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Abstract

A new yield/damage function is proposed for modelling the inelastic behaviour of a broad class of pressure-sensitive,

frictional, ductile and brittle-cohesive materials. The yield function allows the possibility of describing a transition

between the shape of a yield surface typical of a class of materials to that typical of another class of materials. This is a

fundamental key to model the behaviour of materials which become cohesive during hardening (so that the shape of the

yield surface evolves from that typical of a granular material to that typical of a dense material), or which decrease

cohesion due to damage accumulation. The proposed yield function is shown to agree with a variety of experimental

data relative to soil, concrete, rock, metallic and composite powders, metallic foams, porous metals, and polymers. The

yield function represents a single, convex and smooth surface in stress space approaching as limit situations well-known

criteria and the extreme limits of convexity in the deviatoric plane. The yield function is therefore a generalization of

several criteria, including von Mises, Drucker–Prager, Tresca, modified Tresca, Coulomb–Mohr, modified Cam-clay,

and––concerning the deviatoric section––Rankine and Ottosen. Convexity of the function is proved by developing two

general propositions relating convexity of the yield surface to convexity of the corresponding function. These propo-

sitions are general and therefore may be employed to generate other convex yield functions.
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1. Introduction

Yielding or damage of quasibrittle and frictional materials (a collective denomination for soil, concrete,

rock, granular media, coal, cast iron, ice, porous metals, metallic foams, as well as certain types of ceramic)

is complicated by many effects, including dependence on the first and third stress invariants (the so-called

�pressure-sensitivity� and �Lode-dependence� of yielding), and represents the subject of an intense research

effort. Restricting attention to the formulation of yield criteria, research moved in two directions: one was
to develop such criteria on the basis of micromechanics considerations, while another was to find direct

interpolations to experimental data. Examples of yield functions generated within the former approach are

numerous and, as a paradigmatic case, we may mention the celebrated Gurson criterion (Gurson, 1977).
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The latter approach was also broadly followed, providing some very successful yield conditions, such as for

instance the Ottosen criterion for concrete (Ottosen, 1977). Although very fundamental in essence, the

micromechanics approach has limits however, particularly when employed for geomaterials. For instance,

it is usually based on variational formulations, possible––for inelastic materials––only for solids obeying
the postulate of maximum dissipation at a microscale, which is typically violated for frictional materials

such as for instance soils.

A purely phenomenological point of view is assumed in the present article, wherein a new yield func-

tion 1 is formulated, tailored to interpolate experimental results for quasibrittle and frictional materials,

under the assumption of isotropy. The interest in this proposal lies in the features evidenced by the cri-

terion. These are:

• finite extent of elastic range both in tension and in compression;
• non-circular deviatoric section of the yield surface, which may approach both the upper and lower con-

vexity limits for extreme values of material parameters;

• smoothness of the yield surface;

• possibility of stretching the yield surface to extreme shapes and related capability of interpolating a

broad class of experimental data for different materials;

• reduction to known criteria in limit situations;

• convexity of the yield function (and thus of the yield surface);

• simple mathematical expression.

None of the above features is essential, in the sense that a plasticity theory can be developed without

all of the above, but all are desirable for the development of certain models of interest, particularly in

the field of geomaterials. This is a crucial point, deserving a carefully explanation. In particular, while

some of the above requirements have a self-evident meaning, smoothness and convexity need some dis-

cussion.

Although experiments are inconclusive in this respect (Naghdi et al., 1958; Paul, 1968; Phillips, 1974),

theoretical speculations (sometimes criticized, Naghdi and Srinivasa, 1994) suggest that corners should be
expected to form in the yield surface for single crystals and polycrystals (Hill, 1967). Therefore, smoothness

of the yield surface might be considered a mere simplification in the constitutive modelling of metals.

However, the situation of quasibrittle and frictional materials is completely different. For such materials, in

fact, evidence supporting corner formation is weak, 2 so that, presently, smoothness of the yield surface is a

broadly employed concept and models developed under this assumption are still very promising. Moreover,

corners often are included in the constitutive description of a material for the mere fact that an appropriate,

smooth yield function is simply not available (this is usually the case of the apex of the Drucker–Prager

yield surface and of the corner which may exist at the intersection of a smooth, open yield surface with a
cap).

Regarding convexity of the yield surface, we note that this follows for polycrystals from Schmid laws of

single crystals (Bishop and Hill, 1951; Mandel, 1966). However, differently from smoothness, convexity is

supported by experiments in practically all materials and is a useful mathematical property, which is the

basis of limit analysis and becomes of fundamental importance in setting variational inequalities for

plasticity (Duvaut and Lions, 1976). We may therefore conclude that––in the absence of a clear and specific

motivation––it is not sensible to employ a yield function that violates convexity.
1 We need not distinguish here between yield, damage and failure. Within a phenomenological approach, all these situations are

based on the concept of stress range, bounded by a given hypersurface defined in stress space.
2 Some argument in favour of corner formation in geomaterials have been given by Rudnicki and Rice (1975).
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A number of failure surfaces have been proposed meeting some of the above requirements, among

others, we quote the Willam and Warnke (1975), Ottosen (1977) and Hisieh et al. (1982) criteria for

concrete, the Argyris et al. (1974), Matsuoka and Nakai (1977), Lade and Kim (1995) and Lade (1997)

criteria for soils. For all these criteria, while some information can be found about the range of parameters
corresponding to convexity of the yield surfaces, nothing is known about the convexity of the corre-

sponding yield functions.

Convexity of a yield function implies convexity of the corresponding yield surface, but convexity of a

level set of a function does not imply convexity of the function itself. While it can be pointed out that a

convex yield function can in principle always be found to represent a convex yield surface, the �practical
problem� of finding it in a reasonably simple form may be a formidable one. From this respect, general

propositions would be of interest, but the only contribution of which the authors are aware in this respect is

quite recent (Mollica and Srinivasa, 2002). A purpose of the present paper is to provide definitive results in
this direction. In particular, the range of material parameters corresponding to convexity of the yield

function proposed in this paper is obtained by developing a general proposition that can be useful for

analyzing convexity of a broad class of yield functions. The proposition is finally extended to introduce the

possibility of describing a modification in shape of the deviatoric section with pressure. The propositions

are shown to be constructive, in the sense that these may be employed to generate convex yield functions

(examples of which are also included).

Beyond the issue of convexity, the central purpose of this paper is the proposal of a yield criterion (see

Eqs. (6)–(9)). This meets all of the above-listed requirements and can be viewed as a generalization of the
following criteria: von Mises, Drucker–Prager, Tresca, modified Tresca, Coulomb–Mohr, modified Cam-

clay, Deshpande and Fleck (2000), Rankine, and Ottosen (1977) (the last two for the deviatoric section).

Obviously, the criterion may account for situations which cannot be described by the simple criteria to

which it reduces in particular cases. Several examples of this may be found in the field of granular media,

where several ad hoc yield conditions have been proposed, which may describe one peculiar material, but

cannot describe another. In the present paper, it is shown with several examples that our yield criterion

provides a unified description for a extremely broad class of quasi-brittle and frictional materials. Beyond

the evident interest in generalization, there is a specific motivation for advocating the necessity of having a
single criterion describing different materials. This lies in the fact that during hardening, a yield surface may

evolve from the shape typical of a certain material to that typical of another. An evident example of this

behaviour can be found in the field of granular materials, referring in particular to metal powders. These

powders become cohesive during compaction, so that the material is initially a true granular material, but

becomes finally a porous metal, whose porosity may be almost completely eliminated through sintering.

