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Analytical Derivation of Cosserat
Moduli via Homogenization of
Heterogeneous Elastic Materials
Why do experiments detect Cosserat-elastic effects for porous, but not for stiff-particle-
reinforced, materials? Does homogenization of a heterogeneous Cauchy-elastic material
lead to micropolar (Cosserat) effects, and if so, is this true for every type of heterogene-
ity? Can homogenization determine micropolar elastic constants? If so, is the homoge-
neous (effective) Cosserat material determined in this way a more accurate representa-
tion of composite material response than the usual effective Cauchy material? Direct
answers to these questions are provided in this paper for both two- (2D) and three-
dimensional (3D) deformations, wherein we derive closed-form formulae for Cosserat
moduli via homogenization of a dilute suspension of elastic spherical inclusions in 3D
(and circular cylindrical inclusions in 2D) embedded in an isotropic elastic matrix. It is
shown that the characteristic length for a homogeneous Cosserat material that best
mimics the heterogeneous Cauchy material can be derived (resulting in surprisingly
simple formulae) when the inclusions are less stiff than the matrix, but when these are
equal to or stiffer than the matrix, Cosserat effects are shown to be excluded. These
analytical results explain published experimental findings, correct, resolve and extend
prior contradictory theoretical (mainly numerical and limited to two-dimensional defor-
mations) investigations, and provide both a general methodology and specific results for
determination of simple higher-order homogeneous effective materials that more accu-
rately represent heterogeneous material response under general loading conditions. In
particular, it is shown that no standard (Cauchy) homogenized material can accurately
represent the response of a heterogeneous material subjected to a uniform plus linearly
varying applied traction, while a homogenized Cosserat material can do so (when inclu-
sions are less stiff than the matrix). �DOI: 10.1115/1.2711225�

Keywords: homogenization, Cosserat-elasticity, dilute suspension of elastic spheres,
nonlocal constitutive equations, micropolar effects
Introduction
There is a long-standing debate in the solid mechanics commu-

ity concerning the possibility of predicting micropolar elastic
Cosserat� behavior from Cauchy-elastic materials containing in-
omogeneities or microstructures. In fact, although the motivation
eading to Cosserat effects seems to be very intuitive, theoretical
esults in the literature are often contradictory and no definitive
onclusion is available �see Appendix A for details�. Moreover,
xperimental results support Cosserat effects for porous materials
like bone or foam �1–5��, but find an absence of these effects for
einforced materials �6,7�.

In the present paper we provide a general methodology for the
etermination of the moduli for a homogeneous Cosserat-elastic
aterial that best approximates a heterogeneous Cauchy-elastic
aterial. We apply this methodology to the specific cases of three-

imensional �3D� deformations of a dilute suspension of �Cauchy,
inear, and isotropic� elastic spherical inclusions, and two-
imensional �2D� deformations of circular cylindrical inclusions,
n a �Cauchy, linear, and isotropic� elastic matrix. With reference
o a Cosserat �linear and isotropic� material, it is shown that:

1. Cosserat effects are predicted for spherical or cylindrical in-
clusions less stiff than the matrix, but are excluded for in-
clusions having stiffness equal to or greater than that of the
matrix;
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2. simple, closed-form formulae give the Cosserat characteris-
tic length �and the other effective Cosserat moduli� as a
function of the inclusion radius, volume fraction, and the
elastic contrast of the constituent phases; and

3. the characteristic length that results for three-dimensional
deformations of a matrix with spherical inclusions is signifi-
cantly smaller than that resulting for two-dimensional defor-
mations of a matrix with circular cylindrical inclusions.

Conclusion �1� rigorously explains experimental evidence demon-
strating micropolar effects for porous material, but displaying an
opposite trend, or in the words of Gauthier �7� “an anti-micropolar
phenomenon,” for inclusions stiffer than the matrix.

A closely related issue is that standard homogenization results
for linear elastic materials provide overall or effective elastic
moduli that relate �uniform� average stress to �uniform� average
strain. This means that standard homogenization results give a
homogeneous “effective” material that is able to represent well the
overall response of the actual heterogeneous elastic material when
the applied loading is uniform. However, when the applied load-
ing deviates from uniformity, the homogeneous “effective” mate-
rial less accurately represents the overall response of the actual
heterogeneous material. This fact is important, since of course in
general composite materials are employed in applications where
the applied loading is not uniform.

We show in this paper, for situations in which the applied load-
ing on a heterogeneous material varies sufficiently slowly that it
admits a Taylor series expansion, that whereas the standard ho-
mogenization results provide a homogeneous “effective” material

that can accurately represent the actual heterogeneous one only
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hen the leading-order �uniform� term in the Taylor series is re-
ained, a homogeneous “effective” Cosserat material can do so
hen two terms in the Taylor series are retained, when the mate-

ial heterogeneities are less stiff than the matrix material. The
esult is a simple homogeneous material model that more accu-
ately represents actual �compliant-inclusion-type� heterogeneous
aterial response under slowly varying applied loading.

Review of Homogenization Results for Uniform
pplied Loading
Here we briefly summarize well-known results for the effective
oduli of a homogeneous, isotropic linear elastic matrix contain-

ng a dilute suspension of homogeneous, isotropic linear elastic
nclusions having in general different moduli than the matrix; the
nclusions are either cylinders �for plane strain deformations� or
pheres �for three-dimensional deformations�. As noted in Sec. 1,
ne approach for deriving such moduli is to require that they
elate average �uniform� stress and strain in the same way that
hese quantities are related in the actual heterogeneous material.
n alternative, equivalent approach for their derivation is to re-
uire that the total elastic energy in the uniform “effective” me-
ium equals that in the actual heterogeneous medium under uni-
orm applied loading. We will employ this energy approach in the
resent work.

When the composite is dilute, as considered here, we may em-
loy the solution for an infinite body containing a single inclusion
nd subjected to uniform far-field loading. From this solution, we
elect a finite region containing the inclusion, and calculate the
ean stresses acting on it. The effective moduli may then be

alculated by equating, through first order in volume fraction, the
lastic energy contained in the selected finite region calculated
rom the actual heterogeneous material solution with that calcu-
ated from a homogeneous effective body of the same size sub-
ected to the mean stresses calculated from the infinite-body solu-
ion. We define the effective shear modulus as �̄ and bulk

odulus as �̄ �for 3D, whereas �̄=3–4�̄, with �̄ denoting in-plane
oisson’s ratio for plane strain 2D�. A sketch of this procedure is
hown in Fig. 1, for plane strain deformation of an infinite plane

Fig. 1 Procedure of homogenization of a material containing
„left… is an hÃh prism removed from an infinite sheet that i
material „right… is subjected to the mean stresses calculated fr
sets of �11 are shown; note that the values of �12, �21, and �
value of �11 at a distance from inclusion center equal to three
ith a circular hole.
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Eshelby �8� and independently Hashin �9� have obtained the
following effective elastic moduli for the three-dimensional prob-
lem of a matrix containing spherical inclusions �here retaining
terms through first order in the volume fraction ƒ of the inclusion
phase�

�̄ = �m + f
5�m��i − �m��3�m + 4�m�

2��i + �m��3�m + 4�m� + �m�3�m + 4�i�

�̄ = �m + f��i − �m�
3�m + 4�m

3�i + 4�m
�1�

where subscripts m and i denote matrix and inclusion,
respectively.

In two-dimensional �plane strain� elasticity, the spheres are re-
placed by parallel infinite circular cylinders and the effective-
modulus formulae through O�f� are �10�

�̄ = �m + f�1 + �m��m

�i − �m

�m�i + �m

�̄ = �m + f�1 + �m����m − 1�
�i − �m

�m�i + �m

−
��m − 1��i − ��i − 1��m

2�i + ��i − 1��m
� �2�

where now �=3–4�, with � denoting �in-plane� Poisson’s ratio.

