivative, denoted by a superimposed dot, of the tangent and normal
unit vectors to the surface Σ at x is

ṫ± = (I − t ⊗ t)L±t (2.15)

and
ṅ± = −(I − n ⊗ n)(L±)Tn, (2.16)

where I is the identity tensor, L± is the gradient of the spatial description of velocity for
the ‘+’ and ‘−’ parts of the body:

L±(x±, t) = grad v± (2.17)

and v is the spatial description of the velocity

v±(x±, t) = ẋ±(x±
0 (x±, t), t), (2.18)

where x±
0 = x±

0 (x±, t) denotes the inverse of x± = g±(x±
0 , t).

— The ratio between the deformed and the undeformed area elements can be obtained from
the Nanson’s rule, equation (2.10), as

ι± = J±
∣∣(F±)−Tn±

0 |, (2.19)

from which its material time derivative can be obtained in the form

ι̇± = J±(tr L± − n · L±n)|(F±)−Tn±
0 | = ι±(I − n ⊗ n) · L±, (2.20)

as well as the following material time derivative:(
1
ι±

) ·
= −tr L± + n · L±n

J±|(F±)−Tn±
0 | = − 1

ι±
(I − n ⊗ n) · L±. (2.21)

A point on the sliding interface Σ has to be understood as the ‘superposition’ of the two points,
one belonging to the body B+ and the other to the body B−, so that x+ = x− along Σ . Taking the
time derivative of the equation x+ = x− at fixed s+

0 , the velocities of the two points x+ and x− can
be related to each other through

ẋ+ = ẋ− + F− ∂x−
0

∂s−
0

ṡ−
0 . (2.22)

The time derivative at fixed s+
0 is in fact the material time derivative for the ‘+’ part of the body,

while it involves an additional term related to the variation of s−
0 for the ‘−’ part of the body.
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Equations (2.5) and (2.9) show that F−∂x−
0 /∂s−

0 is parallel to the tangent unit vector t, so that
the scalar product of the unit normal n with both sides of equation (2.22) yields the continuity
condition across the interface Σ for the normal component of the velocity

�ẋ� · n = 0, (2.23)

while the scalar product with the unit tangent t yields ṡ−
0 , thus

ṡ−
0 = (ẋ+ − ẋ−) · t

|F−∂x−
0 /∂s−

0 | . (2.24)

The time derivative of equations (2.9) and (2.11) at fixed s+
0 provides

ṫ+ = ṫ− + ∂t

∂s−
0

ṡ−
0 and ṅ+ = ṅ− + ∂n

∂s−
0

ṡ−
0 , (2.25)

which using equations (2.15) and (2.16) lead to

∂t

∂s−
0

ṡ−
0 = (I − t ⊗ t)�L�t and

∂n

∂s−
0

ṡ−
0 = −(I − n ⊗ n)�LT�n. (2.26)

The scalar product of equations (2.26) with t and n yields

t · ∂t

∂s−
0

ṡ−
0 = 0, n · ∂t

∂s−
0

ṡ−
0 = �Lnt� (2.27)

and
n · ∂n

∂s−
0

ṡ−
0 = 0, t · ∂n

∂s−
0

ṡ−
0 = −�Lnt�. (2.28)

The time derivative of equation (2.14)1 at fixed s+
0 allows to obtain

n · Ṡ
+

n+
0

ι+
− n · Ṡ

−
n−

0
ι−

− ṡ−
0

(
n · ∂S−

∂s−
0

n−
0

ι−
+ n · S−n−

0
∂(1/ι−)

∂s−
0

+ n · S−

ι−
∂n−

0

∂s−
0

)

= n · Tn�Ltt�, (2.29)

while the time derivative of equation (2.14)2 at fixed s+
0 leads to

t · Ṡ
+

n+
0 = −ṫ+ · S+n+

0 (2.30)

and

t · Ṡ
−

n−
0 = −ṫ− · S−n−

0 − ṡ−
0

∂t−

∂s−
0

· S−n−
0 − ṡ−

0 t− · ∂S−

∂s−
0

n−
0 − ṡ−

0 t− · S− ∂n−
0

∂s−
0

, (2.31)

so that, using equations (2.27), (2.28) and (2.15), the following expressions are derived:

t · Ṡ
+

n+
0 = −L+

ntn · S+n+
0 (2.32)

and

t · Ṡ
−

n−
0 = −L+

ntn · S−n−
0 − ṡ−

0 t− · ∂S−

∂s−
0

n−
0 − ṡ−

0 t− · S− ∂n−
0

∂s−
0

. (2.33)

3. Planar sliding interface conditions
The general interface conditions derived above are now simplified for the special case of a planar
sliding interface that is assumed to satisfy the following conditions:

— the interface is planar both in the reference and in the current configurations (but can
incrementally assume any curvature), so that

n = n+
0 = n−

0 , t = t+
0 = t−

0 ,
∂n−

0

∂s−
0

= 0; (3.1)
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— the Cauchy traction components are uniform at the interface and satisfy

T+
nn = T−

nn and T+
nt = T−

nt = 0; (3.2)

— a relative Lagrangian description is assumed in which the current configuration is
assumed as reference (so that F+ = F− = I and ι+ = ι− = 1 and S± = T±).