The key to simulate this process is plasticity theory, so that a yield function must be employed evolving

from the typical shape of a granular material (�triangular� deviatoric and �drop-shaped� meridian sections),

to that of a porous metal (circular deviatoric and elliptic meridian sections) and, in case of sintering, to that
of a fully-dense metal (von Mises criterion). Another example of extreme shape variation of yield function

during hardening is the process of decohesion of a rock-like material due to damage accumulation, a sit-

uation in a sense opposite to that described above. Evidently, a continuous distortion of the yield surface

can be described employing the criterion proposed in this paper and simply making material parameters

depend on hardening.
2. A premise on Haigh–Westergaard representation

The analysis will be restricted to isotropic behaviour, therefore the Haigh–Westergaard representation of

the yield locus is employed (Hill, 1950a). This is well-known, so that we limit the presentation here to a few
remarks that may be useful in the following. First, we recall that:
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A1. A single point in the Haigh–Westergaard space is representative of the infinite (to the power three)

stress tensors having the same principal values.

A2. Due to the arbitrariness in the ordering of the eigenvalues of a tensor, six different points correspond

in the Haigh–Westergaard representation to a given stress tensor. As a result, the yield surface results
symmetric about the projections of the principal axes on the deviatoric plane (Fig. 1).

A3. The Haigh–Westergaard representation preserves the scalar product only between coaxial tensors.

A4. A convex yield surface––for a material with a fixed yield strength under triaxial compression––must be

internal to the two limit situations shown in Fig. 1 (Haythornthwaite, 1985). Note that the inner

bound will be referred as �the Rankine limit�.

Due to isotropy, the analysis of yielding can be pursued fixing once and for all a reference system and

restricting to all stress tensors diagonal in this system. We will refer to this setting as to the Haigh–
Westergaard representation. When tensors (for instance, the yield function gradient) coaxial to the refer-

ence system are represented, the scalar product is preserved, property A3. In the Haigh–Westergaard

representation, the hydrostatic and deviatoric stress components are defined by the invariants
p ¼ � trr

3
; q ¼

ffiffiffiffiffiffiffi
3J2

p
; ð1Þ
where
J2 ¼
1

2
S � S; S ¼ r� trr

3
I; ð2Þ
in which S is the deviatoric stress, I is the identity tensor, a dot denotes scalar product and tr denotes the

trace operator, so that A � B ¼ trABT, for every second-order tensors A and B. The position of the stress
point in the deviatoric plane is singled out by the Lode (1926) angle h defined as
h ¼ 1

3
cos�1 3

ffiffiffi
3

p

2

J3
J 3=2
2

 !
; J3 ¼

1

3
trS3; ð3Þ
so that h 2 ½0; p=3�. As a consequence of property ðA2Þ of the Haigh–Westergaard representation, a single

value of h corresponds to six different points in the deviatoric plane (Fig. 1). The following gradients of the

invariants, that will be useful later,
−σ1

−σ2 −σ3

Upper convexity
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Fig. 1. Deviatoric section: definition of angle h, symmetries, lower and upper convexity bounds.
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op
or

¼ � 1

3
I;

oJ2
or

¼ S;
oJ3
or

¼ S2 � trS2

3
I;

oh
or

¼ � 9

2q3 sin 3h
S2

�
� trS2

3
I� q

cos 3h
3

S

�
;

ð4Þ
can be obtained from well-known formulae (e.g. Truesdell and Noll, 1965, Section 9), using the identity
oS

or
¼ I� I� 1

3
I� I; ð5Þ
where the symbol � denotes the usual dyadic product and I� I is the symmetrizing fourth-order tensor,

defined for every tensor A as I� I½A� ¼ ðAþ ATÞ=2. Note that oh=or is orthogonal to I and to the devi-

atoric stress S.
3. A new yield function

We propose the seven-parameters yield function F : Sym ! R [ fþ1g defined as:
F ðrÞ ¼ f ðpÞ þ q
gðhÞ ; ð6Þ
where the dependence on the stress r is included in the invariants p, q and h, Eqs. (1) and (3), through the
�meridian� function
f ðpÞ ¼ �Mpc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU� UmÞ½2ð1� aÞUþ a�

p
if U 2 ½0; 1�;

þ1 if U 62 ½0; 1�;

�
ð7Þ
where
U ¼ p þ c
pc þ c

; ð8Þ
describing the pressure-sensitivity 3and the �deviatoric� function
gðhÞ ¼ 1

cos b p
6
� 1

3
cos�1ðc cos 3hÞ

� � ; ð9Þ
describing the Lode-dependence of yielding. The seven, non-negative material parameters:
M > 0; pc > 0; cP 0; 0 < a < 2;m > 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
defining f ðpÞ

; 06 b6 2; 06 c < 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
defining gðhÞ

; ð10Þ
define the shape of the associated (single, smooth) yield surface. In particular, M controls the pressure-

sensitivity, pc and c are the yield strengths under isotropic compression and tension, respectively. Param-

eters a and m define the distortion of the meridian section, whereas b and c model the shape of the

deviatoric section. Note that the deviatoric function describes a piecewise linear deviatoric surface in the

limit c ! 1. Finally, it is important to remark that within the interval of b 2 ½0; 2� the yield function is
e meridian function can be written in an alternative form by using the Macauley bracket operator, defined for every scalar a as

axf0; ag, and the indicator function v½0;1�ðUÞ, which takes the value 0 when U 2 ½0; 1� and is equal to þ1 otherwise

f ðpÞ ¼ �Mpc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieU � eUm
� 	

2ð1� aÞeU þ a
h ir

þ v½0;1�ðUÞ; eU ¼ hUi � hU� 1i:
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convex independently of the values assumed by parameter c. Convexity requirements, that will be proved

later, impose a broader variation of b than (10)6, but the interval where b may range becomes a function of

c. In particular, the yield function is convex when
2�BðcÞ6 b6BðcÞ; ð11Þ
where function BðcÞ takes values within the interval �2; 4�, when c ranges in ½0; 1½ and is defined as
BðcÞ ¼ 3� 6

p
tan�1 1� 2 cos z� 2 cos2 z

2 sin zð1� cos zÞ






z¼2=3ðp�cos�1 cÞ

: ð12Þ
The yield function (6) corresponds to the following yield surface:
q ¼ �f ðpÞgðhÞ; p 2 ½�c; pc�; h 2 ½0; p=3�; ð13Þ
which makes explicit the fact that f ðpÞ and gðhÞ define the shape of the meridian and deviatoric sections,
respectively.

The yield surface (13) is sketched in Figs. 2 and 3 for different values of the seven above-defined material

parameters (non-dimensionalization is introduced through division by pc in Fig. 2). In particular, meridian

sections are reported in Fig. 2 (gðhÞ ¼ 1 has been taken), whereas Fig. 3 pertains to deviatoric sections.

As a reference, the case corresponding to the modified Cam-clay introduced by Roscoe and Burland

(1968) and Schofield and Wroth (1968) and corresponding to b ¼ 1, c ¼ 0, a ¼ 1, m ¼ 2, and c ¼ 0 is re-

ported in Fig. 2 as a solid line, for M ¼ 0:75. The distortion of meridian section reported in Fig. 2(a)––

where M ¼ 0:25, 0.75, 1.25––can also be obtained within the framework of the modified Cam-clay, whereas
the effect of an increase in cohesion reported in Fig. 2(b)––where c=pc ¼ 0, 0.2, 0.4––may be employed to

model the gain in cohesion consequent to plastic strain, during compaction of powders.

The shape distortion induced by the variation of parameters m and a, Fig. 2(c)––where m ¼ 1:2, 2, 4––
and (d)––where a ¼ 0:01, 1.00, 1.99––is crucial to fit experimental results relative to frictional materials.

A unique feature of the proposed model is the possibility of extreme shape distortion of the deviatoric

section, which may range between the upper and lower convexity limits, and approach Tresca, von Mises
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Fig. 2. Meridian section: effects related to the variation of parameters M (a), c=pc (b), m (c), and a (d).
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and Coulomb–Mohr. This is sketched in Fig. 3, where to simplify reading of the figure, function gðhÞ has
been normalized through division by gðp=3Þ, so that all deviatoric sections coincide at the point h ¼ p=3.
The use of our model may therefore allow one to simply obtain a convex, smooth approximation of several

yielding criteria (Tresca and Coulomb–Mohr, for instance). If this may be not substantial from theoretical

point of view, it clearly avoids the necessity of introducing independent yielding mechanisms.