3 Homogenization Under Nonuniform Applied
Loading

3.1 Taylor Series Representation of Slowly Varying Ap-
plied Loading. Let us consider an infinite body of composite
material with a dilute distribution of inclusions, subjected to arbi-
trary but slowly varying far-field �“boundary”� conditions. The
far-field displacement field u�x� can then be expanded in a Taylor
series about the location of the center of an inclusion �chosen as
the origin of coordinates�. Through second order, the most general

dilute distribution of circular voids. Heterogeneous material
ubjected to uniform, uniaxial far-field stress; homogeneous
the heterogeneous prism. For the plane strain problem, level
hown parallel to the edges, are less than 1/10 the maximum
es the radius of the inclusion.
a
s s
om

22, s
representation for this is
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ui = �ijxj + �ijkxjxk �3�

here �ij and �ijk are constant coefficients, the latter having the
bvious symmetry �ijk=�ikj �since xj and xk play the same role�,
ndices range between 1 and 3 �1 and 2 for plane strain�, and the
sual summation convention for repeated indices is employed
ere and throughout the paper except where noted. Although co-
fficients �ij are unrestricted, the quadratic part of the displace-
ent field must satisfy the Navier equations of equilibrium with-

ut body forces, resulting in the following three �two for plane
train� restrictions

�kki = − �1 − 2�m��ikk �4�
As is well known, the homogeneous effective Cauchy-elastic
aterial, Eqs. �1� and �2�, accurately mimics the response of a

eterogeneous Cauchy material when this is subjected to a lin-
arly varying displacement �uniform applied loading�. However,
n most practical situations, a composite material is subjected to a
patially varying applied loading. How well does the homoge-
eous effective Cauchy material mimic the actual heterogeneous
ne in this case, and can a homogeneous Cosserat material do
etter? Let us consider plane strain and three-dimensional defor-
ations separately.

3.2 Plane Strain. Employing the constraint Eq. �4� and ex-
licitly exhibiting the plane-strain bending contributions, the qua-
ratic terms in the remote displacement field Eq. �3� become

u1 = ��̃13 −
�m

2�1 − �m�R23
�x1

2 +
x1x2

R13
− �2

1 − �m

1 − 2�m
�̃13 +

1

2R23
�x2

2

u2 = ��̃23 −
�m

2�1 − �m�R13
�x2

2 +
x1x2

R23
− �2

1 − �m

1 − 2�m
�̃23 +

1

2R13
�x1

2,

u3 = 0 �5�

here coefficients �̃13, �̃23 �index 3 denotes the out-of-plane di-
ection and the others the nonnull displacement component direc-
ions� and bending curvatures R13 and R23 �index 3 again denotes
he out-of-plane direction, while the other indices denote the di-
ections of the normal components of bending stress� are arbitrary.
isplacements Eqs. �5� a priori satisfy the Navier equations and

hus represent the most general equilibrium plane-strain quadratic
isplacement field.

The problem of an infinite sheet containing a circular hole and
ubjected to far-field bending was solved by Muskhelishvili �11�,
nd by Sendeckyj �12� in the general case of a circular elastic
nclusion. The elastic fields produced by the far-field loading

odes associated with �̃13 and �̃23 in an infinite sheet containing
circular elastic inclusion are determined in Appendix B �where

he bending solution is also included for completeness�. The im-
ortant point with respect to our upcoming accurate modeling of
ffective material response is that these solutions show that the
isplacement field Eq. �5�, valid exactly for a homogeneous ma-
erial, is perturbed by the inclusion, in the material outside the
nclusion, only by terms of O�f2�.

3.3 Three-Dimensional Deformations. The most general
uadratic equilibrium remote displacement field can be written as,
sing Eq. �3� with Eq. �4� �summation not implied for repeated
ndices�

ui =
xixj

Rik
+

xixk

Rij
−

1

2Rjk
�xj

2 +
�m

1 − �m
xi

2� −
1

2Rkj
�xk

2 +
�m

1 − �m
xi

2�
+ �� j − �k�xjxk + ��̃ik + �̃ij�xi

2 − 2
1 − �m

1 − 2�m
��̃ikxj

2 + �̃ijxk
2� �6�

here indices i, j, k are cyclic permutations of 1, 2, 3 �i.e., 1,2,3;
,3,1; 3,1,2�, illustrating the fact that the kinematics are the sum of

ix plane strain modes �defined by bending curvatures Rij and

ournal of Applied Mechanics

ded 03 Oct 2007 to 193.205.203.69. Redistribution subject to ASM
additional free coefficients �̃ij �where i denotes the direction of
the bending stress or non-null displacement component and j the
out-of-plane direction�� and three torsional angles of twist/length
�i �i=1,2 ,3�. Therefore, the plane-strain displacement field Eq.
�5� can be obtained from Eq. �6� by taking 1/R12=1/R21=1/R32

=1/R31= �̃12= �̃21= �̃32= �̃31=�1=�2=�3=0.
The problem of an infinite elastic matrix containing a spherical

void and subjected to remote bending loading �a particular case of

Eq. �6� in which all �̃ij and �i are zero� has been solved by Sen
�13�, and by Das �14� for the general case of a spherical elastic
inclusion. These solutions show that the bending displacement
field, valid exactly for a homogeneous material, is perturbed by
the inclusion in the region outside the inclusion by terms of
O�f5/3�. The fact that the perturbation remains at O�f5/3� for the
general quadratic displacement field Eq. �6� is shown in Appendix
C, where the solution for a spherical elastic inclusion in an infinite
elastic matrix, subject to the remote displacement field Eq. �6� is
obtained. Appendix C also shows that the Das �14� solution is
incomplete, and that it can be expressed purely in terms of simple
functions.

3.4 Conclusion. The quadratic part of the displacement field
Eq. �3�, together with equilibrium requirements Eq. �4�, which is
valid exactly for a homogeneous material, is perturbed by a cylin-
drical or spherical inclusion in the region outside the inclusion by
terms of O�f2� for two-dimensional elasticity and O�f5/3� for
three-dimensional elasticity.

In other words, in an asymptotic expansion in inclusion volume
fraction f of the displacement field solution outside the inclusion,
through order f the inclusion is neutral under remote quadratic
displacement conditions. Therefore, the effective moduli deter-
mined under the remote quadratic displacement conditions
are identical �to first order in f� with the moduli of the matrix
material.

4 Standard Homogenized Material is in Error for
Quadratic Applied Displacements

Now we are in a position to face the main problem, namely:
under an applied linear remote displacement field �uniform ap-
plied remote stress� the perturbation induced by the inclusion in
the displacement field solution in the surrounding matrix material
is O�f�, while under an applied quadratic remote displacement
field �applied linear remote stress field� the perturbation in the
displacement field solution in the matrix becomes O�f5/3� for 3D
and O�f2� for 2D elasticity.

Therefore, the effective material defined by Eqs. (1) and (2) is
stiffer (more compliant) for linearly varying applied loading than
the actual heterogeneous material for inclusions stiffer (more
compliant) than the matrix. That is, if the heterogeneous material
�matrix with inclusion� is represented in the usual way in compos-
ite materials theory—by a homogeneous material with effective
moduli given by Eqs. �1� or �2�—this representation works well
for uniform applied loading, but for linearly varying applied
stress, it is in error by terms of O�f�.

