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Abstract

The full-field and asymptotic solutions derived in Part I of this article (for a lamellar rigid inclusion, embedded in a

uniformly prestressed, incompressible and orthotropic elastic sheet, subject to a far-field deformation increment) are

employed to analyse shear band formation, as promoted by the near-tip stress singularity. Since these solutions involve the

prestress as a parameter, stress and deformation fields can be investigated near the boundary of ellipticity loss (but still

within the elliptic range). In the vicinity of this boundary, the incremental stress and displacement fields evidence localized

deformations with patterns organized into shear bands, evidencing inclinations corresponding to those predicted at

ellipticity loss. These localized deformation patterns are shown to explain experimental results on highly deformed soft

materials containing thin, stiff inclusions. Finally, the incremental energy release rate and incremental J-integral are

derived, related to a reduction (or growth) of the stiffener. It is shown that this is always positive (or negative), but tends to

zero approaching the Ellipticity boundary, which implies that reduction of the lamellar inclusion dies out and,

simultaneously, shear bands develop.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The near-tip asymptotic solution (involving both Mode I and Mode II loading) and the full-field Mode I
solution for a rigid lamellar inclusion (a stiffener) embedded in an infinite, uniformly prestressed and
prestrained, incompressible, elastic material, obtained in Part I of the present article, is employed to
investigate shear band nucleation and growth. In particular, the solutions, valid within the elliptic range, can
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Deformation near a thin and stiff inclusion: experimental results, deformation map in a Cu matrix near a W platelet (adapted from

Öztürk et al., 1991), left, versus analytical solution for a J2-material, prestrained until close to the boundary of ellipticity loss (� ¼ 0:675
and N ¼ 0:4), right.

Fig. 2. 100mm�100mm�18mm two-component epoxy resin sample (S3, see Appendix A of Part I of this article) containing a

44mm�18mm�0.3mm aluminum platelet loaded uniaxially in vertical compression (photo taken at the University of Trento in bright

light with a Panasonic DMC-FZ5 digital camera at a 50MPa of compressive stress). The material exhibited a ductile behaviour and

suffered an out-of-plane buckling. Light reflection evidences strain localization at the end of the platelet (clearly visible in the detail on the

right, upper part). Note the similarity with the analytical solution also reported (right, lower part, obtained for a highly anisotropic

material, x ¼ 0:015, without prestress, k ¼ 0, near the boundary of ellipticity loss).
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be exploited until near the boundary of ellipticity loss1 in a way similar to that pawed by Bigoni and Capuani
(2002, 2005), thus revealing the emergence of localized deformation patterns.

Shear bands are shown (in Section 2): (i) to be strongly promoted by the near-tip singularity; (ii) to emanate

radially from the tip of the stiffener; (iii) to have an inclination independent of the perturbing agent; (iv) to
form patterns sharing a strict similarity (results obtained with our solution are shown in Figs.1, right, and 2,
right, lower part) with those experimentally investigated:
�

1

cra
by Öztürk et al. (1991) in a ductile Cu matrix containing stiff W platelets, see Fig. 1, left;

�
 by us on a 18mm thick, 100mm�100mm two-component epoxy resin square plate (sample S3 described

in Appendix A of Part I of this article) containing a 44mm�18mm�0.3mm aluminum platelet and subject
to uniaxial in-plane compression orthogonal to the long edge of the platelet, see Fig. 2, left and right
(upper part).
For the problem of a crack prestressed parallel to the free surfaces analysed by Radi et al. (2002), the surface instability occurring at

ck flanks prevents (with the exception of the EI/P boundary for k40) the possibility of approaching the boundary of ellipticity loss.
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The solution developed in Part I of this paper has been obtained under the assumption of uniform prestress,
a situation which cannot obviously be obtained through straining of a sample made of a homo-
geneous material containing a rigid inclusion (although it could result from a constrained transformation
strain), as it occurs in the case of the above-mentioned experiments. However, the similarity between
incremental fields near the Elliptic boundary and near-failure strain concentration in the experiments is a fact,
corroborated also by numerical tests (performed with Abaqus/Standard Ver. 6.5-1 using a J2-flow theory and
a deformation theory material, not reported for conciseness). The explanation for this is that the incremental
deformation found near the elliptic boundary in a homogeneously prestressed material is a sort of ‘ultimate
deformation mode’, sweeping the previously accumulated strain and dominating the near-failure fields.
Something similar is occurring for perfectly plastic solids, where slip line solutions, obtained without
consideration of the previous stress/strain evolution, are in pretty close agreement with shear bands visible in
experiments.

