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Abstract—It is shown that strain localization occurring in the positive hardening regime of axially-
symmetric compression stress states, may be modeled through a proper choice of the yield function and
flow-mode, in the context of the infinitesimal rate-independent non-associative elastoplasticity. In this way,
it becomes possible to interpret the results of the uniaxial compression tests carried out on concrete and
fiber-reinforced concrete specimens.

1. INTRODUCTION

THE STRAIN localization analysis of an elastoplastic continuum was introduced by Rudnicki and
Rice [1], Rice [2] and Vardoulakis [3] as a model to predict the onset of localization of microdamage
in metallic as well as in rock-like materials, for which the localization of deformation represents
a tool for detecting the onset of brittle fracture.

Recently, the strain localization concept was proposed as a possible key for understanding the
behavior of brittle-cohesive materials (concrete, rock) under multi(uni)-axial compression [4-7].
Such materials, in fact, exhibit a softening behavior which is very sensitive to the testing conditions
(boundary conditions of the specimen), along with a pronounced size effect, both effects being
explained on the basis of strain localization phenomena. In this frame of research, the series of
uniaxial compression tests, performed at the Laboratoire Central des Pontes et Chaussees (LCPC)
of Paris on samples of concrete and fiber-reinforced concrete [8-11], can be located. The tests have
shown a number of important and unknown features of localization of microcracking in concrete.
In particular;

(1) localization of deformation always precedes the peak of the uniaxial stress—strain curve, i.e.
localization occurs in the hardening regime;

(2) rotation of the loading platens begins only after the onset of localization (i.e. “tilting” is absent
before localization).

Moreover, the localization bands have been shown to form angles with respect to the compression
axis, which are always less than (approximately) 45° and are always accompanied by volumetric
dilatancy.

Result (1) was precognized and indirectly verified by van Mier [12] and may now be considered
as generally accepted [7]. Moreover, a qualitatively similar result was obtained in sand speci-
mens [13, 14], using the biaxial test [15].

Result (2) allows one to conclude that localization of deformation in concrete cannot be
strongly affected by unstabilizing effects due to geometrical changes (e.g. those investigated in [1]
and [16]).

From the point of view of constitutive modeling, using the Drucker—-Prager non-associative
model of Rudnicki and Rice[1], strain localization in axially-symmetric compression becomes
possible only in the softening regime. The same circumstance is verified even when co-rotational
terms are taken into account in the constitutive law [1]. Even in the cases of the multi-response
model [17], the thermoelastic—plastic model [18] and the elastoplastic—fracturing model [19], strain
localization becomes possible only in the softening regime for axially-symmetric compression.
Finally, strain localization is predicted not to occur, in uniaxial compression, for the model
proposed by Ortiz [20, 21]. These results induce a skepticism regarding the possibility of modeling
the strain localization occurring during the hardening regime of axially-symmetric compression and
therefore of reproducing the mentioned experimental results.
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Despite the above skepticism, this paper shows that the strain localization during the
hardening regime in axially-symmetric compression can occur if a yield surface and a plastic
potential of an appropriate shape are adopted, in the context of a single, smooth yield and
plastic-potential surface, non-associative elastoplasticity. From the point of view of constitutive
modeling of concrete, however, the available experimental work does not allow for the development
of a complete model for strain localization of concrete under complex stress conditions. Therefore,
this paper can be regarded as an initial contribution towards the definition of a model capable of
reproducing localization of damage in brittle-cohesive materials (concrete and fiber-reinforced
concrete).

2. MATERIAL MODEL

The elastoplastic behavior is characterized here by an incremental stress—strain relationship,
relating the derivative of the Cauchy stress T to the velocity of deformation D

T = D[D], ({1

where the operator D defines a two-tensorial zone constitutive equation [22]. In fact, D is piecewise
linear and different in the case of plastic loading or elastic unloading (or neutral loading)

NEDI>0=D =k~ S @
0
N-ED]<0=D=E, 3

where E is the elastic fourth order tensor, N is the (unit norm) gradient of the yield function #and
M is the (unit norm) tensor that specifies the direction of the plastic component D of the velocity
of deformation

v
N= TP (4e)
D®

The scalars # (hardening modulus) and #4; in eq. (2) are defined as

1 LA & OF N
=~ T 7 /2))[; 6k,-k‘+,§1 3K K,], 4y = N-E[M], ®)
in which k, and K; denote the collection of the state variables (mixed kinematic-isotropic
hardening). Positive values of # correspond to positive hardening, whereas a negative value of £
denotes softening behavior (4 = 0 identifies the perfect-plasticity). Note that eqs (1)—(5) are related
to each other via the Prager consistency condition [23].
Here the elastic response is restricted to be represented by a linear isotropic mapping
Sym— Sym

E=A1® I+ 2ul, (6)

where 4 and p are the Lamé constants and I and [ are the second and fourth order identity tensors,
respectively.

