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Chapter 1

Surprising Instabilities of Simple
Elastic Structures

In this chapter, examples of structures buckling in tension are presented, where no
compressed elements are present, slightly different from those previously proposed
by the authors. These simple structures exhibit interesting postcritical behaviors; for
instance, multiple configurations of vanishing external force are evidenced in one
case. Flutter instability as induced by dry friction is also considered in the Ziegler
pendulum, with the same arrangement presented by Bigoni and Noselli [BIG 11], but
now considering the dynamical effects due to the mass of the wheel, which was
previously neglected. It is shown that, for the values of rotational inertia pertinent to
our experimental setup, this effect does not change the overall behavior, so that
previous results remain fully confirmed.

1.1. Introduction

The first example of an elastic structure buckling for a tensile dead load, without
elements subject to compression, has been provided by Zaccaria et al. [ZAC 11].
This finding opens new possibilities in the design of compliant structures. In this
chapter, we present a single-degree-of-freedom structure (different from - and
slightly generalizing - that found by [ZAC 11]), an example that shows that the
previously investigated systems are elements of a broad set of structures behaving in
a, perhaps, "unexpected way". Moreover, we present a simple generalization of a
single-degree-of-freedom system, further revealing the effects of the constraint's

Chapter written by Davide BIGONI, Diego MISSERONI, Giovanni NOSELLI and
Daniele ZACCARIA.



2 Nonlinear Physical Systems

curvature analyzed by Bigoni et al. [BIG 12b]. The presence of an additional spring
has an important effect on the post-critical behavior, so that two configurations (in
addition to the trivial one) corresponding to a null external force are found.

Finally, we reconsider the frictional instability setup analyzed by Bigoni and
Noselli [BIG 11], where a follower tangential load is transmitted by friction at a
freely rotating wheel mounted at the end of a Ziegler pendulum [ZIE 77]. The
application of a follower tangential load to a structure was a problem previously
unsolved [ELI 05, KOI96] , but important from both a theoretical (see, for
instance, [KIR 10]) and applicative point of view (for instance , to energy
harvesting [DOA 11]). Within the same setting considered by Bigoni and
Noselli [BIG 11], we now analyze the effects on dynamics of the inertia of the wheel
and we show that, for the values of inertia pertinent to the experimental setting used,
these effects are negligible, so that previous results are now fully confirmed.

~.2. Buckling in tension

Structures buckling under tensile dead loading (without elements subject to
compression) were discovered by Zaccaria et al. [ZAC 11], who pointed out the
simple example of the single-degree-of-freedom system as shown in Figure 1.1.

They also developed the concept by replacing the rigid rods with deformable
elements. Though the finding by Zaccaria et al. [ZAC 11] might seem an isolated
case, we state, on the contrary, that a broad class of structures buckling in tension can
be invented. To substantiate this statement, we provide, as an example, the new
single-degree-of-freedom system as shown in Figure 1.2, where two rigid rods are
connected through a roller constrained to slide orthogonally to the left rod.

Figure 1.1. A single-deg.
under tensile dead loac

For this structure, bifurcation load and equilibrium paths can be calculated by
considering the bifurcation mode illustrated in Figure 1.2 and defined by the rotation
angle ¢ . The elongation of the system and the total potential energy are, respectively,

t1 = l (_1 -1) ,
cos ¢

1 2 (1 )W(¢)=-k ¢ -Fl ~-1 ,
2 cos ~

[1.1]

so that the force at equilibrium satisfies

F = k¢ cos
2

¢.
l sin e

[1.2]

Figure 1.2. Bifurcation ofa sing !
(the rods of length l are rigid a
along the line orthogonal to the ,
attached to the hinge on the left, 1
bifurcation and softening in tens
denotes an initial imperfection
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Figure 1.1. A single-degree-of-freedom structural model showing bifurcation
under tensile dead loading, where two rigid rods are connected through a

slider [ZAC 11J
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Figure 1.2. Bifurcation ofa single-degree-of-freedom elastic system under tensile dead loading
(the rods of length l are rigid and connected through a roller constrained to smoothly slide
along the line orthogonal to the rigid rod on the left). A rotational elastic spring of stiffness k,
attached to the hinge on the left, provides the elastic stiffness. The bifurcation diagram showing
bifurcation and softening in tension is reported on the right, where the angle cPo = {1° , 10°}
denotes an initial imperfection
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1.3. The effect of constraint's curvature

so that the force-rotation relation, shown by the dashed line in Figure 1.2 for ¢o = 1°
and ¢o = 10°, is obtained.

In this structure , the constraint is assumed to be smooth and described in the X I -X2

reference system as X 2 = l f( 'ljJ), with 'ljJ = x - ] ] E [0,1] and f'(O) = o.