Parameter c is kept fixed in Fig. 3(a) and (b) and equal to 0.99 and 1, respectively, whereas parameter b is

fixed in Fig. 3(c) and (d) and equal to 0 and 1/2. Therefore, figures (a) and (b) demonstrate the effect of the

variation in b (¼ 0, 0.5, 1, 1.5, 2) which makes possible a distortion of the yield surface from the upper to

lower convexity limits going through Tresca and Coulomb–Mohr shapes. The role played by c (¼ 1, 0.75,
0) is investigated in figures (c) and (d), from which it becomes evident that c has a smoothing effect on the

corners, emerging in the limit c ¼ 1. The von Mises (circular) deviatoric section emerges when c ¼ 0.

The yield surface in the biaxial plane r1 versus r2, with r3 ¼ 0 is sketched in Fig. 4, where axes are

normalized through division by the uniaxial tensile strength ft. In particular, the figure pertains to
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M ¼ 0:75, pc ¼ 50c, m ¼ 2, and a ¼ 1, whereas c ¼ 0:99 is fixed and b is equal to {0, 0.5, 1, 1.5, 2} in Fig.

4(a) and, vice versa, b ¼ 0 is fixed and c is equal to {0, 0.75, 0.99} in Fig. 4(b).

3.1. Smoothness of the yield surface

Smoothness of yield surface (13) within the interval of material parameters defined in (10) and (11) can
be proved considering the yield function gradient. This can be obtained from (4) in the form
4 N

proved

(uninfl
oF
or

¼ aðpÞIþ bðhÞeS þ cðhÞeS?; ð14Þ
where
eS ¼
ffiffiffi
3

2

r
S

q
; eS? ¼ � q

ffiffiffi
2

pffiffiffi
3

p oh
or

¼ 1

sin 3h

ffiffiffi
6

p eS2

��
� 1

3
I

�
� cos 3heS�; ð15Þ
and
aðpÞ ¼ � 1

3

of ðpÞ
op

¼ Mpc
3ðpc þ cÞ

ð1� mUm�1Þ½2ð1� aÞUþ a� þ 2ð1� aÞðU� UmÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU� UmÞ½2ð1� aÞUþ a�

p ;

bðhÞ ¼
ffiffiffi
3

2

r
1

gðhÞ ;

cðhÞ ¼ �
ffiffiffi
3

p
c sin 3hffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c2 cos2 3h
p sin b

p
6

�
� 1

3
cos�1ðc cos 3hÞ

�
:

ð16Þ
It should be noted that cð0Þ ¼ cðp=3Þ ¼ 0 and that eS and eS? are unit norm, coaxial and normal to each

other tensors. 4 Coaxiality and orthogonality are immediate properties, whereas the proof that jeS?j ¼ 1 is
facilitated when the following identities are kept into account
ote that ceS? ¼ 0 at h ¼ 0; p=3. This can be deduced from the fact that jeS?j ¼ 1 and c ¼ 0 for h ¼ 0; p=3 or, alternatively, can be

directly observing that for h ¼ 0;p=3 the deviatoric stress can be generically written as fS1;�S1=2;�S1=2g, unless all

uent) permutations of components.
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eS3 � 1

2
eS � cos 3h

3
ffiffiffi
6

p I ¼ 0; , eS2 � eS2 ¼ 1

2
; ð17Þ
the former of which is the Cayley–Hamilton theorem written for eS. Let us consider now from (14) the unit-

norm yield function gradient
Q ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 þ b2 þ c2

p Iþ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 þ b2 þ c2

p eS þ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 þ b2 þ c2

p eS?; ð18Þ
defining, for stress states satisfying F ðrÞ ¼ 0, the unit normal to the yield surface. The following limits can

be easily calculated
lim
U!0þ

Q ¼ 1ffiffiffi
3

p I; lim
U!1�

Q ¼ � 1ffiffiffi
3

p I; ð19Þ
so that the yield surface results to be smooth at the limit points where the hydrostatic axis is met. Moreover,

smoothness of the deviatoric section of the yield surface is proved observing that
lim
h!0;p=3

Q ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 þ b2

p Iþ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 þ b2

p eS; ð20Þ
where eS and b are evaluated at h ¼ 0 and h ¼ p=3, and noting that eS and eS? are coaxial, deviatoric tensors

so that they are represented by two orthogonal vectors in the deviatoric plane in the Haigh–Westergaard

stress space. We observe, finally, that limits (19) do not hold true when a equals 0 and 2 and that limits (20)

does not hold true when c ¼ 1. In particular, a corner appears at the intersection of the yield surface with

the hydrostatic axis in the former case and the deviatoric section becomes piecewise linear in the latter.

3.2. Reduction of yield criterion to known cases

The yield function (6)–(9) reduces to almost all 5 �classical� criteria of yielding. These can be obtained as

limit cases in the way illustrated in Table 1 where the modified Tresca criterion was introduced by Drucker

(1953), whereas the Haigh–Westergaard representation of the Coulomb–Mohr criterion was proposed by

Shield (1955). In Table 1 parameter r denotes the ratio between the uniaxial strengths in compression (taken

positive) and tension, indicated by fc and ft, respectively. We note that for real materials rP 1 and that we

did not explicitly consider the special cases of no-tension ft ¼ 0 or granular ft ¼ fc ¼ 0 materials [which
anyway can be easily incorporated as limits of (6)–(9)].

We note that the expression of the Tresca criterion which follows from (6)–(9) in the limits specified in

Table 1, was provided also by Bardet (1990) and answers––in a positive way––the question (raised by

Salenc�on, 1974) if a proper 6 form of the criterion in terms of stress invariants exists.

The Mohr–Coulomb limit merits a special mention. In fact, if the following values of the parameters are

selected
remarkable exception is the isotropic Hill (1950b) criterion, corresponding to a Tresca criterion rotated of p=6 in the deviatoric

e expression
f ðrÞ ¼ 4J 3

2 � 27J 2
3 � 36k2J 2

2 þ 96k4J2 � 64k6;
k is the yield stress under shear (i.e. k ¼ ft=2), reported in several textbooks on plasticity, is definitively wrong. This can be easily

taking a stress state belonging to one of the planes defining the Tresca criterion, but outside the yield locus, for instance, the

r1 ¼ 0;r2 ¼ �2k;r3 ¼ 2kg, corresponding to J2 ¼ 4k2 and J3 ¼ 0. Obviously, the point lies well outside the yield locus, but

s f ðrÞ ¼ 0, when the above, wrong, yield function is used.



Table 1

Yield criteria obtained as special cases of (6)–(9), r ¼ fc=ft and fc and ft are the uniaxial strengths in compression and tension,

respectively

Criterion Meridian function f ðpÞ Deviatoric function gðhÞ
von Mises a ¼ 1, m ¼ 2, M ¼ 2ft

pc
, c ¼ pc ¼! 1 b ¼ 1, c ¼ 0

Drucker–Prager a ¼ 0, M ¼ 3ðr�1Þffiffi
2

p
ðrþ1Þ, c ¼

2fc
3ðr�1Þ, pc ¼ fcm ! 1 As for von Mises

Tresca As for von Mises, except that

M ¼
ffiffiffi
3

p
ft

pc

b ¼ 1, c ! 1

Modified Tresca As for Drucker–Prager, except that

M ¼ 3
ffiffiffi
3

p
ðr � 1Þ

2
ffiffiffi
2

p
ðr þ 1Þ

As for Tresca

Coulomb–Mohr As for Drucker–Prager, except that

M ¼
3 r cos b p

6
� p

3


 �
� cosb p

6

� �ffiffiffi
2

p
ðr þ 1Þ

c ¼
fc cos b p

6
� p

3


 �
þ cosb p

6

� �
3r cos b p

6
� p

3


 �
� 3 cosb p

6

b ¼ 6

p
tan�1

ffiffiffi
3

p

2r þ 1
; c ! 1

Modified Cam-clay m ¼ 2, a ¼ 1, c ¼ 0 As for von Mises

Table

Deviat

Crit

Low

Upp

Otto
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a ¼ 0; c ¼
fc cos b p

6
� p

3


 �
þ cos b p

6

� �
3r cos b p

6
� p

3


 �
� 3 cos b p

6

; M ¼
3 r cos b p

6
� p

3


 �
� cos b p

6

� �ffiffiffi
2

p
ðr þ 1Þ

; ð21Þ
and then the limits
c ! 1; pc ¼ fcm ! 1; ð22Þ
are performed, a three-parameters generalization of Coulomb–Mohr criterion is obtained, which reduces to