3. THE LOCALIZATION OF DEFORMATION IN AXIALLY-SYMMETRIC
COMPRESSION

The localization of deformation into planar bands is attained when the constitutive equation
suffers a loss of ellipticity (2], i.e. when

(An,g #0) D[g ® nn=0, @)

where n is the unit vector normal to the band and vector g is parallel to the velocity inside the
band (n and g so defining the mode of localization). It is a well-known result [24] that the first
possible localization threshold is attained in a loading program, when a loss of ellipticity occurs
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in the comparison solid corresponding to the loading branch of the relationship (1). In other words,
the first localization threshold is determined by the condition (7) where the operator D is identified
with the tensor (2). In this case, condition (7) may be given in terms of a critical value of the
hardening modulus [2]

%, = max {2G[Zn®n-MN—(n-Mn)(n‘Nn)—M-N— 1

. -~ (@Mn — i M)(@n-Nn—1r N):|},
(3)

subject to the condition n-n = 1, where v is the Poisson ratio and G the elastic shear modulus. For
the unit vector n that maximizes eq. (8), the corresponding vector g is given by [2]

1

=2Mn —
g(n) n-i

(n-Mn)n + i (tr MDn. ©)

At a generic point of an elastoplastic body, during a loading history, localization is excluded until
the actual hardening modulus remains greater than the critical one. The first possibility of
localization is attained when 4 = 4,,. In [25], it is shown that a general explicit solution to condition
(8) can be obtained when tensors N and M are coaxials (i.e. when M and N commute: MN = NM).
In particular, M and N are necessarily coaxials in the case of isotropic hardening or in the case
when M is defined as an isotropic function of N (e.g. in the case of deviatoric normality [26]). In
any case, for an axially-symmetric stress condition, starting from a virgin state, tensors M and N
remain coaxial by adopting Prager’s or Zielger’s kinematic hardening rules.

In the case of axially-symmetric stress states, tensors D, N, M and K, are axially-symmetric
before strain localization. Therefore, the direction of the normal to the band is individuated from
(8) with respect to the symmetry axis only. Without loss of generality, an orthogonal reference
system may be chosen having the axis 3 coincident with the symmetry axis and axis 1 defining,
together with axis 3, the plane in which the normal to the band n lies. This reference system is a
principal reference system for tensors M and N which have the following spectral representation:

M=¢ @eM +e,Qe,M,+e;Qe;,M, (10)
N=e¢Q@eN +e,@e,N,+e;®e;N;, (11)

where M, = M, # M, and N, = N, # N, are the eigenvalues and e,, e,, and e, the eigenvectors of
tensors M and N. In the chosen reference system, the components of the normal to the band satisfy
the conditions

ni=1-ni n=0. (12)

Using egs (10)—(12), the condition (8) may be written (in the reference system e,, e,, e,, i.e. in the
case of axially symmetric compression) as

ﬁcr=mezlx£(n§), 0<gnigl, (13)
3
where
1
%(’1%) = 26{”%{2(M3N3— M,N)) 1= [(M;— M)N, + (N; — N, )M,|]

v
+

= [eor N(My— M)+ 1r M(Ns—Nl)]}_"g[% (Ms—Mx)(Ns—Nx):|

v
—Mst—MINl—E(N3+N1)(M3+M1)}- (14)

Hence, the constrained maximization problem (13) may be easily solved, yielding a different result
of either

(M;—M)(N;—N\) 20 (15)



620 D. BIGONI

or
(M;— M, )(N;— N;) <. (16)

In the case when eq. (15) holds, the maximum of eq. (14) is attained in correspondence of
ni=1- -0, (17)

where the operator () represents the McAulay brackets [i.e. the operator
R—R* + {0}, Vx € R, (x> = (x +|x])/2] and y is given by