To better elucidate this point, let us consider a cube of edge h,
composed of a homogeneous effective material having properties
Eqs. �1� or �2� and subject to the quadratic displacement field Eqs.
�5� or �6�. The total elastic energy in such a cube is obtained by
calculating the strain energy density from Eqs. �5� or �6� and then
integrating this over the cube.
The total elastic energy in the cube, E, is, for plane strain
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ECauchy =
h5�̄

12�1 − �̄�
� 1

R13
2 +

1

R23
2 � +

h5�̄�1 − �̄��3 − 4�̄�
3�1 − 2�̄�2 ��̃13

2 + �̃23
2 �

= h5�m� 1

R13
2 +

1

R23
2 �� 1

12�1 − �m�
− �Rf� + h5�m��̃13

2 + �̃23
2 �� �1 − �m��3 − 4�m�

3�1 − 2�m�2 − ��f� + O�f2� �7�

here

�R =
1

12�1 − �m��3�m + �i�1 − 4�m�
�m + �i�3 − 4�m�

−
2�i�1 − �m�

�i + �m�1 − 2�i�
�

�� = −
�1 − �m��3 − 4�m�

3�1 − 2�m�2 � 2�i�1 − �m��5 − 6�m�
�1 − 2�m��3 − 4�m���i + �m�1 − 2�i��

+
�i	− 13 + 2�m�9 + 4�3 − 4�m��m�
 + �m	− 7 + 2�m�13 − 8�m�3 − 2�m��


�1 − 2�m��3 − 4�m���m + �i�3 − 4�m�� � �8�

hile for three-dimensional deformation it is

ECauchy =
h5�̄

12�1 − �̄� �
i,j=1

i�j

3 � 1

Rij
2 +

�̄

RijRji
� +

h5�̄

12 ��i=1

3

�i
2 −

1

2 �
i,j=1

i�j

3

�i� j +
2h5�̄�1 − �̄�

3�1 − 2�̄� ��̃12�̃13 + �̃21�̃23 + �̃31�̃32 +
3 − 4�̄

2�1 − 2�̄� �
i,j=1

i�j

3

�̃ij
2�

= h5�m �
i,j=1

i�j

3
1

Rij
2 � 1

12�1 − �m�
− �Rf� + h5�m �

i,j=1

i�j

3
1

RijRji
� �m

12�1 − �m�
− �RRf� + h5�m��i=1

3

�i
2 −

1

2 �
i,j=1

i�j

3

�i� j� 1

12
− ��f�

+ h5�m �
i,j=1

i�j

3

�̃ij
2� �1 − �m��3 − 4�m�

3�1 − 2�m�2 − ��f� + h5�m��̃12�̃13 + �̃21�̃23 + �̃31�̃32�� 2�1 − �m�
3�1 − 2�m�

− ���f� + O�f5/3� �9�

here

�R =
1

2�1 − �m�
−

28�i
2 + 34�i�m + 13�m

2

4�2�i + �m���m�7 − 5�m� + 2�i�4 − 5�m��
−

�m�2�i − �m��1 − 2�i� + 2�i
2�1 + �i�

4�2�i + �m���i�1 + �i� + 2�m�1 − 2�i��

�RR =
1

2�1 − �m�
−

26�i
2 + 38�i�m + 11�m

2

4�2�i + �m���m�7 − 5�m� + 2�i�4 − 5�m��
−

��i + �m��i�1 + �i� + �m
2 �1 − 2�i�

4�2�i + �m���i�1 + �i� + 2�m�1 − 2�i��

�� =
5��m − �i��1 − �m�

4�m�7 − 5�m� + 8�i�4 − 5�m�

��� = −
2�1 − �m�

�2�m�1 − 2�i� + �i�1 + �i���1 − 2�m�2��m�7 − 5�m� + �i�8 − 10�m��
	2�i

2�1 + �i��1 − 2�m��3 − 5�m� + �i�m�1 − 5�m��3 − 4�m

− �i�9 − 14�m�� − �m
2 �1 − 2�i��9 − �m�26 − 25�m��


�� =
�1 − �m�

��m�7 − 5�m� + 2�i�4 − 5�m���1 − 2�m�3�2�m�1 − 2�i� + �i�1 + �i��
	2�i

2�1 + �i��− 10 + 53�m − 91�m
2 + 50�m

3 � + �m
2 �1 − 2�i��25

− 104�m + 181�m
2 − 110�m

3 � − �i�m�5 − 73�m + 164�m
2 − 100�m

3 + �i�5 + 149�m − 454�m
2 + 320�m

3 ��
 �10�
or two-dimensional deformations the terms �R and ��, while for
hree-dimensional deformations the terms ��R− ��RR��, �2��

������, and ��, are all negative for inclusions stiffer than the
atrix �i.e., when the energy of a composite specimen is higher

han that of the same specimen comprised of purely matrix mate-
ial�, all zero when they have the same stiffness, and all positive
or inclusions less stiff than the matrix. This will be in a sense
sed as our definition of “inclusion stiffer than the matrix.”

If the elastic energy Eq. �9� �or Eq. �7�� is compared to that
valuated for an identical prism now comprised of matrix material
nd containing a spherical �cylindrical in 2D� inclusion, ideally
emoved from an infinite body that is subjected to the far-field

uadratic displacements Eq. �6� �or Eq. �5��, there is a mismatch

44 / Vol. 74, JULY 2007
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of the linear terms in f , so that homogenization yields a material
stiffer �more compliant� than the heterogeneous solution, for an
inclusion stiffer �more compliant� than the matrix.

5 Comparison With Cosserat Material
The key point in the above discussion is that the results for the

heterogeneous material are compared to a homogeneous linear
elastic material, providing the effective properties. While a homo-
geneous material with appropriately chosen effective moduli can
successfully mimic the composite material when uniform stress
fields are applied, we showed that it cannot do so when the sim-
plest nonuniform �i.e., uniform plus linearly varying� stress field is

applied. What happens now if this comparison is made between a
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omposite material and a homogeneous Cosserat or micropolar
aterial? Note that this question has fundamental—as opposed to

mpirical—motivation: the assumption leading to standard
auchy elasticity—that surface resultant moments/area vanish as

he Cauchy tetrahedron becomes vanishing small—is a sensible
pproximation for materials with extremely small-scale micro-
tructure, but is not in general otherwise justifiable. Absent this
ssumption, a Cosserat-type constitutive framework arises.

5.1 Simplest Cosserat Constitutive Model. We begin for
implicity with constrained-rotation micropolar materials �the
implest Cosserat constitutive model�, for which the constitutive
quations are �15�

�ij = 2��	ij +
�

1 − 2�
	kk
ij�, mij = 4��2�� ji + ��ij� �11�

here �ij is the symmetric part of the force-stress tensor; 	ij is the
nfinitesimal strain tensor; mij is the deviator of the couple-stress
ensor; and �ij is the torsion-flexure tensor. The kinematical quan-
ities are defined in terms of the displacement field ui as

	ij = 1
2 �ui,j + uj,i�, �ij = i,j = 1

2eihkuk,hj �12�

here eihk is the Ricci �permutation� tensor; i is the macrorota-
ion axial vector; and a subscript comma denotes partial differen-
iation with respect to subsequent indices. The material parameters

and � appearing in Eq. �11� are the usual �Poisson and shear�
lastic moduli �subject to the usual restrictions�, whereas material
arameters � and � define the Cosserat behavior; in particular, the
ormer is a characteristic length of the material and the latter is
imensionless and subject to the restriction −1���1 for positive
efiniteness of the strain energy.

Let us consider now two ideal material elements: a cube of
dges h of Cauchy-elastic material containing an inclusion, ideally
emoved from an infinite body that is subjected to far-field load-
ng, and the same cube instead composed of a homogeneous,
onstrained-rotation Cosserat material, Eqs. �11�. We wish to de-
ermine the values of the effective Cosserat moduli �̄, �̄, �, and �

Fig. 2 Procedure of homogenization of a material containing
bending stress distribution. Heterogeneous material „left… is a
uniaxial, linearly varying far-field stress; homogeneous Coss
„produced by m̄13 and �̄11… calculated from the heterogeneous
level sets of �11 are shown; note that the values of �12, �21,
maximum value of �11 at a distance from inclusion center equa
order of the effect in Fig. 1….
o that the homogeneous Cosserat material best mimics the het-

ournal of Applied Mechanics
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erogeneous Cauchy material under general slowly varying applied
loading �Fig. 2, illustrating for simplicity a bending stress
distribution�.

5.2 Matching With the Uniform Stress Field. For uniform
applied stress �and zero applied couple stress� the effective modu-
lus values Eqs. �1� and �2�, identical to those obtained for Cauchy-
elastic material, are found for the Cosserat material. The reason
for this is simply that for a uniform applied stress on the Cosserat
material, a homogeneous deformation with null deformation-
curvature tensor is produced, so that the Cosserat effects disappear
�i.e., the moduli � and � do not enter the solution�.

