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Abstract
A classroom demonstration model has been designed, machined and
successfully tested in different learning environments to facilitate
understanding of the mechanics of truss structures, in which struts are subject
to purely axial load and deformation. Gaining confidence with these structures
is crucial for the development of lattice models, which occur in many fields of
physics and engineering.

(Some figures may appear in colour only in the online journal)

1. Introduction

The way in which a truss structure can be seen to have all elements subject to purely axial
force is complex and the way it deforms under loading is definitely not intuitive, even for
undergraduate students of mathematics, physics, and engineering. Truss structures are optimal,
ubiquitous and so important from many perspectives that they deserve special attention.
Moreover truss structures are used in many traditional technologies, for example, bridges,
electricity pylons, cranes, airplanes, cars, motorcycles and innovative applications such as
nanotrusses [8]) and are crucial for the understanding of several biological structures, for
instance, vertebrate skeletons [4] and protein materials [1]) and as conceptual models in
physics (e.g. crystal lattices). Our aim was to develop a teaching model to enhance students’
ability to visualize the deformation of such lattice structures, which is the primary key to ‘catch
the concept’2.

Models of elastic truss structures have previously been developed to both stimulate
students’ interest and to form an experimental outlook in undergraduate teaching [2, 5–7].

1 Author to whom any correspondence should be addressed.
2 Cross and Morgan [3] wrote: ‘The ability of a designer of continuous structures is measured chiefly by his ability
to visualize the deformation of the structure under load. If he cannot form a rough picture of these deformations when
he begins the analysis he will probably analyse the structure in some very awkward and difficult way; if he cannot
picture these deformations after he has made the analysis, he doesn’t know what he is talking about. The more or
less gentle reader may find the constant repetition of this theme monotonous, but it is the deliberate conclusion of the
authors that the most important aspect of the subject is the simple picture of structural deformation.’ We completely
agree with this statement, which has become even more evident nowadays in that numerical simulations often obscure
physical intuition.
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Figure 1. The spring snubber element used for the truss structure shown in figure 2. Note the
movable pointer to measure elongation/shortening.

Figure 2. View of the (unloaded) spatial Warren truss model, with details (an internal node on the
left, two external nodes on the right: a roller and a hinge).

However, the models developed by Pippard [7] are simple three-element planar systems,
while Hilson [6] provides only qualitative experiments, and Godden [5] focuses on the
buckling of compressed elements. Moreover, in the models proposed by Charlton [2], the
struts are ‘Z-shaped’ members deforming under flexure (see his figure 17), and do not
directly show elongation or shortening, so that the mechanical behaviour is too complex
and cannot be followed by an untrained audience. Therefore, we have developed spring-strut
elements, capable of sustaining large deformation (figure 1), and connected these elements
into various structural forms through bolted junctions. (One geometry is only reported here for
brevity, namely, a Warren truss design—an assembly of bars arrayed in an alternately inverted
equilateral triangle geometry—figure 2.)

The first prototype (not reported here for brevity) that we developed was planar and, though
light, simple and very accurate in reproducing deformation, did not illustrate the problem of
the need for braces to avoid out-of-plane instability. Therefore, we developed the fully spatial
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Figure 3. Frontal (lower part, left), lateral (lower part, right) and top (upper part, left) view for
the symmetric load combination. A comparison between theoretical predictions and experimental
data is also included in terms of applied load F versus the mean value of measured nodal vertical
displacements v (upper part, right).

model shown in figure 2, which can effectively demonstrate the importance of cross bracing;
see also the electronic supporting material at http://ssmg.unitn.it. This model is addressed to
the simplest geometry, namely a Warren structure, often employed in bridges (so that it can
be used to explain the mechanics of a truss structure), though it is fully representative of the
behaviour of elastic lattice models.

The two teaching models have been employed regularly for ten years of undergraduate
classes on the strength of materials (at the University of Trento) and have been used for: (i) two
university orientation courses organized by the ‘Scuola Normale Superiore’ of Pisa, (ii) public
demonstrations (for instance, at the so-called ‘researchers’ nights’ in 2010 and 2011) and
(iii) presentations given to elementary schools. These models have been proved to exemplify
the way a truss structure is designed and deforms, and have been used in undergraduate classes
to experimentally assess the validity of structural modelling via linear elasticity.