Analogously to the akin crack problem (Rice, 1968), it is possible to analyse the energy release rate involved
with a growth of the stiffener. This problem has never been considered (even for linear isotropic elasticity
without prestress) and can be more effectively understood in relation to a reduction than to a growth of a
stiffener. In fact, reduction can model the situation in which an intact, thin and finite-length material layer is

present within a (uniformly) damaged material and progressively reduces its length, due to damage growth.2 This
situation can be related to damage progression, which may under special circumstances spread through solids
evidencing a fingering, similar in a sense to the fingering flow phenomena observable in porous systems or to
the adhesion-induced instability in thin films (Saffman and Taylor, 1958; Ghatak and Chaudhury, 2003).
Therefore, investigation of energy release rate for a stiffener change in length may shed light on the problem of
damage growth in solids.

The incremental energy release rate for stiffener growth (we refer to growth to keep contact with
the analogous problem of fracture mechanics, so that reduction is simply understood as a negative
growth) is solved for incremental deformation superimposed upon a given state of stress and strain (initially
assumed generic, but later uniform in the applications) of an incompressible elastic solid, such as
that introduced in Part I of this article (in Section 3). However, since these results are new, we remark that the
small strain theory and the compressible prestressed elasticity can be immediately obtained from our
formulation.

It will be shown that, differently from the well-known formulae of fracture mechanics, the incremental
energy release rate is always negative (so that reduction is always predicted and growth never occurs).
Moreover, the incremental energy release rate is shown to vanish when the Elliptic boundary is approached
(more precisely, there may be exceptions to this rule at the EI/P boundary, a circumstance that will be detailed
later). This finding implies that the reduction of the stiffener dies out when the boundary of Ellipticity is
approached and, at the same time, our previous results show that shear bands begin to emerge at the stiffener
tip. We therefore find an intriguing interplaying between shear band nucleation and slowing down of stiffener
reduction process.

2. Shear band nucleation and growth at the stiffener tip

The analytical solution found in Part I of this article (for a stiffener of length 2 l embedded in an infinite
elastic incompressible, orthotropic and uniformly prestressed medium, subject to a remote symmetric
perturbation) is now employed to investigate the incremental fields until near the boundary of ellipticity loss.

All cases have been investigated for simplicity with a horizontal tensile or compressive prestress s1, while
vertical prestress has been taken null, s2 ¼ 0, so that k ¼ Z.

We begin with the simple case of a Mooney–Rivlin material, which is made orthotropic only by the presence
of the prestress, so that the two incremental moduli remain constant, x ¼ 1 (see Bigoni and Capuani, 2002,
2005 for a detailed explanation of the material models used throughout this section). Results are presented in
Figs. 3 and 4, where the level sets are reported of the squared modulus of incremental deviatoric strain jdev _ej2
2In a different setting, stiffener and matrix could be the two (the former much stiff than the latter) phases of a material, so that stiffener

growth or reduction would be related to a progression or regression of a phase transformation.
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Fig. 3. Level sets of the second invariant of deviatoric incremental strain, jdev _ej2, near a stiffener of length 2 l embedded in a

Mooney–Rivlin material at different values of prestress parameter k (increasing from the top to the bottom of the figure), under a Mode I

perturbation. For k ¼ 0:985 a shear band emerges aligned parallel to the stiffener, while for k ¼ �0:985 two shear bands form

orthogonally to the tips of the stiffener.
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and displacement jvj, for different values of the prestress dimensionless parameter k [the grey scale is such
that black (white) corresponds jdev _ej2pjdev _e1j2 (jdev _ej2X2jdev _e1j2)]. According to the Mooney–Rivlin
material model, the response always lies in the EI regime and reaches the EI/P boundary at an infinite stretch.
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Fig. 4. Level sets of the modulus of incremental displacements jvj, near a stiffener of length 2 l embedded in a Mooney–Rivlin material at

different values of prestress parameter k, under a Mode I perturbation.
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Would this boundary be attained, a shear band in terms of discontinuity of velocity gradient across a planar
band would be predicted to occur aligned parallel to the maximum prestress (which can be positive or null for
uniaxial tension and compression, respectively).



