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Abstract. Global and local uniqueness and stability criteria for elastoplastic
solids with non-associative flow rules are presented. Hill’s general theory is de-
veloped in the form generalized by Raniecki to non-associativity. Local stability
criteria are presented and systematically discussed in a critical way. These are:
positive definiteness and non-singularity of the constitutive operator, and positive
definiteness (strong ellipticity) and non-singularity (ellipticity) of the acoustic ten-
sor. The former criteria are particularly relevant for homogeneous deformation of
solids subject to all-round controlled nominal surface tractions. Dually, the latter
criteria are particularly relevant for homogeneous deformation of solids subject to
displacements prescribed on the entire boundary. Flutter instability as related to
complex conjugate eigenvalues of the acoustic tensor is also briefly discussed.

1 Introduction

Due to the activation of different micromechanisms at various structural levels -for in-
stance, sliding on microfissures or on intergranular contact surfaces, and pore or joint
interactions- a broad class of materials is characterized by an internal friction, roughly
obeying a Coulomb law. As a consequence, pressure-sensitive yielding and plastic dila-
tancy become dominant phenomena (Nikolaevskii and Rice, 1979). This class of mate-
rials embraces porous and particulate reinforced metals, polymers, ceramics, powders,
asphalts, granular materials, (traditional, fiber reinforced, and high-strength) concretes,
rocks, and soils.

In the terminology of elastoplasticity, the Coulomb law of friction is intrinsically
non-associative, in the sense that adopting the normality rule overestimates the plastic
dilatancy (Drucker, 1954). Therefore, a non-associative flow-rule is generally considered
the remedy for correctly modelling the inelastic response of the above-mentioned mate-
rials (Hill, 1967b; Mandel, 1966; Mréz, 1963; 1966)!. An important consequence of flow
rule non-associativity is the lack of symmetry of the tangent constitutive operator, thus
prectuding the possibility of defining strain rate potentials.

Material instabilities start to grow at a point in a body and are strongly influenced
by lack of symmetry of the tangent constitutive operator. For instance, flutter instability

' Lack of symmetry of the tangent constitutive operator may result also as a consequence of
elastoplastic coupling (Hueckel, 1976). Also, in elastoplastic corner models symmetry is lost
even for an associative flow-rule when the hardening moduli matrix is not symmetric.
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is excluded in the case of symmetry. Bifurcations in diffuse modes, strain localization,
and elastoplastic cavitation may occur at high strain hardening for non-associative flow
laws.

There are different ways of modelling the occurrence of material instabilities. One
is to consider the effects of inevitably existing small defects (imperfections) in a ma-
terial which may be viewed as homogeneous at a certain scale. Another is to consider
the macroscopic, inelastic, constitutive response of a homogeneous material element and
seek specific instabilities and bifurcations. The latter description of material instabilities
is due to Rice (1977) and will be followed here. Material instabilities may be detected
with mechanical tests. However, mechanical tests on material elements often consist of
imposing displacements (resultant forces) on certain external surfaces of a finite volume
of material and measuring resultant forces (displacements) on the same surfaces. Under
these conditions, stress and strain cannot be directly controlled. Therefore, instabilities
occurring in a mechanical test should always be referred to a specific boundary value
problem. As a consequence, material instabilities should be presented within the general
context of bifurcation and instability theory for elastoplastic material. This theory was
mainly developed by Hill (1958, 1959, 1978) for elastoplastic solids with an associative
flow rule. In these notes, this theory will be presented with reference to the generalization
to non-associative flow rules given by Raniecki (1979) and Raniecki and Bruhns (1981).
In this general framework, several local criteria of stability and bifurcation will be intro-
duced. These are: positive definiteness and non-singularity of the constitutive operator,
strong ellipticity and ellipticity of the acoustic tensor and, finally, flutter instability {com-
plex conjugate eigenvalues of the acoustic tensor). Emphasis is given to the connections
between these criteria and to their mechanical interpretation.

2 Notation and preliminaries

We refer generally to Gurtin’s (1972, 1981) notation. In particular, boldface minuscules
(a,b,...) and majuscules (A,B,...) denote vectors (or vector fields) and second-order
tensors (or tensor fields), respectively. The space of vectors is denoted by V, the set of
second-order tensors by Lin and its symmetric restriction by Sym. The inner products of
two vectors a and b and two second-order tensors A and B are designated by

3 3
a-b= Z akbk = akbk and A-B= Z Athhk = Athhka
k=1 h,k=1

respectively. The product AB of two second-order tensors is defined by composition,
namely, for every vector a,

3
(AB)a = A(Ba), or (AB)” = Z AikBkj =: AikBk]u
k=1
The tensor product a ® b of two vectors a and b is defined for every vector v by

(a@b)v=a(b-v), or (a®b); =a;b;.
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Moreover, |-| denotes the euclidean norm, I the second-order identity tensor, a superscript
T denotes transpose and tr the trace operator, i.e., for every A, B, tr(AB) = A7 - B. We
will use the symbol « between second-order tensors, i.e. A « B, to mean that a scalar p
exists such that A = pB.

Two symmetric, second-order tensors A and B are defined to be coazial when their
product commutes, AB = BA. Note that two coaxial tensors share at least one principal
reference system (Appendix A).

Fourth-order tensors are denoted by sans-serif majuscules, as for instance, the elas-
ticity tensor E[-]. These are linear mappings assigning to each second-order tensor A a
second-order tensor (E{A})i; = EijnrAnk.

The product EH of two fourth-order tensors is defined, analogously to second-order
tensors, by composition, namely, for every A € Lin,

(EH)[A] = E[H[A]], or (EH)ink = EijeeHsenk-

Two tensorial products will be employed, denoted by symbols ® and ®. These are defined,
for every A, B, C € Lin, as (Del Piero, 1979)

(A®B)[C]=(B-C)A, or (A®B)ju = AyBmu,

and

(ARB)[C] = ACBT, or (ARB)in = AyBji.
Note that, with the above definition, IRI is the fourth-order identity tensor. Defining the
transpose of a fourth-order tensor (for every A, B € Lin) as B+ ET[A] = A - E[B], we say
that E has the major symmetry whenever E = ET. Moreover, we note that

(AB)"=B®A and (AxB)” = ATrBT.

The special symbol I®1 is reserved for the fourth-order tensor which associates to every
second-order tensor X its symmetric part:

IRIX] = % (X +XT).

Obviously I®I is singular (because it associates the null tensor to every skew symmetric
tensor), but its restriction to Sym is invertible and the inverse is the tensor itself.
For any given smooth vector field a, the divergence of a is defined as

diva = tr(grad a),

where grad a is the gradient of a at x (in rectangular, cartesian components (grada),; =
a;; and diva = ay ;). The divergence operator of a tensor field A is defined as the unique
vector field divA which for every constant vector a satisfies (divA)-a = div(ATa). In
(rectangular, cartesian) components:

(leA)1 = Aij,j'

A dot over a symbol denotes rate of change (right hand derivative) of the quantity
at a fixed material point with respect to a scalar time-like parameter (which will govern
the deformation process).

Finally, we note that the symbol C(-) is reserved for a nonlinear constitutive operator,
assigning to each second-order tensor A the second-order tensor C{A).
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3 Incremental boundary value problem

Quasi-static deformation of an inviscid solid body is assumed to be governed by a time-
like parameter (abbreviated as ‘time’). In a loading program, displacements and nominal
surface tractions (mixed boundary conditions) are prescribed; these are assumed to be
sufficiently regular functions of place and time over specific portions 8.0? and 9029 of
the boundary in the reference configuration (912° = 8(2? U 8429). For simplicity, we
limit the presentation to controlled nominal surface tractions on 2% (in other words,
deformation-sensitive loadings are not considered), so that the boundary conditions are

x = £(xg,t), on 9N Sny=o(xp,t) on 92°, 1
§ o

where x and x are the places occupied by the material points in the current and reference
configuration, respectively, ng is the outward unit vector to 822 and S € Lin is the first
Piola-Kirchhoff stress?, defined with respect to the Cauchy stress T € Sym by

S=JTF T, J=detF, (2)

where F € Lin is the deformation gradient.

At a generic stage of the loading program, i.e. at a generic time, we assume that the
current geometry and the state of the body are known, and we analyze the response to
a prescribed small perturbation of the boundary conditions. In other words, in a series
expansion of all quantities specifying deformation of the body we analyze the first-order
terms: velocity, stress and strain rates. This is the so-called velocity problem?, in which
velocities and traction rates are prescribed on complementary, regular subsurfaces of the
boundary _ .

X = &(xg,t), on 8!22; Sng = &(xp,t) on 92°. (3)

The superposed dot in eqn. (3) denotes the material time derivative (i.e. the time deriva-
tive at fixed x¢), % is the material description of the velocity. The velocity field is assumed
to be spatially continuous. From the Lagrangean standpoint the first-order rate equations
are, in the absence of body forces:

DivS =0, in 2°\ Y, (4)

where S is the first Piola-Kirchhoff stress. It may be important to note that the diver-
gence operator Div in (4) is referred to material points xg. Moreover, £V represents any
possible surface of discontinuity of S, in the reference description, and the notation in
(4) indicates all of £2° excluding X°. Across this surface, the nominal traction rate must
remain continuous (Hill, 1961; Chadwick and Powdrill, 1965):

HSH mg =0, on XY (5)

2 The first Piola-Kirchhoff stress tensor is the transpose of the nominal stress tensor used,
among others, by Hill (1978) and Ogden (1984). Note also that these authors use another
definition of Div, namely (DivA); = Aij;.

3 Higher-order problems can also be analyzed; see Petryk and Thermann (1985), Nguyen and
Triantafyllidis (1989), Cheng and Lu (1993}, Bigoni (1996).
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where the symbol -] denotes a jump of the relevant argument, i.e. [[S]] =8+t -8~ and

my is the unit normal vector to X° directed toward + and away from —. In weak form,
eqs (3), (4), (5) are equivalent to

/ S.Vw— o-w=0, (6)
no a9

for every (continuous and piecewise continuously twice differentiable) variation w of the
velocity. In particular, Vw = Grad w is the gradient (with respect to material points xp)
of a field w defined in the reference configuration and taking null values on the portions
of the boundary where displacements (and velocities) are prescribed.

4 Constitutive Equations

Elastoplastic, isothermal and time independent material behaviour of a solid subject to
large strains is described in this section. We present a broad constitutive framework in
which many existing elastoplastic models may fit. In the interest of generality, certain
details are intentionally left unspecified.

Adopting Ogden’s (1984) notation, let us consider a pair of symmetric, Lagrangean,
stress TU™ and strain E(™) measures, work-conjugate in the Hill sense (1968, 1978), so
that

T, jim) (7)
gives the stress power density (per unit volume of £2°) independently of the positive?,

integer exponent m. In particular, if we take

1
E(m) = __(Um _ I), (8)
m

where U is the right stretch tensor, related to the deformation gradient F through U =
(FTF)l/Q, then the conjugate stress TU™ is obtained by imposing the equality:

S.F = T L fylm), ©)

For instance, when m = 2 we obtain the Green-Lagrange strain and the second Piola-
Kirchhoff stress tensors, respectively:

E® _ %(FTF ~1, T®=JpiTFT. (10)

Following Hill and Rice (1973) and Hill (1978) but without introducing elastic po-
tentials, inelastic materials are considered that may at any stage of deformation exhibit
a purely elastic response for appropriate loading. For these materials, elastic response is

4 Negative or null exponents can also be introduced (Ogden, 1984). The notation T™ = T'T...T
should not be confused with T(™). m times
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assumed to be a one-to-one relation between T and E{) though depending on the
prior inelastic history, i.e.

TOW = o0 (R k), B = B (T ), (11)

where T(™ and E(™ are functionals of the prior history of inelastic deformation through
the unspecified set K of variables of generic tensorial nature (thus embracing second-order
tensors and scalars). For a purely elastic deformation rate (in other words, at fixed K)
we have

T = ER], £ = M[T(™)], (12)
where com) )
BT m aE m
E(E™,K) = M(T™ K) = —— 1:
( ’K:) OE(m)’ ( ? ) oTim)’ ( 3)
and obviously
E=M"" (14)
For an increment involving elastic and inelastic strain rates, we may write
T = EIR)] — AE[P], E™ = M[T™)] 4 AP, (15)
where P € Sym,
. EMm .
AP = K 16
oK) (16)

and the scalar A > 0, called the plastic multiplier, is null when K = 0. A yield surface
is assumed at each K. This may be alternatively expressed as fren (T, K) < 0 or as
fren (B0 K) < 0, thus defining regions of the T(™) or E(™) space, respectively, within
which the response is elastic. Prager’s consistency condition requires f'T(m) = fgemy =0,
when inelastic strain rate is different from zero. As a consequence, employing the stress
space representation, the elastoplastic incremental constitutive equations can be written
as

E[E(™)] - é < Q-E[BU™M] > EP] if fro (T, K) =0,
E[E(™)] if fpom (T, K) <0,

plm) — (17)

where the operator < - > denotes the Macaulay brackets, i.e. Va € R, < a >= (a+]|af)/2.
Moreover, Q = Ofpom /0T € Sym is the yield function gradient and the plastic
modulus

g=h+Q-E[P], (18)

is assumed to be strictly positive (a negative plastic modulus would correspond to a so-
called locking material, not investigated here). In the Hill (1967b) notation, the hardening
modulus h in (18) describes hardening when positive, softening when negative and perfect
plasticity when null. It is defined as

H afT(m) iy
Ah=—-———.K.
h e K (19)
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As Hill (1967b) remarks, hardening and softening are not measure-invariant concepts, in
the sense that & depends on the choice of T(™ and E{™), Therefore, the nomenclature
is, to some extent, arbitrary. Moreover, we remark that, in addition to h, also Q, P and
E are measure-dependent. On the contrary, the plastic modulus g can be shown to be
measure-independent (Hill, 1967b; Petryk, 1999). Note also that all quantities appearing
in the rate equations (17) fully depend on the entire path of deformation reckoned from
some ground state.
The scalar product of the first equation in (17) with Q gives

. N .EP .
Q- T(™ = Q. E[EM™)] - Q_g[_l < Q-E[EM] > . (20)
In the case when h > 0, we note that

sign(Q - E[E™)) = sign(Q - T™).

Therefore, assuming h > 0 and using (20), we obtain the inverse constitutive equations

M[T0m)] + % <Q-T"™ >P if f(T™,K)=0,
M) if f(Tt™,K) <0,

E('m.) — (21)

It may be important to remark that all possible choices of T¢™) and E™ in (17) or
(21) are equivalent and that all resulting constitutive equations respect the requirement
of material frame indifference (Truesdell and Noll, 1965).

