James P. Denier - Matthew D. Finn
Editors

Mechanics Down Under

Proceedings of the 22" International Congress
of Theoretical and Applied Mechanics, held
in Adelaide, Australia, 24-29 August 2008

@ Springer



Editors

Prof. James P. Denier

Department of Engineering Science
The University of Auckland
Auckland

Dr. Matthew D. Finn

School of Mathematical Sciences
The University of Adelaide
South Australia

New Zealand Australia

Additional material to this book can be downloaded from http://extras.springer.com

ISBN 978-94-007-5967-1
DOI 10.1007/978-94-007-5968-8
Springer Dordrecht Heidelberg New York London

Library of Congress Control Number: 2012953386

e-ISBN 978-94-007-5968-8

(© Springer Science+Business Media Dordrecht 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Material Instabilities in Elastic and
Plastic Solids: The Perturbative
Approach

Davide Bigoni

Department of Mechanical and Structural Engineering, University of Trento,
via Mesiano 77, I-38050 Trento, Italy
bigoni@ing.unitn.it

The perturbative approach to material instabilities introduced by Bigoni and
Capuani [2],[3] (in which a perturbing agent is superimposed to a uniformly
stressed and strained infinite medium) is reviewed and applied to show how
randomly-distributed dislocation-like defects can induce strain patterns in
ductile metallic materials, prestressed near the border of ellipticity loss. These
patterns result to be strongly focussed and organized into shear bands, evi-
dencing a well-defined texture in the material.

1 Introduction

A material instability is usually identified with a localized loss of homogeneity
of deformation occurring in a solid sample subject to a loading path com-
patible with continued uniform deformation and constrained on the whole
boundary to prescribed displacements (or to smooth contact with a rigid
wall [14]), Fig. 1. Since the stiff boundary constraint prevents development
of ‘global’ (such as Euler-like buckling) or surface (such as necking) bifurca-
tions, the loss of homogeneity occurring in the sample may be interpreted as
a deformation mechanism ‘alternative’ to the homogeneous one, or, in other
words, as a ‘localized’ bifurcation. Roughly speaking, this bifurcation results
from a strongly nonlinear (nominal) stress versus (conventional) strain curve
of the type sketched in Fig. 2 (referred to the experiment on drinking straw
packaging reported in Fig. 3), exhibiting an initial linear response, followed
by a nonlinear range, evidencing a peak and subsequent strain softening.’

! Note that in experiments of the type shown in Fig. 1, it is difficult to envisage by
a purely visual inspection if the localization of deformation occurs just before or
after the peak (in other words, whether softening is necessary to localization, or
softening results from localization), but this is certainly already present during
the softening response.
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Fig. 1 Uniaxial deformation of a regular packaging of identical and parallel thin-
walled cylinders (drinking straws), constrained within a rigid-wall box. The un-
loaded configuration is shown left and a configuration where deformation is still
homogeneous is shown at the centre. While the strong confinement precludes diffuse
bifurcations, strain localization can develop and is visible on the right (experiment
inspired from [12] and performed at the University of Trento).

The softening may, as in Fig. 2, terminate at a certain strain level to give
rise to a more or less pronounced strain hardening regime.

The strain localization visible in the experiment shown in Fig. 1 is only
a ‘strong and evident manifestation’ that the material traverses an unstable
state, beginning at a certain —sufficiently high — strain level, culminating with
localization and (as in the case of the drinking straw packaging) continuing
with an accumulation of deformation bands (or in other cases with intense
deformation and damage within a single deformation band, [8]).