5.3 Matching With Linearly Varying Remote Stress Field.
For a linearly varying remote applied stress on the Cosserat ma-
terial, Cosserat effects are present and, as will be shown, for in-
clusions less stiff than the matrix, they permit minimization, and
for certain deformations elimination, of the mismatch in the strain
energy between the actual composite material and the homoge-
neous effective Cosserat material.

Boundary conditions for a Cosserat solid and a Cauchy-elastic
solid are not equivalent. For instance, in a purely kinematic ap-
proach, for a Cosserat material we can prescribe displacements
Eqs. �6� �or Eqs. �5�� along a side of the prism, but the two
tangential components of the rotation must also be specified, the
latter not being necessary in a Cauchy solid. Following the kine-
matic approach, we assume displacements Eqs. �6� �or Eqs. �5��,
and the rotations deduced from these displacements, to be pre-
scribed along all sides of the prism for the Cosserat material. �For
the Cauchy material, only the displacements Eqs. �6� �or Eqs. �5��
are prescribed on the boundary, but the resulting solution has ro-
tations there identical to those prescribed for the Cosserat mate-
rial, so the Cosserat and Cauchy material solutions correspond to
exactly the same problem.� The solution to this boundary value
problem for pure bending of the Cosserat material was given by
Koiter ��15�, his Secs. 6.2 and 6.3�.

Generalizing the Koiter solution, for the displacement field Eq.
�6� �or Eq. �5��, with �m replaced by �̄, the non-null kinematical

dilute distribution of circular voids and subject to a far-field
Ãh prism removed from an infinite sheet that is subjected to
t-elastic material „right… subject to the same mean moment

ism. For the plane strain problem „where � does not appear…,
�22, shown parallel to the edges, are less than 1/100 of the
three times the radius of the inclusion „contrast this with the
a
n h
era
pr

and
l to
quantities become
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	ii =
xj

Rik
+

xk

Rij
− xi

�̄

1 − �̄
� 1

Rjk
+

1

Rkj
� + 2xi��̃ij + �̃ik�

indices not summed; i,j,k cyclic�,

	ij = − 2
1 − �̄

1 − 2�̄
�xj�̃ik + xi�̃ jk� − eijkxk

�i − � j

2

indices not summed and all different�,

�ij =
1

2

ij�3�i − �

k=1

3

�k� + ejik� 1

Rji
+ 2�̃ki

1 − �̄

1 − 2�̄
� �13�

indices not summed�.
The total strain energy in the cube is thus

E = ECauchy + 2h3�̄�2��ij�ij + �� ji�ij� �14�

here

�ij�ij =
3

2��i=1

3

�i
2 −

1

2 �
i,j=1

i�j

3

�i� j + �
i,j,k=1

i�j�k

3 � 1

Rij
+ 2�̃kj

1 − �̄

1 − 2�̄
�2

�15�

nd

� ji�ij =
3

2��i=1

3

�i
2 −

1

2 �
i,j=1

i�j

3

�i� j − �
i,j,k=1

i�j�k

3 � 1

Rij
+ 2�̃kj

1 − �̄

1 − 2�̄
�� 1

Rji

+ 2�̃ki

1 − �̄

1 − 2�̄
� �16�

hich, for plane-strain deformations in the x1, x2 plane become

�ij�ij = � 1

R23
+ 2�̃13

1 − �̄

1 − 2�̄
�2

+ � 1

R13
+ 2�̃23

1 − �̄

1 − 2�̄
�2

, � ji�ij = 0

�17�

5.4 Result 1. The nonpolar �i.e., standard effective Cauchy�
ase is obtained from the strain energy Eq. �14� by setting the
nternal length equal to zero, �=0; therefore, since � enters Eq.
14� only as �2, and since its coefficient cannot be negative for
llowable modulus values, the strain energy for the effective
osserat material is never less than the strain energy for the
ffective Cauchy material. This means that the introduction of
osserat effects can only increase the strain energy of the effec-

ive material and therefore can only be useful when coefficients
R and �� are positive in plane strain �in Eqs. �7�� or when �R
��RR��0, 2��− ������0, and ���0, in 3D �in Eqs. �9��, i.e.,

or inclusions less stiff than the matrix. In the case of an inclusion
tiffer than the matrix, Cosserat effects make the homogenized
aterial even stiffer than the already overly stiff effective Cauchy
aterial resulting from homogenization for uniform stress. For

hese situations the simple Cosserat effective material cannot pro-
ide an improvement to the standard Cauchy effective material.

5.5 Result 2 for 2D Deformations. Let us begin with the
wo-dimensional �plane strain� formulation, where there is only
ne remaining undetermined parameter, the internal characteristic
ength �, in the elastic energy, Eq. �14� �parameter � only enters
he elastic energy in the three-dimensional case�. We seek the �
alue that permits minimization of the elastic energy difference
hrough O�f�, for arbitrary equilibrium quadratic displacement re-
ote boundary conditions, between the heterogeneous Cauchy
aterial �whose energy has no O�f� term� and the homogeneous
ffective Cosserat material:
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ECauchy��m,�m� − �ECauchy��̄, �̄� + 2h3�̄�2�ij�ij� �18�

which is �having divided by h5�

�m

12�1 − �m�� 1

R13
2 +

1

R23
2 � +

�m�1 − �m��3 − 4�m�
3�1 − 2�m�2 ��̃13

2 + �̃23
2 �

− � �̄

12�1 − �̄�
� 1

R13
2 +

1

R23
2 � +

�̄�1 − �̄��3 − 4�̄�
3�1 − 2�̄�2 ��̃13

2 + �̃23
2 �

+ 2�̄
�2

h2�� 1

R23
+ 2�̃13

1 − �̄

1 − 2�̄
�2

+ � 1

R13
+ 2�̃23

1 − �̄

1 − 2�̄
�2��

�19�

We wish to use � to increase the elastic energy of the effective
Cosserat material in such a way that this becomes closer to the
correct value ECauchy�� ,��, but without exceeding this value for
any value of the free parameters defining the deformation modes:

1 /R13, 1 /R23, �̃13, and �̃23. Therefore, employing Eq. �7�, Eq. �19�
can be written as, retaining only terms through O�f�

� 1

R13
2 +

1

R23
2 ��Rf + ��̃13

2 + �̃23
2 ���f − 2

�2

h2�� 1

R23
+ 2�̃13

1 − �m

1 − 2�m
�2

+ � 1

R13
+ 2�̃23

1 − �m

1 − 2�m
�2� � 0 �20�

and the problem is to find an �2 /h2 such that Eq. �20� is satisfied

for all 1 /R13, 1 /R23, �̃13, and �̃23, coming as close to equality as
possible. Note that, since the term multiplying �2 is always nega-
tive, inequality �20� can be satisfied only for inclusions less stiff
than the matrix, i.e., when �R and �� are both positive.

Now, problem �20� can be transformed into the form xAx�0,

with vector 	x
= 	1/R13, �̃23,1 /R23, �̃13
, so that it becomes
equivalent to the requirement of positive semi-definiteness of the
4�4 matrix A �which is composed of two identical 2�2 blocks,
while all other entries are null�. This matrix has two distinct ei-
genvalues with double multiplicity; requiring that the smaller ei-
genvalue be zero yields

�2

h2 =
f

� 1 − �m

1 − 2�m
�2 8

��

+
2

�R

�21�

valid only for both �R and �� positive.
Obviously, the meaning of negative values of �2 is merely that

the inclusion is stiffer than the matrix and no �real� value exists
for the characteristic length that will permit the elastic energies to
match. In such cases, �=0 gives the smallest difference between
the energies. Using f =�a2 /h2, Eq. �21� becomes

� = a� �

8�1 − �m�2

�1 − 2�m�2��

+
2

�R

�22�

valid only for both �R and �� positive. Note from Eq. �22� that
�=0 when a=0, but that � /a is independent of f �under our as-
sumption of small f�. Note that in the limit of an incompressible
matrix, �m=1/2, Eq. �22� reduces to

� = a���R

2
�23�

showing that the corresponding applied deformation mode is a
pure bending. In this case, in other words, the characteristic length
Eq. �23� provides an exact match between the energies of the
actual heterogeneous solid and the homogenized one under arbi-

trary uniform plus pure bending applied loading.
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In the extreme case when the inclusion is a void, Eq. �22�
ecomes

� = a� �

24�1 − �m�� 1

3
+

1 − 2�m

7 − 2�m�13 − 8�m�3 − 2�m��
�

�24�
here the radical in Eq. �24� is always positive.
The characteristic length divided by the radius of the inclusion,

/a, is plotted in Fig. 3 versus the contrast in the inclusion/matrix
hear moduli, �i /�m. A null contrast corresponds to a void, Eq.
24�. The different curves in the figure refer to different values of
oisson’s ratios. The values of the curves at �i /�m=0 depend
nly on �m; curves are plotted for �m and �i each having values
.49 and 0. Note also that for �m=�i, �=0 results for �i=�m, as it
hould.