It is particularly convenient to write the constitutive equation (17) in terms of the
material time derivative of the first Piola-Kirchhoff stress and of the deformation gradient.
This can be done for any choice of T(™ and E(™). For instance, in the case of the
second Piola-Kirchhoff stress tensor T(?) and the Green-Lagrange strain tensor E(2), the
following relations hold true

S=FT?® 4+ JLTF T, E® =FTDF, (22)

where I = gradv is the velocity gradient and D its symmetric part, i.e. the rate of
deformation. The minor symmetries of E and the relation F = LF imply

E[FTDF] = —;-E[FTF + (FTF)T) = E[FTF). (23)

Morcover, from the equality F~7'B-FA = B- A, holding for every A,B € Lin, we
conclude that (17) can be written as

G[F] - é <(FTQ)-B[F] >B[FTP] if f5(S,K)=0,
G[F] if fs(S,K) <0,

(24)

where
B= (FRIE(FRI)", G=B+IxSTF7. (25)
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It should be noted that neither B nor G have the minor symmetries, and that both B
and G have the major symmetry only in the case of Green elasticity, i.e. when E has the
major symmetry, too®. Moreover, the yield function fs(S,K) in (24) has been expressed
in terms of the first Piola-Kirchhoff stress tensor; its gradient with respect to S is F~7Q.
This follows from the chain rule of differentiation

ofs , Ofra 6T Al =
25 A= 1 as A=

F7Q-A, (26)

for every A € Lin. When the yield criterion is satisfied, fs(S,K) = 0, constitutive
equations (24) define a piecewise-linear function of F

S = C(F), (27)

i.e. an incrementally nonlinear constitutive equation with two branches, corresponding
to plastic loading and elastic unloading. This constitutive equation may obviously be
written in the following form, useful for subsequent analysis:

S:G[F]—$<N-F>M, (28)

where N = BT[F‘TQ] € Lin and M = B[F~TP] € Lin are the yield surface and
plastic potential normals, respectively, in strain space. In particular, expressing the yield
function in terms of the deformation gradient, i.e. fp(F, K), its gradient with respect to
F is exactly N; in fact

ofe , _ Ofren OT® [8E(2)

F T 9T® BE® | 9F [A}] =BT[F"7Q]- A, (29)

for every A € Lin. Note also that P = Q is equivalent to M = N only when B has
the major symmetry, i.e. for Green elasticity. In other words, simultancous normality in
stress and strain spaces is not assured for Cauchy elasticity (Hill, 1978). In the following,
we will refer to associative flow rule when P = Q and B has the major symmetry, so that
normality is preserved in the strain space also, M = N.

As far as the choice of P and Q is concerned, this is to some extent arbitrary. How-
ever, experiments show that many materials exhibit a peculiar kind of non-associativity,
involving only the volumetric part of plastic deformation. This case of special interest
corresponds to so-called deviatoric associativity, where the deviatoric parts of P and Q
are aligned. This may be generically defined as

vay, (30)

P=X1é+ﬁla Q:%S-f—?

3

where § € Sym is traceless, x; and 1 are assumed strictly positive and x2 and i, are
assumed to be non-negative. The parameters 12 and x2 describe the pressure-sensitivity

% Note that STF~7 = JF 'TF T € Sym. Thus, G — B = IRSTF~7 has always the major
symmetry.
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and the dilatancy of the material, respectively. For instance, in the case of the constitutive
model proposed by Rudnicki and Rice (1975)
1 A
iy = ——, §=devT, 31
== e, §=dev (31)
where dev T = T — (tr'T/3)I is the stress deviator and J; = (devT - devT)/2. Note that,
obviously, deviatoric associativity implies coaxiality of Q and P.

4.1 The infinitesimal theory
In the special case of the infinitesimal theory, equations (11) simplify to
T=E[E-E,, E=M[T+E,, (32)

where E = Z[gradu + (gradu)7] is the infinitesimal strain tensor with E, being its
plastic part. The fourth-order tensor E = M™! is now the elasticity tensor of the usual
infinitesimal theory®, which, in the well-known case of isotropy is

E=A®I+2uI81, (33)

where I®1 is the fourth-order tensor which associates to every tensor A € Lin its sym-
metric part IRI[A] = (A + A”)/2 and \ and u are the Lamé constants. In the stress
space formulation, the yield function can be written as f(T,K) < 0, where K is a generic
set of internal variables, possibly depending on E,. Constitutive equations (27) therefore
become (in the case f(T,K) = 0)

T = E[D] - é < Q-ED)] > E[P], (34)

where ¢ = h + Q- E[P] is the plastic modulus (assumed strictly positive). Note that
Q-E[D] = D-ET[Q}; therefore the tangent operator is symmetric for the associative
flow rule if and only if E has the major symmetry.

5 Global uniqueness and stability

5.1 Uniqueness

With reference to the Lagrangean description, the regular first-order rate problem can
be stated with reference to the velocity field %, when the constitutive equation (27) is
employed in (3)s, (4)2 and (5),. Therefore, we obtain:

x = £(xg, 1), on 892,

C(F)ny = o(xp,t), on 909,
. (35)

Div(C(F)) =0,  in 00\ 50,
HC(F)H mg=0, onZXY

8 Usually E is constant. In the case of elastoplastic coupling, E depends on E, (Hueckel, 1976).
In the following it is assumed constant.
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where F = Vx in £2°\ £° and [x] = 0 across £°.

The above equations refer to the part of the body at yielding, i.e. to the so-called
plastic zone. In the elastic zone the governing equations are the same with C replaced by
G.

We are now in a position to state the velocity problem, namely, given a certain state
of a body, find a continuous and piecewise continuously twice differentiable (shortly,
‘admissible’) velocity field satisfying (35).

In order to obtain an exclusion condition for bifurcation in velocity, we follow the Hill
(1950, 1958) argument’, which generalizes to elastoplasticity the Kirchhoff theorem of
linear elasticity. Suppose therefore that the velocity problem admits two solutions, say x;
and %9 both satisfying (35). Their difference Ax = %; — %o defines an admissible velocity
field, with gradient AF. Also the difference in stresses AS satisfies equilibrium equations
(4), (5). Moreover, the difference fields satisfy homogencous conditions on the houndary.
On application of the divergence theorem it follows that

AS - AF =0, (36)
2°

where AS = C(F,) — C(F,). It should be stressed that due to the nonlinearity of C, AS
does not, in general, coincide with C{AF).
Therefore, a sufficient condition to exclude bifurcations of the velocity problem is:

/ AS - AF >0, (37)
fell

for all pairs of distinct, admissible velocity fields taking the given values (35); on 8(2?.
Note that the exclusion condition (37) would be true even replacing ‘>’with ‘<’. We
will see that this possibility can be excluded in terms of instability.

Raniecki comparison solids. The difficulty in proceeding with (37) is related to the
nonlinearity of the constitutive operator C. To overcome this problem, Hill (1958) pro-
posed to introduce a linear comparison solid, which, when used to replace the original
constitutive operator, provides a lower bound to (37). Results of Hill were restricted to the
associative flow rule, where the comparison solid turns out to coincide with a linear solid
defined by the constitutive tensor corresponding to the loading branch of the elasto-
plastic operator (28). The Hill comparison theorem was later generalized by Raniecki
(1979) and Raniecki and Bruhns (1981) to cover non-associative flow rules. In particular,
Raniecki introduced a family of linear comparison solids (briefly, ‘Raniecki comparison
solids’) defined by the following constitutive tensor having the major symmetry (for every
Y€ RT)
1

R:G—%(M+wN)®(M+wN), (38)

" Hill's (1950) proof was restricted to the infinitesimal theory and was based on a theorem due
to Melan (1938).
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such that the following comparison theorem holds true

AS - AF > AF . R[AF], (39)

for every difference of tensors AF = F; — F; and related difference AS = C(F)) —C(F2).
Therefore, the exclusion condition (37) is necessarily satisfied when the stronger condition

/ B CE] > 0 (40)
£20

holds true for all (not identically zero) continuous and piecewise continuously twice dif-
ferentiable velocity fields, satisfying homogeneous conditions on B.Qg. The comparison
solid C¢ in (40) is equal, by definition, to R in the current plastic zone and to G in the
current elastic zone. Note that, due to the linearity of C°, the difference fields denoted
by A in (37) do not appear in (40).
In the case of hyperelasticity and associative flow-rule, N = M, the comparison solid
(38) reduces to the Hill comparison solid by taking ¥ = 1.
The Raniecki’s comparison theorem can be proved as follows. Three cases must be
analyzed:
1) N- F, <0 and N-Fy <0, (unloading/unloading),
2)N.-F, >0 and N-Fy>0, (loading/loading),
3)N-F, >0 and N-.Fy <0, (loading/unloading).

In all cases, it suffices to prove that
AS - AF — AF -R[AF) = - (41)

(—41/)<N-F1 >M-AF+4¢<N-F2>M-AF+[(M+¢N)~AF]2> >0,

which, taking into account that g > 0 and analyzing Cases 1)-3), follows directly. It is
important to remark that the comparison theorem (39) holds true for every G, in other
words, regardless of the symmetries and the definiteness of the elastic tensor G.

Finally, it may be worth noting that the exclusion condition (40) for bifurcations
of the velocity problem, may be shown to be sufficient to exclude second- and higher-
order bifurcations (under specific regularity conditions, see Petryk and Thermann, 1985;
Nguyen and Triantafyllidis, 1989; Cheng and Lu, 1993; Bigoni, 1996)®.

Associative elastoplasticity. It may be interesting to keep contact with the case
of the associative flow rule Q@ = P, and Green elasticity (E, B, and G have the major
symmetry)®. In this case, constitutive equations admit a velocity-gradient potential. With

8 Moreover, the techniques introduced in this section to exclude bifurcation can be exported to
another, similar context. This is the problem of contact with friction of an elastic body with
a constraint (Radi et al. 1999).

9 A detailed presentation can be found in Petryk (1993a).
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reference to (28), it follows!® that

o a
SZB_(.J’ U:F G[F] <N F>.
OF 2 29

(42)

Let us consider now the following functional (Hill, 1958;1959), defined for every admissible
velocity field v satisfying (35); on 8.(22

J(v) = /m Ulv) - /&(28 v, (43)

The vanishing of the first weak (Gateaux'!) variation of J(v) with respect to every
admissible variation w of v is equivalent to (6). Therefore, a velocity field is a solution
of the rate problem if and only if it assigns to the functional (43) a stationary value.
Moreover, when the uniqueness condition (37) holds true, the functional J(v) can be
proved to be strictly convex. It follows that in the range where (37) holds true, the
unique solution assigns to the functional J(v) a strict, absolute minimum (Hill, 1958;
1959).

For the linear comparison solid defined by ¢ = 1, i.e. by the loading branch of the
constitutive operator, we have:

. oUr

o 0" CFGE]  (N-F)?
- _

— , 44
2 29 (44)

UL

so that the exclusion condition (40) corresponds now to the positive definiteness of the
quadratic functional (where U” in the elastic zone has to be identified with the actual
elastic potential)
I"(w)=[ U%w)>0, (45)
QO
for every admissible field w vanishing on Qg.

The variational basis of the rate problem for an associative flow-rule has important
consequences on bifurcation. In fact, for a given deformation path, let us assume that a
series of configurations continuously evolves in parameter space satisfying X > 0, and
that this is terminated by a configuration for which

I*(w) > 0 for every w
{ (w) (46)

I%(w*) = 0 for some w* # 0,

- . 2 . - - . - .
: = . AN-FEIN-F) . : = .
1 Note that 2<BE> < N.F > HFHE D =< N.F > (1+ 3 5)N=2<N-F>N.

11 The first weak variation of a functional J in the direction w at v is

§J(v,w) = ad—aJ(v + aw)|a=o.
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where the admissible fields w vanish on .Qg. As shown by Hill and Hutchinson (1975)

and Young (1976), the first instant at which I* > 0 fails to hold need not satisfy (46)*2.
However, for situations in which (46) holds true a primary eigenstate has been found and
I is stationary at the minimum point w*. This is necessary and sufficient for w* to be a
solution of the homogeneous problem. Therefore, a critical point has been detected. This
may represent either a true bifurcation point for the comparison solid or a so-called limit
point. In the former case, i.e. when a bifurcation point in the comparison solid has been
detected, the eigenmode w* can be added to a solution v of the non-homogeneous problem
to generate a bifurcated solution. In other words, if v is a solution, v+ yw*, y € Ris a
family of possible solutions. In this family, i.e. for certain values of v, bifurcated solutions
can usually be found that correspond to the plastic branch of the constitutive equations in
the current plastic zone. Among these solutions, those which initiate a quasi-static post-
bifurcation path represent genuine elastic-plastic bifurcations of the real elastoplastic
solid, and may occur under broad hypotheses (Hutchinson, 1973).

‘In loading comparison solid’. From the discussion relative to associative flow rules,
it should be clear that failure of the Hill/Raniecki exclusion condition (40) is in gen-
eral not sufficient for bifurcation even in the case of associative elastoplasticity. This
becomes indeed more evident for non-associative elastoplasticity, where due to the lack
of a variational structure of the governing incremental field equations, failure of (40)
is far from implying bifurcation. We may note, however, that the comparison solid in
the associative case plays a double role. On one hand it excludes bifurcation when used
in (40) and, on the other hand, it provides a bifurcated field for the comparison solid
when (40) fails, which can often be ‘adjusted’ for the real elastoplastic solid. In the non-
associative case, the Raniecki comparison solids are effective for excluding bifurcation,
but not to provide a bifurcated field useful for the real elastoplastic solid. Therefore,
following Raniecki and Bruhns (1981), let us consider, even for non-associative flow rules
a fictitious, incrementally-linear solid with tangent constitutive tensor

C:G—§M®N, (47)

corresponding to the loading branch of the constitutive operator {28) (briefly, ‘in loading
comparison solid’). Let us consider a deformation path in which an elastoplastic solid is
deformed in the plastic range, so that the actual behaviour corresponds to the behaviour
of the fictitious solid ‘in loading’. The first bifurcation for this comparison solid may cor-
respond (in the sense already explained for associative flow-rule) to a possible bifurcation
of the real elastoplastic solid. Therefore, for non-associative elastoplasticity:

two bounds can be defined for bifurcation. The lower bound corresponds to failure
of exclusion condition (40) for the optimal Raniecki comparison solid R. The up-
per bound corresponds to bifurcation in the ‘in loading comparison solid’ defined
by the incremental tensor C.

12 In Hill and Hutchinson (1975) and Young (1976), this possibility arises in connection with the
achivement of a situation where surface bifurcation modes exist of arbitrarily short wavelength.
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Whether or not some bifurcation actually occurs in the real elastoplastic solid within the
two bounds is still an open question. No examples are in fact yet known.

5.2 Stability

Let us consider a generic equilibrium configuration of a body at a fixed value of the
loading parameter governing the deformation, so that the prescribed displacements on the
boundary are fixed and the prescribed nominal surface tractions correspond, momentarily,
to dead loading. Roughly speaking, the configuration is called stable when the effects of
a small disturbance remain sufficiently small during the entire motion subsequent to the
application of the disturbance itself. Therefore, stability analysis involves considerations
about the dynamics of the system. The definition of stability becomes a precise concept
when the measures of the distances and the class of perturbations are specified. However,
path-dependence of inelastic material (together with certain mathematical difficulties
connected to the analysis of a continuum problem) makes a rigorous analysis awkward.
Therefore, we content ourselves with presenting the simple analysis which was proposed
by Hill (1958) in the context of an associative flow rule. In that context, the Hill’s analysis
has a much more firm basis than in the case of a non-associative flow rule (Petryk, 1991;
1985b; 1993a;b).