Since the ‘standard’ approach to material instability is limited to the de-
termination of the onset of strain localization (identified with the loss of
ellipticity of the incremental governing equations [13]), the unstable state
previously traversed by the material is usually left unexplored. However, this
state can efficaciously be investigated through the analysis of the material
response to a perturbation applied at a certain level of deformation. For in-
stance, we can perturb the sample in the experiment shown in Fig. 1, by
applying a concentrated force when the deformation is still uniform, but the
peak of the curve is approached (Fig. 3). As a result, the deformation in-
duced by the perturbing force becomes highly focussed and localized, which
would have not been the case if the perturbation were provided much before
the peak of the stress/strain response. This experimental procedure has been
rationalized by Bigoni and Capuani [2], who have defined a perturbation in
terms of a concentrated force acting in an infinite prestressed continuum.
In addition to the concentrated force, different perturbing agents have been
envisaged, namely, a fracture, a rigid-thin inclusion, and a pre-existing shear
band, so that the perturbative approach has been shown to be ‘rich enough’
to give evidence to phenomena involving dynamics of shear bands [3], strain
pattern emergence for materials in flutter conditions [11], and interactions
between shear bands and inclusions [4]-[7].
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Fig. 2 Vertical nominal stress versus ‘global’ uniaxial conventional strain curve
for a packaging of regularly disposed drinking straws obtained at a speed of the
piston of 5mm/min. Note that, due to the lateral constraint, the state of stress in
the test is not uniaxial. The indication of the photos refers to Fig. 3, where the
application of a vertical concentrated load is visible. The velocity of the imposed
vertical motion of the rigid piston has decreased from 5 mm/min to 1 mm/min
when the concentrated load has applied.

We complement the above results in the present article with an analysis of
the effects of a random distribution of dislocation-like defects on a prestressed,
ductile material, showing that defects induce a well-oriented texture within
a material, when prestressed near the elliptic border. To this purpose, we
start introducing the infinite-body Green’s function set for a prestressed,
incompressible material, we continue showing analogies between force and
dislocation dipoles (namely, for a special geometrical setting the far fields can
be made to coincide for incompressible and isotropic elasticity) and, finally,
we present results for random distributions of dipoles, simulating dislocation-
like defects.

2 Infinite-Body, Quasi-Static Green’s Function for an
Incompressible, Prestressed Material

Green’s functions for anisotropic prestressed materials have been found by
Willis [15] and Bigoni and Capuani [2],[3]. We focus attention to two-
dimensional Green’s functions, considering the case of incompressible,
anisotropic prestressed elasticity?, solved by Bigoni and Capuani [2], whose
incremental constitutive equations are written in terms of nominal stress in-
crement ii]-, functions of incremental displacement gradient v; ; and in-plane
mean stress p

2 The case of compressible materials, including the loading branch of a generic
elastoplastic constitutive operator, has been treated by Bertoldi et al. [1] for the
quasi-static case and Piccoloraz et al. [11] for the dynamic case.
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Fig. 3 Application of a concentrated load (50 N) during uniaxial deformation of a
packaging of regularly disposed drinking straws. Photo 1 has been taken before the
test start, while a vertical load has been applied at the instant when photo 2 has
been taken. The shear bands emanating from the applied load are visible in photo
3. The two photos reported below are details of photo 1 (unloaded configuration)
and 3 (strain localization already developed), where the device used to apply the
concentrated load is visible.

t11 = (26 — k —n)vi1 + P, ta2 = p(26 + k — n)va 2 + P,
(1)
tie = pl(1+Kk)vgy + (1 —nvial,  fa1 = p[(1 —n)va + (1 — k)vr 2],

where the dimensionless parameters

* T, + T — T
§:u7 "7_2: L 27 k= 2) (2)
7 7 2 2u

are functions of the current principal Cauchy stresses Tj, T> and of two
incremental shear moduli, p and fi..
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Equilibrium equations expressed in terms of the stream function,

v =%, vf = -9, (3)
can be written including a concentrated force of unit components, d;, d(x), as
0190,2(2) — 0240,1()

7

Employing a plane wave expansion of the stream function 19, which for a
generic function A is written as

(1+E) Y111 +2(26 = 1)Y7 100+ (1= k)P o00 + =0. (4

h(a:):—ﬁ 7{ fitnegidn, (5)
| |=1

(where m is the radial unit vector centred at the origin of the position vector
z) and enjoying the following properties

d(n-x)= ﬁ, Veh(n-z)=h(n-z)n, (6)

(where the prime denotes differentiation with respect to the argument n - z),
equation (4) becomes the ordinary differential equation

70\ _ 01gm2 — G241
L(n) (’l,[)g) = ZW, (7)

where the (strictly positive in the elliptic regime) function L(n) has been
introduced

21—k n? 1—k
L(n) = pnd (1 sl T ] 2 ) >0 8

in which 02? are the squares of the roots of the homogeneous associated
characteristic equation to (4).
A straightforward integration of (7) yields