M3N3—M]N| _ Nl _ M] +V(N3+2Nl) V(M3+2Ml)
M= M) (N;=N) 2N, —Ny) 2AMy— M) 2N, —N,)  20M;— M)
(18)

Note that, when eq. (15) holds and 0 < x < 1, the value of n3 given by eq. (17) corresponds to an
analytical maximum of eq. (14).
In the case when eq. (16) holds, the maximum of eq. (14) is obtained in correspondence of
2 _ 2
ny=0or n;=1.
In the given reference system, for axially-symmetric compression, the stress state is
characterized by the principal components of the stress tensor T

x=01-v)

T,<T,=T,<0. (19

The following constitutive assumptions regarding the behavior of material in axially-symmetric
compression are now introduced:

M,<0 (20)
M-N>0 2N
rMz0. (22)

From eq. (4b) it is seen that condition (20) has an obvious physical meaning, whereas condition
(21), which excludes a plastic flow directed inside the yield surface, is generally accepted (see e.g.
[27]). Finally, condition (22) requires that the volumetric component of the plastic flow be positive
and is accepted here because of the experimental observation that localization of deformation in
brittle-cohesive materials (e.g. concrete) is accompanied by dilatancy. Also note that the minimum
requirement that the yield function be a star-shaped surface centered in the point T = 0 [28], implies
~-1<N; 0.

When conditions (20)—(22) are assumed, condition (15) holds true and the critical modulus
for localization in the case of the axially-symmetric compression [i.e. the solution of eq. (13)] is
obtained by substituting eq. (17) into eq. (14).

3.1. Associative flow rule
In the case of the associative flow rule, M = N, and eq. (18) reduces to

_N;+N,

: 23
NN, 23)

The critical hardening modulus for localization in the case of the axially-symmetric compression
results to be given [through substitution of eq. (23) into eq. (14)] by

a-D
x—1
From eq. (24) it is seen that localization cannot occur for associative plasticity in the hardening
regime (this is a well-known result [2]). Moreover, in the compression test, the localization can
occur at the peak of the stress—strain curve when 4, = 0. This condition can be attained if N, =0

and y €0, 1] [see eq. (24)], corresponding to n, = 1, i.e. to a band that is orthogonal to the direction
of compression.

2 —
foy = —2G(1 + v)N%——G [% (N;+ VN +

(N +vN, )z:l (29)
l—v
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It is therefore concluded that the behavior of concrete at localization in the compression test
cannot be interpreted via associative plasticity. In fact, localization is observed to occur just before
the peak and the band is far from being orthogonal to the compression axis.

3.2. Non-associative flow rule

Having assumed that M-M =N-N=1, tensors M and N are represented in the Haigh—
Westergaard stress space as unit vectors. Moreover, the principal components M,, N; must be neg-
ative and therefore, if components M, = M, and N, = N, are assigned, M; and N, are known. Using
eqs (17), (16) and (14) it becomes possible, for a given value of v, to evaluate 4, /G as a function
of M;and N,. For instance, if r M=0and N, =N, =0 (i.e. N; = —1) are assumed, n? = 5/6 and
%4./G = 0.0340 are found for v = 0; in this case, 4, always results to be positive for v > 0.

Thus, in the case of non-associative plasticity, strain localization during positive hardening is
possible for axially-symmetric compression, for appropriate directions of yield surface gradient and
plastic flow.

In Fig. 1 the values of 4, /G are reported as functions of N,, for v = 0 and for different values
of M, (—\/(2/3), —0.60, —0.45, —0.30). In Fig. 2, as functions of the same parameters, the values
of the angle 3 between the normal to the band and the axis of compression are reported. Figures 3
and 4 show the same type of graphs as in Figs 1 and 2, for v = 0.15. Finally, in Figs 5 and 6 (for
M= —\/(2/3)) and 7 and 8 (for M;= —0.3) the values of #£./G and $ are reported, as functions
of Ny, for different values of v (0, 0.15, 0.30, 0.45). The extreme values of M, = —\/(2/3) and M, =
~—0.30 have been selected since M, = — \/ (2/3) corresponds to isochoric plastic flow (¢ M = 0) and
M; = —0.30 corresponds to a very pronounced dilatancy for rock-like materials (see e.g. [1]).

From the localization condition (13)—(17) and the results reported in the quoted figures, the
foliowing observations can be drawn.