the latter criterion in the special case when b is selected in the form specified in Table 1 (yielding an

expression noted also by Chen and Saleeb (1982)). The cases reported in Table 1 refer to situations in which

the criterion (6)–(9) reduces to known yield criteria both in terms of function f ðpÞ and of function gðhÞ. It is
however important to mention that the Lode�s dependence function gðhÞ reduces also to well-known cases,

but in which the pressure-sensitivity cannot be described by the meridian function (7). These are reported in
Table 2. It is important to mention that the form of our function gðhÞ, Eq. (9), was indeed constructed as a

generalization of the deviatoric function introduced by Ottosen (1977).

3.3. A comparison with experiments

A brief comparison with experimental results referred to several materials is reported below. We limit the

presentation to a few representative examples demonstrating the extreme flexibility of the proposed model

to fit experimental results. In particular, we concentrate on the meridian section, whereas only few examples
2

oric yield functions obtained as special cases of (9)

erion Deviatoric function gðhÞ
er convexity (Rankine) b ¼ 0, c ! 1

er convexity b ¼ 2, c ! 1

sen b ¼ 0, 06 c < 1
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are provided for the deviatoric section, which has a shape so deformable and ranging between well-known

forms that fitting experiments is a-priori expected. Results on the biaxial plane r1 � r2 are also included. All

values of material parameters defining the yield function (6)–(9) employed to fit experimental data may be

useful as a reference and are reported in Appendix A.
Typical of soils are the experimental results reported in Fig. 5, on Aio dry sand and Weald clay, taken,

respectively, from Yasufuku et al. (1991, their Fig. 10a) and Parry (reported by Wood, 1990, their Fig. 7.22,

so that pe is the equivalent consolidation pressure in Fig. 5(b)). Note that the upper plane of the graphs

refers to triaxial compression ðh ¼ p=3Þ, whereas triaxial extension is reported in the lower part of the

graphs ðh ¼ 0Þ. It may be concluded from the figure that experimental results can be easily fitted by our

function f ðpÞ, still maintaining a smooth intersection of the yield surface with p-axis.
In addition to soils, the proposed function (6)–(9) can model yielding of porous ductile or cellular

materials, metallic and composite powders, concrete and rocks. To further develop this point, a comparison
with experimental results given by Sridhar and Fleck (2000) ––their Figs. 5(b) and 9(c)––relative to ductile

powders is reported in Fig. 6. In particular, Fig. 6(a) is relative to an aluminum powder (Al D0 ¼ 0:67,
D ¼ 0:81 in Sridhar and Fleck, their Fig. 5(b)), Fig. 6(b) to an aluminum powder reinforced by 40 vol.%SiC
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Fig. 6. Comparison with experimental results relative to aluminium powder (a) aluminum composite powder (b), lead powder (c) and

lead shot-steel composite powder (d), data taken from Sridhar and Fleck (2000).
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(Al-40%Sic D0 ¼ 0:66, D ¼ 0:82 in Sridhar and Fleck, their Fig. 5(b)), Fig. 6(c) to a lead powder (0% steel

in Sridhar and Fleck, their Fig. 9(c)), and Fig. 6(d) to a lead shot-steel composite powder (20% steel in

Sridhar and Fleck, their Fig. 9(c)). Beside the fairly good agreement between experiments and proposed

yield function, we note that the aluminium powder has a behaviour––different from soils and lead-based
powders––resulting in a meridian section of the yield surface similar to the early version of the Cam-clay

model (Roscoe and Schofield, 1963).

Regarding concrete, among the many experimental results currently available, we have referred to Sfer

et al. (2002, their Fig. 6) and to the Newman and Newman (1971) empirical relationship
Fig. 7.

(2002)
r1

fc
¼ 1þ 3:7

r3

fc

� �0:86

; ð23Þ
where r1 and r3 are the maximum and minimum principal stresses at failure and fc is the value of the

ultimate uniaxial compressive strength. Small circles in Fig. 7 represents results obtained using relationship
(23) in figure (a) and experimental results by Sfer et al. (2002) in figure (b); the approximation provided by

the criterion (7) and (8) is also reported as a continuous line.

As far as rocks are concerned, we limit to a few examples. However, we believe that due to the fact that

our criterion approaches Coulomb–Mohr, it should be particularly suited for these materials. In particular,

data taken from Hoek and Brown (1980, their pages 143 and 144) are reported in Fig. 8 as small circles for

two rocks, chert (Fig. 8(a)) and dolomite (Fig. 8(b)).

A few data on polymers are reported in Fig. 9––together with the fitting provided by our model––

concerning polymethil methacrylate (Fig. 9(a)) and an epoxy binder (Fig. 9b), taken from Ol�khovik (1983,
their Fig. 5), see also Altenbach and Tushtev (2001, their Figs. 2 and 3).

Finally, our model describes––with a different yield function––the same yield surface proposed by

Deshpande and Fleck (2000) to describe the behaviour of metallic foams. In particular, the correspondence

between parameters of our model (6)–(9) and of the yield surface proposed by Deshpande and Fleck (2000,

their Eqs. (2) and (3)) is obtained setting
b ¼ 1; c ¼ 0; m ¼ 2; a ¼ 1;
and assuming the correlations given in Table 3.
The proposed function (6)–(9) is also expected to model correctly yielding of porous ductile metals. As a

demonstration of this, we present in Fig. 10 a comparison with the Gurson (1977) model. The Gurson yield

function has a circular deviatoric section so that b ¼ 1 and c ¼ 0 in our model, in addition, we select
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(b).



Fig. 8. Comparison with experiments for rocks. Chert (a) and dolomite (b), data taken from Hoek and Brown (1980).
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Fig. 9. Comparison with experimental results for polymers. Methacrylate (a) and an epoxy binder (b), data taken from Ol�khovik
(1983).

Table 3

Correspondence between parameters of (6)–(9) and Deshpande and Fleck (2000) yield functions––the latter shortened as �DF model�––
to describe the behaviour of metallic foams

Model (6)–(9) DF model

M c pc Y a

DF model Y , a 2a Y
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

3

� 	2r
Y
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

3

� 	2r
– –

Model (6)–(9) M , pc, c – – – cM

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M

6
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Fig. 10. Comparison with the Gurson model at different values of void volume fraction f .
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a ¼ 1; m ¼ 2; pc ¼ c ¼ rM
2

3q2
cosh�1 1þ q3f 2

2fq1
; M ¼ rM

2

pc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q3f 2 � 2fq1

p
; ð24Þ
where f is the void volume fraction (taking the values {0.01, 0.1, 0.3, 0.6} in Fig. 10), rM is the equivalent

flow stress in the matrix material and q1 ¼ 1:5, q2 ¼ 1 and q3 ¼ q21 are the parameters introduced by

Tvergaard (1981, 1982). A good agreement between the two models can be appreciated from Fig. 10,

increasing when the void volume fraction f increases.

As far as the deviatoric section is regarded, we limit to two examples––reported in Fig. 11––concerning

sandstone and dense sand, where the experimental data have been taken from Lade (1997, their Figs. 2 and

9(a)).