It follows from the above assumptions that

∂(1/ι−)
∂s−

0
= 0 and

∂S−

∂s−
0

= 0. (3.3)

Now, introducing a reference system x1–x2 aligned parallel, respectively, to the unit tangent
t and normal n to the interface, the equations governing the rate problem across the above-
introduced planar interface are the following:

— continuity of normal incremental displacements, from equation (2.23),

ẋ+
n (x1, 0) = ẋ−

n (x1, 0); (3.4)

— continuity of incremental nominal shearing across the interface, from equations (2.32) and
(2.33),

Ṡ+
tn(x1, 0) = Ṡ−

tn(x1, 0); (3.5)

— dependence of the incremental nominal shearing on the Cauchy stress component
orthogonal to the interface Tnn and incremental displacement gradient mixed component
Lnt, from equation (2.32),

Ṡ+
tn(x1, 0) = −αTnnLnt(x1, 0), (3.6)

where α = 1;
— dependence of the jump in the incremental nominal stress orthogonal to the interface

on the Cauchy normal component Tnn and the jump in the tangential component of the
incremental displacement gradient Ltt, from equation (2.29),

Ṡ+
nn(x1, 0) − Ṡ−

nn(x1, 0) = αTnn�Ltt(x1, 0)�, (3.7)

where, again, α = 1.

The parameter α has been introduced in the above equations to highlight the difference with
respect to the incorrect conditions sometimes assumed at the interface (for instance by Steif [9])

Ṡ±
tn(x1, 0) = 0 and Ṡ+

nn = Ṡ−
nn, (3.8)

which correspond to α = 0. Note that the only possibility to obtain a coincidence between the
correct α = 1 and the incorrect α = 0 conditions is when the stress normal to the interface vanishes,
namely, when Tnn = 0.

The ‘spring-type’ interfacial conditions used by Suo et al. [10], Bigoni et al. [11] and Bigoni &
Gei [21] do not reduce (except when Tnn = 0) to the correct frictionless sliding conditions (3.6)
and (3.7), in the limit when the stiffness tangential to the interface tends to zero and the normal
stiffness to infinity. In this limit case, the ‘spring-type’ conditions reduce to the incorrect equations
obtained with α = 0, so that they cannot properly describe slip without friction, unless when
Tnn = 0. Note that the stress orthogonal to the interface, Tnn has been always assumed to be null
by Bigoni et al. [11] and Bigoni & Gei [21]; all bifurcation analyses reported in these papers are
therefore different from those considered in the present paper, where the transverse stress is never
null.
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(a) Plane strain bifurcation problems involving a planar interface
In the following, a series of incremental bifurcation problems are solved, involving two elastic
nonlinear solids in contact through a sliding interface aligned parallel to the x1–axis. This problem
set-up is similar to various situations analysed in the literature [22–26], with the variant that now
the interfacial conditions are different. It is important to highlight that the two solids in contact
may be characterized by different constitutive assumptions and may be subject to a different state
of prestress in the x1–direction. In fact, the possibility that the two bodies may freely slide across
the interface allows to relax the usual compatibility restrictions.

The incremental constitutive equations are characterized by the following parameters [27, ch.
6.2]:

ξ = μ∗

μ
, η = Ttt + Tnn

2μ
and k = Ttt − Tnn

2μ
, (3.9)

so that
Ṡ11 = μ(2ξ − k − η)L11 + ṗ, Ṡ22 = μ(2ξ + k − η)L22 + ṗ

Ṡ21 = μ[(1 + k)L21 + (1 − η)L12], Ṡ12 = μ[(1 − η)L21 + (1 − k)L12],

}
(3.10)

where ṗ plays the role of a Lagrange multiplier, because the body is assumed incompressible,
Lkk = 0. For the sake of simplicity, a neo-Hookean material behaviour is assumed, ξ = 1, so that
the material always lies in the elliptic imaginary (EI) regime and

− 1 < k < 1, Λ =
√

4ξ2 − 4ξ + k2 = |k|, (3.11)

together with additional definitions to be used later,

β1 =
√

1 + |k|
1 − |k| β2 =

√
1 − |k|
1 − |k| , Ω1 = iβ1, Ω2 = iβ2, Ω3 = −iβ1 and Ω4 = −iβ2. (3.12)

(i) Two elastic prestressed half-spaces in contact through a planar sliding interface

Two elastic half-spaces are now considered in contact through a sliding interface, planar in the
current configuration, which is assumed as reference configuration; see the inset in figure 3.