Let us confine our attention to direct paths of departure from the equilibrium con-
figuration (thus excluding arbitrary circuitous paths). In this way, a perturbed motion is
a-priori assumed such that variations of the direction of the velocity ficld along the path
are negligible. This is the so-called directional stability, which was analyzed by Hill in
the framework of associative elastoplasticity. Along any admissible direct path starting
from the equilibrium state under consideration, the work of deformation in the body can
be written as

W= S Grad Au + 1 AS - Grad Au + of(At)?), (48)
Jao 2 /oo

where S is the first Piola-Kirchhoff stress at the equilibrium state, Au and AS are the
increments in displacement and stress reached along the path. Finally, At is the increment
in the time-like parameter measuring the length of the path. In view of the fact that Au
vanishes on 802, from the principle of virtual power, the first integral in (48) is equal
to the work done by external dead loads W' Therefore, the work difference can be
written as:

At)? . .
w—wiead — D7 [ 6 Gyt og(an?). (49)
It follows from (27) that if
Vw-C(Vw) >0, (stability in Hill's sense) (50)
0o

for every admissible (not identically zero) velocity ficld w taking zero values on 0!22, then
any movement from the equilibrium configuration requires some additional energy to be
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supplied to the system from external sources. In this sense (50) is a sufficient condition
for directional stability of equilibrium. We will briefly refer to this condition as ‘stability
in Hill’s sense’, even if:

— it is only a sufficient condition (for the assumed class of paths),
— Hill never proposed to use this condition in a broader context than associative elasto-
plasticity.

With reference to elasticity, with >’ replaced with ‘>’, condition (50) was proposed by
Hadamard (1903) and is usually called infinitesimal stability. As noticed by Truesdell
and Noll (1965, Sect. 68) and Beatty (1987) the existence of a stored energy function
is not essential in the above definition of stability. In the elastoplastic case, when the
associative flow rule is assumed, condition (50), with ‘>’ replaced with ‘>’, was proved
also to be necessary for stability under broad hypotheses (Petryk, 1993a;b).

In the case of non-associative flow laws, two important points should be emphasized.
First, instability as related to violation of (50) is not proven, so that (50) may not be a
necessary condition for stability. Second, condition (50) should not be even considered
sufficient. There are in fact certain instability phenomena, such as flutter, which may in
principle occur even when (50) is satisfied.

It is worth noting that (40) implies (50), more explicitly!3

Lexclusion condition for bifurcation = stability in Hill’s sense,

but the converse need not be true.

6 Local conditions for uniqueness and stability

From the global uniqueness and stability criteria considered in the previous section, local
conditions may be derived, which are the subject of this section. The importance of local
conditions lies in the connection to material instabilities, i.e. to instabilities which can
develop from a point in a continuum. For instance, we will see that loss of ellipticity
corresponds to strain localization into planar bands. Five local criteria will be analyzed,
namely:

1) positive definiteness (PD) and

2) non-singularity (NS)

of the constitutive operator;

3) strong ellipticity (SE);

4) ellipticity (E);

5) flutter (F).

In the following we will assume for simplicity that the constitutive equations evolve
continuously with time. Therefore, in a continuous deformation path initiating when
(PD) [or (SE)] holds, failure of (PD) [or (SE)] will be shown to be simultaneous to failure
of (NS) [or (E)] in the case of an associative flow rule. But this will be not the case of

13 This statement is not equivalent to saying that uniqueness implies stability, because the
Raniecki condition is a sufficient condition for uniqueness.
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non-associative flow rules, where (PD) and (NS) as well as (SE) and (E) are different even
in the case of a continuous loading path initiating when (PD) or {SE) hold. In particular,
it will be shown that

~ (SE) = (E)
™~ (NS)

(PD)

from which it should be noted that, except for an associative flow law, (NS) has no
relation with (SE) and (E).

6.1 A local sufficient condition for uniqueness: positive definiteness of the
constitutive operator

It is easy to observe that, when R is positive definite at every point of the body, (40) and
(50) are both satisfied. Positive definiteness of R implies positive definiteness of G, which
is assumed in this section. Following Raniccki and Bruhns (1981), we will show that

positive definiteness of R%”' <= positive definiteness of C (PD condition),

where R°P! is the Raniecki solid corresponding to an optimal value of ¥ to be defined
later. In other words, positive definiteness of the best chosen Raniecki solid corresponds to
positive definiteness of the ‘in loading comparison solid’. Obviously, positive definiteness
of C and C are equivalent (if X -C(X) = X - G[X], it suffices to consider —X to obtain
X-C(X) =X X))

In order to show the equivalence between positive definiteness of R * and C, under
the assumption that G is positive definite, let us consider, for cvery tensor X € Lin, the
following inequality:

-~ . 2
X-C[X] > X-R[X] = X - 6[x] - B (51)
dpg
where R = M + ¢IN and
&_G+G"
2

is the symmetric (with respect to the major symmetry) part of G; only this part plays
a role (in fact X -G[X] = X-G[X]). The Cauchy-Schwarz inequality in the metric G
{Appendix B) can be used to yield

(X-R)? = (X-G[G™'[R])? < (X-GX])(R-G '[R]), (52)
which, employed in (51), gives
X - G[X] 21 _
X-R[X] 2 == (4¢g “R-G [R]) . (53)

14 Note that (only for a non-associative flow rule) for certain tensors X the elastoplastic response
is stiffer than the elastic, namely, X - G[X] < X - C[X] (Mréz, 1963, 1966; Runesson and Mréz,
1989).
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From (53), we note that C, C and R are positive definite when:

~—1
M+ yN)-G [M N
g>( + 9 )w [M + oN] (54)

However, when (54) is violated, R is not positive definite. In other words, (54) is a
necessary and sufficient condition for positive definiteness of R. To show this it suffices
to note that

~—1

_R-G R
9_—411)

We can consider now the dependence on ) and state that

, XxG 'Rl = X-RX]<0.

g > min

(M + ¢N) -G [M + ¢N]
¥>0

™ } = C and C positive definite. (55)

The minimum problem is solved by

which defines R°* and yields the following proposition:

0>l =3 (V-6 M- 67N + MG 20 = (2D).] (56)

Note that gf” = 0 &= M « —N, a condition that should never be satisfied for realistic
constitutive models.

In order to complete the proof of (56), it remains to show that when g < g£P tensor
C is not positive definite. To this purpose, it suffices to note that

9<gb?, XoyM-GT MG NI +N-GTN]GTIM] = X.C[X]<o.

The condition (PD) has been expressed in terms of a critical value of the hardening
modulus. In general, any condition expressed in this way is implicitly referred to a suffi-
ciently regular deformation path in which the plastic modulus is a continuously varying
function of the loading parameter.

A problem with the (PD) condition is that:

the hypothesis that G be positive definite is stronger than it may appear.

Let us analyze this point in detail. Let us express S ¥ going back to (22) and taking
into account that F = LF as

S-F=F'LF-T® + LF-LKF~7 = F"DF . T®® + LK - L, (57)
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where K = JT € Sym is the Kirchhofl stress. Equ. (57), using (17) but restricted to the
loading branch of the constitutive operator, may be written as:

C[F]-F =D . H[D] + %D-W[D] -D-K[W]+ %W -W([W] —Q'—Z[D—]D “H[P], (58)

terms depending on spin
where W = L — D is the spin, Q = F-TQF~!, P = F-TPF~! and
H = (FRF)E(FrF)T, W =KgI+IgK, K=KgI-IgK, (59)
where

— tensor H has always the minor symmetries (because E has) and has the major sym-
metry in the case of a Green elastic material.

— tensor W always has the major symmetry, but not the minor symmetries, and trans-
forms symmetric tensors into symmetric tensors and skew tensors into skew tensors.
Moreover, W - W[W] = 2W . KW.

— tensor K has always the major symmetry, but not the minor symmetries, and trans-
forms symmetric tensors into skew tensors and skew tensors into symmetric tensors.
Moreover, W - KIW] = D -K[D] = 0 and —D - K{|W] = 2DK - W. Finally, when A
and K are coaxial, i.e. AK = KA, K[A] =0.

The spin W and the rate of deformation D arc independent tensors. Therefore, a neces-
sary condition for S+ F > 0, i.e. for C to be positive definite, is that W - W[W] > 0 for
every W in other words:

| (PD) = (WTD)I-T pos.def. <= T1+T >0, Ti+T5 >0, Tp + T3 > 0.] (60)

Positive definiteness of (trT)I — T is equivalent to saying that the restriction of W to the
space of skew tensors is positive definite. This condition was obtained by Hill (1967a)
and it holds true for every constitutive assumption. In other words, (60) reflects a purely
‘geometrical effect’. Now, let us assume positive definiteness of (tr'T)I — T. Under this
condition, the function (at fixed D)

1
2(W) = -D-K[W]+ §W-W[W], (61)
is strictly convex and therefore it admits a minimum point, which corresponds to
0z(W)
= W[W] - K[D] =0.
2 — WIW] - K[D] = 0 (62

Due to positive definiteness of (trT)I — T, the restriction of W to the space of all skew
tensors is invertible!® and therefore condition (62) defines the minimum point of z2(W)

in terms of W .
W =W K[D], (63)
5 This statement means that
WW™ = Iml - IR,
so that (IRI — IRI)[A] = (A — AT)/2 associates to every tensor its skew symmetric part
(Del Piero, 1979).
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Zmin = —%D- (KW™'K) [D]. (64)

The components of tensor KW~ K can be easily calculated in the principal reference sys-
tem of K. This calculation reveals that KW 'K has both the major and minor symmetries
and has only the following non-null components

(Ki — K;)?

—1 PR g _1 D - . — y .- y y
(WK = (WK = g s, i dsielnal (69)
As a conclusion, the following inequality is obtained:
Lo 1 . .

ClF]-F>D-L[D] - E(D -H[P])(D - HT(Q)), (66)

(with the equality holding true when W = W) where

1 1,1
L=H+§W~§KW K, (67)

therefore, under condition that (trT)I — T be positive definite,

positive definiteness of the restriction of L to the space of all symmetric tensors
is equivalent to positive definiteness of G on Lin.

Therefore, assuming L positive definite, it is possible to show that

'"+1:>0, T +T5 >0, T2+T3>O,&g>gPDZO,

cr

(68)

P =1 (V(P HTLTHIP)(@- L HT(Q) + Q- HE*H[P]) — (PD),

where L = (L + LT)/2 and L' = I®I. Condition (68) was obtained by Raniecki and
Bruhns (1981) in the case of L having the major symmetry. Condition (68) is equivalent
o (56), but more explicit in the sense that it singles out the effect of (trT)I — T.

Uniaxial tension. In the case of uniaxial tension along axis 1, 7y = ¢ > 0 and T» =
T3 = 0, thus (tr'T)I — T is positive semi-definite and G is not invertible. Let us develop
this point in detail. In this case, by direct calculation we obtain

Z(W) =0 (Wh + Wi — 2D13Wis — 2D13Whs), (69)

which is zero when D = 0 and the only non-null component of W is W3, representing
a spin about axis 1. The minimum of 2(W) is

Zmin = —0 (D%, + D) . (70)
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It follows that
- C[F) > D-HD] - (D HTIQ)(D - H[P) + o D}, ()
and therefore, when the restriction of
H+ae1®e1®e1®e1—-éH[f’]@HT[Q], (72)

to Sym is positive definite, condition (PD) is verified, except for a velocity gradient having
Was as the unique non-null component. However, the integrals (40) and (50) can vanish
only if Wa3 # 0 is the only non-null component of the velocity gradient everywhere in the
body and this corresponds to a loss of uniqueness consisting in arbitrary rigid rotations
about the axis of tension (which is also an axis of neutral stability). This circumstance
becomes particularly clear if we consider a bar pulled in tension and therefore subject
to homogeneous stress and all-round dead loading (Fig. 1 a). Analogously, (trTY - T is
negative semi-definite (and thus G is indefinite) in the important case of a bar subject
to dead loading of uniaxial compression, even for a vanishing small value of axial force.
This correctly corresponds to a well-known instability due to rigid-body rotation (Fig.
1b).

@ ®

Fig. 1. a-neutral rotational equilibrium of a rod under tensile dead load; b-rotational instability
of a rod under compressive dead load.

Using (72), condition (PD) —except for rigid-body rotations about the axis of tension—
can be written in explicit as:

T1>01 TQZT'S:O’ &g>g(}3rD207 L:H+Uel®el®e1®ela

g:;D=%(\/<P-HTL‘IH[?MQ-HE”HT[QJ)+Q-HEIH[I‘)J) — (PD)

where L is the symmetric part of L, assumed positive definite.
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The infinitesimal theory. In the infinitesimal theory, where we refer to (34), it may

be interesting to write gZ” in terms of a critical value of the hardening modulus AZP.
For a symmetric E, this becomes
1
rEP = 5 (VP -EPNQ-EQD - P-EQ]) 20, (74)

which is never negative and becomes null for associative elastoplasticity. Therefore, in
the infinitesimal theory (and assuming E symmetric), (PD) is always lost before soft-
ening. Critical modulus (74) was obtained by Mréz (1963), Maier and Hueckel (1979)
and Raniecki (1979). A derivation of the critical hardening modulus for plane strain and
plane stress situations was given by Bigoni and Hueckel (1991a).

In closing this section, we note that in under the hypotheses of homogeneity and
all-round controlled nominal surface tractions, failure of (PD) implies failure of the Hill
sufficient conditions for stability (50) and uniqueness (40). This situation is critical in the
case of the associative flow rule, where instability and bifurcation may occur at loss of
(PD) under broad hypotheses (Hill, 1967; Miles, 1973). The situation is however still not
clear both for stability and bifurcation in non-associative elastoplasticity. In that context,
examples are not known in which any real bifurcation has been found in coincidence with
failure of (PD).

6.2 Singularity of the constitutive operator

Loss of (PD) at a point of a body during a loading program is not in general a sufficient
condition for bifurcation. There are however certain situations where loss of (PD) may
become close to critical. These have been touched on in the closure of the previous section.
Let us consider therefore a special class of problems where:
1) controlled nominal tractions are prescribed on the entire boundary and
2) material properties and deformation (and therefore stress) are homogeneous,
during a given loading path. These situations have been analyzed by Hill (1967a), Miles
(1973), Raniecki and Bruhns (1981) and Ogden (1985). Under the above hypotheses,
conditions (40) and (50) are equivalent to (PD). In other words, exclusion of bifurcation
and stability in Hill’s sense fail to hold when (PD) is lost, i.e. when at least one X* # 0
exists such that

X*. C[X*] =0. (75)
Except for the associative case, this condition does not mean that C is singular, in other
words C[X*] # 0 should be in general expected. Therefore, loss of (PD) is not directly

connected to a bifurcation, even in the above special hypotheses. On the other hand, if
we define the non-singularity condition

[ C[X] # 0, for every (non —zero) X € Lin (NS conditionﬂ (76)

we can understand that, in a sense, failure of this condition is critical for bifurcation of the
homogeneous problem with controlled nominal surface tractions on the entire boundary.
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We note, in passing, that obviously (PD) implies (NS) and that when (PD) fails the
first time in a continuous loading path (and for continuous dependence of constitutive
equations on time) (NS) also fails for associative, hyperelastic-plastic solids.

With respect to the constitutive operator (28) where G is assumed invertible'®, we
note that, assuming N - G™'[M] > 0

S§=0 «—= FxG'M], g=N-G'[M]. (77)

Therefore

g#g¥S=N-.G'[M], <= Cisnotsingular. (NS condition) (78)

Note that ¢S < 0 when N+ G™'[M] < 0. In this case, loss of (NS) does not occur (in
the present constitutive framework).