Experimental data referred to the biaxial plane r3 ¼ 0 for grey cast iron and concrete (taken respectively
from Coffin and Schenectady, 1950 their Fig. 5 and Tasuji et al., 1978, their Figs. 1 and 2) are reported in

Fig. 12.
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4. On convexity of yield function and yield surface

Convexity of the yield function (6)–(9) within the range of parameters (10) and (11) was simply stated in

Section 3 and still needs a proof. This will be given at the end of the present section as an application of a
general proposition relating convexity of yield functions and surfaces that is given below.

We begin noting that while convexity of yield function implies convexity of the corresponding yield

surface, the converse is usually false, namely, convexity of the level set of a function is unrelated to con-

vexity of the function itself. As an example, let us consider the non-convex yield function
7 As

prescri

conseq

implies
f ðp; qÞ ¼ p4

a4
� p2

a2
þ q2

b2
; 06

p
a
6 1; ð25Þ
(where a and b are material parameters having the dimension of stress) which corresponds to a convex yield

surface f ðp; qÞ ¼ 0, Fig. 13. After the pioneering work of De Finetti (1949), it became clear that convexity

of every level set of a function represents its quasi-convexity, a property defining a class of functions much

broader than the class of convex functions. In more detail, let us consider a function f ðxÞ : U ! R, with U
being a convex set, and its level sets
La ¼ fx 2 U jf ðxÞ6 ag; ð26Þ
so that:
f is quasi-convex if the level sets La are convex for every a 2 R.

Now, the above definition of quasi-convexity is equivalent (Roberts and Varberg, 1973) to the definition
f ½kxþ ð1þ kÞy�6 maxff ðxÞ; f ðyÞg; 8x; y 2 U ; 8k 2 ½0; 1�; ð27Þ
and, if f is continuous and differentiable, to
f ðyÞ6 f ðxÞ ) rf ðxÞ � ðx� yÞP 0; 8x; y 2 U : ð28Þ
Convexity of the yield surface can be either accepted on the basis of experimental results, or on some

engineering argumentation, such as for instance Drucker�s postulate. Obviously, a convex yield locus can be

expressed as a level set of a function, that generally may lack convexity and, even, quasi-convexity. For
example, the level sets of function (25) are given in Fig. 13. It can be observed that while f ðp; qÞ ¼ 0 may

perfectly serve as a (convex) yield surface, the corresponding yield function even lacks quasi-convexity. 7 It

is true that, in principle, a convex yield function can always be found to represent a convex yield surface,

but to find this in a reasonably simple form may be an hard task. In other words, a number of yield

functions that were formulated as an interpolation of experimental results still need a proof of convexity,

even in cases where the corresponding yield locus is convex. The propositions that will be given below set

some basis to provide these proofs.

4.1. A general result for a class of yield functions

The yield function (6)–(9) presented in Section 3 may be viewed as an element of a family of models

specified by the generic form (6). This family includes, among others, the models by Gudehus (1973),

Argyris et al. (1974), Willam and Warnke (1975), Eekelen (1980), Lin and Bazant (1986), Bardet (1990),

Ehlers (1995), Men�etrey and Willam (1995), Christensen (1997) and Christensen et al. (2002).
noted by Franchi et al. (1990), definition (28) is very similar to Drucker�s postulate. However, Drucker�s postulate merely

bes the so-called normality rule of plastic flow and convexity of yield surface (Drucker, 1956, 1964). Quasi-convexity becomes a

uence of Drucker�s postulate only in the special case––considered by Franchi et al. (1990)––in which convexity of yield surface

convexity of all level sets of the corresponding function.
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A general result is provided below showing that for the range of material parameters for which the

Haigh–Westergaard representation of a yield surface (13) is convex, the function is also convex.
Proposition 1. Convexity of the yield function (6) is equivalent to convexity of the meridian and deviatoric

sections of the corresponding yield surface (13) in the Haigh–Westergaard representation. In symbols:
convexity of F ðrÞ ¼ f ðpÞ þ q
gðhÞ () f 00 P 0; and g2 þ 2g02 � gg00 P 0; ð29Þ
where gðhÞ is a positive function.

Proof. It is a well-known theorem of convex analysis (Ekeland and Temam, 1976) that the sum of two

convex functions is also a convex function. Since q, p and h are independent parameters, failure of convexity

of f ðpÞ or q=gðhÞ implies failure of convexity of F ðrÞ and therefore convexity of both f ðpÞ and q=gðhÞ are
necessary and sufficient conditions for convexity of F ðrÞ.

Now, let us first analyze f ðpÞ. The fact that convexity of f ðpÞ as a function of r is equivalent to convexity
of the meridian section follows from linearity of the trace operator, in view of the fact that p ¼ �trr=3.

Second, the fact that convexity of q=gðhÞ as function of r is equivalent to the convexity of the deviatoric

section follows from the three lemmas listed below. h
Lemma 1 (Hill, 1968). Convexity of an isotropic function of a symmetric (stress) tensor r is equivalent to

convexity of the corresponding function of the principal (stress) values ri ði ¼ 1; 2; 3Þ. In symbols, given:
/ðrÞ ¼ ~/ðr1; r2; r3Þ; ð30Þ

then:
D
o/
or

� DrP 0 ()
X3
i¼1

D
o~/
ori

Dri P 0; ð31Þ
where D denotes an ordered difference in the variables, so that, denoting with A and B two points in the tensor

space
D
o/
or

� Dr ¼ o/
or






rA

�
� o/

or






rB

�
� ðrA � rBÞ; ð32Þ
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D
o~/
ori

Dri ¼
o~/
ori







frA

1
;rA

2
;rA

3
g

0@ � o~/
ori







frB

1
;rB

2
;rB

3
g

1AðrA
i � rB

i Þ; i ¼ 1; 2; 3: ð33Þ
Proof. That convexity of / implies convexity of ~/ is self-evident. The converse is not trivial and a proof was

given by Hill (1968) with reference to an elastic strain energy function. The proof, omitted here for brevity,
was later obtained also by Yang (1980) with explicit reference to a yield function. h

Lemma 2. Given a generic isotropic function / of the stress that can be expressed as
/ðr1; r2; r3Þ ¼ ~/ðS1; S2Þ; ð34Þ

where S1 and S2 are two of the principal components of deviatoric stress, i.e.
S1 ¼
1

3
ð2r1 � r2 � r3Þ; S2 ¼

1

3
ð�r1 þ 2r2 � r3Þ; ð35Þ
convexity of /ðr1; r2; r3Þ is equivalent to convexity of ~/ðS1; S2Þ.

Proof. The proof follows immediately from the observation that the relation (35) between fS1; S2g and

fr1; r2; r3g is linear. h

Lemma 3. Convexity of
q
gðhÞ ð36Þ
as a function of S1, S2 is equivalent to the convexity of the deviatoric section in the Haigh–Westergaard space:
g2 þ 2g02 � gg00 P 0: ð37Þ
Proof. The Hessian of (36) is
o2q=gðhÞ
oSioSj

¼ 1

g3
g2

o2q
oSioSj

�
þ qð2g02 � gg00Þ oh

oSi

oh
oSj

� gg0
oq
oSi

oh
oSj

�
þ oq
oSj

oh
oSi

þ q
o2h

oSioSj

��
; ð38Þ
where i and j range between 1 and 2 and all functions q and h are to be understood as functions of S1 and S2
only. Derivatives of q may be easily calculated to be
oq
oSi

¼ 2Si � ð�1Þimi;
o2q

oSioSj
¼ 27

4q3
mimj; ð39Þ
where indices are not summed and vector m has the components
fmg ¼ fS2;�S1g: ð40Þ
The derivatives of h can be performed through cos 3h, Eq. (3)1, noting that
oh
oSi

¼ �1

3 sin 3h
ocos3h
oSi

;

o2h
oSioSj

¼ �1

3 sin 3h
cos 3h

sin2 3h

ocos3h
oSi

ocos3h
oSj

�
þ o2 cos 3h

oSioSj

�
;