ARTICLE IN PRESS
D. Bigoni et al. / J. Mech. Phys. Solids 56 (2008) 839–857844
The figures are organized as follows. The case of null prestress k ¼ 0 is on the upper part,
while (the absolute value of) prestress increases from the top to the bottom of the figures, in par-
ticular k ¼ �0:7 and �0:985 are considered. When the prestress is increased almost close to the
boundary of ellipticity loss (which corresponds to k ¼ �1), shear bands clearly emerge. In particular, two
shear bands form aligned parallel (or orthogonal) to the stiffener for tensile k ¼ 0:985 (or com-
pressive, k ¼ �0:985) prestress. The orthogonal bands nucleate as induced by a sort of ‘Poisson effect’.
As already noticed by Bigoni and Capuani (2002, 2005), even in the present context we find that shear bands,
which are excluded in terms of incremental displacement gradient discontinuity for a Mooney–Rivlin
material, become visible, thanks to our perturbative approach, in which the stiffener plays the role of a
perturbing agent.

Results reported in Figs. 5–7 refer to a J2-deformation theory material [the grey scale is such that black
(white) corresponds jdev _ej2pjdev _e1j2 (jdev _ej2X2:5jdev _e1j2)]. Here the prestrain is prescribed, in terms
of the logarithmic strain e ¼ ln l (where l is the in-plane maximum stretch). This parameter is used to ‘tune’
the distance to the Elliptic boundary, in particular, EC/H is now approached. The critical level of e for shear
band formation in terms of incremental displacement gradient discontinuities and their inclination at the EC/
H boundary can be calculated employing well-known formulae (see for instance Radi et al., 2002). In
particular, e ’ �0:3216 and �0:6778 correspond to points at the EC/H boundary for the two values of the
hardening parameter N, 0.1 and 0.4, assumed in the subsequent examples. The following shear band
inclinations W0 (measured from the x1-axis, see Radi et al., 2002, their Fig. 9) can be calculated at the EC/H
boundary:
�
 for N ¼ 0:1, W0 ’ 35:942 if e40 and W0 ’ 54:058 if eo0;

�
 for N ¼ 0:4, W0 ’ 26:918 if e40 and W0 ’ 63:082 if eo0.
Maps of the squared modulus of deviatoric incremental strain are reported in Figs. 5 and 6 for
N ¼ 0.1 and 0.4, respectively, while maps of the modulus of incremental displacements are reported
in Fig. 7, relative to N ¼ 0:4 (the case N ¼ 0:1 is almost identical and has not been reported for
conciseness).

The striking difference between the Mooney–Rivlin case, Figs. 3–4, and the J2-deformation theory
of plasticity is the inclination of the shear bands, which, in the latter case, is similar to that typical of
metals.

We end our investigation, reporting asymptotic results for Mode II loading in Figs. 8–12. In parti-
cular Figs. 8 and 9 pertain to a Mooney–Rivlin material, while Figs. 10–12 to a J2-deformation
theory material, both investigated at increasing values of prestress (for Mooney–Rivlin) or prestrain (for
J2-material).

As final comments, we remark that:
�
 the presence of a stiffener strongly promotes shear band formation;

�
 shear bands develop radially from the stiffener tip;

�
 shear bands maintain the inclination that can be calculated in terms of singularity of the acoustic tensor at

the boundary of Ellipticity;

�
 the band inclination is independent of the perturbation mode.