The upper (the lower) half-space x2 > 0 (x2 < 0) is denoted with ‘+’ (with ‘−’) and the
incremental conditions at the interface are given by equations (3.4)–(3.7), plus the condition
of exponential decay of the solution in the limits x2 → ±∞. For simplicity the two half-spaces
are modelled with the same material and subject to the same prestress, so that bifurcations are
possible only due to the presence of the interface.

Employing the representation

v±
1 = ṽ±

1 (x2)f (c1, x1), v±
2 = ṽ±

2 (x2)f ′(c1, x1), (3.13)

f (c1, x1) = exp(ic1x1), f ′(c1, x1) = if (c1, x1), (3.14)

ṽ±
1 (x2) = −b±

1 Ω±
1 eic1Ω

±
1 x2 − b±

2 Ω±
2 eic1Ω

±
2 x2 − b±

3 Ω±
3 eic1Ω

±
3 x2 − b±

4 Ω±
4 eic1Ω

±
4 x2 (3.15)

and ṽ±
2 (x2) = −i[b±

1 eic1Ω
±
1 x2 + b±

2 eic1x2 + b±
3 eic1Ω

±
3 x2 + b±

4 eic1Ω
±
4 x2 ], (3.16)

for the incremental displacements [27], where c1 is the wavenumber of the bifurcated mode, the
decaying condition implies

b−
1 = b−

2 = b+
3 = b+

4 = 0, (3.17)

so that the eigenvalue problem governing incremental bifurcations can be written as

[M]

⎡
⎢⎢⎢⎢⎢⎣

b+
1

b+
2

b−
3

b−
4

⎤
⎥⎥⎥⎥⎥⎦= 0, (3.18)
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where the matrix [M] is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 −1

2 − η + Λ 2 − η − Λ −2 + η − Λ −2 + η + Λ

2 − η + Λ + Tnn

μ
α 2 − η − Λ + Tnn

μ
α 0 0

(
2 − η − Λ + Tnn

μ
α

)√
1 + Λ

1 − k

(
2 − η + Λ + Tnn

μ
α

)√
1 − Λ

1 − k

(
2 − η − Λ + Tnn

μ
α

)√
1 + Λ

1 − k

(
2 − η + Λ + Tnn

μ
α

)√
1 − Λ

1 − k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.19)

Non-trivial solutions of the system (3.18) are obtained when det M = 0, to be solved for the
bifurcation stress. Note that matrix M does not contain the wavenumber of the bifurcated mode,
so that the critical load for bifurcation is independent of the wavelength of the bifurcation mode
(even if the sliding interface is present).

The resulting bifurcation condition for a sliding interface (α = 1) can be written as

√
1 − Λ

(
Tnn

μ
+ 2 − η + Λ

)2
− √

1 + Λ

(
Tnn

μ
+ 2 − η − Λ

)2
= 0. (3.20)

If, instead of the correct interface conditions, α = 1, one assumes the incorrect condition α = 0,
bifurcation corresponds to

√
1 − Λ(2 − η + Λ)2 − √

1 + Λ(2 − η − Λ)2 = 0. (3.21)

Using equations (3.9) and for given values of longitudinal Ttt and transverse Tnn prestresses,
equations (3.20) and (3.21) (which hold for a generic incompressible material, subject to generic
prestress conditions) can be solved. Results are reported in figure 3 for a neo-Hookean material,
ξ = 1, assuming both the correct condition α = 1 (figure 3a) and the incorrect one α = 0 (figure 3b).
The red and blue zones identify in the figure the prestress combinations for which det M assumes
positive and negative values, respectively, so that the boundary between these zones (marked
with red lines) corresponds to bifurcation. The dashed lines represent failure of ellipticity, so that
points situated beyond this line do not represent states attainable through a smooth deformation
path (because ellipticity loss corresponds to the emergence of a discontinuous solution).

Note that, in the case of null prestress normal to the interface, Tnn = 0, an interfacial bifurcation
occurs for Ttt/μ ≈ −1.679, the same value which gives the surface instability of a half-space, which
is unaffected by the condition α = 1 or α = 0. This is the only situation in which the two conditions
provide the same bifurcation stress.

An interesting case occurs when only a tensile prestress orthogonal to the interface Tnn

is applied (and the transverse prestress is null, Ttt = 0), where a tensile bifurcation occurs for
Tnn/μ ≈ 1.679, which is absent when the incorrect condition α = 0 is used or also if the modelling
would involve a perfectly bonded interface (in which case all bifurcations are excluded within
the limits of ellipticity). This simple example reveals the importance of a correct definition of the
interfacial conditions.

A comparison between the correct α = 1 and incorrect α = 0 conditions reveals a completely
different bifurcation behaviour. In fact, for positive Tnn bifurcation is possible in the correct
case for negative, null and slightly positive Ttt. These bifurcations do not occur in the incorrect
situation. Moreover, in the latter situation there is a zone of bifurcation occurring for negative
Tnn which is excluded in the correct case. As an example, in the special, but interesting, case of
uniaxial compression (Tnn < 0 with Ttt = 0), there is no bifurcation in the correct case α = 1, while
bifurcation occurs in the other case.