ð41Þ
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so that
oq
oSi

oh
oSj

þ oq
oSj

oh
oSi

þ q
o2h

oSioSj
¼ �1

sin 3h
o2q cos 3h
oSioSj

�
� cos 3h

o2q
oSioSj

þ q
cos 3h

sin2 3h

ocos3h
oSi

ocos3h
oSj

�
; ð42Þ
where
ocos3h
oSi

¼ 9
ffiffiffi
3

p
sin 3h
2q2

mi;
o2q cos 3h
oSioSj

¼ �272
J3
q6

mimj: ð43Þ
A substitution of (43) into (42) yields
oq
oSi

oh
oSj

þ oq
oSj

oh
oSi

þ q
o2h

oSioSj
¼ 0; ð44Þ
so that we may conclude that the Hessian (38) can be written as
o2q=gðhÞ
oSioSj

¼ 27

4

g2 þ 2g02 � gg00

 �

q3g3
mimj: ð45Þ
Positive semi-definiteness of the Hessian (45) is condition (37), which, in turn, represents non-negativeness

of the curvature (and thus convexity) of deviatoric section. h

4.2. Applications of Proposition 1

The scope of this section is on one hand to prove the convexity of function (6)–(9) within the range (10)

and (11) of material parameters, on the other hand to show that Proposition 1 is constructive, in the sense

that can be used to invent convex yield functions. Let us begin with the first issue.

4.2.1. The proposed yield function (6)–(9)

First, we show that f ðpÞ, Eq. (6), is a convex function of p (so that the meridian section is convex) and,

second, that the deviatioric section described by gðhÞ, Eq. (9), is convex for the range of material parameters
listed in (10) and (11). Therefore, as a conclusion from Proposition 1, function F ðrÞ results to be convex.

A well-known result of convex analysis (Ekeland and Temam, 1976) states that function f ðpÞ is convex if
and only if the restriction to its effective domain (i.e. U 2 ½0; 1�) is convex. Moreover, the function U
appearing in (8)1 is a linear function of p so that convexity of f ðpÞ can be inferred from convexity of the

corresponding function, say ~f , of U. Introducing for simplicity the function
hðUÞ ¼ ðU� UmÞ½2ð1� aÞUþ a�; ð46Þ

the convexity of function ~f ðUÞ reduces to the condition
½h0ðUÞ�2 � 2h00ðUÞhðUÞP 0; ð47Þ
where
h0ðUÞ ¼ ð1� mUm�1Þ½2ð1� aÞUþ a� þ 2ð1� aÞðU� UmÞ;
h00ðUÞ ¼ �mðm� 1ÞUm�2½2ð1� aÞUþ a� þ 4ð1� aÞð1� mUm�1Þ:

ð48Þ
Fulfillment of Eq. (47) can be now easily proven considering the inequality
h00ðUÞ6 4ð1� aÞð1� mUm�1Þ; 8U 2 ½0; 1�: ð49Þ
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It remains now to show convexity of q=gðhÞ. To this purpose, Proposition 1 can be employed, through

substitution of (9) into the convexity condition equation (37), thus yielding
Table

Condit

0 <

b6
1

gðhÞ þ
3c cos 3hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2 cos2 3h

p sin b
p
6

�
� 1

3
cos�1ðc cos 3hÞ

�
P 0; ð50Þ
where h 2 ½0; p=3� and gðhÞ is given by Eq. (9). For values of c belonging to the interval specified in (10)7,

condition (50) can be transformed into
sin
bp
6

�
� 4

3
x
�
þ 2 sin

bp
6

�
þ 2

3
x
�
P 0; ð51Þ
with x 2 ½cos�1 c; p� cos�1 c� and then into
�1þ 2 cos zþ 2 cos2 z
2 sin zð1� cos zÞ sin b

p
6
þ cos b

p
6
P 0; ð52Þ
with z 2 ½2=3 cos�1 c; 2=3ðp� cos�1 cÞ�, an inequality that can be shown to be verified within the interval of

b specified in (11) and thus also within its subinterval (10)6.

4.2.2. Generating convex yield functions

Proposition 1 can be easily employed to build convex yield functions within the class described by Eq.

(6). The simplest possibility is to maintain f ðpÞ in the form (7) and change the deviatoric function Eq. (9).

As a first proposal, we can introduce the following function
gðhÞ ¼ ½1þ bð1þ cos 3hÞ��1=n
; ð53Þ
instead of (9). This describes a smooth deviatoric section approaching (without reaching) the triangular

(Rankine) shape when parameters n > 0 and bP 0 are varied. The yield function is convex within the range

of parameters reported in Table 4 (see Appendix B for a proof). The yield function defined by Eqs. (7) and
(53) does not possess the extreme deformability of (7) and (9) and does not admit Mohr–Coulomb and

Tresca as limits, but results in a simple expression. The performance of the deviatoric shape of the yield

surface is analyzed in Fig. 14, where the limit of convexity corresponds to b ¼ 1 and n ¼ 3. The curves

reported in Fig. 3(a) are relative to the values of b ¼ 0, 1, 2, whereas for Fig. 3(b) n takes the values {1, 3,

5}.

A limitation of the yield surface described by Eqs. (7) and (53) is that the deviatoric section cannot be

stretched until the Rankine limit. This can be easily emended assuming for gðhÞ our expression (9) or that

proposed by Willam and Warnke (1975) (see also Men�etrey and Willam, 1995)
gðhÞ ¼ 2ð1� e2Þ cos hþ ð2e� 1Þ½4ð1� e2Þ cos2 hþ 5e2 � 4e�0:5

4ð1� e2Þ cos2 hþ ð2e� 1Þ2
; ð54Þ
where e 2�0:5; 1� is a material parameter, yielding in the limit e ! 0:5 the Rankine criterion and the von

Mises criterion when e ¼ 1.
4

ions for the convexity of deviatoric yield function (53)

n6 11=3 nP 11=3
n

9� 2n b6

0@� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9ðn� 2Þ2

n2ð4n� 13Þ

s 1A�1
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Fig. 14. Deviatoric section (53): effects related to the variation of b (a) and n (b).
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It is already known that the deviatoric section of the yield surface corresponding to Eq. (54) remains

convex for any value of the parameter e ranging within the interval �0:5; 1�, so that––from Proposition 1––

the function (6) equipped with the definition (54) of the function gðhÞ is also convex.

As a final example, we can employ function gðhÞ defined by the expression proposed by Gudehus (1973)

and Argyris et al. (1974)
gðhÞ ¼ 2k
1þ k þ ð1� kÞ cos 3h ; ð55Þ
where k 2�0:777; 1� is a material parameter.

Otherwise, we can act on the meridian function. For instance, we can modify a Drucker–Prager crite-

rion––which again fits in the framework described by Eq. (6)––obtaining a non-circular deviatoric section

described by Eq. (9)
F ðrÞ ¼ �Cðp þ cÞ þ q cos b
p
6

�
� 1

3
cos�1ðc cos 3hÞ

�
; ð56Þ
where c is the yield strength under isotropic tension and C is a material parameter, or by Eq. (53)
F ðrÞ ¼ �Cðp þ cÞ þ q½1þ bð1þ cos 3hÞ�1=n; ð57Þ

or by the Gudehus/Argyris condition (55)
F ðrÞ ¼ �Cðp þ cÞ þ q
2k

ð1þ k þ ð1� kÞ cos 3hÞ: ð58Þ
It may be noted that the yield criterion (58) has been employed by Laroussi et al. (2002) to describe the

behaviour of foams. In all the above cases, Proposition 1 ensures that for the range of parameters in which

the Haigh–Westergaard representation of the yield surface is convex, the yield function is also convex.
4.3. A note on the behaviour of concrete and a generalization of Proposition 1

In the modelling of concrete there is some experimental evidence that the deviatoric section starts close

to the Rankine limit for low hydrostatic stress component and tends to approach a circle, when confine-

ment increases. This effect has been described by Ottosen (1977) through a model which does not fit the

general framework specified by Eq. (6) and can be written in our notation in the form
F ðrÞ ¼ Aq2 þ B
q

gðhÞ þ C � p; ð59Þ
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where A > 0, BP 0 and C6 0 are constants and gðhÞ is in the form (9) with b ¼ 0. The criterion is therefore

defined by four parameters.