2. The design and performance of the truss model

We started designing and constructing a simple pin-jointed3 Warren planar truss structure
(namely, one wall of the structure considered in the following—figure 2—and not reported
here for brevity), in which the straight members have been constructed with spring-strut
elements. The model has been used: (i) qualitatively to show the ‘global’ behaviour of the
structure and to explain the way in which all elements are primarily subject to axial tension
or compression, and (ii) quantitatively (in undergraduate classes), by calculating the ratio
between two or more rods’ elongation (or node displacements) and measuring this ratio on the
model.

3 The term ‘pin-jointed’ means that the connection between elements leaves the relative rotation unconstrained.

http://ssmg.unitn.it
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Figure 4. As for figure 3, except that the load is asymmetric.

Table 1. Measurements on the teaching model loaded symmetrically (figure 3) taken by five
different students.

Measured vertical displacement Mean Standard Theoretical
Load vi (mm) value deviation value
F[N] Node St1 St2 St3 St4 St5 v̄i (mm) σ (mm) vi (mm)

3 3.80 4.25 4.35 3.25 3.30 3.79 0.46 3.91
10 4 4.30 4.50 4.85 4.25 3.80 4.34 0.34 4.55

5 3.85 3.90 4.20 3.50 3.75 3.84 0.23 3.91

3 8.00 7.85 7.60 7.45 7.35 7.65 0.24 7.82
20 4 8.25 8.85 8.25 8.70 8.65 8.54 0.25 9.10

5 8.00 7.60 7.25 7.65 7.05 7.51 0.33 7.82
3 13.10 11.10 11.80 11.45 10.85 11.66 0.79 11.74

30 4 14.10 12.75 11.70 13.40 12.85 12.96 0.79 13.65
5 12.00 11.25 11.30 11.70 11.30 11.51 0.29 11.74
3 15.50 14.45 15.95 14.80 15.90 15.32 0.60 15.65

40 4 18.10 16.60 16.25 18.35 18.20 17.50 0.89 18.20
5 15.70 14.40 15.15 15.20 15.80 15.25 0.50 15.65
3 19.70 18.00 18.85 17.70 18.80 18.61 0.70 19.56

50 4 22.15 20.60 20.15 21.95 22.20 21.41 0.86 22.75
5 19.45 17.80 18.70 18.20 19.15 18.66 0.60 19.56
3 23.30 21.90 23.00 21.90 21.70 22.36 0.66 23.47

60 4 26.45 25.20 24.80 26.80 26.90 26.03 0.86 27.30
5 22.65 21.95 22.80 22.50 22.25 22.43 0.30 23.47
3 27.45 25.90 27.25 25.60 25.55 26.35 0.83 27.38

70 4 30.80 29.90 29.55 30.10 30.85 30.24 0.51 31.85
5 26.85 26.00 26.10 25.65 25.90 26.10 0.40 27.38
3 30.35 30.60 31.40 31.90 30.45 30.94 0.61 31.29

80 4 37.00 35.10 34.85 36.75 36.85 36.11 0.93 36.40
5 30.75 30.05 31.05 31.60 30.95 30.88 0.50 31.29
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Figure 5. Ratios of mean values of the measured vertical displacement (dots) together with relative
standard deviation (error bar) and theoretical value (dashed line) for different values of loading for
symmetric (upper part) and asymmetric (lower part) conditions.

Figure 6. Ratios of mean values of elongation bars (dots) together with relative standard deviation
(error bar) and theoretical value (dashed line) for different values of loading for asymmetric
conditions.

Classroom presentations of the model have revealed that, although excellent for the
above-listed purposes, it did not illustrate the out-of-plane instability of the structure and
the consequent need of a cross bracing to the student. Therefore, we designed the spring
snubber shown in figure 1, where a movable pointer allows for the measurement of the
elongation/shortening of the element, and constructed a sort of ‘Warren truss bridge’
configuration, externally constrained by a hinge and a roller, as shown in figure 2. The
snubbers have been machined from aluminium 2117 tubes and the springs have been designed
using the well-known formula for helical springs of round wire (see equation (5.3) of [9]) and
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Figure 7. The effect of cross bracing: top view of the structure with bracing (upper part) and without
bracing (lower part). A huge out-of-plane movement occurs (and is visible) when the bracing is
removed.

produced with (2 mm diameter) music wire ASTM A228. The external hinge and roller have
been constructed with eight roller bearings (SKF-618/5) and the whole structure has been
mounted on an AISI 304 stainless steel frame.