Loss of (NS) is critical in the sense explained by Raniecki and Bruhns (1981), namely,
assuming C[X*] = 0, if F is a solution of the problem in velocities (corresponding to
plastic loading everywhere in the body) it satisfies:

C(F) = C[F] and C[Fjng=¢ on 92°,
where ng is the unit outward normal to 82°. It follows that if C(F+~vX*) = C[F]-+~yC[X"]
for at least some v # 0,

C(F +vX*)ng = C[Flng = 6 on 892°,

and therefore either a bifurcation or a load maximum has been reached in the loading
program (Hill, 1967a).

Condition (78) may be further elaborated, assuming 7} + T» > 0, 71 + 13 > 0,
T, + T3 > 0, as follows. Let us observe that

SFT = H[D] 4+ LK — —;-(Q - H[D])H[P], (79)
where we may note that
LK — %(W—K)[D] +%(w— K)[W]. (80)

For W in the form (63),i.e. W = W™K[D], and L defined by (67), eqn. (79), using (80),
becomes

$FT = LD] - %(Q - H[DJH[P]. (81)

Assuming L invertible, from (81) we conclude that, under hypothesis (63), S =0
g = Q- (HL™!'H)[P] and D « L™'H[P]. Vice-versa, assuming S = 0 in (79), the minor
symmetries of H imply W = W™'K[D]. We obtain therefore the following proposition:

Ty+T,>0 T1+T3>0, To+13>0:

. . (82)
g# gNS=Q-(HLT'H)[P], <= Cis not singular. (NS condition)

16 Singularity of G implies singularity of C.
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Obviously, conditions (78) and (82) are equivalent, under the condition that (trT)[ — T
is positive definite.

Uniaxial tension. For uniaxial tension along axis 1, 7} = 0 > 0O and T, = T3 = 0.
Direct calculations on (79) yield that the critical condition is again given by (82), but
with

L=H+4+o0ce,®e Qe ®e;.

The infinitesimal theory. In the case of the infinitesimal theory (34) with E symmetric
and positive definite, the condition (NS) becomes h # 0, and:

for h=0 and X*x P, C(C[X*]=0.

As a conclusion and with the exception of associative plasticity, (PD) and (NS) clearly
do not coincide in the infinitesimal theory, where (PD) is lost before softening and (NS)
is always lost in the perfectly plastic case (h = 0).

6.3 Strong ellipticity

In the previous section we have analyzed the special condition of a homogeneous body
subject to all-round controlled nominal surface tractions. In that case, the (PD) and
(NS) conditions play a special role. Now we analyze a dual case in which a homogeneous
body is deformed in an homogeneous way under prescribed displacements on the entire
boundary. As a result, we will show that strong ellipticity (SE) and ellipticity (E) play a
role similar to those shown for (PD) and (NS) in the previous section.

Let us begin by considering the ‘in loading comparison solid’, i.e. the fictitious solid
defined by the constitutive tensor C. For this material, we will show the validity of the
following uniqueness theorem for the velocity problem, due to van Hove (1947):

For a homogeneous and homogeneously deformed body, characterized by an incrementally
linear constitutive operator (here C) and subject to prescribed velocity over the entire
boundary, the strong ellipticity condition

|§ -Clg®njn >0, (SE condition)} (83)

for every non-zero unit vector!” n and vector g, implies that the velocity problem has at
most one solution.

The condition of strong ellipticity may be expressed, in a different notation, as the
positive definiteness of the acoustic tensor'® A(n) defined, for every unit vector n and
gEV, as

[A(m)g =Clg®njn | (84)

7 We prefer to introduce the acoustic tensor directly with respect to unit vectors n.
'8 In our definition of acoustic tensor we refer to a unit mass density.
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With reference to the ‘in loading’ comparison solid (47), the acoustic tensor becomes:

A(n) = Ap(n) - éMn % Nn, (85)

where A g(n) is the elastic acoustic tensor
Ap(n)g = Glg®njn,

assumed positive definite in the following.

For the proof of the van Hove theorem, we follow Hayes (1966). Let us consider
the functional in (40) with C° replaced by C. When this functional is positive, for every
admissible velocity field x vanishing on 842°, bifurcation is excluded (in the incrementally
linear solid defined by C). We can extend the definition of x from §2° to all Euclidean space
£ by simply defining x = 0 on £ \ 2. The resulting field is admissible and its gradient
is discontinuous only on 842°. Therefore, both x and Vx possess the three-dimensional
Fourier transforms

X" (x0) = (%) /£< “k(y)dvy. (86)
X (o) = (%) /5e“*°'”vx(y)dvy- (87)

Before continuing, it should be noted that (86), (87) and the divergence theorem yield
X = —ix* ®xo, (88)

where i = /—1 is the imaginary unit. Since homogeneity is satisfied in §2%, the generalized
Parseval theorem gives

/EV)’(- CIVx] = Cijnk /g Ty Tk = Cijhk/(;Xijyhk = /gX. CXJ, (89)

where X is the complex conjugate of X. Now, we note that (88) implies
Xp=%x;®%0, Xj=-Xp®Xo, (90)

where the indices R and I stand for the real and imaginary parts, respectively. Using
(90) in (89), it may be found that

LU VXC[VX] :/E(XB(X)X())C[X}}@Xo]+/‘;‘(X;®X0)°C[X}®X0] (91)

As a conclusion, when (SE) holds, the above integral is greater than zero, and uniqueness
follows.

Obviously, the van Hove theorem holds true for the Raniecki family of incrementally
linear solids. Defining therefore the acoustic tensor relative to the generic Raniecki solid

AR(n’ d))g = R[g ® n]nv (92)
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we may conclude that for a homogeneous elastoplastic body subject to prescribed veloci-
ties on the entire boundary, strong ellipticity of at least one of the Raniecki solids (SER)
is sufficient for uniqueness. As a conclusion, we can state that

[ (SEr) == uniqueness for an elastoplastic solid for van Hove’s b.v.p. ‘

USE) = uniqueness for the ‘in loading comparison solid’ for van Hove’s b.v.p. ]

where by ‘van Hove b.v.p.’ we mean boundary value problems satisfying van Hove’s con-
ditions. An immediate consequence of the Raniecki comparison theorem is the following
implication

(PD) = (SEr) == (SE). (93)

Now we will determine the critical plastic moduli for loss of (SE) and loss of (SER).
In order to write (SE) of C in terms of a critical value of the plastic modulus, let us
consider, for every vector x and unit vector n, the following inequality:

~ (x-Rn)?

x-An)x > x-Ap(n,¥)x =x-Ag(n)x — Ty (94)

where Ag(n) = [Ag(n)+ AZ(n)]/2, is the symmetric part of the elastic acoustic tensor.

We proceed analogously to the proof of Raniecki and Bruhns for (PD), using the
Cauchy-Schwarz inequality in the metric Ag(n) (Appendix B) (the dependence of Ag
on n is omitted for simplicity in the following)

(x-Rn)® = (x- ApA;'Rn)? < (x- Agx)(Rn- A;'Rn). (95)

After calculations that parallel those reported in Sect. 6.1, we find that

x-1
¢ > min { (Mn +¢Nn)- Ay (Mn +yNn) } A(n) pos. def. (96)

$>0 4qf

The minimum problem is solved by

Mn-Az!Mn
P(n) = | —=E—, (97)
Nn:A%z Nn

which yields the following proposition:

g9>95F(m) < A(n)pos. def. (at fixed n ), (98)

where

SE(

9o (m) =

(%(Mn-AEIMn)(Nn-Agan) +Mn- A;Nn) > 0. (99)

DO =
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Note that g5 = 0 <= N o« —M, a condition which should never be satisfied for realistic
constitutive models.

In order to complete the proof of (98), it may be checked that at g = g2 (n), tensor
A(n) loses positive definiteness for vectors x* defined as

x* o« ({/Mn-Az'Mn) A;'Nn + (1/Nn- A;'Nn) A;'Mn,

and that for g < g5¥(n), x* - A(n)x* < 0.

It may be important to note from (99) that for every n, failure of (SE) necessarily
occurs for g5F(n) positive.

All the above holds at n fixed, and proves that for a given n, loss of (PD) in the
‘in loading’ comparison solid C and in the optimal Raniecki solid defined by (97) are
equivalent. However, loss of (SE) in C will actually occur when g equals the maximum
of g3F(n) as a function of n

g>g°F = max g3F(n) <= (SE condition). (100)

n,|nf=1

Therefore, differently from gI'P, the critical value of the plastic modulus for loss of

strong ellipticity, g5F, is not given in explicit terms, but as the solution of a constrained
maximization problem.

Let us consider now strong ellipticity for Raniecki solids. From {94) and (95) we obtain
that

(Mn + ¢ Nn) - Az} (Mn + 9/Nn)

Ap(n, ) pos. def. <= ¢ > g5E~(n,y) = T ,
)
(101)
Taking into consideration the optimal 1, we conclude that (SEg) can be written as
g > goPR = inf max g5FR(n,y), <= (SEg condition) (102)
% >0n,|n|=1

The above critical plastic moduli were obtained by Bigoni and Zaccaria (1992a;b). It may
be worth noting that (93) is equivalent to

957 > g5F"(n,9) > g5 (n), (103)
holding for every 1 and n. Moreover, we have seen that

SE(n) = min g3 Fr . 104
ger (D) min e (n, 1) (104)

Therefore, (SE) and (SEg) are equivalent criteria whenever

inf max g3F%(n,y) = max ming ¥R (n, ), 105
P >0 n,|ﬂ|:19m ( 11[) n,[n]*§11ﬁ>09” ( 11[) ( )

a condition which was proved only under very restrictive assumptions (infinitesimal the-
ory, isotropic elasticity and coaxiality of P and Q).
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Untill this point we have given an interpretation of the (SEgr) and (SE) conditions as
sufficient conditions for uniqueness of a special class of problems (van Hove hypotheses)'®.
In particular, the former condition is sufficient for uniqueness of the velocity problem for
the elastoplastic solid, and the latter for the fictitious solid corresponding to the loading
branch of the constitutive tangent operator. However, as stressed by Bigoni and Zaccaria
(1992 b),

the strong ellipticity condition has a meaning even when a generic situation of
inhomogeneous deformation and mixed boundary conditions is considered.

In order to explain this point, let us introduce the semi-strong ellipticity condition (SSE),
which is defined as in (83) except that ‘>’ is replaced with ‘>’. In other words, (SSE)
is the condition of semi-positive definiteness of the acoustic tensor. In nonlinear elas-
ticity, the theorem of Cattaneo (1946) (see also Truesdell and Noll, 1965, Sect. 68bis)
proves that (SSE) is a necessary condition for infinitesimal stability. In non-associative
elastoplasticity the theorem of Cattaneo was generalized by Ryzhak (1987)%0. Assum-
ing positive definiteness of Ag(n), the Ryzhak theorem states that (SSE) is a necessary
condition for semi-stability in Hill’s sense, namely

I semi-stability in Hill sense = C is (SSE), l

where with the term ‘semi-stability’, we intend the sufficient stability condition (50)
where ‘>’ is replaced with ‘>’. The (SSE) is a local criterion and when it fails during
a loading program of a generic (inhomogeneous) boundary value problem (with mixed
boundary conditions) Hill’s sufficient stability condition does not hold.

The infinitesimal theory. In the special case of infinitesimal theory (34) and Green
elasticity, the critical plastic modulus (99) simplifies to

1 _ _ -
4550) = 3 (V{EPIn- A7 EIPu) (EIQn- AL 'EIQIn) + EIPIn- AFE[Q)n) >0
(106)
where once again we note that g5 = 0 is equivalent to P o« —Q, a condition which is
excluded for realistic constitutive models. Assuming isotropic elasticity (33), the acoustic
tensor can be written in the well-known form

Ap(n)=(A+pn®@n+ pl, (107)

with the inverse M+ 1
A—ln :_____/'L_n(g)n—}-—l. 108
e () (A + 2u) JI 108

Under the above hypotheses, and assuming in addition coaxiality of P and Q, Bigoni
and Zaccaria (1992, a,b) have proved (105) so that:

19 The van Hove theorem has been generalized in special cases by Ryzhak (1993; 1994)

20 A simpler, alternative proof can be inferred from (Petryk, 1985a; 1992), as an application of
Graves’ theorem. The discussion there was confined to symmetry of the constitutive operator,
but in the (SSE) condition only the symmetric part of the constitutive operator plays a role.
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in the case of the infinitesimal theory, with isotropic elasticity and P and Q
coaxial, (SE) and (SEg) are equivalent criteria.

Moreover, they obtained an explicit solution for (100).

6.4 Strain localization

For associative hyperelastic-plastic behaviour, N = M, in a continuous deformation
evolution initiating when (SE) holds, the acoustic tensor becomes singular as soon as
(SE) fails. This is no longer true in the non-associative case, where (SE) is usually lost
while the acoustic tensor is still non-singular. Therefore, we can introduce a condition
analogous to (NS), but on the acoustic tensor (defined here relatively to the ‘in loading’
comparison solid). This is the condition of ellipticity

[det A(n)#0, forallne V,|n|]=1 (E condition). l (109)

In a (sufficiently regular) deformation path, starting from a situation in which det A(n)
> 0 is satisfied, the acoustic tensor A(n) becomes singular when the plastic modulus
reaches a critical value gZ(n). This critical hardening modulus was derived by Rice
(1977) as follows. The condition

1
det (AE(n) - 5Mn® Nn) > 0,
assuming A g positive definite, can be written as
1
det Ap(n)det (I ~ ~Az'(n)Mn® Nn> > 0.
g

Making use of the identity det(I+a®b) =1+ a-b, holding for every a and b € V, we
obtain the critical hardening modulus for loss of (E) in the direction n

9% (n) = Nn- A.'(n)Mn, (110)

which is greater than zero for associative elastoplasticity, but may exceptionally result
negative for a non-associative flow rule?!. When the acoustic tensor is singular, i.e. when
g = gZ, the eigenvector corresponding to the null eigenvalue is

g < A (n)Mn. (111)

As for the case of the (SE) condition, the critical plastic modulus for loss of (E) is the
solution of the constrained maximization problem

g> g% = max ¢gZ(n) < detA(n) >0, foralln € V,|n|=1 = (E condition).

n,/nj=1

(112)

2! In the case g& < 0, localization is excluded for strictly positive values of g, i.e. in the present
context.
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The condition of loss of ellipticity admits a particularly nice mechanical interpreta-
tion, namely, localization of deformation into a planar band becomes possible at failure
of (E). This has been known since Hadamard (1903), but was investigated in the case of
elastoplasticity by Nadai (1931, 1950), Hill (1952, 1962), Prager (1954), Thomas (1953,
1961), Mandel (1966), Rudnicki and Rice (1975), Rice (1977), Rice and Rudnicki (1980).
Strain localization may be directly linked to the initiation and growth of slip mechanisms
and fractures in solids. It is experimentally observed in a wide range of materials (includ-
ing metals, polymers, concretes, geomaterials) and is one of the most explored research
fields, since Rice’s (1977) paper.