The above-expression (59) of the yield function suggests the following generalization of Proposition 1:

Proposition 2. Convexity of the yield function
F ðrÞ ¼ Aq2 þ B
q

gðhÞ þ f ðpÞ; ð60Þ
where A and B are positive constants, is equivalent to
f 00 P 0; and g2 þ 2g02 � gg00 P 0; ð61Þ
which in turn is equivalent to the convexity of the surface
B
q

gðhÞ þ f ðpÞ ¼ 0; ð62Þ
in the Haigh–Westergaard stress space.

Proof. Let us begin assuming that (61) hold true. In this condition Proposition 1 ensures that f ðpÞ and

q=gðhÞ are convex functions of r, so that (60) results the sum of three convex functions and its convexity

follows. Vice versa, failure of convexity of f ðpÞ immediately implies failure of convexity of (60) since p is

independent of h and q. Finally, let us assume that condition (61)2 is violated, for a certain value, say ~h, of h.
The Hessian of
Aq2 þ Bq=gðhÞ; ð63Þ
as a function of two components of deviatoric stress S1 and S2, is given by matrix (45) summed to a constant

and positive definite matrix
3A
2 1

1 2

� �
þ B

27

4

ðg2 þ 2g02 � gg00Þ
q3g3

S2
2 �S1S2

�S1S2 S2
1

� �
: ð64Þ
Considering now the Haigh–Westergaard representation, it is easy to understand that we can keep h ¼ ~h
fixed and change S1 and consequently S2 so that S1=S2 remains constant. In this situation, while g and its

derivatives remain fixed, the quantity
S2
1

q3
; ð65Þ
in matrix (64) tends to þ1 when S1 tends to zero. Therefore, violation of (61)2 cannot be compensated by a

constant term and function (60) is not convex. h

Proposition 2 provides the conditions for convexity of the Ottosen criterion. Moreover, the same

proposition allows us to generalize our yield function (6)–(9) adding a q2 term as in the Ottosen criterion.

This leads immediately to
F ðrÞ ¼ Aq2 þ Bq cos b
p
6

�
� 1

3
cos�1ðc cos 3hÞ

�
þ f ðpÞ; ð66Þ
where f ðpÞ is given by Eq. (7).
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5. Conclusions

In the modelling of the inelastic behaviour of several materials, the knowledge of a smooth, convex yield

surface approaching known-criteria and possessing an extreme shape variation to fit experimental results
may be of undoubted utility. In particular, the fact that a yield function can continuously describe a

transition between yield surfaces typical of different materials is of fundamental importance in modelling

the de-cohesion due to damage of rock-like materials and the increase in cohesion during forming of

powders. In the present paper, such a yield function has been proposed, which is shown to be capable of an

accurate description of the behaviour of a broad class of materials including soils, concrete, rocks, powders,

metallic foams, porous materials, and polymers. Moreover, in order to analyze convexity of our function,

we have provided certain general results, holding for a broad class of yield conditions, which permit to infer

convexity of the yield function from convexity of the yield surface.
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Appendix A. Values of material parameters employed to fit experimental results in Section 3.3

The values of the material parameters of the proposed yield function (6)–(9) employed to model the

experimental data reported in Figs. 5–9, 11 and 12 are listed in Table 5.

Appendix B. Convexity of function (53)

We show that the deviatoric section described by Eq. (53) is convex, within the range of parameters

reported in Table 4. To this purpose, a substitution of Eq. (53) into condition (37) yields
Table

Values

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
a cos2ð3hÞ þ b cosð3hÞ þ cP 0; h 2 ½0; p=3�; ðB:1Þ
5

of material parameters employed to fit experimental results in Figs. 5–9, 11 and 12

M pc c m a b c

5(a) 0.5 0.961 MPa 0 2.6 0.1 0 0.9999

5(b) 0.48 – 0 5 0.2 0 0.66

6(a) 1.1 – 0 3.2 1.9 – –

6(b) 0.76 – 0 3.4 1.85 – –

6(c) 0.94 – 0 1.8 0.8 – –

6(d) 0.64 – 0 3 1.5 – –

7(a) 0.82 pc ¼ 100fc c ¼ 0:1fc 2 0.05 – –

7(b) 0.76 pc ¼ 100fc c ¼ 0:2fc 2 0.026 – –

8(a) 1.18 pc ¼ 50fc c ¼ 0:04fc 2 0.04 – –

8(b) 0.61 pc ¼ 30fc c ¼ 0:02fc 2 0.3 – –

9(a) 0.40 1000 MPa 110 MPa 2 0.5 – –

9(b) 0.51 800 MPa 80 MPa 2 0.62 – –

11(a) – – – – – 0 0.843

11(b) – – – – – 0 0.862

12(a) 0.78 pc=fc ¼ 5:7 c=fc ¼ 0:3 2 0.1 0 0.6

12(b) 0.86 pc=fc ¼ 3:5� 107 c=fc ¼ 0:08 1· 106 1·)10�8 0.12 0.98
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where the coefficients a, b and c are:
a ¼ b2ðn2 � 9Þ; ðB:2Þ
b ¼ bnð1þ bÞð9� 2nÞ; ðB:3Þ
c ¼ n2ð1þ bÞ2 þ 9b2ð1� nÞ: ðB:4Þ
Since condition (B.1) is bounded by a parabola, it suffices to analyze the position of its vertex to obtain the

values of parameters reported in Table 4.
References

Altenbach, H., Tushtev, K., 2001. A new static failure criterion for isotropic polymers. Mech. Compos. Mater. 37, 475–482.

Argyris, J.H., Faust, G., Szimmat, J., Warnke, P., Willam, K., 1974. Recent developments in the finite element analysis of prestressed

concrete reactor vessels. Nucl. Eng. Des. 28, 42–75.

Bardet, J.P., 1990. Lode dependences for isotropic pressure-sensitive elastoplastic materials. J. Appl. Mech. 57, 498–506.

Bishop, J.F.W., Hill, R., 1951. A theory of the plastic distorsion of a polycrystalline aggregate under combined stresses. Phil. Mag. 42,

414–427.

Chen, W.F., Saleeb, A.F., 1982. Constitutive equations for engineering materials: elasticity and modelling. Wiley & Sons, New York.

Christensen, R.M., 1997. Yield functions/failure criteria for isotropic materials. Proc. R. Soc. Lond. 453, 1473–1491.

Christensen, R.M., Freeman, D.c., DeTeresa, S.J., 2002. Failure criteria for isotropic materials, applications to low-density types. Int.

J. Solids Struct. 39, 973–982.

Coffin, L.F., Schenectady, N.Y., 1950. The flow and fracture of a brittle material. J. Appl. Mech. 17, 233–248.

De Finetti, B., 1949. Sulle stratificazioni convesse. Ann. Mat. Pura Appl. 30, 173–183.

Deshpande, V.S., Fleck, N.A., 2000. Isotropic constitutive models for metallic foams. J. Mech. Phys. Solids 48, 1253–1283.

Drucker, D.C., 1953. Limit analysis of two and three dimensional soil mechanics problems. J. Mech. Phys. Solids 1, 217–226.

Drucker, D.C., 1956. On uniqueness in the theory of plasticity. Quart. Appl. Math. XIV, 35–42.

Drucker, D.C., 1964. On the postulate of stability of material in the mechanics of continua. J. de M�ecanique 3, 235–249.

Duvaut, G., Lions, J.L., 1976. Inequalities in Mechanics and Physics. Springer-Verlag, Berlin.

Eekelen, H.A.M., 1980. Isotropic yield surface in three dimensions for use in soil mechanics. Int. J. Numer. Anal. Meth. Geomech. 4,

89–101.