3. Rigid inclusion growth (or reduction)

We attack now the problem of incremental energy release rate for stiffener growth. To this purpose,
we refer to Fig. 13, where two incremental boundary value problems are compared (for finite bodies
subject to identical conditions on the external boundaries Ss [ Sv, namely, prescribed incremental
nominal tractions _r0 on Ss and incremental displacements v ¼ v̄ on Sv; note the similarity with the void
problem, see Rice, 1968, p. 205) only differing in the sizes of the rigid body that they contain. In parti-
cular, the inclusion in the body on the right (of volume V i [ DV i, enclosed by surface S�i [ DS�i ) has
been obtained by increasing the size of the inclusion in the body on the left (of volume Vi, enclosed by
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Fig. 5. Level sets of the second invariant of deviatoric incremental strain, jdev _ej2, near a stiffener of length 2l embedded in a

J2-deformation theory material with N ¼ 0:1 at different values of logarithmic prestrain e (increasing from the top to the bottom of the

figure), under a Mode I perturbation. For e ¼ �0:32 shear bands emerge inclined to the stiffener. The inclination differs between tensile

and compressive prestrain.
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surface Si). We define the incremental displacement and nominal traction fields, solutions to the two problems,
as v0 and _t0 for the problem on the left and v ¼ v0 þ ~v and _t ¼ _t0 þ ~t for the problem on the right. Note that v0

and v are rigid body incremental displacements within Vi and Vi [ DVi, respectively.
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Fig. 6. As for Fig. 5, but for higher hardening exponent N ¼ 0:4. Note the difference with the shear band inclinations visible in that figure.
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The two bodies are assumed to be identically prestressed and prestrained, although not necessarily in a
homogeneous way. Obviously, in order to have identical prestress and prestrain, the two current
configurations shown in Fig. 13 cannot be reached through a continuous deformation path starting from
unloaded configurations containing different rigid inclusions. The situation sketched in Fig. 13 can be



ARTICLE IN PRESS

Fig. 7. Level sets of the modulus of incremental displacements jvj, near a stiffener of length 2 l embedded in a J2-deformation theory

material with N ¼ 0:4 at different values of logarithmic prestrain e, under a Mode I perturbation.
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obtained through a ‘rigidification’ of different volumes (corresponding to the two inclusions) at a stage of a
deformation process.3
3The rigidification could for instance be obtained in a porous material through infiltration of a resin.
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Fig. 8. Level sets of the second invariant of deviatoric incremental strain, jdev _ej2, near the tip of a stiffener (asymptotic solution)

embedded in a Mooney–Rivlin material at different values of prestress parameter k (increasing from the top to the bottom of the figure),

under a Mode II perturbation.

D. Bigoni et al. / J. Mech. Phys. Solids 56 (2008) 839–857848
Neglecting body forces, the incremental potential energy functional _P used by Hill (1961), minimal for the
incremental displacement field solution of the incremental problem is

_P0 ¼

Z
V

fðrv0ÞdV �

Z
Ss

_r0.v0 dS, (1)
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Fig. 9. Level sets of the modulus of incremental displacements jvj, near the tip of a stiffener (asymptotic solution) embedded in a

Mooney–Rivlin material at different values of prestress parameter k, under a Mode II perturbation.
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for the body on the left in Fig. 13, and

_P0 þ D _P ¼
Z

VnDVi

fðrv0 þr~vÞdV �

Z
Ss

_r0.ðv0 þ ~vÞdS, (2)
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Fig. 10. Level sets of the second invariant of deviatoric incremental strain, jdev _ej2, near the tip of a stiffener (asymptotic solution)

embedded in a J2-deformation theory material with N ¼ 0:1 at different values of logarithmic prestrain e (increasing from the top to the

bottom of the figure), under a Mode II perturbation.
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for the body on the right. The scalar function f is the incremental displacement gradient potential
defined as

_tij ¼
qfðrvÞ
qvj;i

þ _p dij , (3)
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Fig. 11. As for Fig. 10, but for higher hardening exponent N ¼ 0:4.
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where _p is the incremental, mean stress and dij the Kronecker delta. Due to the linearity of the incremental
solution, we can introduce the constitutive fourth-order tensor K, so that

fðrvÞ ¼ 1
2
vj;iKijhkvk;h. (4)

Note that when quantity �D _P is greater (smaller) than zero in Eqs. (1) and (2), growth (reduction) of the
inclusion is expected. This quantity can be obtained by subtracting Eq. (2) from Eq. (1) as

�D _P ¼
Z
DVi

fðrv0ÞdV �

Z
VnDVi

fðr~vÞdV �

Z
VnDV i

~tT.rv0 dV þ

Z
Ss

_r0.~vdS, (5)

where T denotes the transpose.
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Fig. 12. Level sets of the modulus of incremental displacements jvj, near the tip of a stiffener (asymptotic solution) embedded in a