The finished model can be used to provide confirmatory experiments in undergraduate
classes. In particular, they can be loaded with dead loads and the elongation or shortening
of the bars can be measured on the structure by visual inspection employing the pointers.
Two load systems, one symmetric and the other asymmetric, are shown in figures 3 and 4.
In addition to the elongation of the bars, displacement of the nodes can be measured with
a mechanical comparator. The measurements of the bar elongations can be normalized
mathematically by one reference elongation and then compared with the predicted ratios
between the forces inside the bars, which can be calculated on the blackboard and do not
require any stiffness measurement. The model elicits a good comparison between theoretical
predictions and experimental values, which is crucial in stimulating students’ interest and
facilitating their understanding of the capabilities and limits of mechanical modelling, as
highlighted, among others, by Pippard [7].

Measurements of vertical displacements at the central node of the upper chord, labelled
4, and the two central nodes of the lower chord, labelled 3 (left) and 5 (right) for different
loadings are reported in tables 1 (symmetric loading as in figure 3) and 2 (asymmetric loading
as in figure 4), as taken by five different students (labelled ‘St’ in the tables).

Ratios of mean value of the measured (by five students) and vertical displacements
(presented with the standard deviation as an error bar) are compared to the corresponding
theoretical values in figure 5 for symmetric (upper part) and asymmetric (lower part) loadings.
Mean values of the ratios of bars’ elongation are shown in figure 6 for asymmetric loading.



A teaching model for truss structures 1185

Table 2. Measures on the teaching model loaded asymmetrically (figure 4) taken by different
students.

Measured vertical displacement Mean Standard Theoretical
Load vi (mm) value deviation value
F[N] Node St1 St2 St3 St4 St5 v̄i (mm) σ (mm) vi (mm)

3 1.85 1.50 1.40 1.35 1.30 1.48 0.20 1.55
10 4 1.50 1.25 1.05 1.30 1.15 1.25 0.15 1.36

5 1.20 0.90 0.85 1.05 0.70 0.94 0.17 1.00

3 2.95 3.30 2.75 3.65 2.75 3.08 0.35 3.10
20 4 2.75 2.35 2.45 2.80 2.65 2.6 0.17 2.72

5 1.95 1.90 2.15 2.50 1.75 2.05 0.26 2.00
3 4.65 4.65 4.60 4.50 4.35 4.55 0.11 4.65

30 4 3.85 4.15 3.45 4.30 3.75 3.90 0.30 4.08
5 3.30 2.75 2.60 3.60 2.85 3.02 0.37 3.01
3 6.10 6.40 6.15 7.40 6.20 6.45 0.49 6.20

40 4 5.25 5.80 5.55 6.05 5.35 5.60 0.29 5.44
5 4.25 3.70 3.75 4.95 4.05 4.14 0.45 4.01
3 9.15 7.40 7.40 8.60 7.45 8.00 0.74 7.75

50 4 6.20 7.60 6.70 7.10 6.25 6.77 0.53 6.80
5 5.20 4.70 4.90 5.95 4.70 5.09 0.47 5.01
3 9.95 9.20 9.60 10.05 8.25 9.41 0.65 9.30

60 4 7.45 8.50 7.85 8.30 7.35 7.89 0.45 8.16
5 6.15 5.40 5.70 6.70 5.60 5.91 0.47 6.01
3 12.40 10.55 11.25 11.55 10.05 11.11 0.88 10.85

70 4 9.10 9.20 9.30 9.75 8.95 9.26 0.27 9.52
5 7.50 6.15 6.85 7.85 6.75 7.02 0.60 7.01
3 12.90 11.65 12.50 13.65 12.25 12.59 0.67 12.40

80 4 10.00 10.60 10.60 11.55 10.90 10.73 0.50 10.88
5 7.90 7.20 8.00 9.35 8.60 8.21 0.72 8.01

The experimental values reported in tables 1–2 and in figures 5–6 agree with the predictions
from linear elastic theory and this agreement becomes closer at higher loads, where friction
at the nodal hinges plays a minor role. Therefore, the constructed teaching model not only
provides a qualitative explanation of the mechanics of truss structures, but also a quantitative
experimental in-class proof of the validity of the theoretical predictions.

Finally, the truss model can also be effectively employed to explain the importance of
cross bracing. Indeed these braces can be easily removed, so that loading of the unbraced
model reveals an unstable out-of-plane movement, as illustrated in figure 7.

3. Conclusions

A simple physical model has been shown to effectively facilitate the understanding of the
mechanical behaviour of truss structures. These are elementary structural forms crucial to the
understanding of several conceptual models employed in micro- and nano-technologies, for
example, crystal lattices and ultralight nanomaterials, and also in biology, for instance, protein
materials.
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