To better elucidate this situation, an exclusion condition of the Hill [12] type is derived in
appendix A. For α = 0, this condition becomes completely insensible to the presence of the sliding
interface (and reduces to the Hill’s condition obtained without consideration of any interface), so
that bifurcation is always excluded when both conditions Tnn ≥ 0 and Ttt ≥ 0 hold true. Using
the correct parameter α = 1, the exclusion condition evidences a term pertaining to the interface,
which allows the bifurcation to occur for both positive Tnn and Ttt.
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Figure 3. Interfacial bifurcation of two elastic incompressible half-spaces (made up of the same neo-Hookeanmaterial, subject
to the same prestress) in contact through a planar sliding interface in the Tnn−Ttt plane for a sliding interface α = 1. The
incorrect condition α = 0 is also included for comparison. The points corresponding to bifurcation are represented by red
lines (at the boundary between the red and blue zones), while the dashed lines correspond to failure of ellipticity. Note that
withα = 1 bifurcation in pure tension occurs (i.e. with Ttt = 0), which is excluded forα = 0. Therefore, the (correct) sliding
interface condition explains tensile bifurcation. Note also that in this case bifurcations for both negative stresses Tnn and Ttt
do not occur (except in the domain of slightly negative Tnn). (Online version in colour.)

(ii) Elastic layer on an elastic half-space, in contact through a planar sliding interface

An elastic layer (of current thickness H) is considered, connected to an elastic half-space through
a planar sliding interface; see the inset in figure 4. Both the layer and the half-space are assumed
to obey the same neo-Hookean material model. The system is subject to a uniform biaxial Cauchy
prestress state with principal components Ttt and Tnn. A reference system x1–x2 is introduced
aligned parallel, respectively, to the unit tangent t and normal n to the interface.

In addition to the incremental boundary conditions given by equations (3.4)–(3.7) at the sliding
interface (x2 = 0), the decaying condition as x2 → −∞, plus the condition holding at the free
surface (x2 = H), have to be enforced. The latter condition differs for dead or pressure loading
as follows:

— for dead loading,

Ṡ+
nn(x1, H) = Ṡ+

tn(x1, H) = 0; (3.22)

— for pressure loading,

Ṡ+
nn(x1, H) = −TnnLnn(x1, H) and Ṡ+

tn(x1, H) = −TnnLnt(x1, H). (3.23)

Imposing the above conditions, a linear homogeneous system is obtained for the bifurcation
stress Tnn/μ, when the longitudinal prestress is assumed null (Ttt/μ = 0). The bifurcation stress
is reported in figure 4 as a function of the wavenumber of the bifurcated field, for both situations
of dead loading and pressure loading and for both correct and incorrect conditions, respectively,
α = 1 and α = 0.

For pressure loading, a tensile bifurcation is observed, which occurs for both the correct (α = 1,
figure 4a) and incorrect (α = 0, figure 4b) conditions at the interface. A tensile bifurcation for dead
loading is possible only when the correct condition α = 1 is employed, while in the other case
the Hill-type condition (see appendix A) excludes bifurcations for tensile Tnn and null Ttt. In any
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Figure 4. Bifurcation of a layer connected to an elastic incompressible half-space through a sliding interface. Both layer and
half-space are modelled with the same neo-Hookean material and subject to the same prestress orthogonal to the interface.
Both dead and pressure loadings are considered for the two interfacial conditions α = 1 and α = 0 (the latter condition
is incorrect and included only for comparison). The normalized bifurcation stress Tnn/μ is reported versus the normalized
wavenumber of thebifurcatedfield c1H. Note that for dead loadbifurcation in tension is possible onlywhen the correct interfacial
condition,α = 1, is considered. (Online version in colour.)

case, results are strongly different for the correct and incorrect models of interface, showing once
again the importance of a correct modelling of interfacial conditions.

(iii) Two elastic layers

Two layers (one denoted by ‘+’ and the other by ‘−’), connected through a planar sliding interface
are considered, subject to transverse and longitudinal prestresses Tnn and Ttt. The transverse
stress is assumed to be generated by either a dead, equations (3.22), or a pressure, equations (3.23),
loading (see the insets in figure 5). Now only the correct condition α = 1 is considered, as for α = 0
the Hill-type condition excludes bifurcation for positive dead loading Tnn and null transversal
loading (see appendix A).

As in the case of a layer on a half-space (H−/H+ → ∞) (see §3a(ii)), compressive pressure
loading, Tnn < 0, does not lead to buckling, and tensile dead loading yields a bifurcation. The
results for H−/H+ < 1 are included in figure 5 for illustration purposes only, as they correspond
to the respective results for the reciprocal value of H−/H+ > 1 upon adequate rescaling of cH+.