_ O1gng — dagny

V= mee) logln-al -1, (9)
which, antitransformed, leads to the Green’s stream function
It |flogf—1 /7r sinfa + 0 + (1 — g)w/2] cos 4
R i AaT0) “

™2 sinfa + 6 + (1 — g)m/2] cos alog (cos )
* /O Ala+9) do o)

da

‘., /”/2 cos[a+ 0 + (1 — g)w/2] sinalog (sin )
0 Ala+0+7/2)
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where

A(a) =sin* a (cot® a — 1) (cot? a —v2) > 0. (11)
Employing now the definition of stream function (3) yields the Green’s func-
tion for incremental displacements

ol — 1 { wd;q logr
Too2m?u(l4+k) L[2-0)r+1-Gv—n+[2-)m+1-jlv—

s

- /- [K9(a+6) + (3 25) (3 — 29) K¥(c — 0)] log (cos ) dar b,
0

(12)

where
sin [a+ (j — 1) ] sin[a + (9 — 1) F]

A(a) ’
The solution for the Green’s function set for an incompressible material is
not yet complete, since the knowledge of the velocity gradient does not allow
determination of the Green’s function for in-plane incremental mean stress p?.
Therefore, we consider the rate equilibrium equations written for the Green’s
function set {v,p9}

??1 - .“kvf,ll = p[(1- 25)”?,11 —{1— k)vf,zz] - 5195(513),

K(a) = (13)

(14)
P,gz - Nkvf,lz = p[(1- 25)”3,22 = {1 k)vg,u] — 02g0(x).
Introducing now the in-plane mean nominal stress
tyy +1t
e L (15)

differentiating eqn. (14a) with respect to z1, eqn. (14b) with respect to zs
and summing the resulting equations yields

a1+
% =2(1 = &) (v1,111 + v2,222)
01¢0,1(x) + 0240 2(x) (16)
x)+ T
ke (v 111 —Uaigng) — —2 i 299.2( ;
1

which in the transformed domain becomes the ordinary differential equation

~g 1
T —sa-9 [t +m 69)"]
(17)

oyl ~g\!! n101g + N202

Since 9 and its derivatives are known from differentiation of equation 9),
(17) can be integrated and antitransformed to give the Green’s function for
the in-plane mean nominal stress increment
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. 1 T 1 Wkg( +0)
e S {cos[@ —f{g— 1)5] + (1 + k) ]ﬁ C(j:’a da}, -

Ky(e) = K3(a) [2 (% - 1) (2cos® a—1) — k] cos[a + 5293] . (19)

completing the infinite-body Green’s function set. In particular, application
of the constitutive equations (1)-(2) to the Green’s velocity gradient and
adding the Green’s in-plane mean nominal stress (18) yields the Green’s
function for the incremental nominal stress

) = (2u« — p) vf | + 79, 9, = (2u. — p) v3 5 + 79,
(20)

. a .
= (u=p)ofp+ (0 +Z)ohs 8= (e—p)of, + (v—3)ots

3 Dipoles in an Infinite Medium

Superimposing the effects, the Green’s function (12) can be used to investi-
gate the response of a homogeneously prestressed infinite medium perturbed
by a quasi-statically applied dipole (two equal and opposite concentrated
forces placed at a distance, say, 2a). The analysis of the resulting incremen-
tal displacement maps at different ‘distances’ from the border of ellipticity
provides information on the behaviour of the material near a material insta-
bility [2].

An example is reported in Fig. 4, referred (as all other examples addressed
in the following) to a material following the Jo—deformation theory of plas-
ticity, namely, a nonlinear elastic law corresponding to the loading branch
of von Mises plasticity, so that unloading is a-priori excluded [10]. The fig-
ure clearly indicates that, while at null prestress the incremental deformation
field does not evidence a particular structure (Fig. 4 on the left), a shear band
pattern emerges as the response to the dipole perturbation at a prestress level
near the boundary of (but still inside) ellipticity (Fig. 4 on the right).

A quasi-static dipole represents the simplest ‘zero-resultant-force’ pertur-
bation, so that many other possible perturbations can be invented to capture
‘particular’ effects. For instance, Bigoni and Capuani [3] have employed a
time-harmonic pulsating dipole to obtain incremental displacements maps
similar to that reported in Fig. 5 (referred to the same material considered in
Fig. 4) and showing an interesting wave focussing, an effect which becomes
critical to detect the so-called ‘flutter instability’ [11].