It is important to understand how failure of ellipticity is connected to the emergence
of localized deformations. To this purpose, let us consider an infinite body, subject to
remote boundary conditions sufficient to impose continued quasi-static, homogeneous
deformation. At any instant of the deformation process, the uniform stress field trivially
satisfies the equilibrium equations. At a certain point of the deformation process, let us
assume that a non-trivial incremental solution becomes possible, consisting of a velocity
gradient that is uniform except across a planar band, where it is discontinuous. Inside
and outside the band the incremental stress and strain fields remain uniform, so that
equilibrium and compatibility are satisfied. If the band has normal ng in the material
description, the nominal traction must remain continuous, (5), across the band:

[[SH ng = 0; (113)

moreover, the jump in velocity gradient across the band must satisfy the Maxwell com-
patibility conditions*?

HFH =g ®ny. (114)

If we express via constitutive equations (28) the Piola-Kirchhoff stress rate in (113)
in terms of jump of the gradient of velocity written using (114), we arrive at

(C(F+g®n0) —C(F)) ng = 0. (115)

This is a necessary condition for strain localization into a planar band. Four cases need to
be examined, corresponding to conditions of plastic loading (or elastic unloading) inside
and outside the band, and plastic loading inside {(or outside} and elastic unloading outside

22 The compatibility conditions follow from continuity of velocity across the band, [x]] = 0. This
can be easily shown, defining as [Vx] m the directional derivative of the velocity jump in the
generic direction singled out by the unit vector m. Due to continuity of x, the derivative
along no, i.e. [VxX] no, remains unrestricted, but the derivative orthogonal to ng must vanish:
[Vx]t = 0, for every unit vector t orthogonal to ng. This condition implies that, when
projected onto a basis ng, t, s = ng x t, tensor {Vx]] has only the three non-null components
[Vl ,gng [VE],,, and [VZ],, . Therefore, defining a vector g as

g = [Vi],,,, no + [Vi],, t +[Vi],, s,

sng

it is readily obtained that [Vx]] = g ® no, eqn. (114).
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(or inside) the band:

1) (C(F +g®ng) ) ny = C[g ® ng|ny, (plastic/plastic),
2) (C(F +g®mng) ) ny = G[g ® ng)ny, (elastic/elastic),
3) (C(F +g®ng) ) no = C[g @ ng|ny + (C — G)[F]ng, (plastic/elastic),

4) (C(F Fg®ny) - C(F)) ng = Glg ® nojng — (C — G)[Flng, (elastic/plastic),

It is important to note that only Case 1) corresponds to violation of (E), eqn. (109),
i.e. det A(n) = 0. Case 2) corresponds to a purely elastic loss of (E), det Ag(n) = 0.
However, we assume for simplicity A g(n) positive definite and therefore Case 2) is not
considered. We report now the Rice and Rudnicki (1980) proof that

lif det A(n) > 0, so that Case 1) is excluded, Cases 3) and 4) are also excluded. I

Therefore, we assume that (the index 0 of ng is omitted for conciseness)

Nn-Az'(n)Mn
g
Let us analyze Case 3). If (115) is satisfied under Conditions 3), we have:

det A(n) >0 <= 1-

> 0. (116)

N-F+g-Nn
g

N.-F<0, N-F+g-Nn>0, g= AZ'(n)Mn, (117)

from which it is immediate that g- Az'(n)Mn > 0. But (excluding the trivial case
N.F +g-Nn = 0) the determinant

¥

2

det{I_Az_l(nzl\gQQ (Nn
g
g+ Ap'(n)Mn, (118)

Nn-Ap'mMn N-F
g 9g

is positive, so that (115) is not satisfied. Let us analyze Case 4). If (115) is satisfied under
Conditions 4), we have:

:l——

N-F

N-F>0, N.-F+g-Nn<0, g=— Az'(n)Mn. (119)

Using (119)3 and (119); in (119)9, (excluding the trivial case N - F =0) we get
Nn-A;'(n)Mn
g

which is a contradiction to (116). It follows from the above that, assuming A g(n) positive
definite and a continuous dependence of constitutive equations on time:

<0, (120)
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In a loading program controlled by a (regularly) varying parameter and starting
from a situation of ellipticity with det A(n) > 0, the first possibility of localiza-
tion always occurs at failure of ellipticty, det A(n) = 0, in the comparison solid
corresponding to the loading branch of the constitutive operator C.

The infinitesimal theory. In the case of infinitesimal theory (34) and isotropic elas-
ticity (33), eqn. (108) allows a simplification of (110), which becomes

At

E = max ireesenrl § § njn- n l n- n
dt = max {2l (n-E{QIn)(n- EIPIn) + LEQIn-ElPl}, (121

where E has the isotropic form (33). The constrained maximization problem, (121), was
solved under various hypotheses on the form of P and Q by Rudnicki and Rice (1975),
Needleman and Ortiz (1991), Ottosen and Runesson (1991). It was solved under the sole
hypothesis of coaxiality of P and Q by Boehler and Willis (1991) and Bigoni and Hueckel
(1990, 1991a,b). Moreover, generalization of the above solution to incorporate the effects
of geometrical terms were given by Rudnicki and Rice (1975) and Szabé (1994), and to
incorporate anisotropic elasticity by Bigoni and Loret (1999) and Bigoni et al. (2000).

6.5 Flutter instability

In the case of non-associative elastoplasticity (or when the elastic tensor does not possess
the major symmetry), the acoustic tensor is non-symmetric and there is, in principle,
the possibility of a particular type of instability. This is the so-called flutter instability
(Rice, 1977) and corresponds to the occurrence of two complex conjugate eigenvalues of
the acoustic tensor or, in other words, when (for at least one unit vector n):

’ A(n) has complex eigenvalues <= flutter instability (F condition). ]

This instability is for many reasons not still completely understood. In particular, the
following points will be addressed:

1) when flutter instability may occur,

2) what is known about its mechanical interpretation.

Onset of flutter. There are two possible approaches to the problem. One is simply to
consider flutter instability to be excluded when the eigenvalues of the acoustic tensor are
real. Another is to consider the coalescence of two eigenvalues as a critical condition. In
fact, when two eigenvalues are coincident, an appropriate, infinitesimally small distur-
bance may induce complex eigenvalues. The latter point of view was suggested by An
and Schaeffer (1990). Proceeding with it, we should restrict the class of possible distur-
bances, otherwise we will end up considering unstable a linear, isotropic elastic material
(in which the two cigenvalues p of the acoustic tensor always coincide).

Different classes of disturbances have been considered: Loret (1992) analyzed per-
turbations in the plastic flow direction, Bigoni and Zaccaria (1994a) and Bigoni (1995)
considered perturbations due to effects of large strains. Recently, Bigoni and Loret (1999)
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have analyzed perturbations in terms of a small (hyper)elastic anisotropy superimposed
on the usual isotropic-elastic, plastic models. The latter perturbation is perhaps the more
convincing, because it is symmetric and has a clear physical interpretation. The result is
that flutter may be triggered by such a vanishing small perturbation (for non-associative
flow rules), when two eigenvalues of the acoustic tensor coincide. The same perturbation
has no effects when superimposed on a linear elastic law or on an associative elastoplastic
model. These results are not still conclusive, but suggest that:

for non-associative elastoplasticity the condition of coalescence of eigenvalues of
the acoustic tensor could be considered critical for flutter even in cases in which
complex eigenvalues are excluded in the absence of any perturbation.

As a conclusion, the onset of flutter can be defined simply by finding the conditions of
coalescence of eigenvalues. However, this may be not an easy task for elastoplasticity
at finite strain. We will therefore limit the investigation to elastic-plastic solids with
isotropic elasticity and subject to small strains. The results are mainly due to Loret et
al. (1990); however, we follow Bigoni and Zaccaria (1994a) and consider the acoustic
tensor corresponding to the plastic branch of the constitutive equation (34)

1
A(n)=(A+#)n®n+uI—§p®q, (122)
where

q=AtrQ)n +2uQn, p=A(trP)n+ 2uPn, (123)

are linear functions of n. Assuming that n x q # 023 let us consider the following non-
orthogonal dual bases of V, so that e - e; = &}

e; =n, €, = q, e3 =

el — @)n—(a-ma 2 _ (@ mn-a  3_,
K R el >

Projected onto the bases (124), the eigenvalue problem for (122) gives the characteristic
cquation

(124)

A+2u0—n —ép-n 0
det { A+ p)a-np—cpra-n 0 |=0, (125)
0 —<pres  pU—7)

where 7 is the generic eigenvalue of the acoustic tensor (122). The solutions of the char-
acteristic equation are the eigenvalue p and the two roots of the polynomial equation:

1 1 1

7’ - (/\ + 3p — Ep-q) n+ (A +2p) (/L - —g—p-q> + §(>\+ 1) (p-n)(q-n)=0. (126)

23 In the special case n x g = 0 the final results do not change. This particular case is straight-
forward and analyzed in Bigoni and Zaccaria (1994a) and Bigoni (1995).
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Flutter corresponds to negative values of the discriminant of the second-order polynomial
in (126). This can be written as

Az(/\+3p—§p-q>2——4u()\+2,u) (1—9%‘-‘—)>, (127)

where gZ(n) is the critical plastic modulus for strain localization (121) at fixed n, i.e.

__ At
1A+ 2p)

Therefore, we conclude that (Bigoni and Zaccaria, 1994a):

P-q

95 (n) = (p-n)(q-n) + (128)

for a given direction n, flutter is always excluded for values of the plastic mod-
ulus less than or equal to the critical plastic modulus for localization in a band
orthogonal to that direction n?4.
Straightforward manipulation of the discriminant (127) allows one to obtain the necessary
and sufficient conditions for flutter

|[(np)(n-q)>0, & (n-p)(n-q)—p-q>0, & g€ (g1,9),] (129)

where

91}=;%;(\/(n-p)(mq)i\/(n-p)(n-p)—p-Q)Q- (130)

g2

If we assume deviatoric associativity (30), a simple calculation shows that (129), is never
satisfied, therefore we reach the conclusion (Loret et al., 1990):

For elastic-plastic solids in the presence of isotropic elasticity and deviatoric asso-
ciativity (30) with x, and i strictly positive, complex eigenvalues of the acoustic
tensor are excluded.

However, coincident eigenvalues are possible. These may be determined by requiring that
the discriminant (127) be null?®. This occurs when one of the following two conditions is
satisfied

n-p)n-q) =0, & g= Cn:_}lﬁ_, 131
(n-p)(n-q) 9= ger(n) o (131)
or
c .
. .q)=p- = = . 132
(n-p)(n-q)=p-q, & g=g;(n) N (132)
Assuming isotropic elasticity (33) and deviatoric associativity (30), it is easy to obtain
that

pra-(n-p)n-q) = 4u’xi¢; (Sn-8n - (n-$n)?) 2 0. (133)

21 This does not mean that flutter always occurs before strain localization. Rather, it means
that flutter at a certain n always occurs before localization corresponding to that n.

2?5 We are thus interested in determining coincident roots of (126) and do not consider the
situation when (126) has different roots but one coincides with p.
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Therefore
(n-p)(n-q)=0 = p-q>0 = g5 (n) <0, (134)

so that Case (131) is not interesting. In Case (132), (126} gives two coincident solutions
equal to p. Therefore:

The acoustic tensor (for certain n) has an eigenvalue equal to p, with multiplicity
3, when condition (132) is satisfied.

Now we determine the critical plastic modulus for such a coalescence. We begin noting
that the following condition holds true at coalescence

Sn-Sn = (n-Sn)?, (135)

and is verified if and only if n is an eigenvector of S, but in this case n is also an
eigenvector of E[P] and E[Q]?°. Therefore, the critical plastic modulus for coalescence of
eigenvalues is

C — e EPDLELQD,

R W (136)

where E has the isotropic form (33) and the index ¢, not summed, denotes principal
components of E[P] and E[Q] (in the same reference system).

To summarize with the above specific example at hand, we may note that for devi-
atoric associativity, complex eigenvalues of the acoustic tensor are excluded, but coales-
cence of three eigenvalues may occur. When coalescence occurs and with reference to the
above example, Bigoni and Loret (1999) have shown that a perturbation in terms of a
small (appropriate) elastic anisotropy superimposed on the isotropic elastic law is suffi-
cient to trigger flutter. Therefore, even if for this model complex eigenvalues are excluded,
flutter as induced by physically motivated perturbations is possible and the critical con-
dition corresponds to coalescence of the three eigenvalues of the acoustic tensor.

When coalescence is considered, Bigoni and Loret (1999) have shown that this may
occur without relation to the other criteria, namely (PD), (NS), (SE) and (E). In con-
clusion:

coalescence of eigenvalues of the acoustic tensor and therefore flutter may occur
even when (PD) is verified. Therefore, flutter instability is not excluded by the
Hill sufficient condition of stability.

Physical meaning and consequences of flutter. As far as the mechanical inter-
pretation of flutter instability is concerned, results are scarce. In particular, Bigoni and
Willis (1994) have analyzed a particular wave propagation problem, showing that flutter
may correspond to an oscillating motion of material particles, which blows up with time.
However, the analysis is valid only for an incrementally linear material. As pointed out
by Rice (1977), in the case of an elastoplastic solid, an oscillation may yield a crossing

26 Vice-versa, all eigenvectors of E[P] and E[Q] are also eigenvectors of § because x; and ¥y
have been assumed strictly positive.
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of the loading-branch constitutive cone and may thus invalidate an analysis based on a
linear material. Only a partial answer has been given to this point. This is the numerical
analysis of Simdes (1997), in which a growth and decay of an oscillation is found in a
plane strain intentation of a Drucker-Prager, ideally-plastic material with non-associative
flow law. In this problem, flutter is excluded in the sense intended in the present section,
but it may occur as connected to the presence of a free boundary. However, we may
conclude that the real mechanical meaning of flutter is still not completely understood
and more investigation is needed.

6.6 Other types of instabilities

The reader should be aware at this point that there may occur many types of instabil-
ities in elastoplastic solids, with different mechanical consequences. However, a number
of these instabilities were not analyzed for simplicity here. Some of these are briefly
mentioned below.

Occurrence of a particular condition was noted by Ottosen and Runesson (1991),
Brannon and Drugan (1993) and Bigoni (1995). It corresponds to the situation in which
the acoustic tensor has two coincident eigenvalues with geometric multiplicity smaller
than algebraic multiplicity. This is possible when the acoustic tensor is not symmetric.
As an example, let us consider the Jordan block

11

01|’
which has an eigenvalue equal to 1 with geometric multiplicity 1 and algebraic multiplic-
ity 2 (in other words the matrix is defective). This possibility is again excluded in the
case of isotropic-elastic, plastic solid with deviatoric associativity. But it may occur in

other, more general, circumstances. Whether or not this occurrence may correspond to
a material instability is presently not known.

A number of material instabilities may occur at a point of a boundary. These were
investigated by Benallal et al. (1990), as related to the possibility of a surface instability
(Biot, 1965; Hill and Hutchinson, 1975). The possibility of flutter instability in terms of
complex conjugate velocities of propagation of Rayleigh waves at a free boundary of an
elastoplastic solid was discovered by Loret et al. (1995).

As far as the author is aware, internal instability in the sense of Biot (1965) was not
systematically investigated for elastoplastic solids.