4. Bifurcations in complex problems involving a sliding interface
A special feature characterizing the presence of sliding interfaces is the appearance of tensile
bifurcations, often excluded for other models of interfaces (for instance in the perfectly bonded
case). These bifurcations are usually hard to be obtained analytically (the simple cases reported in
the previous section are of course exceptions), so that the aim of this section is to use a finite-
element method combined with a linear perturbation analysis to analyse tensile bifurcations
occurring under plane strain conditions in a system of two elastic slender blocks and a hollow
cylinder with an internal coating, in both cases jointed through a sliding interface. The former
mechanical system is related to the problem of buckling in tension of two elastic rods [6], while
the latter is related to a problem of coating detachment.
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Figure 5. Bifurcation of two elastic incompressible layers in contact through a sliding interface. Both layers are modelled with
the sameneo-Hookeanmaterial and subject to the sameprestress orthogonal to the interface. The normalized bifurcation stress
Tnn/μ is reported versus the normalized wavenumber of the bifurcated field c1H+, for different values of the thickness ratio
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(a) Finite-element treatment
A mixed formulation is adopted in order to implement incompressible hyperelasticity in plane
strain conditions. Quadrilateral eight-node elements are used with quadratic (serendipity)
interpolation of displacements and continuous bilinear interpolation of the pressure field that
plays the role of a Lagrange multiplier enforcing the incompressibility constraint using the
augmented Lagrangian method. Standard 3 × 3 Gaussian quadrature is applied. As in the
analytical examples studied in the previous section, the constitutive response is modelled using
the incompressible neo-Hookean model.

The sliding interface is modelled as a frictionless bilateral interface in the geometrically exact
finite-deformation setting. Quadratic interface elements are used for that purpose with each
surface represented by three nodes, so that curved interfaces can be correctly represented. The
closest-point projection is used to determine the points that are in contact, and the augmented
Lagrangian method is used to enforce the bilateral (equality) constraint. Those aspects follow the
standard concepts used in computational contact mechanics [28], except that here bilateral rather
than unilateral contact is considered. The present implementation employing interface elements
is suitable for relatively small, but finite relative sliding. This is sufficient for the purpose of
bifurcation analysis that is carried out below.

The bifurcation analysis is performed using a linear perturbation technique. Specifically, a
linear perturbation is applied in the deformed (prestressed) base state that corresponds to a
gradually increasing load, and the bifurcation point is detected when the perturbation grows
to infinity.

Implementation and computations have been performed using the AceGen/AceFEM system
[29]. As a verification of the computational scheme, the problem of two elastic half-spaces (§3a(i))
and the problem of a layer on an elastic half-space (§3a(ii)) have been analysed, and a perfect
agreement with the corresponding analytical solutions has been obtained.

(b) Tensile bifurcation of two elastic slender blocks connected through a sliding interface
As the first numerical example, bifurcation in tension is studied for the problem of two identical
elastic rectangular blocks jointed through a frictionless bilateral contact interface; see the inset in
figure 6. The axial displacements are constrained at one support and uniform axial displacement
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Figure6. Two identical neo-Hookean rectangular blocks uniformly deformed in tension, jointed througha sliding interface. The
blocks have initial length L0, width H0 and shear modulusμ0 = μ+

0 = μ−
0 . The bifurcation force Fcr is made dimensionless

through multiplication by the square of the current length L of the blocks and division by the bending stiffness B (per unit
thickness) of the blocks calculated with reference to their current width L. Note that the bifurcation force tends, at increasing
length of the block, to the value calculated for two elastic rods in tension of shear stiffnessμ0 (reported with a straight red
line). (Online version in colour.)

is prescribed at the other support. Additionally, in each block, the lateral displacement is
constrained at one point in the middle of the support. In the base state, the rods are thus uniformly
stretched, while the bifurcation mode in tension involves bending of both blocks accompanied by
relative sliding at the interface, as shown in the inset of figure 6, where the problem scheme,
together with the undeformed mesh and the deformed mesh at buckling are reported (the mesh
used in the actual computations was finer than that shown in figure 6 as an illustration).

The present problem is, in fact, a continuum counterpart of the problem, studied by Zaccaria
et al. [6], of tensile bifurcation of two inextensible elastic Euler–Bernoulli beams clamped at one
end and jointed through a slider. For that problem, the normalized critical tension force Fcr has
been found equal to 4FcrL2/(π2B) = 0.58, where L denotes the beam length and B the bending
stiffness.

Figure 6 shows the normalized critical force as a function of the initial length-to-height ratio,
L0/H0. For consistency, the force has been normalized using the current length L = λL0 and the
bending stiffness B = μH3/3 (per unit thickness) has been determined in terms of the current
height H = λ−1H0 and current incremental shear modulus μ = μ0(λ2 + λ−2)/2, even though the
critical stretch λ is close to unity (e.g. λ = 1.006 for L0/H0 = 4 and λ = 1.002 for L0/H0 = 8). The
result in figure 6 shows that for slender blocks the critical force agrees well with the model of
Zaccaria et al. [6], which critical load is reported with a red straight line. For thick blocks, the two
models differ, for instance, by 20% at L0/H0 = 4.