While other perturbing agents will be discussed later, our interest now is
to analyze the effect of a random distribution of randomly oriented dipoles,
a situation which may represent the presence of defects in a material and, in
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Fig. 4 Incremental displacement map resulting as the response of an unloaded (left)
material and the same material prestrained close to the elliptic boundary (right) to
a perturbing dipole (inclined at an angle of 27.367° with respect to the horizontal
axis, corresponding to the shear band inclination at the elliptic boundary). A ductile
metallic material (modelld through the Jo-deformation theory of plasticity) has
been considered with an hardening exponent N = 0.4. Parameter ¢ denotes the
logarithmic prestrain and e®% the value corresponding to ellipticity loss.

Pulsating dipole

Fig. 5 A time-harmonic pulsating dipole is perturbing a ductile metallic (J-
deformation theory) material near the elliptic border (¢ = 0.99¢”%), as in Fig.
4 on the right. Here the solution is the sum of a real (left) and imaginary (right)
part. Note the focussing of the waves revealing formation of a complex shear band
pattern.
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particular, these defects can be representative of a dislocation distribution.?
In fact, there are analogies between the solutions of a concentrated force
and a dislocation in an elastic continuum and, we show below that when
the prestress is absent and for isotropic incompressible elasticity, the far-
fields induced by a dislocation dipole on a single slip plane and a force dipole
inclined at w/4 with respect to this plane are identical.

In a z-y reference system, the in-plane stress field produced by a single
straight edge dislocation in a linearly elastic, isotropic medium is [9]

{0 Ty Ty } = 271'(:[1)—_M1/)7'4 {—y (32 +4), v (22 —4?), z (2 - )},
(21)

where b is the Burgers vector and p and v are the elastic shear modulus and
the Poisson’s ratio. The corresponding strain field follows from eqn. (21) in
the form

1
{ezm €yys ezy} = ’E {Ua::z: = ﬁo’yya Oyy — VOgq, (1 -+ D)Uzy}a (22)

where E and 7 are the modified Young modulus and Poisson’s ratio, while
the displacement field can be written as

b y zy
= t =
U o [arc anx+2(1—1/)r2]’
R (23)
b Tt —y
=——[(1-2v)logr? .
Yy 8 (1 —v) [( T logr" ¢ 72 ]

A dislocation dipole on a single glide plane consists of two parallel edge
dislocations lying in the same slip plane at a distance 2d and having opposite
sign (see Fig. 6 on the left for a sketch of the distortion induced in a crystal
lattice and on the right for its graphical conventional representation). In
quasi-static conditions, such a simple dislocation structure is not stable, so
that the dislocations, unless pinned, ‘attract’ each other to reduce their total
elastic energy. In this way they move toward each other until they combine
and annihilate.

Leaving aside issues on stability, the stress field produced by the dislocation
dipole can simply be obtained through superposition of solution (21), which
can be used with reference to the local coordinates (Fig. 6 on the right)

T, =z+(=1)d, =4y, e = [:1:+(—1)id]2—|—y2 =r24(=1)'zd+d?, (24)

where 1 =1, 2.

At a large distance from the dislocation dipole the parameter d/r can be
considered small and the stress fields can be expanded into a Taylor series,
to obtain the far field approximation

3 The analogy between dislocation and force dipoles has been suggested to me by
Prof. A.B. Movchan (Liverpool University).
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Fig. 6 Sketch of the lattice distortion induced by a dislocation dipole lying on a
single slip plane (left) and its conventional representation (right), together with
a force dipole (inclined at 7/4 with respect to z—y system). In linear isotropic
incompressible elasticity, the far-fields induced by the dislocation dipole and by the
force dipole are identical.

1u_dyb) : {2zy (r* —42?), 2zy (r* —4y?) , r* —82%y°},

(25)

{022, 0yy, Oy}~ (

which satisfies equilibrium equations.