Finally, cavitation has been thoroughly investigated for nonlinear elastic solids [see
Horgan and Polignone (1995) and references cited therein], but only scarcely analyzed
in the case of elastoplastic solids (Huang et al., 1991). For elastoplasticity, the effects of
flow rule non-associativity should be dominant [see the related analysis by Bigoni and
Laudiero (1989)].
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7 Examples

Examples are presented relative to the application of the criteria described in the previous
sections. We begin with the simple case of the infinitesimal theory and then we analyze
a situation of uniaxial tension and compression of a solid bar, subject to finite strains.

7.1 The infinitesimal theory

We begin with some words of caution as to the use of small strain assumption in any
bifurcation and stability analysis. Usually, ‘geometrical effects’ are crucially important
in these problems. To convince oneself of this fact it suffices to recall Euler buckling of
rods. Roughly speaking, with respect to the small strain approximation, the various local
stability thresholds presented in Sect. 6 contain ‘geometrical terms’ on the order of stress
over elastic shear modulus. These terms become important when the critical hardening
moduli become comparable to a representative stress level (Hill, 1958; 1978; Rudnicki
and Rice, 1975).

Proceeding now with the case in which all ‘geometrical terms’ are neglected in the
equations, we assume, for simplicity, isotropic elasticity (33) and deviatoric associativity
in the form (30)-(31). In other words, Q and P are the normals to yield and plastic po-
tential surfaces, respectively, of the Drucker-Prager type. The model reduces therefore to
von Mises plasticity when trP = trQ = 0. The threshold for loss of (PD) is given by (74)
and the threshold for loss of (NS) is simply?” A5 = 0. The critical hardening modulus
for coalescence of the three eigenvalues of the acoustic tensor, condition (C), can be easily
calculated using (136). Evaluation of thresholds for loss of (SE) and (E) requires solution
of a constrained maximization problem for (106) and (121). As already mentioned, these
maximization problems admit an analytical solution, which can be found in (Rudnicki
and Rice, 1975; Bigoni and Hueckel, 1990; 1991a; Ortiz and Needleman, 1991; Ottosen
and Runesson, 1991; Bigoni and Zaccaria, 1992a;b). A few values of the critical harden-
ing moduli (divided by the elastic shear modulus p) are reported in Tab. 1, relative to
uniaxial tension. A material with Poisson’s ratio ¥ = 0 and 0.3 is considered, for several
values of pressure-sensitivity trQ and dilatancy trP.

Note that in the column (E), corresponding to loss of ellipticity, the angle (in degrees)
has been reported in parenthesis between the normal to the band and the direction
orthogonal to the axis of tension. Obviously, in the uniaxial stress problem analyzed,
infinite bands become possible at strain localization, with normals describing a cone
about the tension axis. Additional numerical results can be found in (Rudnicki and Rice,
1975%8; Bigoni and Zaccaria, 1992a,b; Bigoni and Loret, 1999) and need not be reported
here.

The results presented in the table are sufficient to draw the following conclusions.

2" A complete discussion on the eigenvalues of the elastoplastic tangent operator for isotropic
elasticity may be found in Bigoni and Zaccaria (1994b).

28 Rudnicki and Rice (1975) neglected a term in the analytical solution for hE. thus obtaining
imprecise numerical results. The complete soultion can be found in (Bigoni and Hueckel,
1990).
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— As expected, in the case of an associative flow rule it is A

PD = pNS = 0. Moreover,

loss of (E), coincident with loss of (SE), is always excluded at positive hardening.

— For non-associative flow laws, the critical hardening modulus for (PD) is always
positive. The critical hardening moduli for loss of (SE) and (E) are different and
may take any sign, even positive. Strain localization may therefore occur at positive

hardening, before loss of (NS}, occurring at 2 = 0.

— Loss of (PD), (NS) and (SE) always occur for a positive plastic modulus, i.e. before
the snap-back limit g = 0 (not considered in the present notes). On the other hand,
loss of {(E} could be excluded for strictly positive values of the plastic modulus g
(even if this does not occur in the case treated by the table).

Table 1. Uniaxial tension. Values of h../u defining loss of positive definiteness (PD), strong
ellipticity (SE) and ellipticity (E) of the elastic-plastic constitutive operator and coalescence of
three eigenvalues of the acoustic tensor (C), for Poisson’s ratio v = 0 and 0.3, and several values
of pressure-sensitivity tr Q, and plastic dilatancy tr P. 8 in degrees is given in parenthesis.

[Foferl [oo] Gol  ® @ [ O] T
0 0 00 -0.167| -0.167 (54.7°)} 0.333
0.3]0 -0.217( -0.217 (48.8°)|-0.467 gy
0.3 [0 [0 |0.015] -0.101| -0.104 (58.3°)| 0.564 \é
0.3(0.047] -0.106| -0.130 (53.2°)[-0.166
0.3 0.3 |0 |0 -0.071| -0.071 (62.2°)| 0.775
03[0 | -0.003| -0.093 (57.8%)| 0.108 ]
0.6 |0 0 |0.057] -0.021| -0.031 (62.2°)| 0.795
0.3|0.167] 0.054| -0.018 (57.8°) 0.133
0.6 10.3 |0 {0.013} -0.027] -0.028 (66.4°)| 0.986
0.3[0.034{ -0.020] -0.031 (62.9°}| 0.382
0.6 (0.6 (0 (O -0.016| -0.016 (71. 30) 1.177
0.3(0 -0.020{ -0.020 (68.6°)} 0.630
0.9 {0 0 [0.120{ 0.070] 0.052 (66.4°)| 1.026
0.3[0.330] 0.239] 0.117 (62.9°) 0.434
0.9 10.3 [0 [0.049] 0.029] 0.024 (71.3°)| 1.197
0.3|0.115| 0.082] 0.054 (68.6°)| 0.656
0.9 10.6 |0 |0.011| 0.007] 0.007 (77 8%)] 1.368
0.3]0.022| 0.017] 0.015 (76.1°)| 0.878
0.9 (0.9 10 0 -0.0005{-0.0005 (90.0°)| 1.539
03[0 | -0.001] -0.001 (90.0°)] 1.101

— Coalescence of eigenvalues of the acoustic tensor seems to have no relation to the
other stability criteria. It may occur at positive or negative hardening, depending
strongly on the value of the Poisson’s ratio. It may occur before (PD), or after (E),
or between these thresholds.
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— All stability thresholds are strongly influenced by

e state of stress,

e constitutive parameters (dilatancy, pressure-sensitivity, Poisson’s ratio),

e constitutive features not investigated in the example [yield surface curvature or
vertex, non-coaxiality of P and Q, elastic or plastic anisotropy (Bigoni and Loret,
1999; Bigoni et al. 2000)).

7.2 A simple elastoplastic model including ‘geometrical effects’

Bifurcations in simple boundary value problems such as compression or tension of cylin-
ders or blocks deformed in plane strain have been thoroughly analyzed from an analytical
point of view for hyperelastic materials (see for instance, Biot, 1965; Hill and Hutchin-
son, 1975). These analyses are often relevant to associative elastoplasticity, where they
represent bifurcations of the comparison solid corresponding to the loading branch of the
constitutive operator. As explained in Sect. 5, bifurcations detected in such a compari-
son solid may also represent genuine elastoplastic bifurcations under broad hypotheses
(Hutchinson, 1973). As an example, we consider the analysis of Hutchinson and Miles
(1974) in which axisymmetric bifurcations are investigated during uniaxial tension of
a solid bar. The bar is incrementally linear and hyperelastic, but the results are also
pertinent to associative elastoplasticity.

The situation of non-associative elastoplasticity is much more complicated. In par-
ticular, we have seen that the search for bifurcations in an elastoplastic solid with a
non-associative flow rule is replaced by the search for bifurcations in two linear compar-
ison solids. One can be any member of the family of Raniecki comparison solids and the
other is simply the linear solid defined by the loading branch of the constitutive opera-
tor. Bifurcation in the former solid determines a lower bound to bifurcation stresses and
bifurcation in the latter provides an upper bound. Obviously, it will be convenient to
determine the optimal Raniecki solid as a function of parameter 1 with respect to the
bifurcation problem under consideration.

Needleman (1979), Vardoulakis (1981; 1983), Chau and Rudnicki (1990), and Chau
(1992; 1995) have investigated bifurcations in the ‘in loading comparison solid’ of an
elastoplastic material with non-associative flow rule, similar, in essence, to the Rudnicki
and Rice (1975) model. The sole analytical analysis of the Raniecki bounds (of which the
author is aware) is that given by Bruhns and Raniecki (1982), whereas numerical results
were presented by Tvergaard (1982), Kleiber (1984; 1986) and Tomita et al. (1988).

We develop below a simple example involving uniaxial tension and compression of
a cylindrical bar. For this example, we give the (PD), (NS), (SE) and (E) thresholds
and investigate the Raniecki bounds for assigned, axisymmetric mode of bifurcation. It
is important to realize that priority is given to mathematical simplicity, therefore the
example should be considered as a prototype, not intended to properly model any real
material, Nevertheless, the main constitutive features such as pressure-sensitivity and
plastic dilatancy are taken into account. We base the analysis on the simple constitutive
model suggested by Hill (1962) for an associative flow rule (Hutchinson, 1973; Neale,
1981). This model has the structure (24) in the relative Lagrangean description (i.e.
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using the current configuration as reference, F = 1)

$ — E[D] + LK — é <D-E[Q] > E[P], (137)
where E has the isotropic form (33). When A and u are not considered constants and
have a special dependence on deformation, Christoffersen (1991) has proved hyperelastic
behaviour for the elastic part of (137). However, we will consider A and u constant in
the following. Moreover, tensors P and Q are selected in the form (30)-(31) proposed by
Rudnicki and Rice (1975), with isochoric plastic deformation

devT « devT
= +21 p=S22 138
Q=55 T3 T (138)

Model (137) differs from that analyzed in the case of the infinitesimal theory only by the
presence of the ‘geometrical term’ LK. The elastic acoustic tensor A g(n) corresponding
to (137) is

Agn)=M+p)n®n+ ul, (139)

where it = i+ n+ Kn and has the inverse

At 1
———————n®n+ =L 140
B+ p+ [) Iz (140)

AE'(n)=
Flutter instability for the model (137) was analyzed by Bigoni and Zaccaria (1994a).
They found that complex eigenvalues are excluded for deviatoric associativity (30)-(31),
but coalescence of eigenvalues may still occur. This will not be examined below.

Axisymmetric bifurcations of a solid bar under uniaxial stress. Let us con-
sider a circular cylindrical specimen of radius R and height L subject to axisymmetric
deformation with uniaxial stress T = oe, ® e, aligned along the cylinder axis e, and
traction-free lateral surface. The relative Lagrangean description is assumed, in which
the current configuration is taken as reference (F = I). A cylindrical coordinate system
(r,0,2) is adopted with the z-axis coincident with the axis of the cylinder. The ends
(z =0, L) are subject to flat, frictionless, rigid constraints keeping null the nominal tan-
gential traction, i.e. Sy, = 0. The material constitutive model is assumed to correspond
to the loading branch of constitutive equation (137) and is therefore given by

$=DD]+LK, D=E- éE[Q] % E[P). (141)

We will also analyze bifurcations in the Raniecki solid, which can be obtained simply by
replacing D in (141) with

D = E - Tug EIP1 + VEIQD @ (E[P) + vE(Q]). (142)
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Incremental equilibrium equations for axisymmetric deformations (in cylindrical co-ordi-
nates) are:

ST'T,T + Srz,z + ;(Srr - SOG) = Oa
Szr,r + Szz,z + ;Szr =0. (143)

Bifurcations are sought in terms of incremental fields satisfying

v,=0, S,,=0 at z=01

S, =0, §,=0 at r=R. (144)

The method of solution parallels that proposed by Chau (1995) and is based on the
introduction of the velocity potential ¢(r, z) so that

1
Vp =Dy, V= —Z[BN(SP) + CP ..l (145)

where N (@) = (r& ;) /7 and

A=Dps: +Drsrz, B =Dpppp, C =Dy +0. (146)
For subsequent reference, we introduce three additional quantities:

D=D,,,.+0, E=Dss, F=Dosrr +Drzrz- (147)

We note, in passing, that different but equivalent potentials can be introduced in the
bifurcation analysis, as discussed by Miles and Nuwahyid (1985). In the axisymmetric
problem under consideration, the non-vanishing components of velocity gradient L are:

vy
er = Ur,r; Lgg = ?» Lzz = Uz, Ly, = Ur,zy L., = Vz,r- (148)

Substitution of the constitutive law (141) into the equilibrium equations (143) reveals
that (143); is identically satisfied, while (143), gives:

V() = p3(0) 2] [N() = P3(),2:] 2 =0, (149)
where p, and py satisfy the condition:
EBp! + (EC + DB~ AF)p? + DC =0, (i=1,2). (150)
The nature of the roots of (150) defines the regime classification as follows

— two p; complex conjugate pairs in the elliptic complex regime,
— four p; pure imaginary in the elliptic imaginary regime,

four p; real in the hyperbolic regime,

two p; real and two pure imaginary in the parabolic regime.

|

|
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The interest in the above classification lies in the fact that, when the boundary of the
elliptic regime is touched, strain localization may occur. In other words, loss of ellipticity,
which is completely equivalent to failure of condition {109}, occurs when at least two roots
pi become real. Diffuse bifurcated solutions are sought now in the elliptic regime of the

form:
P(r, z) = o(r) sinnz, (151)

where 1) == kx/L and k = 1,2,...n. The field (151) satisfies boundary conditions (144)
at z = 0, L. The equilibrium equation (149) becomes:

NC) +oin?] INCY + 3] ¢ = 0, (152)
where N'(¢) = (d/dr)(r(dé/dr))/r. The general solution of (152) for the evlinder can be
expressed in terms of the Bessel [unction of order 0, Jy(x):

o) = crdo(nrpy) + eado(grp2). (153)

where constants ¢; and ¢» are, in general, complex.

hnposing boundary conditions at » = R yields a 2x2 lincar, homogencous system.
Bifurcation occurs when non-trivial solutions of this system are possible. This condition
siiply means that bifurcation is possible when det M,, = 0. where Al is defined as

D (’
A[J_/ - <Dr7r'r - DI'r'HH)/)‘/JI(nh)/{j) + <Dr7::(71p‘/2 + TX

¢ B ,
i H/}f)Jl(I]R/)J). (J=12) (154)

) = Drrrrpi B Ia (L, )

My = pi(L -

Results. In the interest of siimplicity, we assuine A = 0 (corresponding to a null Poisson’s
ratio). Therefore. the model (137) reduces (o

where Poand Q take the form (133). in which the stress is uniaxial

S1g1 T

P = — (Ze,me.—e, e, epiicy). Q=P+ (;I. {156)
23 3

The Raniecki comparison solids are defined by

S LK
2 op:2= o Do D-QUP + Q). (157)

2t 21 2o
moreover. we select for simplicity the valie of ¢ suggested by Bruhns and Raniecki (1982)

'

G 7
\,fﬁ Q-Q \/" I }‘%(\3 '

(1N

U=
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which is independent of the current stress level, and it is therefore not optimal both for
(PD) and (SER). )
The critical plastic modulus for failure of (PD) can be obtained from (73) by noting
that o
L:I§I+ﬂez®ez®ez®ez, (159)

has the inverse

L™ =I®I - e.Qe,Qe, De,. (160)

o
2u+0
For uniaxial tension, ¢ takes positive values and L is always positive definite. Note also
that, due to coaxiality of P, Q and T, failure of (NS) occurs for a mode with null spin
and always corresponds to a maximum load.