J2-deformation theory material with N ¼ 0:4 at different values of logarithmic prestrain e, under a Mode II perturbation.
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We begin noting that ~v ¼ 0 on Sv; moreover, we extend the nominal stress field _t inside the rigid inclusion
(which is always possible using incremental equilibrium stress fields), therefore the divergence theorem applied
to the domain on the left of Fig. 13 yields

Z
Ss

_r0.~vdS ¼

Z
V

~tT.rv0 dV , (6)
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Fig. 13. Two elastic, prestressed bodies are compared (left), having identical shape, boundary conditions, elastic properties, prestress, and

prestrain, but inclusions of different size. The detail of the rigid inclusion and its surface is reported on the right; note the unit normal

vector, defined to point outward the elastic body and toward the inclusion.
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where, as fðrvÞ in Eq. (4) is a biquadratic form, the equality

t0
T
.r~v ¼ ~tT.rv0, (7)

has been exploited. We therefore arrive at

�D _P ¼
Z
DVi

fðrv0ÞdV �

Z
VnDVi

fðr~vÞdV þ

Z
DVi

~tT.rv0 dV . (8)

Noting again that the field _t extended into the rigid inclusion makes the field ~t equilibrated at every point
and that v0 is a rigid-body incremental displacement within the inclusion Vi, we haveZ

DVi

~tT.rv0 dV ¼ �2

Z
DVi

fðrv0ÞdV . (9)

Since ~r ¼ ~tTn ¼ 0 on Ss, application of the divergence theorem to the domain on the right of Fig. 13 provides

�

Z
VnDV i

fðr~vÞdV ¼
1

2

Z
S�i [DS�i

~tTn.v0 dS, (10)

obtaining finally

�D _P ¼ �
Z
DV i

fðrv0ÞdV þ
1

2

Z
S�i [DS�i

~tTn.v0 dS. (11)

Note that Eq. (11) is valid both for compressible and incompressible materials since _p in Eq. (3) is workless.

Eq. (11) represents the incremental potential energy decrease for a growth of a rigid inclusion in an

elastic, incompressible or compressible body, generically anisotropic and prestressed. It is transparent from

Eqs. (10) and (11), that the incremental potential energy decrease is always negative, implying a reduction of

the inclusion.

Note that the second integral on the right-hand side of Eq. (11) is extended on the whole rigid inclusion
(having an external surface S�i [ DS�i ). To keep contact with the analogous void problem, it is expedient now
to re-write Eq. (11) with reference to the surface DSi enclosing the volume DVi, namely

�D _P ¼ �
Z
DV i

fðrv0ÞdV þ
1

2

Z
DSi

~tTn.v0 dS, (12)

and split the incremental displacement field as

v0 ¼ v� þ v̂, (13)

where v� vanishes inside the rigid inclusion V i and v̂ is the rigid body incremental displacement of the inclusion
extended to the whole body V. The incremental potential energy decrease is not affected by v̂, while, in the
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second term of Eq. (12) the integral along DSinDS�i is null because v� vanishes there. We therefore obtain

�D _P ¼ �
Z
DVi

fðrv�ÞdV þ
1

2

Z
DS�i

~tTn.v� dS. (14)

Eq. (14) represents the incremental potential energy decrease for a growth of a rigid inclusion in an elastic

(incompressible or compressible, generically anisotropic and prestressed) body, expressed analogously to the

corresponding expression in the void problem [see Rice, 1968, his Eq. (55), p. 207].
3.1. A lamellar rigid inclusion

Turning now the attention to a thin rigid body, namely, a stiffener, the volume integral in Eq. (11) vanishes,
so that taking the limit of the length increase Da! 0 at fixed incremental stress intensity factor _K , Eq. (14)
becomes

_G ¼ �
d _P

da
¼ lim

Da!0

1

Da

Z Da

0

_tTnðDa� r;pÞ.vðr; 0Þdr, (15)

thus defining

the incremental energy release rate for a growth of a stiffener in an elastic, incompressible or compressible

body, generically anisotropic and prestressed.