For a sufficiently compliant inclusion, a positive characteristic
ength for an effective Cosserat material is always found, which
ecreases to zero at sufficiently high inclusion stiffness.

5.6 Result 2 for 3D Deformations. Let us now consider
hree-dimensional deformations. By introducing the symbol

T2 = �
i=1

3

�i
2 −

1

2 �
i,j=1

i�j

3

�i� j �25�

he three-dimensional version of non-negativity of the energy dif-

ig. 3 Characteristic length divided by circular cylindrical in-
lusion radius for a homogeneous Cosserat material deduced
rom homogenization of a matrix containing a dilute distribu-
ion of parallel, infinite circular cylindrical inclusions „plane
train, Eq. „22……
erence Eq. �18� becomes
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�
i,j=1

i�j

3
1

Rij
2 �R + �

i,j=1

i�j

3
1

RijRji
�RR + T2�� + �

i,j=1

i�j

3

�̃ij
2 �� + ��̃12�̃13

+ �̃21�̃23 + �̃31�̃32���� − 2
�̄�2

�mfh2��1 + ��
3

2
T2 + �

i,j,k=1

i�j�k

3 � 1

Rij

+ 2�̃kj

1 − �̄

1 − 2�̄
�2

− � �
i,j,k=1

i�j�k

3 � 1

Rij
+ 2�̃kj

1 − �̄

1 − 2�̄
�� 1

Rji

+ 2�̃ki

1 − �̄

1 − 2�̄
�� � 0 �26�

Equation �26� depends on the arbitrary deformation modes. These
are coupled in groups of four �each group entering in exactly the

same way�, plus T; for example, 1 /R13, 1 /R31, �̃21, �̃23 are
coupled. Thus it is sufficient to consider these four parameters
together with T, and take all others equal to zero. Doing this, Eq.
�26� becomes, retaining only leading-order terms in f

� 1

R13
2 +

1

R31
2 ��R +

2

R13R31
�RR + T2�� + ��̃21

2 + �̃23
2 ���

+ �̃21�̃23��� − 2
�2

fh2��1 + ��
3T2

2
+ � 1

R13
+ 2�̃23

1 − �m

1 − 2�m
�2

+ � 1

R31
+ 2�̃21

1 − �m

1 − 2�m
�2

− 2�� 1

R13
+ 2�̃23

1 − �m

1 − 2�m
�� 1

R31

+ 2�̃21
1 − �m

1 − 2�m
�� � 0 �27�

Equation �27� involves a quadratic form, so that it can be repre-
sented in matrix form as

��� − 3
�2

fh2 �1 + ���T2 + xAx � 0 �28�

where vector 	x
= 	1/R13,1 /R31, �̃21, �̃23
. Matrix A is a 4�4
block and the Condition �26�, viewed as the condition of positive
semi-definiteness of A �since the coefficient of T2 must be �0�,
yields non-negativeness of four eigenvalues, plus non-negativity
of the coefficient of T2. Two of these conditions can be shown to
be contained within the other two, from which two values of
Cosserat length � can be obtained to ensure positive semi-
definiteness of A. The minimum among these two lengths, plus
that obtained considering T, yields the Cosserat length for Condi-
tion �26� to be satisfied

���� = af1/6�4�

3
�1/3

g��i,�m,�i,�m,�� �29�
where
g��i,�m,�i,�m,�� = min� ��

3�1 + ��
,

�1 − 2�m�2

2�1 + ��� 8�1 − �m�2

2�� − ���

+
�1 − 2�m�2

�R − �RR
� ,

�1 − 2�m�2

2�1 − ��� 8�1 − �m�2

2�� + ���

+
�1 − 2�m�2

�R + �RR
��

1/2

�30�
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n which all terms are always non-negative for inclusions less stiff
han the matrix. Equation �29� applies for given values of �i, �m,
i, �m, and �.
In Eq. �30�, the minimum among the three functions �call them

i� is taken. These functions have the typical dependence on �
hown in Fig. 4, drawn for �i /�m=0 �so that the inclusion is a

ig. 4 The three functions gi appearing in Eq. „30…, among
hich the minimum is selected for given values of �
oid� and �m=0.49 �a case that will also be considered later�. In

lso important differences between the 2D and the 3D cases:
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this figure, one of the gi’s corresponds to the torsion mode, while
the other two modes involve both bending and the modes de-

scribed by the �̃ij.
Since � is a constitutive parameter which can be chosen so that

the effective Cosserat material best mimics the actual heteroge-
neous material’s response, it is optimal to choose it so that the
Cosserat effective material matches the actual heterogeneous one
for two modes of deformation, which corresponds to the intersec-
tion of the two lower curves in Fig. 4, that is, to the largest of the
minima �i.e., the supremum� of the three gi’s �corresponding to
�max in the figure�. Therefore

� = af1/6�4�

3
�1/3

sup
���−1,1�

g��i,�m,�i,�m,�� �31�

The case of an incompressible matrix ��m→1/2� is worth not-
ing. In this case, Eq. �30� becomes

g��i,�m,�i,�m,�� = min� ��

3�1 + ��
,

�R − �RR

2�1 + ��
,

�R + �RR

2�1 − �� �1/2

�32�
showing that bending and torsion are the only modes entering the
formula. In this case, in other words, the characteristic length �
and parameter � found from Eq. �31�, in which Eq. �32� is used
for function g, provide an exact match between the energies of the
actual heterogeneous solid and the homogenized Cosserat one un-
der arbitrary uniform plus bending and torsion applied loading.
The limit �i→0 of Eq. �31� yields the case of a spherical void
� = af1/6
�3 4�/3

�7 − 5�m

max
���−1,1�

min� 5�1 − �m�
12�1 + ��

,
5�1 − �m��4 − �m�11 − 15�m��
4�13 − �m�37 − 40�m���1 + ��

,
�1 + �m�	17 − �m�74 − �m�129 − 80�m��


2�1 − �m�	21 − �m�78 − �m�121 − 80�m��
�1 − ���
1/2

�33�
n the case of matrix incompressibility, �m→1/2, Eq. �33� be-
omes

� = af1/6
�3 4�/3

6
�41

6
, � = −

31

41
�34�

n which case both the bending and the torsion modes are simul-
aneously matched.

We emphasize with respect to all the above cases that when the
ar-field applied loading is such that our “optimal” choice of the
osserat parameter does not provide an exact match between the
ffective Cosserat material’s energy and that of the actual hetero-
eneous material, our optimal effective Cosserat material will still
e an improvement over the standard effective Cauchy material
or all equilibrium uniform plus linear far-field applied loadings
for compliant-inclusion-type composites�.

The characteristic length divided by the radius of the inclusion
ultiplied now by the volume fraction to the power −1/6, i.e.,

f−1/6� /a, is plotted in Fig. 5 versus the contrast in the inclusion/
atrix shear moduli, �i /�m, so that a null contrast corresponds to
void, Eq. �33�. The different curves in the figures refer to dif-

erent values of Poisson ratios, the same investigated for plane
train ��m and �i each having values 0.49 and 0�. The values of the
urves at �i /�m=0 depend only on �m.