Failure of (SE) and (E) can be obtained from (98) and (110}, on the basis of the elastic
acoustic tensor (139) and its inverse (140). Note that, for A = 0, the acoustic tensor has
eigenvalues equal to i and u + f1, which are always positive for tension and vanish in
compression for the first time when n = e, and 0 = —p. When these values are reached,
a purely elastic loss of ellipticity occurs. In order to find the (SE) and (E) thresholds,
the constrained maximization problems (100) and (112) have to be solved. Due to axial
symmetry, this is an easy task in the present situation, where the unit vector n can be
chosen without loss of generality in the form n = n,e, + n,e,. Failure of (SEg) can be
obtained from (102) by solving the inf-max problem for n and 4. However, for the present
case of uniaxial tension, we have numerically proven the coincidence of (SE) and (SEg),
which holds for a certain optimal parameter 1, which is a function of the current stress.
Therefore, only (SE) will be reported in the figures. It is important to remark that both
(PD) and (SE)=(SER) are not relevant (except at ¢ = 0) for the Raniecki solid defined
by the fixed value of ¢ given by (158). This solid has its own peculiar curves for loss of
(PD) and (SE) —not reported in the figures—, which, by the way, are close to the curves
(PD) and (SE) relative to the solid ‘in loading’ (coincident with the optimal Raniecki
solid).

Curves corresponding to failure of (PD), (NS), (SE) and (E) are reported in Figs. 2-4,
together with the curves corresponding to axisymmetric bifurcation for a given bifurcation
mode 7R. These curves are referred to a plane defined by axes o/2u (the axial stress
divided by 2x) and u/g (the inverse of the plastic modulus, multiplied by p). Note that
the curves corresponding to (PD) and (NS) are reported only for tension, because tensor
G is not positive definite in compression. Note also that the reported range of variation
of ¢/(2p) is very large, and probably not sensible with the assumed simplified model.
However, we prefer to show a picture as complete as possible. The range of variation of
/g goes from 0, representative of purely elastic behaviour, ie. g — o0, to softening,
i.e. beyond the perfectly plastic limit A = 0, corresponding to u/g = 1. Note that the
relation between A and g in this simple model is just

9_y4
© H

Let us begin the discussion with Fig. 2, relative to the associative case, @ = 0. In

this case, the plasticity is referred to a von Mises yield surface. Here the (PD) and (NS)
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thresholds and also the (SE) and (E) thresholds coincide. The (PD)=(NS) curve ap-
proaches the horizontal axis at p1/g = 1, corresponding to h = 0, which is the value of
loss of (PD)=(NS) for the infinitesimal theory. This is obtained when the ‘geometrical
term’ o/(2u) is set equal to zero. The curve relative to loss of (E)=(SE) crosses the
horizontal axis at p/g = 1.2, corresponding to h/u = —0.167, again the value relative to
the infinitesimal theory (see Tab. 1). The curve continues indefinitely in tension, but ter-
minates at o/(2x) = —0.5 in compression, where failure of ellipticity of the elastic tensor
occurs. Two other curves are repoted in the graph, relative to axisymmetric bifurcations
of the cylindrical bar with prescribed modes nR = 1 and nR = 2. These cross {continu-
ously) the horizontal axis a few decimals on the right side of the value corresponding to
loss of (PD)=(NS). As sketched in the figure, the bifurcation modes are necking modes
for tension and a barrelling modes for compression. Points situated at positive values of
o/(2p) and on the left side of curve (PD)=(NS) are representative of states for which
(PD) is satisfied and bifurcation is a-priori excluded. Points situated at o/(21) > —0.5
and on the left side of curve (SE)=(E) are representative of elliptic states, for which
strain localization is excluded.

= 06
3 a=0
3
04+
nR=1 nR=2
0'2 _ B D
0 0.2
-0.2 | D LI D
R.R
-0.4
R R,
Purely elastic (E)
-0.6

Fig. 2. Axisymmetric bifurcations and local stability criteria for a cylindrical bar subject to
uniaxial stress. Associative flow-rule.

Let us assume that g is some continuous function of the stress state, which is infinity
at the beginning of plastic flow and continuously decreases when the stress increases (or
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decreases, in compression). Let us consider now a monotonic loading program of uniaxial
tension of a cylindrical specimen starting from some unloaded state, represented by the
origin in the diagram of Fig. 2. ‘

At the beginning of the loading program, the material is in the elastic range and the
point representative of the state simply moves up along the axis o/(2u), at u/g = 0.
When the yield surface is reached, plastic deformation starts and the point moves toward
right in the diagram. Before the point touches the (PD)=(NS) curve, the response is
unique. As soon as the point reaches the (PD)=(NS) curve, a maximum load occurs,
and the loading program can be continued only if axial displacement is prescribed (for a
situation in which axial dead loading would be prescribed, instability would occur). After
the (PD)=(NS) curve is passed, the point representative of the state will touch the curve
corresponding to necking bifurcation (with mode nR = 1). This bifurcation terminates
the homogeneous deformation of the specimen. This might not be the first bifurcation en-
countered, because an earlier bifurcation might occur in another -not investigated- mode
(represented by a curve lying between the two curves (PD)=(NS) and that corresponding
to the mode nR = 1). The other bifurcation mode, nR = 2 occurs after that correspond-
ing to nR = 1 in tension (but before in compression). It is clear from the graph that there
is no way of touching the (SE)=(E) curve in tension without encountering a bifurcation
into a diffuse mode. Now, let us analyze compression. Here (PD) is not defined, and in

0.6

o/2u
Q
Il
o
w

04r

) |

0 + + +
) 0.2 0.4 . 6
t y ’= 0.971
02L L in loading
R.R
//
04 -
/'//
7 Purely elastic (E)
-0.6

Fig. 3. Bounds to axisymmetric bifurcations and local stability criteria for a cylindrical bar
subject to uniaxial stress. Non-associative flow-rule.
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fact bifurcation can occur immediately, even at vanishing small stress. This is the well-
known case of Euler buckling of a very slender beam, which would be recovered here by
analyzing antisymmetric bifurcation modes. However, if we concentrate on axisymmetric
bifurcation at fixed modes nR = 1,2 and consider a loading program at prescribed axial
displacements, we see that there is only a range in which bifurcation with nR = 2 can be
attained. Outside this range, loss of (SE)=(E) will terminate the homogeneous response
of the specimen. Once again, we stress that the picture of bifurcation is not complete,
because we expect that other axisymmetric or antisymmetric modes can be encountered
before that corresponding to nR = 2.

We are now in a position to analyze the case of non-associativity. Here, the (PD),
(NS), (SE), and (E) curves are separated and (SE) and (E) do not cross the horizontal
axis with continuity?®. This reflects the fact that the assumed model has a Drucker-Prager
yield surface. The normal to this surface in tension has a different inclination than in
compression, and different values of thresholds (SE) and (E) result. For the same reason,
the curves representative of diffuse bifurcation modes also do not cross the horizontal
axis with continuity (even if the jump is so small that it cannot really be appreciated
at the scale of the figure, see detail in Fig. 3). Fig. 3 is relative to @ = 0.3 and Fig. 4

Y
g 7 oa=vV3p2
© “I']R:
04}

02} B

0

02 0.4 06

v I= 0.816
02t L in loading

B R
=
-0.4 I . /,¢
» e — ____L-;’:f-
B Purely elastic (E)

Fig. 4. Bounds to axisymmetric bifurcations and local stability criteria for a cylindrical bar
subject to uniaxial stress. Non-associative flow-rule.

29 This would also occur for the associative case with pressure-sensitivity.
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to @ = v/3/2. As for the case of an associative flow rule, the points where the (PD),
(NS), (SE) and (E) curves approach the horizontal axis correspond to the values known
from the infinitesimal theory (and reported in Tab. 1, for & = 0.3 and tension stress
state). Points situated at positive values of ¢/(2u) and on the left side of the curve (PD)
correspond to situations in which bifurcation is a-priori excluded. The curve (NS) signals
that a maximum load has been reached. Curve (E) is relative to strain localization and
is terminated in the negative part of the graph by the horizontal line corresponding to
o/(2u) = —0.5. The same line also terminates the curve (SE). When the curve (SE) is
crossed, the sufficient stability condition of Hill is certainly lost, independently of the
specific boundary conditions.

In Fig. 3, loss of (PD) occurs before (NS), which precedes (SE) and (E). This is
completely different in Fig. 4, where failure of (PD) occurs before (SE) and (E), but
(NS) is a line and follows (E) [the curve (NS) crosses the curve (E) where o/(2u) = 1}.
It should also be noted that the curves representative of the Raniecki lower bounds
terminate in compression when loss of ellipticity occurs in the specific comparison solid
(defined by ¥ = 0.971 for Fig. 3 and v = 0.816 for Fig. 4), which does not coincide with
the curve (SE) (relative to an optimal choice of 9, see detail in Fig. 3).

Both the Raniecki bounds are reported in Figs. 3 and 4, for fixed mode nR = 1. They
are separated and are observed both in tension and compression.

Regarding Fig. 3, we note that in tension, the lower bound is represented by a curve
starting between (PD) and (NS) and later crossing (NS). The upper bound is close to
the right side of (NS). These bifurcations in tension occur well before the loss of (SE)
and (E). In compression, just considering the fixed mode of bifurcation nR = 1, diffuse
modes may go beyond the elliptic range, so that there is a region in which (SE) and (E)
are lost before barrelling bifurcation.

The curve corresponding to the lower bound 7 = 0.816 in Fig. 4 initiates in compres-
sion close (but does not touch) to the (SE) curve and continues (with a discontinuity
crossing the horizontal axis) in tension, between (PD) and (NS). The bifurcation curve
relative to the upper bound, with nR = 1, is not found in tension in the elliptic regime.

8 A concluding remark

Deformations of solids are limited by the occurrence of different failure modes taking
place at different scales. As an example, let us recall the behaviour of a metallic, ductile
bar pulled in tension. Necking bifurcation is the first threshold for which homogeneity is
lost. Subsequently, elastoplastic cavitation occurs in the necked zone. This is a prelude to
strain localization and, eventually, fracture propagates along the localized bands yielding
complete failure. All these phenomena may be described as instabilities which interact
and may be in cooperation/competition to reach global failure.

Many of the instabilities occurring in laboratory tests, such as necking, barrelling,
shear banding, and cavitation, can be at least qualitatively described in terms of the
classical theory of elastoplasticity, referring to smooth yield surfaces and the normality
rule. Behaviour of non-metallic materials, however, is more complicated than the classical
theory of plasticity may predict. Therefore, flow rule non-associativity was advocated as
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a more accurate constitutive description. The result is that non-associativity not only
promotes instabilities which may be already qualitatively described in the framework
of normality, but opens possibility of new types of instabilities, such as flutter. These
instabilities are not yet fully understood. If, on one hand, these may merely reflect a
general deficiency of the non-associative models, on the other hand, these may model
new phenomena, not yet fully experimentally detected.

References

An, L. and Schaeffer, D. (1990). The flutter instability in granular flow. J. Mech. Phys. Solids
40:683-698.

Beatty, M.F. (1987). Topics in finite elasticity: hyperelasticity of rubber, elastomers, and bio-
logical tissues-with examples. Appl. Mech. Rev. 40:1699-1734.

Benallal, A. Billardon, R. and Geymonat, G. (1990). Phénoménes de localisation 4 la frontiére
d’un solide. C. R. Acad. Sci., Paris 310:670-684.

Bigoni, D. (1995). On flutter instability in elastoplastic constitutive models. Int. J. Solids Struc-
tures 32:3167-3189.

Bigoni, D. (1996). On smooth bifurcations in non-associative elastoplasticity. J. Mech. Phys.
Solids 44:1337-1351.

Bigoni, D. and Hueckel, T. (1990). A note on strain localization for a class of non-associative
plasticity rules. Ingenieur- Archiv 60:491-499.

Bigoni, D. and Hueckel, T. (1991a). Uniqueness and localization-I. Associative and non-
associative elastoplasticity. Int. J. Solids Structures 28:197-213.

Bigoni, D. and Hueckel, T. (1991b). Uniqueness and localization-II. Coupled elastoplasticity.
Int. J. Solids Structures 28:215-224,

Bigoni, D. and Laudiero, F. (1989). The quasi-static finite cavity expansion in a non-standard
elastoplastic medium. nt. J. Mech. Sci. 31:825-837.

Bigoni, D. and Loret, B. (1999). Effects of elastic anisotropy on strain localization and flutter
instability in plastic solids. J. Mech. Phys. Solids 47:1409-1436.

Bigoni, D., Loret, B. and Radi, E. (2000). Localization of deformation in plane elastic-plastic
solids with anisotropic elasticity. J. Mech. Phys. Solids , Special issue dedicated to Prof. J.R.
Willis, in press.

Bigoni, D. and Willis, J.R. (1994). A dynamical interpretation of flutter instability. In: Chambon,
R., Desrues, J. and Vardoulakis, 1., eds., Localisation and Bifurcation of Rocks and Soils
Rotterdam: A.A. Balkema Scientific Publishers. 51-58.

Bigoni, D. and Zaccaria, D. (1992a). Strong ellipticity of comparison solids in elastoplasticity
with volumetric non-associativity. Int. J. Solids Structures 29:2123-2136.

Bigoni, D. and Zaccaria, D. (1992b). Loss of strong ellipticity in non-associative elastoplasticity.
J. Mech. Phys. Solids 40:1313-1331.

Bigoni, D. and Zaccaria, D. {1994a). On eigenvalues of the acoustic tensor in elastoplasticity.
Eur. J. Mechanics-A/Solids 13:621-638.

Bigoni, D. and Zaccaria, D. (1994b). Eigenvalues of the elastoplastic constitutive operator.
ZAMM 74:355-357.

Biot, M.A. (1965) Mechanics of incremental deformations. New York:Wiley.

Boehler, J.P. and Willis J.R. (1991). An analysis of localization in highly pre-deformed sheet
steel. Unpublished.

Brannon, R.M. and Drugan, W.J. (1993). Influence of non-classical elastic-plastic constitutive
features on shock wave existence and spectral solutions. J. Mech. Phys. Solids 41:297-330.



48 D. Bigoni

Bruhns, O. and Raniecki, B. (1982). Ein Schrankenverfahren bei Verzweigungsproblemen in-
elastischer Formanderungen. ZAMM 62:T111-T113.

Cattaneo, C. (1946). Su un teorema fondamentale nella teoria delle onde di discontinuita. Atti
Acad. Naz. Lincei (parts I and II) 1:67-72 and 728-734.

Chadwick, P. and Powdrill B. (1965). Singular surfaces in linear thermoelasticity. Int. J. Eng.
Science 3:561-595.

Chau, K.T. (1992). Non-normality and bifurcation in a compressible pressure-sensitive circular
cylinder under axisymmetric tension and compression. Int. J. Solids Structures 29:801-824.

Chau, K.T. (1995). Buckling, barrelling, and surface instabilities of a finite, transversely isotropic
circular cylinder. Quart. Appl. Math. 53:225-244.

Chau, K.T. and Rudnicki, J.W. (1990). Bifurcations of compressible pressure- sensitive materials
in plane strain tension and compression. J. Mech. Phys. Solids 38:875-898.