(c) Hollow cylinder with internal coating
A hollow cylinder is now considered with an internal coating and loaded by a uniform external
pressure. The cylinder and the coating interact through a frictionless contact interface. The
geometry is specified by the outer radius Ro, the inner radius Ri and the coating thickness h
that has been assumed equal to h = 0.01Ro; see the inset in figure 7. The shear moduli of the tube
and coating are equal. The case where the coating is absent is also investigated for comparison.

Figure 7 shows the critical pressure pcr normalized through division by the shear modulus
μ0 as a function of the inner-to-outer radius ratio, Ri/Ro. As a reference, the critical load of a
hollow cylinder without coating is also included. The bifurcation modes are reported in figure 8
for the uncoated and in figure 9 for the coated case. In the case of coating, two buckling modes are
observed depending on the wall thickness. For Ri/Ro greater than approximately 0.38, a global
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Figure 8. Bifurcation modes for a hollow cylinder (without coating) subjected to an external pressure (dashed lines denote
the undeformed configuration, solid lines denote the bifurcation mode in the deformed configuration). The bifurcation modes
correspond to the loads indicated in figure 7, to which the letters are referred.

buckling mode occurs, as illustrated in figure 9. This mode is also characteristic for the uncoated
hollow cylinder in the whole range of Ri/Ro. For the same ratio of Ri/Ro and the same load p/μ0,
the base state is identical for the cylinder with coating and for the uncoated one. However, the
critical load is different, and, in the global-mode regime, the sliding interface reduces the critical
load by approximately 11%.

A local bifurcation mode is observed for the coated hollow cylinder when Ri/Ro is less than
approximately 0.38, as illustrated in figure 9. In this buckling mode, the layer and the inner part of
the tube deform in a wave-like fashion, while the outer part of the tube remains intact. This mode
is thus similar to the buckling mode characteristic for the layer resting on an elastic half-space
(see §3a(ii)), with the difference that here the substrate is curved. In the local-mode regime, the
critical load is significantly reduced with respect to the uncoated cylinder (which buckles in the
global mode). For instance, for Ri/Ro = 0.1, the critical load is reduced by 50%.

As a conclusion, the presence of a coating connected with a sliding interface is detrimental to
the stability of the system, so that the coating tends to slide and the bifurcation load is strongly
lower than that calculated in the case when the coating is absent.
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Figure 9. Bifurcation modes for a hollow cylinder with an internal coating jointed through a sliding interface. The cylinder
is subjected to an external pressure. Bifurcation modes correspond to the loads indicated in figure 7, to which the letters are
referred. Note that an enlarged detail of the inner, coated surface is reported for each geometry (dashed lines denote the
undeformed configuration, solid lines denote the bifurcation mode in the deformed configuration, the sliding interface is
denoted in red). (Online version in colour.)
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silicon rubber element. A lubricant oil is applied, so that the suction cup can slide along the upper edge of the ‘T’ element.
(Online version in colour.)

5. Experimental evidence of tensile bifurcation and sliding between two soft
solids in contact through a sliding interface

As mentioned in the introduction, experiments have been designed and realized (in the
‘Instabilities Lab’ of the University of Trento), showing a tensile bifurcation which involves two
soft solids connected through a sliding interface; figure 10.

In particular, a ‘T-shaped’ silicon rubber element has been manufactured with a ‘stem’ having
rectangular cross section 10 mm × 30 mm (RBSM from Misumi, with 7.4 MPa ultimate tensile
strength) and an upper end of dimensions 160 mm × 10 mm × 40 mm. Three different lengths of
the stem have been tested, namely, L1 = 210 mm, L2 = 180 mm and L3 = 150 mm. The upper flat
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part of the ‘T’ has been attached (through a lubricant oil, Omala S4WS 460) to a silicon rubber
suction cup. The suction cup has been pulled in tension (by imposing a vertical displacement
at a velocity of 0.7 mm s−1, with a uniaxial testing machine, Messphysik midi 10). The load and
displacement have been measured, respectively, with a load cell (a MT1041, RC 20 kg, from Metler
Toledo) and the potentiometric transducer inside the testing machine. Data have been acquired
with a system NI CompactDAQ, interfaced with Labview (National Instruments).

The oil used at the suction cup contact allows the suction cup to slide along the upper part of
the ‘T’ element. Therefore, when the suction cup is pulled, the system initially remains straight
and the stem deforms axially. However, at a sufficiently high load, a critical condition is reached
and the system buckles. Consequently, the stem of the ‘T’ element bends and the suction cup
slides along its upper flat end (figure 1).