It can be easily verified that the incremental energy release rate coincides with the path-independent
incremental J-integral

_G ¼ _J ¼

Z
G

fn1 � _t
Tn.

qv
qx1

� �
dG. (16)

3.1.1. The incremental energy release rate for stiffener growth

The incremental energy release rate (15) can be written as

_GI ¼ � lim
Da!0

1

Da

Z Da

0

_t21ðDa� r;pÞv1ðr; 0Þdr, (17)

for Mode I loading and

_GII ¼ � lim
Da!0

1

Da

Z Da

0

_t22ðDa� r;pÞv2ðr; 0Þdr, (18)

for Mode II loading (note the differences with the analogous formulae for fracture mechanics, see Cristescu
et al., 2004).

In the absence of prestress and for compressible isotropic elasticity, the available expression for energy
release rate for stiffener growth (Wang et al., 1985) is not similar to that corresponding to fracture growth.
Employing our definition of stress intensity factors, it becomes now possible to express the energy release rate
for stiffener growth in a form strictly similar to that known for a fracture, which is obtained for the
infinitesimal theory in Appendix A. That expression can be generalized for incremental deformations
superimposed upon a given homogeneous state of stress using the asymptotic analysis derived in Part I of this
paper as

_G ¼ �
_K
2

ð�ÞI

ffiffiffiffiffiffiffiffiffiffiffi
1� k
p

þ _K
2

ð�ÞII

ffiffiffiffiffiffiffiffiffiffiffi
1þ k
p

4
ffiffiffi
2
p

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

pq
, (19)

valid in both the EI and EC regimes and independent of Z. Note that the negative sign in Eq. (19) shows that

reduction of the stiffener is always predicted.
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Fig. 14. Incremental energy release rate in a Mooney–Rivlin (left) and a J2-deformation theory (right) material. Note that the incremental

release rate always vanishes at the EC/H boundary, except for Mooney–Rivlin material at k ¼ �1 for Mode I and k ¼ 1 for Mode II.

D. Bigoni et al. / J. Mech. Phys. Solids 56 (2008) 839–857 855
The incremental energy release rate (19) is represented in Fig. 14 for Mooney–Rivlin material (left) and
J2-deformation theory material (right) as a function of the prestress parameter k in the former case and of the
prestrain parameter e in the latter.

The most interesting feature emerging from Fig. 14 is that _G always vanishes at the EC/H boundary, since
here the following condition holds true:

2x� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
¼ 0. (20)

At the EI/P boundary the situation is more complicated, so that _G becomes null at k ¼ 1 and k ¼ �1 for
Modes I and II, respectively, but remains different from zero in the other cases. This conclusion can be
reached solving Eq. (19) for k ¼ �1, which gives

_G ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� 1
p

4m
�

_K
2

ð�ÞII for k ¼ 1;

_K
2

ð�ÞI for k ¼ �1:

8<
: (21)

Note that when the incremental energy release rate vanishes, reduction of the stiffener is inhibited.
To understand the reasons for the vanishing or not of the incremental energy release rate, it becomes

instrumental to digress now on the evaluation of the incremental axial force along the stiffener. Since a full-
field solution is needed and this has been found (in Part I of the present paper) for Mode I (since for Mode II
the stiffener is neutral), the following analysis is restricted to this condition.

3.1.2. The incremental axial force in the stiffener under Mode I perturbation

In order to evaluate the incremental axial force in the stiffener, we note that the load symmetry implies that
the stiffener is subject only to axial force _Nðx1Þ, which can be computed by means of the nominal shear stress
increment _t21 as

_Nðx1Þ ¼

Z l

x1

½_t21ðy; 0
þÞ � _t21ðy; 0

�Þ�dy. (22)

Using the expressions for the nominal shear stress increments obtained in Part I of the present article, we get

_Nðx1Þ ¼ �2
ffiffiffi
2
p

mv
ð1Þ

2;2

ffiffiffiffiffiffiffiffiffiffiffi
1� k
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

pq ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � x2

1

q
, (23)

valid in both the EI and EC regimes and independent of Z.
Values of the incremental axial force in the stiffener _N (divided by 4mv

ð1Þ

1;1 so that a dilatation parallel to the
stiffener is considered) are reported in Fig. 15 for Mooney–Rivlin material and J2-deformation theory
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Fig. 15. The incremental axial force in a stiffener embedded in a prestressed Mooney–Rivlin material (left, for different values of prestress

k) and in a J2-deformation theory material (right, for different values of logarithmic prestrain e). Note that the incremental axial force in

the stiffener vanishes at the Elliptic boundary (k ¼ 1 for Mooney–Rivlin and e ¼ �0:6778 for J2-deformation theory).
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material, with N ¼ 0:4, for different values of prestress in the former case and logarithmic prestrain in the
latter.