Cheng, Y.S. and Lu, W.D. (1993). Uniqueness and bifurcation in elastic-plastic solids. Int. J.
Solids Structures 30:3073-3084.

Christoffersen, J. (1991). Hyperelastic relations with isotropic rate forms appropriate for elasto-
plasticity. Eur. J. Mechanics-A/Solids 10:91-99.

Del Piero, G. (1979). Some properties of the set of fourth-order tensors, with applications to
elasticty. J. Elasticity 9:245-261.

Drucker, D.C. (1954). Coulomb friction plasticity and limit loads. J. Appl. Mech. 76:71-74.

Gurtin, M.E. (1972). The linear theory of Elasticity. In Fliigge, S., ed., Encyclopedia of Physics
Vla/2. Berlin:Springer. 1-295.

Gurtin, M.E. (1981). An introduction to continuum mechanics. New York:Academic Press.

Hayes, M. (1966). On the displacement boundary-value problem in linear elastostatics. Quart.
J. Mech. Appl. Math. XIX:151-155.

Hadamard, J. (1903). Legons sur la Propagation des Ondes et les Equations de U Hydrody-
namique. Paris:Hermann.

Hill, R. (1950). The mathematical theory of plasticity. Oxford:Clarendon Press.

Hill, R. (1952). On discontinuous plastic states, with special reference to localized necking in
thin sheets. J. Mech. Phys. Solids 1:19-30.

Hill, R. (1958). A general theory of uniqueness and stability in elastic-plastic solids. J. Mech.
Phys. Solids 6:236-249.

Hill, R. (1959). Some basic principles in the mechanics of solids without a natural time. J. Mech.
Phys. Solids 7:209-225.

Hill, R. (1961). Discontinuity relations in mechanics of solids. In Sneddon, I.N. and Hill, R.,
eds., Progress in Solid Mechanics 11. Amsterdam:North-Holland. 247-276.

Hill, R. (1962). Acceleration waves in solids. J. Mech. Phys. Solids 10:1-16.

Hill, R. (1967a). Eigenmodal deformations in elastic/plastic continua. J. Mech. Phys. Solids
15:371-386.

Hill, R. (1967b). On the classical constitutive laws for elastic/plastic solids. In Broberg, B., ed.,
Recent Progress in Applied Mechanics, The Folke Odkvist Volume Stockholm:Almgvist &
Wiksell. 241-249.

Hill, R. (1968). On constitutive inequalities for simple materials. J. Mech. Phys. Solids 16:229-
242.

Hill, R. (1978) Aspects of invariance in solid mechanics. In Yih, C.-5., ed., Advances in Applied
Mechanics 18. New York:Academic Press. 1-75.

Hill, R. and Hutchinson, J. W. (1975). Bifurcation phenomena in the plane tension test. J. Mech.
Phys. Solids 23:239-264.

Hill, R. and Rice, J. R. (1973). Elastic potentials and the structure of inelastic constitutive laws.
SIAM J. Appl. Math. 25:448-461.



Bifurcation and Instability of Non-Associative Elastoplastic Solids 49

Horgan, C.O. and Polignone, D.A. (1995). Cavitation in nonlinearly elastic solids: A review.
Appl. Mech. Rev. 48:471-485.

Huang, K., Hutchinson, J.W. and Tvergaard, V. (1991). Cavitation instabilities in elastic-plastic
solids. J. Mech. Phys. Solids 39:223-241.

Hueckel, T. (1976). Coupling of elastic and plastic deformation of bulk solids. Meccanica 11:227-
235.

Hutchinson, J. W. (1973). Post-bifurcation behavior in the plastic range. J. Mech. Phys. Solids
21:163-190.

Hutchinson, J. W. and Miles, J.P. (1974). Bifurcation analysis of the onset of necking in an
elastic/plastic cylinder under uniaxial tension. J. Mech. Phys. Solids 22:61-71.

Kleiber, M. (1984) Numerical study on necking-type bifurcations in void-containing elastic-
plastic material. Int. J. Solids Structures 20:191-210.

Kleiber, M. (1986) On plastic localization and failure in plane strain and round void containing
tensile bars. Int. J. Plasticity 2:205-221.

Loret, B. (1992). Does deviation from deviatoric associativity lead to the onset of flutter insta-
bility? J. Mech. Phys. Solids 40:1363-1375.

Loret, B., Martins, J.A.C. and Simées, F.M.F. (1995). Surface boundary conditions trigger flutter
instability in non-associative elastic-plastic solids. Int. J. Solids Structures 32:2155-2190.
Loret, B., Prevost, J.H. and Harireche, O. (1990). Loss of hyperbolicity in elastic-plastic solids

with deviatoric associativity. Eur. J. Mechanics-A /Solids 9:225-231.

Maier, G. and Hueckel, T. (1979). Non associated and coupled flow-rules of elastoplasticity for
rock-like materials. Int. J. Rock Mech. Min. Sci. 16:77-92.

Mandel, J. (1966). Conditions de stabilité et postulat de Drucker. In Kravtchenko, J. and Sirieys,
P.M., eds., Rheology and Soil Mechanics. Berlin:Springer. 58-68.

Melan, E. (1938). Zur Plastizitdt des raumliche Kontinuums. Ingenieur-Archiv 9:116-126.

Miles, J.P. (1973). Fluid-pressure eigenstates and bifurcation in tension specimens under lateral
pressure. J. Mech. Phys. Solids 21:145-162.

Miles, J.P. and Nuwayhid, U.A. (1985). Bifurcation in compressible elastic/plastic cylinders
under uniaxial tension. Appl. Sci. Res. 42:33-54.

Mréz, Z. (1963). Non-associated flow laws in plasticity J. de Mechanique 2:21-42.

Mréz, Z. (1966). On forms of constitutive laws for elastic-plastic solids. Arch. Mech. Stosowanej
18:1-34.

Nadai, A. (1931} Plasticity. New York:McGraw-Hill.

Nadai, A. (1950) Theory of flow and fracture of solids. New York:McGraw-Hill.

Neale, K.W. (1981). Phenomenological constitutive laws in finite plasticity SM Archives 6:79-
128.

Needleman, A. (1879). Non-normality and bifurcation in plane strain tension or compression. J.
Mech. Phys. Solids 27:231-254.

Needleman, A. and Ortiz, M. (1991). Effects of boundaries and interfaces on shear-band local-
ization. Int. J. Solids Structures 28:859-877.

Nguyen, 5.Q. and Triantafyllidis, N. (1989). Plastic bifurcation and postbifurcation analysis for
generalized standard continua. J. Mech. Phys. Solids 37:545-566.

Nikolaevskii, V.N. and Rice, J.R. (1979). Current topics in non-elastic deformation of geological
materials. In Timmerhaus, K.D. and Barber, M.S., eds., Proocedings of the Sixth AIRAPT
Conference: High Pressure Science and Technology. New York:Plenum. 2:455-464.

Ogden, R.W. (1984). Non-linear elastic deformations. Chichester:Ellis Horwood.

Ogden, R. W. (1985). Local and global bifurcation phenomena in plane-strain finite elasticity.
Int. J. Solids Structures 21:121-132.

Ottosen, N.S. and Runesson, K. (1991). Acceleration waves in elastoplasticity. Int. J. Solids
Structures 28:135-159.



50 D. Bigoni

Petryk, H. (1985a). On energy criteria of plastic instability. In Plastic Instability, Proc. Considére
Memorial Paris:Ecole Nat. Ponts Chauss. Press. 215-226.

Petryk, H. (1985b). On stability and symmetry conditions in time-independent plasticity. Arch.
Mech. 37:503-520.

Petryk, H. (1991). The energy criteria of instability in time-independent inelastic solids. Arch.
Mech. 43:519-545.

Petryk, H. (1992). Material instability and strain-rate discontinuities in incrementally nonlinear
continua. J. Mech. Phys. Solids 40:1227-1250.

Petryk, H. (1993a). Theory of bifurcation and instability in time-independent plasticity. In
Nguyen, Q.S., ed., CISM Lecture Notes No. 327, Udine 1991. Wien:Springer. 95-152.

Petryk, H. (1993b). Stability and constitutive inequalities in plasticity. In Muschik, W., ed,,
CISM Lecture Notes No. 336, Udine 1992. Wien:Springer. 255-329.

Petryk, H. (1999). General conditions for uniqueness in materials with multiple mechanisms of
inelastic deformation. J. Mech. Phys. Solids in press.

Petryk, H. and Thermann, K. (1985). Second-order bifurcation in elastic-plastic solids. J. Mech.
Phys. Solids 33:577-593.

Prager, W. (1954). Discontinuous fields of plastic stress and flow. In 2nd Nat. Congr. Appl.
Mech., Ann Arbor, Michigan, 21-32.

Radi, E., Bigoni, D. and Tralli, A. (1999). On uniqueness for frictional contact rate problems.
J. Mech. Phys. Solids 47:275-296.

Raniecki, B. (1979). Uniqueness criteria in solids with non-associated plastic flow laws at finite
deformations, Bull. Acad. Polon. Sci. ser. sci. tech. XXVII1:391-399.

Raniecki, B. and Bruhns, O.T. (1981). Bounds to bifurcation stresses in solids with non-
associated plastic low law at finite strain. J. Mech. Phys. Solids 29:153-171.

Rice, J. R. (1977). The localization of plastic deformation. In Koiter, W.T., ed., Theoretical and
Applied Mechanics. Amsterdam:North-Holland. 207-220.

Rice, J.R. and Rudnicki, J.W. (1980). A note on some features of the theory of localization of
deformation. Int. J. Solids Structures 16:597-605.

Rudnicki, J.W. and Rice, J.R. (1975). Conditions for the localization of deformations in pressure-
sensitive dilatant materials. J. Mech. Phys. Solids 23:371-394.

Runesson, K. and Mréz, Z. (1989). A note on non-associated plastic flow rules. Int. J. Plasticity
5:639-658.

Ryzhak, E. I. (1987). Necessity of Hadamard conditions for stability of elastic-plastic solids. fzv.
AN SSSR MTT (Mechanics of Solids) 99-102.

Ryzhak, E. I. (1993). On stable deformation of "unstable” materials in a rigid triaxial testing
machine. J. Mech. Phys. Solids 41:1345-1356.

Ryzhak, E. 1. (1994). On stability of homogeneous elastic bodies under boundary conditions
weaker than displacement conditions. Q. JI. Mech. appl. Math. 47:663-672.

Simoes, F.M.F. (1997). Instabilities in non-associated problems of solid mechanics. Ph.D. Thesis,
Technical University of Lisbon, in Portuguese.

Szab6, L. (1994). Shear band formulation in finite elastoplasticity. Int. J. Solids Structures
31:1291-1308.

Thomas, T.Y. (1953). The effect of compressibility on the inclination of plastic slip bands in flat
bars. Proc. Nat. Acad. Sci. 39:266-273.

Thomas, T.Y. (1961) Plastic flows and fracture of solids. New York:Academic Press.

Tomita, Y., Shindo, A. and Fatnassi, A. (1988). Bounding approach to bifurcation point of
annular plates with nonassociated flow law subjected to uniform tension at their outer edges.
Int. J. Plasticity 4:251-263.

Truesdell, C. and Noll, W. (1965). The non-linear ficld theories of mechanics. In Fliigge, S., ed.,
Encyclopedia of Physics:111/3. Berlin:Springer-Verlag.



Bifurcation and Instability of Non-Associative Elastoplastic Solids 51

Tvergaard, V. (1982). Influence of void nucleation on ductile shear fracture at a free surface. J.
Mech. Phys. Solids 30:399-425

van Hove, L. (1947). Sur ’extension de la condition de Legendre du calcul des variations aux
intégrales multiples a plusieurs fonctions inconnues. Proc. Sect. Sci. K. Akad. van Weten-
schappen, Amsterdam, 50:18-23.

Vardoulakis, I. (1981). Bifurcation analysis of the plane rectilinear deformation on dry sand
samples. Int. J. Solids Structures 11:1085-1101.

Vardoulakis, I. (1983). Rigid granular plasticity model and bifurcation in the triaxial test. Acta
Mechanica 49:57-79.

Young, N.J.B. (1976). Bifurcation phenomena in the plane compression test. J. Mech. Phys.
Solids 24:77-91.

APPENDIX A. A note on coaxiality.

We prove the following proposition:

Two symmetric second-order tensors A, B commute, i.e. AB = BA if and only if they
possess at least three common, linearly independent, eigenvectors (thus defining a prin-
cipal reference system).

Proof. The sufficiency is trivial. In fact, let us assume that the two tensors share a prin-
cipal reference system. Represented in this system, the two tensors evidently commute.
Assume now that the two tensors commute. Represented in the principal reference system
of A these two tensors write

3 3
A=>oa®a, B=) Ba®a, (A.1)

i=1 ij=1

where a;, 7 € [1,3] arc the unit cigenvectors of A and «; the corresponding eigenvalues,
B;; are the components of B onto a;, which, due to symmetry, satisfy 8;; = G;:.
Irnposing the condition AB = BA gives:

(i —ay)Bi; =0, (i#7€L,3)). (A2)

Condition (A.2) implies that either a; and a; are eigenvectors of B, so that g;; = 0,
or the characteristic space corresponding to a; and a; is a plane, so that o; = a;. In
the latter case, it is always possible to choose in this plane a reference system which is
principal for B.

0

Remark. 1 The above proof is restricted to dimension 3. Its generalization to dimension
n is straightforward.

Remark. 2 It is important to realize that the above proposition does not imply that
two coaxial tensors share all eigenvectors. Take for instance the identity tensor. This is
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coaxial to every tensor, but shares only three eigenvectors with any symmetric second-
order tensor with distinct cigenvalues.

APPENDIX B. On the metric induced by semi-positive definite tensors.

Let us consider the positive scalar valued function f defined over the space of nth-order

tensors as
f(A) = VA HA] >0, (B.1)

where A is a generic nth-order tensor and H is any scmi-positive definite (2 x n)th-order
tensor (symmetries are not required). In particular, the cases in which H is a fourth-order
(n = 2) or second-order tensor (n = 1) are particularly relevant here. We begin with a
proof of the Cauchy-Schwarz inequality. Take any A € ® and considcr, for every nth-order
tensors A and B

0 < [f(AA + B)]® = A2A - H[A] + A(A - H[B] + B-H[A]) + B - H[B]. (B.2)

It may be observed from (B.2) that the discriminant of the second-order polynomial in
A must be negative or null. This condition yields the Cauchy-Schwarz inequality

A - H[B] ;B HIAL /A -A[A]/B 1. (B.3)

Taking now A = 1 in (B.2) and using (B.3), the triangle inequality is readily obtained:
(A+B)-HA+B] < A-H[A]+{A-H[B]+B-H[A]| + B-H[B] (B.4)
2
< (\/A-H[A]+\/B-H[B]> . (B.5)

As a consequence of (B.4), we note that

f(A)=f(A£BFB) < f(A£B)+f(B), f(B)=/f(BLATA)<f(ALB)+/(A)

(B.6)
which imply
V(A£B)-HA £B]>|/A-H[A] - /B-H[BJ. (B.7)
Finally, we note that for every A € R
FAA) = {Af(A), (B.8)

therefore, function f defines a seminorm on the space of nth order-tensors (a norm when
H is positive definite).