This is a simple experiment showing a tensile bifurcation of two soft elastic materials (the ‘T’
element and the suction cup), when they are connected through a sliding interface, a phenomenon
which is predicted by the model developed in the present paper, in particular by the use of the
correct interface conditions (3.4)–(3.7).

Note, however, that the oil does not allow a completely free sliding of the suction cup,
so that an initial relative movement at the suction cup–rubber element interface requires the
attainment of an initial force, which suddenly decreases when the relative displacement increases
and eventually becomes negligible, thus realizing the sliding interfacial conditions analysed in
the present paper. This is evident in the load-displacement curves, shown in figure 11, two for
each tested length. The curves are marked blue for L = 210 mm, green for L = 180 mm and red
for L = 150 mm. The curves show a peak in the force, followed by steep softening and the final
attainment of a steady sliding state, where the junction behaves as a sliding interface. The peak
forces exhibit a significant scatter which is related to the transition from sticking friction, through
mixed lubrication at the onset of sliding, to hydrodynamic lubrication during developed sliding,
the latter exhibiting much smaller scatter.

The interest in the developed soft system is that it allows the realization of an element buckling
in tension, which is essentially similar to the structural system designed by Zaccaria et al. [6],
but now obtained without the use of rollers or other mechanical devices.

(a) Finite-element simulations
Two-dimensional plane stress finite-element simulations have been performed with Abaqus to
validate the model of a sliding interface between two soft materials against the experimental
results presented in the previous section.

The geometry is shown in the inset of figure 11 and consists in a rectangular block of edges
B = 10 mm and L = {210, 180, 150} mm. The lower edge of the elastic block is clamped, whereas
the upper edge is in contact with a rigid plane which can freely rotate and is connected to an
elastic spring which models the stiffness of the suction cup. Contact conditions at the interface
between the elastic block and the rigid plane (shown as a red line in the inset of figure 11) are
prescribed such that a bilateral and frictionless interaction is realized. An initial imperfection
has been introduced, that consists in a rotation of the rigid plane by an angle of 0.5◦. The
rigid plane is modelled using a two-dimensional two-node rigid element (R2D2), while the
rectangular block is modelled using four-node bilinear elements with reduced integration and
hourglass control (CPS4R element in Abaqus). The material of the elastic block is a neo-Hookean
hyperelastic material characterized by a shear modulus μ0 = 7 MPa. The spring describing
the suction cup is a linear elastic spring with stiffness ks = 4.25 MPa. Displacement boundary
conditions (vertical displacement δ = 15 mm) are prescribed at the upper end of the elastic
spring.

The results of the finite-element simulations are shown in figure 11 as solid lines with markers.
It is shown that the finite-element model is able to predict correctly the post-critical behaviour.
The peak load is not predicted by the model because the effects of the lubricant at the interface
(which produces an increase of the load before buckling) are not taken into account.
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Figure 11. Experimental and simulated load–displacement curves of the structure sketched in the inset for three different
lengths of the vertical stem, L1 = 210 mm (red lines), L2 = 180 mm (green lines) and L3 = 150 mm (blue lines). The model
of sliding interface correctly captures the post-critical behaviour, where the lubricated contact realized a low friction sliding
condition.

6. Conclusion
A model of sliding interface has been developed for soft solids in sliding contact, a problem
of interest in various technologies, exemplified through the design and experimentation on a
soft device, which realizes a compliant slider. The derived incremental equations are not trivial
and differ from previously (and erroneously) employed interface conditions. A fundamental
simplifying assumption in the model is the bilaterality of the contact, which, nevertheless, is the
key to obtaining analytical solutions for several bifurcation problems. Some of these solutions
have been obtained, which show that: (i) the interface plays a strong role in the definition of critical
conditions, (ii) the interface promotes tensile bifurcations, one of which has been experimentally
verified, which cannot be detected if previously used (and erroneous) interfacial conditions are
used.
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Appendix A. An exclusion condition for bifurcation of two solids in contact
with a sliding interface
Following the Hill [12] generalization of the Kirchhoff proof of uniqueness of the linear theory
of elasticity, two incremental solutions are postulated, for the problem sketched in figure 12, ẋ±

α ,
Ṡ

±
α (with α = 1, 2), so that the difference fields �ẋ±, �Ṡ

±
are in equilibrium with homogeneous

boundary conditions and null body forces.
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Integration of the equilibrium equations for both bodies yields
∫
B±

0

(Div �Ṡ
±

) · �ẋ± =
∫
B±

0

Div(�Ṡ
±T

�ẋ±) −
∫
B±

0

�Ṡ
± · �Ḟ± = 0, (A 1)

so that the divergence theorem provides
∫
B±

0

�Ṡ
± · �Ḟ± = ∓

∫
Σ±

0

�ẋ± · �Ṡ
±

n0. (A 2)

A sum of the two equations (A 2) yields the following Hill-type exclusion condition for
bifurcation: ∫