The far-field stress field for a force dipole in linear elasticity can be obtained
by superimposing the solution (20) in the case of null prestress and isotropy
as (for a force centered at the origin of a z—y reference system)

{nga Uyyv Uzy} = T4 {$27 yz’ xy}’ (26)

where g, either equal to x or y, denotes the unit component of the applied
force. Expressing (26) in the local coordinate systems shown in Fig. 6 on the
right, so that

zi=z+ (—1)%a, y;i=y+(=1)asina,
r2 = [z + (=1)tacosa)?® + [y + (—1)*asin o)? (27)
=12 + (-1)'a(zcosa + ysina) + a?,

where ¢ = 3,4, the dipole solution can be easily obtained. At a large distance
from the force dipole, the dimensionless parameter a/r becomes small, so
that a Taylor series expansion of the stress fields gives again representation
(25) with the correspondence

fa = 2dbp, (28)

where f is the modulus of the forces forming the dipole (inclined at 7/4).
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Fig. 7 Effects of prestrain on a ductile metallic (J;—deformation theory) material
(as in Fig. 4), revealed by a perturbation consisting of five randomly placed and
oriented dipoles, representing dislocation-like defects (these are shown on the left,
where the distance between dipole forces provides the bar scale of the representa-
tion). Maps of incremental displacements induced by the dipoles are shown on the
centre at null prestrain (¢ = 0) and on the right at a prestain near loss of ellipticity
(e = 0.99¢FF).

» A

Fig. 8 As in Fig. 7, but now there are two different random distributions (upper
and lower part) of twenty randomly oriented dipoles, representing dislocation-like
defects

The effects of prestress have been explored by perturbing a uniform strain
field with a random distribution of randomly oriented force dipoles (random-
ness has been obtained by using the pseudorandom real number generation
function available in Mathematica© 5.2). In particular, a square window of
material of edge 20a (200a) has been considered in Fig. 7 (Fig. 8), where a is
the half distance between the forces forming the dipole. Inside this window
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Shear band

Fig. 9 Interactions between shear bands and a crack (upper part, left, see [4]), or a
thin rigid inclusion (upper part, right, see [5], [6], [7]) —loaded under Mode I-, or a
crack (lower part, left, see [4]), or a pre-existing shear band (lower part, right, see
[4]) — loaded under Mode II. A ductile metallic (Jo~deformation theory) material
is considered near the elliptic border, as in Fig. 4.

5 (20) dipoles have been randomly placed in Fig. 7 (Fig. 8), with random
inclination of the forces (two random distributions have been reported in
Fig. 8). The dipole distributions and inclinations are shown in Figs. 7 and
8 on the left, while the maps of modulus of displacements are shown on the
centre for null prestrain (¢ = 0, as in Fig. 4 on the left) and on the right for
a prestrain near the boundary of loss of ellipticity (¢ = 0.99¢F7| as in Fig. 4
on the right).

The figures reveal that the effect of prestrain consists in the emerging of a
texture with privileged directions, corresponding to the shear band inclinations
that can be calculated at the boundary of ellipticity loss.
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4 The Perturbative Approach: Conclusions and
Perspectives

The conventional approach to material instability is confined to the analysis
of failure of ellipticity for a uniformly deformed solid, yielding the threshold
of the instability (in terms of a control parameter, for instance, the level of
prestress, or the hardening) and the shear band inclinations [13]. Assuming
that this conventional analysis can easily be performed and its results are
available, the perturbative approach to material instability has been tailored
to analyze the unstable state that is traversed by the material before ellip-
ticity loss. In this way, features of this unstable state, otherwise remaining
simply undetected, can be investigated. As an example, effects of a random
distribution of dislocation-like defects acting in a ductile material prestressed
near the elliptic boundary have been analyzed in the present article (Figs. 7
and 8). It has been found that these defects trigger incremental deformation
patterns showing a well-defined texture, organized along shear bands. The ob-
tained results fit coherently with previous findings concerning: (i) dynamical
effects near the border of ellipticity (Fig. 5, see also [3]), or near the so-called
‘flutter instability’ [11]; (ii) interactions of a shear band with a thin rigid
inclusion, or with a crack, or with a pre-existing shear band (see Fig. 9 con-
taining a collection of results than can be compared to each other and to the
previous figures). In all these problems, where defects incrementally perturb
a prestressed solid, the resulting complex stress states (involving singularities
and high stress concentrations) can be detailed through analytical solutions
and employed to study incremental energy release rate and the associated
tendency to defect growth or reduction, [4]-[7].
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