The figures show that the qualitative behavior is the same for
he two-dimensional and three-dimensional cases: for a suffi-
iently compliant inclusion, a positive characteristic length for an
ffective Cosserat material is always found, which decreases to
ero at sufficiently high inclusion stiffness. However, there are
1. For all values of the Poisson ratios of the matrix and inclu-
sion, �� vanishes when �i=�m and then becomes negative
for �i��m. Therefore, due to the effect of the torsion mode
and in contrast to the 2D case, it is always impossible to
produce a positive characteristic length � for �i��m, re-
gardless of the values of the Poisson ratios, so that �=0
always results for �i��m �and not only for the special case
�m=�i�;

2. The curve for � for the case �i=0 and �m=0.49 for 3D
displays a jump to zero �not found for 2D deformations� at
�i=�m. This behavior, occurring when �m��i, is related to
torsion and to the fact that � simultaneously tends to the
limit −1. This means that the quantity �2�1+��, related to
the characteristic length in torsion, is not discontinuous and
correctly approaches zero when �i /�m tends to 1; and

3. Result 3. The characteristic length is substantially smaller in
three dimensions than in two. This is partially due to the fact
that ��af1/6 in three dimensions, whereas ��a in two di-
mensions. The figures show that the largest characteristic
length �strongest Cosserat effect� occurs for an incompress-
ible matrix containing voids ��m=0.5, �i=0�, in which case

� � 0.702af1/6, � =
��

2
a � 0.886a �35�

for 3D and 2D, respectively. For example, if f =0.1, Eqs.

�35� show � /a in 3D to be 54% of that in 2D.
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Unconstrained Cosserat Materials do not Change
esults 1, 2, and 3
At this point we are in a position to address the following

uestion: can Result 1, stating that Cosserat effects only arise for
nclusions less stiff than the matrix, be changed by making re-
ourse to a more general theory of micropolar behavior than the
onstrained-rotation theory of Eq. �11�? Moreover, does Result 2,
roviding a closed-form formula for the characteristic length �,
nd consequent Result 3, change if a general theory of micropolar
ehavior is assumed? The answers to these questions turn out to
e negative, but they require a digression.

A general isotropic, linear micropolar material is characterized
y the following constitutive equations �16,2�

�ij = �	kk
ij + 2�	ij + �eijk�k − �k� ,

�ij = ��k,k
ij + 4��2�� j,i + ��i,j� �36�

here �ij and �ij are the asymmetric force-stress and couple-
tress tensors, respectively, and k and �i are the macro- and
icro-axial rotation vectors, respectively. Constants � and � play

he role of the usual Lamé moduli of Cauchy elasticity, and �, �,
, and � are new material constants.
The important point is to note that Eqs. �11� are obtained from

qs. �36� by taking �k=k; then �ij and �ij reduce to �ij �the
ymmetric part of the stress tensor� and mij �the deviator of the
ouple-stress tensor�, respectively, and the terms containing � and

ig. 5 Characteristic length divided by spherical inclusion ra-
ius and multiplied by f−1/6

„top… and parameter � „bottom… for a
omogeneous Cosserat material deduced from homogeniza-

ion of a matrix containing a dilute distribution of spherical in-
lusions „Eq. „31……
in Eqs. �36� become identically zero.

ournal of Applied Mechanics

ded 03 Oct 2007 to 193.205.203.69. Redistribution subject to ASM
Now we note that in the unconstrained theory, kinematical
boundary conditions must involve prescription of displacements,
macrorotations, and microrotations. If we make the sensible
choice that the microrotations are identical to the macrorotations
on the boundary and these are those arising from displacements
Eqs. �6�, then a �unique� solution to the full unconstrained theory
produces the same energy Eq. �14�. The same results for �, Eqs.
�22� and �31�, are obtained. Now, however, parameters � and �
remain undetermined. Thus we find no advantage to use of the
more complex unconstrained Cosserat model in the homogeniza-
tion problem, and indeed we find the constrained-rotation model
employed by Koiter �15� to have the great advantages of simplic-
ity and physical transparency.

7 Experiments and Applications
We have already reported that our results explain and confirm

the Gauthier �7� experimentally based claim that “an anti-
micropolar phenomenon” is found for inclusions stiffer than the
matrix. For inclusions less stiff than the matrix, our theory pro-
vides Cosserat parameters � and � �only � for plane strain� for the
effective material which exactly match two quadratic deformation
modes �one in plane strain�, so that these parameters would be
found in an ideal experiment performed on a specimen, when the
boundary conditions corresponding to those modes are imposed.
With the exception of an incompressible matrix material, the qua-
dratic modes correspond to a combination of bending, torsion, and
other modes, which are usually not experimentally investigated.

7.1 Bending and Torsion Experiments, and Applications
Involving Pure Bending and Torsion Loading. Common experi-
ments involve bending �usually bending of a plate deformed in
plane strain� and torsion �usually of a bar with circular cross sec-
tion�. Performing such experiments will not in general �again,
with the exception of plane-strain bending of a composite with an
incompressible matrix material� yield our Cosserat parameters.
This is because we have selected these to give the greatest pos-
sible improvement over the effective Cauchy material for all pos-
sible imposed linear plus quadratic displacement fields, such that
the effective Cosserat material is never stiffer than the actual het-
erogeneous one. If, however, the applied loading of interest is
known to consist of uniform plus pure bending loading in 2D, or
uniform plus pure bending and pure torsion loading in 3D, the
effective Cosserat parameters can be chosen to produce an exact
energy match between the effective Cosserat material and the ac-
tual heterogeneous one.

In particular, for plane-strain deformations of a slab containing
a dilute distribution of cylindrical inclusions �with axis parallel to
the depth�

�2D-bending = a���R

2
�37�

with �R given by Eq. �8�1, provides an exact match for a plane
strain bending experiment.

For plane-strain deformations of a slab containing a dilute dis-
tribution of spherical inclusions �note that, due to the plane strain
constraint, parameter � does not enter�

�3D plane-strain bending = af1/6�4�

3
�1/3��R

2
�38�

where �R is given by Eq. �10�1, gives an exact match for a plane-
strain bending experiment.

For torsion of a cylindrical specimen �of circular cross section�

containing a dilute distribution of spherical inclusions
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���1 + ��torsion cylindrical bar = af1/6�4�

3
�1/3���

3
�39�

here �� is given by Eq. �10�3, gives an exact match. Obviously,
and � can be chosen to satisfy Eqs. �38� and �39� simulta-

eously.

7.2 A Comparison With Existing Experimental Results. It
s interesting now to compare our results with experiments per-
ormed on material containing compliant inclusions, for instance
oids. In particular, our results indicate that the most effective
xperimental setting to display Cosserat effects would be a mate-
ial containing cylindrical voids deformed in plane strain, with a
atrix Poisson’s ratio tending to the limit value 0.5; for instance,
rubber block with cylindrical holes. Unfortunately, nothing like

his experimental setup is available in the literature and also noth-
ng pertaining to dilute suspensions of spherical voids.

The only results that we were able to find are those by Lakes
2� pertaining to two foams with nearly spherical voids. Specifi-
ally, one material is a syntactic foam consisting of hollow glass
icrobubbles embedded in an epoxy matrix, for which the mean

iameter of voids is 0.125 mm and the volume fraction is 0.468.
he second material is a high-density rigid polyurethane closed-
ell foam, for which the mean diameter of voids is 0.1 mm and
he volume fraction is 0.690. Within the general Cosserat frame-
ork Eqs. �36�, Lakes �2� finds �=0.032 mm for the first material

nd �=0.327 mm for the second. Lakes also determines the quan-
ity ��2�1+��, which he estimates to be 0.065 mm and 0.62 mm,
espectively.