—The critical hardening modulus for localization is positive in the uniaxial compression state for
values of N, less than (about) 0.30, corresponding to values of N, less than (about) —0.90. A
unit vector normal to the hydrostatic axis and lying on the triaxial plane, has a component along
the axis T equal to —\/(2/3) = —0.82 > —0.90; thus a yield surface having M, < —0.90 must,
if convex, intersect the hydrostatic axis.

—The critical hardening modulus, when positive, increases with v and M, (i.e. 4, increases when
the “degree of non-associativity” increases).

—Bands orthogonal or parallel to the direction of compression are, in principle, possible. In fact,
the first case was encountered, for instance, when the associative flow rule was considered. The
latter case occurs, for example, when N, > 0.60 for v =0.45 (see Fig. 8). The case of bands
parallel to the direction of compression seems, however, to involve “‘unusual” constitutive
parameters. For example, bands parallel to the direction of compression can develop in the case
of the Mohr—Coulomb yield criterion with non-associative flow rule satisfying eqs (20)-(22). In
particular, this possibility arises when null cohesion and the shearing resistance angle equal to
90° are assumed and when the plastic flow satisfies

(1 — V)M, + 2vM, 2 0. (25)

Condition (25) has been obtained keeping in mind that, with the assumed material parameters,
the yield surface gradient satisfies N; =0, and imposing the condition ¥ <0 into eq. (18).

—The critical hardening modulus increases when N, decreases and is negative. However, the angle
4 decreases (the band tends to become orthogonal to the direction of compression) when N,
decreases.

In order to simulate the behavior of brittle-cohesive materials such as concrete, an elastoplastic
model of the type described in Section 2 must possess the following general requisites at
localization of deformation.t

—The yield surface, if convex, must intersect the hydrostatic axis, i.e. inelastic strain must initiate
(at a curtain level) for isotropic compression. This feature of the yield function is in agreement
with experimental observations [29] and is found in many elastoplastic models (e.g. [30-32]).

11t is important to observe that the form of the yield surface at localization could result from a complex hardening evolution.
Thus, the shape of the yield function at localization could be very different from the shape of the same function for the
virgin material.
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Fig. 9. Qualitative shape of the intersection of the yield function with the triaxial plane.

—The gradient of the yield function at the point of intersection with the compression axis (73),
must lie very near to the axis T, (i.e. N; < —0.90). At least from a qualitative examination, this
condition is not found in the models in [30-32].

—The experimental observation that, for concrete and fiber-reinforced concrete, bands always
make angles less than 45° with respect to the direction of compression excludes negative values
of N,. In fact, for N, negative, the angles $ are always less than 45° (see Figs 2, 4, 6
and 8).

Finally it can be concluded that the yield function, at localization, must possess, qualitatively,
an intersection as shown in Fig. 9 with the plane containing the hydrostatic axis and the
compression axis (triaxial plane). Note that, for the sake of simplicity, symmetry about the
hydrostatic axis has been assumed. A yield surface having the shape shown in Fig. 9, together with
a non-associative flow rule (excluding plastic volumetric contraction), can predict localization
during axially-symmetric compression in the positive hardening regime.

4. CONCLUSIONS

Experiments performed at the Laboratoire Central des Ponts et Chaussees (LCPC) of Paris
on concrete and fiber-reinforced concrete samples have shown, among many other relevant
unknown behaviors, that localization of deformation during uniaxial compression occurs in the
positive hardening regime [8-11). Moreover, localization occurs in absence of relevant unstabilizing
effects of geometric nature and is accompanied by volumetric dilatancy. On the other hand, strain
localization cannot precede the peak of the stress—strain curve in axially-symmetric compression,
in the case of models analyzed in {1, 17-21}.

In this paper it has been shown that, for a proper choice of the shape of the yield surface and
the direction of the plastic flow, it is possible to model strain localization during the hardening
regime for axially-symmetric compression stress states. In particular, strain localization can occur
in the positive hardening regime if the yield surface intersects the hydrostatic axis. It is also shown
that this possibility of modeling localization is excluded by adopting the associative flow rule.
Finally, in the context of modeling the behavior of brittle-cohesive materials, the experimental
results presently available are not sufficient to develop a complete model for the localization of
deformation for stress states different from that of uniaxial compression. In particular, an
experimental investigation on strain localization in triaxial loading conditions is needed and
therefore the presented model is an initial contribution in the direction of modeling strain
localization in concrete.
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