B0

�Ṡ · �Ḟ > −
∫
Σ0

(�ẋ+ · �Ṡ
+

n0 − �ẋ− · �Ṡ
−

n0) ∀�Ṡ
±

, �ẋ±. (A 3)

Before proceeding with the assumptions employed in the present article, the exclusion
condition (A 3) is specialized to the case of the ‘spring-type’ interface introduced by Suo et al.
[10] and employed also by Bigoni et al. [11]. This interface is charaterized by: (i) full continuity of
the nominal incremental tractions across the interface and (ii) a linear interfacial constitutive law
of the type

Ṡ
+

n0 = Ṡ
−

n0 = H�ẋ�, (A 4)

where H is a constitutive tensor [note that in the notation of the present paper there is a sign
differing in equation (A 4) from Suo et al. [10]]. Using the two above conditions (i) and (ii) in
equation (A 3), the exclusion condition becomes

∫
B0

�Ṡ · �Ḟ +
∫
Σ0

��ẋ� · H��ẋ� > 0 ∀�Ṡ, �ẋ. (A 5)

Equation (A 5) shows that, for a positive-definite interfacial tensor H (in other words excluding
softening interfaces), the term pertaining to the interface is always positive. It may be easily
concluded that:

When the incremental constitutive response of a solid is governed by a positive-definite
tensor (as, for instance, for a Mooney–Rivlin material subject to non-negative principal
stresses), bifurcation is always excluded for mixed boundary conditions of dead loading
and imposed displacements even in the presence of positive-definite interfaces of the type
introduced by Suo et al. [10].
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For instance, in a case in which all principal stresses are positive or null (as it happens in a
tensile problem of the type experimentally investigated in this paper) bifurcations are excluded.
To substantiate the above statement with an example, consider two elastic blocks made up of
Mooney–Rivlin material connected through a planar interface of the type proposed by Suo et al.
[10] without softening. If these blocks will be pulled in tension with a dead loading, condition
(A 5) excludes all possible bifurcations. But the bifurcation will occur in reality, as the T-problem
shows. This bifurcation is found if the interface is replaced with a sliding interface of the type
described by equations (3.4)–(3.7).

The following assumptions are now introduced:

— a Lagrangean formulation is assumed with the current state taken as reference, so that
B0 ≡ B and Σ0 ≡ Σ ;

— plane strain deformation in the plane x1–x2 prevails;
— a planar interface is assumed, so that n0 = n and t0 = t;
— the material is prestressed by a uniform Cauchy stress with principal components Ttt

and Tnn;
— the constitutive equation of the material is incrementally linear,

Ṡ = E[Ḟ] for compressible material (A 6)

and
Ṡ = E[Ḟ] + ṗI for incompressible material. (A 7)

Then equation (A 3) becomes
∫
B

�Ṡ · �L > −
∫
Σ

(�v+
t �Ṡ+

tn + �v+
n �Ṡ+

nn − �v−
t �Ṡ−

tn − �v−
n �Ṡ−

nn), (A 8)

where v is the incremental displacement and L is its gradient, and repeated indices are not
summed.

Introducing the fourth-order elastic tensor E and using equations (3.4) and (3.5), equation (A 8)
can be rewritten as∫

B
�L · E[�L] > −

∫
Σ

((�v+
t − �v−

t )�Ṡtn + �vn(�Ṡ+
nn − �Ṡ−

nn)). (A 9)

Finally, using equations (3.6) and (3.7), the condition for excluding bifurcation in an elastic solid
containing a sliding interface becomes

∫
B

grad v · E[ grad v] − αTnn

∫
Σ

(vn�vt,t� − �vt�vn,t) > 0, (A 10)

holding for all (not identically zero) continuous and piecewise continuously twice differentiable
velocity fields v satisfying homogeneous conditions on the part of the boundary where
incremental displacements are prescribed and assuming arbitrary values on Σ , but with the
normal component satisfying v+

n = v−
n .

The parameter α in equation (A 10) highlights the difference between the correct interface
conditions (α = 1) derived in the present work and the incorrect interface conditions (α = 0)
assumed by Steif [9].

In the special case in which Tnn = 0, equation (A 10) reduces to the Hill exclusion condition
∫
B

grad v · E[grad v] > 0, (A 11)

showing that, for a positive-definite incremental elastic tensor E , the incremental solution is
unique, whenever the sliding interface is free of normal prestress; otherwise bifurcation is not
a priori excluded. When the incorrect assumption α = 0 is made, condition (A 11) is obtained
independently of the value of Tnn, thus excluding bifurcation for positive-definite E . Positive
definiteness of E is equivalent to the requirement that the principal prestresses T1, T2 and T3
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(which enter in the definition of E) satisfy all the inequalities T1 + T2 > 0, T1 + T3 > 0, T2 + T3 > 0
or, for uniaxial tension, T1 > 0 with T2 = T3 = 0 [27,30].
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