There are several difficulties in attempting to compare our re-
ults with these materials:

1. The void volume fraction is so high that the dilute approxi-
mation is almost certainly not directly applicable;

2. The mechanical properties of the matrix material are not
available;2 and

3. The voids in the first material are coated by a glass shell of
unknown stiffness.

Since these factors make a precise comparison impossible, we
imply employ our model results with �m=1/2, Eqs. �34�, to make
n order-of-magnitude comparison. Thus Eqs. �34� give �
0.039 mm and ��2�1+��=0.030 mm for the first material and
=0.033 mm and ��2�1+��=0.025 mm for the second. These

esults are only in qualitative agreement with the experimental
ndings; however, they are consistent with the fact that our model,
ased on the dilute approximation, underestimates the character-
stic length � for the given high values of the pore volume frac-
ions. The fact that the characteristic length is better predicted for
he first material than for the second is probably a consequence of
he presence of the glass shell coating the voids, providing a stiff-
ess, which strongly decreases �.

Summary of General Methodology
Here we summarize the general methodology proposed in this

aper and employed in the specific cases of a matrix containing a
ilute suspension of spherical or circular cylindrical inclusions.
e emphasize that our general methodology is not restricted to

omposites consisting of a matrix containing a dilute concentra-
ion of another phase. To determine the effective moduli for a
omogeneous Cosserat-elastic material that best approximates a
eterogeneous Cauchy-elastic material under general applied
oadings, one first determines the effective Cauchy-elastic moduli
n the standard manner �i.e., using the most accurate approach
vailable from standard composite materials theory. We empha-

2Only �m is needed to determine �. However, the knowledge of �m would allow
s to determine �̄ and �̄ from Eqs. �1�, which compared to experimental results by

akes would permit an assessment of the quality of the estimate.
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size that we regard the uniform loading as the primitive case, so
that this initial determination will not be affected by subsequent
calculations�. One then needs to compute the elastic energy in the
heterogeneous material of interest when this is subjected to a gen-
eral equilibrium linearly varying applied traction �or quadratically
varying displacements� on the boundary. One then compares this
energy to the energy computed for the homogeneous Cosserat
material �whose Cauchy moduli have already been determined via
the standard homogenization approach� subjected to the same qua-
dratically varying displacements and rotations as in the Cauchy
solution, and one chooses the Cosserat parameters so that these
two energies are in closest possible agreement. In the specific
cases analyzed in this paper, the Cosserat length is nonzero when
the heterogeneous material is less stiff than its predominant phase,
and zero otherwise.

9 Conclusions
It has been shown that a dilute dispersion of elastic isotropic

spherical inclusions in a 3D composite �and infinitely long, paral-
lel circular cylindrical inclusions in a 2D one� produce Cosserat
effects when the inclusions are less stiff than the matrix. The
effects induce a characteristic length in three dimensions

� � af1/6

and one in two dimensions

� � a

where a is the inclusion radius and f the volume fraction of the
inclusion material. The maximum characteristic length occurs
when the inclusions are cavities, and the matrix material is incom-
pressible; this length is substantially larger in 2D versus 3D for
cavities having the same radius. Cosserat effects are on the other
hand excluded for the opposite situation of inclusions having stiff-
nesses equal to or greater than that of the matrix.

An important practical implication of our findings is that the
response of a composite material containing inclusions less stiff
than the matrix and subjected to nonuniform stressing can be more
accurately represented by a homogeneous Cosserat material with
appropriately chosen moduli than by a standard �Cauchy� effec-
tive material.
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Appendix A: The State of the Art on Cosserat Effects as
Deduced From Elastic, Inhomogeneous Media

The literature on Cosserat effects arising from heterogeneous
media is rife with conflicting views. Berglund �17�, claiming that
previous results �18–20� were inconsistent, provides two theoret-
ical arguments to disprove micropolar effects, employing both a
discrete structural model of a cubic lattice and a framework for
homogenization of a heterogeneous continuum. These appear to
be far from conclusive, since the former invokes reduction of
structural dimensions to zero �which is inconsistent with the fact
that Cosserat effects should be related to some non-null character-
istic microstructural length� and the latter does indeed predict
some micropolar effects, which are then argued to be negligible.
On the contrary, Cosserat behavior was found by Wang and
Stronge �21� for a hexagonal lattice. Moreover, certain theoretical
arguments in favor of Cosserat behavior have been provided by

Achenbach and Hermann �22� and Beran and McCoy �23�, but the
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ormer holding only in certain circumstances involving dynamical
ffects and the latter apparently finally disproving the effects for
omposites with homogeneous and isotropic statistics of inclu-
ions. Recently, Forest �24�, Ostoja-Starzewski et al. �25�, and
ouyge et al. �26� provided numerical finite element investiga-

ions supporting Cosserat effects in heterogeneous materials. For-
st treats an anisotropic composite with an unusual microstruc-
ure, and does not directly provide values for the Cosserat
haracteristic length. The latter two papers treat plane problems of
matrix containing a dispersion of circular inclusions; they find a
onzero Cosserat length both for inclusions stiffer and more com-
liant than the matrix, a fact contradicted previously by experi-
ents �6,7�, and now by the analytical results derived in the

resent paper.
When Eq. �21� is plotted using a semi-logarithmic scale, such

s that employed in Ref. �26� for their parameter values of �i
�m=0.3 and f =0.18, we obtain the graph shown in Fig. 6. The
umerical values at high contrast are similar to those found in Ref.
26� �their Fig. 8�, but our results: �1� correctly approach zero
hen the elastic mismatch disappears �while a nonzero character-

stic length is found in Ref. �25� even for zero mismatch�; and �2�
how that Cosserat effects are excluded for mismatch greater than
�in which case � would be imaginary�.

ppendix B: Plane-Strain Solution of an Elastic Circu-
ar Inclusion in an Infinite Elastic Matrix, Subject to
emote Displacements Field Eqs. (5)
We use the Kolosov–Muskhelishvili �11� complex potentials

epresentation of the general solution for plane problems in ho-
ogeneous isotropic linear elastostatics, which in polar coordi-

ates is

ur + iu� =
1

2�
e−i�����z� − z���z� − ��z�� �B1�

�rr + ��� = 4 Re����z��

��� − �rr + 2i�r� = 2e2i��z̄���z� + ���z�� �B2�

here z=x1+ ix2=rei�, ��z� and ��z� are analytic functions, Re��
enotes the real part, and �=3–4� for plane strain.
First, we consider a pure bending far-field applied loading, cor-

esponding to

�22 = mx1, �11 = �12 = 0 for r → � �B3�

ig. 6 Characteristic length divided by the cell size for volume
raction of disperse phase f=0.18, for a Cosserat material de-
uced from homogeneization of a matrix containing a dilute
istribution of parallel, infinite circular cylindrical inclusions
plane strain, Eq. „21……
r, in terms of complex potentials

ournal of Applied Mechanics
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��z� = ��z� =
m

8
z2, for �z� → � �B4�

The solution for a matrix containing an inclusion of radius a is

��z� =
m

8
z2 +

�i − �m

2��m�i + �m�
ma4

4z2 �B5�

��z� =
m

8
z2 +

�m�i − �m�i

�i + �i�m

ma4

8z2 +
�i − �m

�m�i + �m

ma6

4z4 �B6�

in material outside the inclusion, and

��z� =
��m + 1��i

�i + �i�m

m

8
z2 −

�i

�m

�i + �m��i − �m − 1�
�i��i + �i�m�

ma2

4
�B7�

��z� =
��m + 1��i

�m�i + �m

m

8
z2 �B8�

in material inside the inclusion.
Second, we consider a quadratic far-field applied displacement

field, corresponding to

u1 = �̃13�x1
2 −

�m + 1

�m − 1
x2

2�, u2 = u3 = 0 for r → � �B9�

or, in terms of complex potentials

��z� =
�m�̃13

�m − 1
z2, ��z� = −

�m�m�̃13

�m − 1
z2 for �z� → �

�B10�
The solution is

��z� =
�m�̃13

�m − 1
z2 +

�m − �i

�m�i + �m

a4�m�m�̃13

z2��m − 1�
�B11�

��z� = −
�m�m�̃13

�m − 1
z2 +

�m�i − �m�i

�i + �i�m

a4�m�̃13

z2��m − 1�

+
�m − �i

�m�i + �m

2a6�m�m�̃13

z4��m − 1�
�B12�

in material outside the inclusion, and

��z� =
��m + 1��i

�i + �i�m

�m�̃13

�m − 1
z2 −

�i

�m

�i + �m��i − �m − 1�
�i��i + �i�m�

2a2�m�̃13

�m − 1

�B13�

��z� = −
��m + 1��i

�m�i + �m

�m�m�̃13

�m − 1
z2 �B14�

in material inside the inclusion.