Ehlers, W., 1995. A single-surface yield function for geomaterials. Arch. Appl. Mech. 65, 246–259.

Ekeland, I., Temam, R., 1976. Convex Analysis and Variational Problems. North-Holland, Amsterdam.

Franchi, A., Genna, F., Paterlini, F., 1990. Research note on quasi-convexity of the yield function and its relation to Drucker

postulate. Int. J. Plasticity 6, 369–375.

Gudehus, G., 1973. Elastoplastische Stoffgleichungen f€ur trockenen Sand. Ingenieur-Archiv. 42, 151–169.

Gurson, A.L., 1977. Continuum theory of ductile rupture by void nucleation and growth: part I, yield criteria and flow rules for porous

ductile media. Int. J. Engng. Mat. Tech. 99, 2–15.

Haythornthwaite, R.M., 1985. A family of smooth yield surfaces. Mech. Res. Commun. 12, 87–91.

Hill, R., 1950a. The Mathematical Theory of Plasticity. Clarendon Press, Oxford.

Hill, R., 1950b. Inhomogeneous Deformation of a Plastic Lamina in a Compression Test. Phil. Mag. 41, 733–744.

Hill, R., 1967. The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids 15, 79–95.

Hill, R., 1968. On constitutive inequalities for simple materials––I. J. Mech. Phys. Solids 16, 229–242.

Hisieh, S.S., Ting, E.C., Chen, W.F., 1982. A plasticity-fracture model for concrete. Int. J. Solids Struct. 18, 181–197.

Hoek, E., Brown, E.T., 1980. Underground excavations in rock. The Institution of Mining and Metallurgy, London.

Lade, P.V., 1997. Modelling the strengths of engineering materials in three dimensions. Mech. Cohes. Frict. Mat. 2, 339–356.

Lade, P.V., Kim, M.K., 1995. Single hardening constitutive model for soil, rock and concrete. Int. J. Solids Struct. 32, 1963–1978.

Laroussi, M., Sab, K., Alaoui, A., 2002. Foam mechanics: nonlinear response of an elastic 3D-periodic microstructure. Int. J. Solids

Struct. 39, 3599–3623.

Lin, F.-B., Bazant, Z., 1986. Convexity of smooth yield surface of frictional material. ASCE J. Engng. Mech. 112, 1259–1262.

Lode, W., 1926. Versuche €uber den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen Kupfer und Nickel. Z.

Physik. 36, 913–939.

Mandel, J., 1966. Contribution theorique a l�etude de l�ecrouissage et des lois de l�ecoulement plastique. In: Proc. 11th Int. Congr.

Appl. Mech. (Munich 1964), Springer-Verlag, pp. 502–509.



2878 D. Bigoni, A. Piccolroaz / International Journal of Solids and Structures 41 (2004) 2855–2878
Matsuoka, H., Nakai, T., 1977. Stress–strain relationship of soil based on the ‘‘SMP’’. In: Proc. Specialty Session 9, IX ICSMFE,

Tokyo, pp. 153–162.

Mollica, F., Srinivasa, A.R., 2002. A general framework for generating convex yield surfaces for anisotropic metals. Acta Mater. 154,

61–84.

Naghdi, P.M., Essenburg, F., Koff, W., 1958. An experimental study of initial and subsequent yield surfaces in plasticity. J. Appl.

Mech. 25, 201–209.

Naghdi, P.M., Srinivasa, A.R., 1994. Some general results in the theory of crystallographic slip. Z. Angew. Math. Phys. 45, 687–732.

Men�etrey, Ph., Willam, K.J., 1995. Triaxial failure criterion for concrete and its generalization. ACI Struct. J. 92, 311–318.

Newman, K., Newman, J.B., 1971. Failure theories and design criteria for plain concrete. In: Te�eni, M. (Ed.), Structure, Solid

Mechanics and Engineering Design, Proc. 1969 Southampton Civil Engineering Conf., Wiley Interscience, New York, pp. 963–995.

Ol�khovik, O., 1983. Apparatus for testing of strength of polymers in a three-dimensional stressed state. Mech. Compos. Mater. 19,

270–275.

Ottosen, N.S., 1977. A failure criterion for concrete. J. Eng. Mech. Div.-ASCE 103, 527–535.

Paul, B., 1968. Macroscopic criteria for plastic flow and brittle fracture. In: Liebowitz, H. (Ed.), Fracture an Advanced Treatise, vol. I.

Academic Press, New York, pp. 313–496.

Phillips, A., 1974. Experimental plasticity. Some thoughts on its present status and possible future trends. In: Sawczuk, A.A. (Ed.),

Symposium on the Foundations of Plasticity (Warsaw, 1972), Nordhoff International Publishing, Leyden, pp. 193–233.

Roberts, A.W., Varberg, D.E., 1973. Convex Functions. Academic Press, New York.

Roscoe, K.H., Burland, J.B., 1968. On the generalized stress–strain behaviour of �wet� clay. In: Heyman, J., Leckie, F.A. (Eds.),

Engineering Plasticity. Cambridge University Press, Cambridge.

Roscoe, K.H., Schofield, A.N., 1963. Mechanical behaviour of an idealised �wet� clay. In: Proc. European Conf. on Soil Mechanics and

Foundation Engineering, vol. 1. Wiesbaden (Essen: Deutsche Gesellshaft f€ur Erd- und Grundbau e. V.), pp. 47–54.

Rudnicki, J.W., Rice, J.R., 1975. Conditions for the localization of deformations in pressure-sensitive dilatant materials. J. Mech.

Phys. Solids 23, 371–394.

Salenc�on, J., 1974. Applications of the Theory of Plasticity in Soil Mechanics. Wiley & Sons, Chichester.

Schofield, A.N., Wroth, C.P., 1968. Critical State Soil Mechanics. McGraw-Hill Book Company, London.

Sfer, D., Carol, I., Gettu, R., Etse, G., 2002. Study of the behaviour of concrete under triaxial compression. ASCE J. Engng. Mech.

128, 156–163.

Shield, R.T., 1955. On Coulomb�s law of failure in soils. J. Mech. Phys. Solids 4, 10–16.

Sridhar, I., Fleck, N.A., 2000. Yield behaviour of cold compacted composite powders. Acta Mater. 48, 3341–3352.

Tasuji, M.E., Slate, F.O., Nilson, A.H., 1978. Stress–strain response and fracture of concrete in biaxial loading. ACI J. 75, 306–312.

Truesdell, C., Noll, W., 1965. The non-linear field theories of mechanics. In: Fl€ugge, S. (Ed.), Encyclopedia of Physics: III/3. Springer-

Verlag, Berlin.

Tvergaard, V., 1981. Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fracture 17, 389–407.

Tvergaard, V., 1982. On localization in ductile materials containing spherical voids. Int. J. Fracture 18, 237–252.

Willam, K.J., Warnke, E.P., 1975. Constitutive model for the triaxial behaviour of concrete. Presented at the seminar on Concrete

structures subjected to triaxial stresses, ISMES, Bergamo, pp. 1–30.

Wood, D.M., 1990. Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press.

Yang, W.H., 1980. A useful theorem for constructing convex yield functions. J. Appl. Mech. 47, 301–303.

Yasufuku, N., Murata, H., Hyodo, M., 1991. Yield characteristics of anisotropically consolidated sand under low and high stress. Soils

Foundat. 31, 95–109.


	Yield criteria for quasibrittle and frictional materials
	Introduction
	A premise on Haigh-Westergaard representation
	A new yield function
	Smoothness of the yield surface
	Reduction of yield criterion to known cases
	A comparison with experiments

	On convexity of yield function and yield surface
	A general result for a class of yield functions
	Applications of Proposition 1
	The proposed yield function (6)-(9)
	Generating convex yield functions

	A note on the behaviour of concrete and a generalization of Proposition 1

	Conclusions
	Acknowledgements
	Values of material parameters employed to fit experimental results in Section 3.3
	Convexity of function (53)
	References