It can be noted from Fig. 15 and, more precisely, from Eq. (23) that
�
 the maximum incremental axial force in the stiffener is always attained at x1 ¼ 0;

�
 the incremental axial force in the stiffener vanishes (i) always at the EC/H boundary, (ii) when k ¼ 1 at the

EI/P boundary. In other words, the incremental axial force does not vanish only at the EI/P boundary when
k ¼ �1.

The last of the above points can be explained considering that at the EI/P boundary, with k ¼ �1, a shear
band forms orthogonally to the stiffener tips, so that this can continue to carry an axial load.

Now we are in a position to set the relation (for a uniform Mode I loading) between the incremental energy
release rate, _GI, and the maximum value of the incremental axial force in the stiffener

_Nmax ¼ _Nðx1 ¼ 0Þ, (24)

[where _N is given by Eq. (23)] which indeed can be obtained as

_GI ¼
p v
ð1Þ

2;2

4
_Nmax. (25)

Eq. (25) explains the fact that the incremental Mode I energy release rate vanishes if and only if the
incremental maximum axial force vanishes too, a circumstance clarifying the conditions for annihilation or not
of stiffener reduction.

4. Conclusions

Shear bands have been found to emanate from the tips of a stiffener embedded in an infinite, uniformly
prestressed elastic medium, as the response to Mode I or II perturbations, when prestress approaches the
Elliptic boundary. The growth of these shear bands is shown to occur radially and with the inclination that can
be calculated at the boundary of Ellipticity (using the well-known procedure based on the acoustic tensor
singularity). For a solid approaching the Elliptic Imaginary/Parabolic boundary (as for instance a
Mooney–Rivlin material), the shear bands may be aligned parallel or orthogonal to the stiffener, while
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shear bands always result inclined, when the Elliptic Complex/Hyperbolic boundary (as for J2-deformation
theory material) is approached.

The problem of energy release rate connected with stiffener change in length (which may be of interest to
attack problems such as damage diffusion or phase transformations in solids) has been addressed and solved,
for the first time, under general assumptions. This result has been used to show that (i) a stiffener always
reduces its length, (ii) the axial force carried by a stiffener usually vanishes at the Elliptic boundary, and (iii) in
this circumstance stiffener reduction is inhibited.
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Appendix A. Energy release rate for a stiffener embedded in a linear, compressible and isotropic elastic material

We begin noting that, similarly to the incompressible case reported in Part I of this article, the recourse to
the following definition of stress intensity factors becomes instrumental also for compressible small strain
elasticity:

K ð�ÞI ¼ lim
r!0

2m
ffiffiffi
k
p ffiffiffiffiffiffiffi

2pr
p

u2;2ðr; W ¼ 0Þ,

K ð�ÞII ¼ lim
r!0

2m
ffiffiffi
k
p ffiffiffiffiffiffiffi

2pr
p

u2;1ðr;W ¼ 0Þ, (A.1)

where ui (i ¼ 1,2) is the displacement and k ¼ 3� 4n for plane strain, while k ¼ ð3� nÞ=ð1þ nÞ for plane
stress. Definitions (A.1) coincide with the corresponding equations used in Part I when n ¼ 0:5 in plane strain.

Employing the definition (A.1), the energy release rate for stiffener growth can be obtained from the
asymptotic formula expressing the near-tip fields in the form

G ¼ �ð1þ kÞ
K2
ð�ÞI þ K2

ð�ÞII

8m
, (A.2)

which, except for the negative sign (implying stiffener reduction), has the same expression for energy release
rate in the crack growth problem.

In the incompressible limit and plane strain, the energy release rate (A.2) can be expressed as

G ¼ �
K2
ð�ÞI þ K2

ð�ÞII

4m
, (A.3)

which can alternatively be (directly) obtained setting k ¼ 0 and x ¼ 1 in Eq. (19).
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