Appendix C: Three-Dimensional Solution of a Spherical
Elastic Inclusion in an Infinite Elastic Matrix, Subject
to Remote Displacements Field Eqs. (6)

C.1 Torsion Prescribed at Infinity
First, we consider an applied far-field torsion, consisting of a

different �in general� angle of twist/length applied about each of
the three Cartesian axes. This corresponds to the equilibrium dis-
placement field

u1 = ��2 − �3�x2x3, u2 = ��3 − �1�x3x1,

u3 = ��1 − �2�x1x2 for r → � �C1�
or, in spherical coordinates

2
ur = 0, u� = − ��1 − �2�r sin � cos � sin �
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u� = −
�1 + �2 − 2�3 + ��1 − �2�cos 2�

4
r2 sin 2� for r → �

�C2�
he solution to this applied far-field, satisfying equilibrium every-
here, and displacement and traction continuity across the

nclusion-matrix boundary r=a, is

ur = 0

u� = − ��1 − �2�sin � cos � sin ��r2 +
a5��m − �i�
r3�4�m + �i�

�
u� = −

�1 + �2 − 2�3 + ��1 − �2�cos 2�

4
sin 2��r2

+
a5��m − �i�
r3�4�m + �i�

� �C3�

n material outside the inclusion, and

ur = 0

u� = − 5�mr2 �1 − �2

4�m + �i
sin � cos � sin �

u� = − 5�mr2�1 + �2 − 2�3 + ��1 − �2�cos 2�

4�4�m + �i�
sin 2�

�C4�
n material inside the inclusion.

.2 Bending and the Other Equilibrium Quadratic
isplacement Modes Prescribed at Infinity
Second, we consider the applied far-field equilibrium displace-
ent field

u1 = −
1

2R23
�x2

2 +
�m

1 − �m
x1

2� −
1

2R32
�x3

2 +
�m

1 − �m
x1

2� + ��̃13

+ �̃12�x1
2 − 2

1 − �m

1 − 2�m
��̃13x2

2 + �̃12x3
2�

u2 =
x2x1

R23
, u3 =

x3x1

R32
for r → � �C5�

rom which the general representation Eq. �6� can be obtained by
sing superposition and adding torsion. The bending we treat is
lane-strain bending, while Sen �13� and Das �14� have consid-
red a pure �uniaxial-stress� bending. Their case is recovered by
edefining coefficients 1 /R23 and 1/R32 as follows

1

R23
= −

�mA

Em
+

C

Em
and

1

R32
=

A

Em
−

�mC

Em
�C6�

here A and C are arbitrary constants and Em is the elastic modu-
us of the matrix material. The case C=0 is that analyzed in Refs.
13,14�, and this is sufficient to solve the general case Eq. �C6� via
uperposition. We note also that the modes defined by coefficients

ij can be redefined in a way similar to Eq. �C6�, and again by
uperposition it is sufficient to solve for the case

�̃13 = −
1 − 2�

3 − 4�
�̃12 �C7�

In polar coordinates, the far-field representation Eq. �C5� with
q. �C6� �taking C=0 and all other coefficients null� has the same
tructure as Eq. �C5� with Eq. �C7� �with all other coefficients
ull�. This is

2
ur = Br cos � sin ��c1 + c2 cos 2��

52 / Vol. 74, JULY 2007
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u� = Br2 cos � cos ��c3 + c2 cos 2��

u� = Br2 sin ��c4 + c5 cos 2�� �C8�

where

B =
A

4Em
, c1 = c4 = c3 + 4 = 1 − �m, c2 = c5 = 1 + �m �C9�

for bending, while

B = −
2�1 − �m��̃12

�1 − 2�m��3 − 4�m�
, c1 = c3 = − c4 = 1 − �m,

c2 = − c5 = 2 − 3�m �C10�

for the mode defined by coefficients �̃ij.
The solution to this applied far-field displacement field that

satisfies equilibrium everywhere, and displacement and traction
continuity across the inclusion-matrix boundary r=a, is

ur = B cos � sin ��r2�c1 + c2 cos 2�� +
a5�k1 + k2 cos 2��

r3

+
a7�k3 + k4 cos 2��

r5 �
u� = B cos � cos ��r2�c3 + c2 cos 2�� +

a5�k5 + k6 cos 2��
r3

+
a7�k7 + k8 cos 2��

r5 �
u� = B sin ��r2�c4 + c5 cos 2�� +

a5�k9 + k10 cos 2��
r3

+
a7�k11 + k12 cos 2��

r5 � �C11�

in material outside the inclusion, and

ur = Br2 cos � sin �� c0

r2 + m1 + m2 cos 2��
u� = Br2 cos � cos �� c0

r2 + m3 + m2 cos 2��
u� = Br2 sin ��−

c0

r2 + m4 + m5 cos 2�� �C12�

in material inside the inclusion. �The Sen �14� solution violates
displacement continuity across r=a since it is missing the c0
terms in Eq. �C12�.� All coefficients appearing in the above Eqs.
�C11� and �C12� are dimensionless and are defined as

k1 =
12k8�1 − 4�m� − 5�4c1�2 − 3�m� − 3c2 − 3m1�1 − 4�m��

15�1 − 4�m�

−
15c2 − 25m1 + k8�22 − 28�m�

15�1 − 4�i�

k2 =
14k8�3 − 2�m�

15
, k3 = −

4k8

5
, k4 = −

4k8

3
,

k5 = −
k1

2
− k10 +

k2�1 + 2�m�
2�3 − 2�m�

k6 = k2 −
5k2 , k7 = −

7k8
2�3 − 2�m� 15
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k8 =
15c2�Em�1 + �i� − Ei�1 + �m��

2Ei�1 + �m��11 − 14�m� + Em�13 − 7�m��1 + �i�

k9 =
k1

2
−

k2�1 − �m�
3 − 2�m

k10 =
Em�1 + �i� − Ei�1 + �m�

Ei�1 + �m� + 4Em�1 + �i�
�2�m�c1 + 3c2 + 2c3� − 3c1 − c3

1 − 4�m

+
c2�Ei�27 − �m − 28�m

2 � + 4Em�2 + 7�m��1 + �i��
2Ei�1 + �m��11 − 14�m� + Em�1 + �i��13 − 7�m��

k11 = −
k8

5
, k12 = −

k8

3

c0 =
− 5�5c1 − 3c2�
15�1 − 4�m�

−
5�3c2 − 5m1� + k8�22 − 28�m�

15�1 − 4�i�

1 =
5�1 − �m��26c1 − 3c2 − 14�c1 + 3c2��m�

3�1 − 4�m��13 − 7�m�

−
�5c1 − 3c2��1 − �m��5Em + 2Ei�1 + �m��
3�1 − 4�m��2Em�2 − 3�i� + Ei�1 + �m��

−
42c2Ei�1 − �m��1 + �m��11 − 14�m�

�13 − 7�m��2Ei�1 + �m��11 − 14�m� + Em�1 + �i��13 − 7�m��

m2 = c2 +
2k8�11 − 14�m�

15

m3 = − k10 +
1

2
�c1 + 2c3 +

5c1 − 3c2

1 − 4�m
+

3c2

1 − 4�i
� −

m1�3 − 2�i�
1 − 4�i

+
k8�27 + 24�i − 28�m�1 + 2�i��

15�1 − 4�i�

m4 =
m1�3 − 2�i� − 2m2�1 − �i�

1 − 4�i
,

m5 = − m3 +
m2�1 + 2�i� − m1�3 − 2�i�

1 − 4�i

here Em, Ei, and �m, �i are the elastic moduli and Poisson’s
atios of the matrix and inclusion materials, respectively.
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