Figure 1.3. Post-critica
structure. The structur

[1.3]

1 2 (1 1)W(¢ ,¢o) = -k(¢-¢o) -Fl ---- ,
2 cos ¢ cos ¢o

F = k (¢ - ¢o) cos2 ¢
l sin ¢ ,

Bifurcation loads can be calculated by considering a deformed mode defined by
the rotation angle ¢, assumed to be positive when clockwise. The potential energy of
the system is

Analysis of the second-order derivative of the strain energy reveals that the trivial
solution is stable up to the critical load Fer = kll , while the non-trivial path,
evidencing softening, is unstable. For an imperfect system, characterized by an initial
inclination of the rods ¢o, we obtain

The strong effects related to the curvature of the profile on which a structure end
is constrained to slide have been highlighted by Bigoni et al. [BIG 12b], who showed
how to exploit a constraint to induce two critical loads (one in tension and one in
compression) in a single-degree-of-freedom elastic structure. This structure, as shown
in Figure 1.3, can be easily generalized by including an additional elastic spring on
the hinge sliding along the profile, as shown in Figure 1.4.

[1.4]

so that the axial force at equilibrium becomes
When the profile of the c

signed curvature X= i' 1[1 +
and 1.6, the axial load at equi

F = _ kl ¢ + k2 (3 (¢ ) (3' (¢ ) .
l [sin ¢ + cos ¢ f' (sin ¢ )]

[1.5]
kl ¢V1

F=------
l sin ¢(X cos ¢
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Figure 1.3. Post-critical behavior in tension ofa single-degree-of-freedom
structure . The structure has two critical loads, one in tension and one in

compression [BIG 12b]

:in ¢)] , [1.4]

When the profile of the constraint is circular, with radius R; and dimensionless
signed curvature X= 1'1/[1 + (1')2]3/2 = ±l/R; as shown in the inset of Figures 1.5
and 1.6, the axial load at equilibrium satisfies

[1.5]
F = _ k1¢)I- X2 sin

2
¢ +

l sin¢(x cos¢ + )1 - X2 sin 2 ¢)

k2 [¢ + sin-1 (X sin ¢) - 7r H(X¢ )]

l sin ¢

[1.6]
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where H denotes the Heaviside step function . Since (3(cP) = - tan-1 [I' (sin cP )] - cP,
the critical load of the system is

Equation [1.10] has been t

£ is discontinuous at cP = 0), 1

k 1 + k2 [1 + f"(0)]2
l[l + f"(O)]

[1.7]
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[1.9]
k 1 (cP - cPo) + k2 [(3 (cP) - (3 (cPo) ] (3' (cP)

l [sin cP + cos cP f' (sin cP) ]

- F l [cos cP - f(sin cP) - cos cPo+ f (sin cPo) ] , <1>0=0°, perf.

F=

so that the axial force at equilibrium is

which for a circular profile becomes

F=- k1(¢- ¢oh/1 - x2sin2 ¢ +
l sin ¢( x cos¢ + )1- X2 sin2 ¢)

k2 [¢ - ¢o + sin-1(x sin¢) + sign(x¢)sin - 1(x sin ¢o) - 7fH(X¢)]
l sin¢

[1.10]

Figure 1.6. The ,
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Equation [1.10] has been used for X= ±4, with an "S-shaped" constraint (so that
Xis discontinuous at ¢ = 0), to obtain the results shown in Figures 1.5 and 1.6.
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Figure 1.6. The force versus end displacement behavior ofa
single-degree-of-freedom structure, with an "S-shaped" constraint, X= ±4 and
k2/k1 = 0.5, evidencing two buckling loads, one compressive and one tensile.

Note that at points labelled "2" and "5 ", the externalforce does not vanish
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1.4. The Ziegler pendulum made unstable by Coulomb friction

The first experimental evidence of flutter and divergence instability related to dry
friction has recently been provided by Bigoni and Noselli [BIG 11]. In their
experimental study, essentially based on the Ziegler's double pendulum [ZIE 77],
Coulomb friction was exploited in order to provide the system with a tangential
follower force of frictional origin. This goal was achieved by endowing the double
pendulum with a freely rotating wheel, constrained to slide with friction on a
horizontal plate (see Figure 1.7 for the experimental setting and Figure 1.8 for a
sequence of images revealing flutter instability) .

Figure 1.7. The experimental setting used by Bigoni and Noselli [BIG 11] to show the
connection between Coulomb friction and dynamic instabilities such as flutter and divergence.

A Ziegler double pendulum is endowed at its tip with a freely rotating wheel, constrained to
slide on a horizontal plate and providing the system with a follower force offrictional origin

Note that, to generate a force of the frictional type, a transversal reaction between
plate and wheel is needed, which during the experiments was created by hanging a
dead weight W on the left of the structure, used as a lever.

In their experimental study, Bigoni and Noselli [BIG 11] analyzed the stability of
the double pendulum using the five different wheels, as shown in Figure 1.9; however,
in their numerical analyses, the wheel was assumed to be massless, so the aim of this
section is to show the effects on the system's dynamic of a heavy wheel.

Figure 1.8. A sequence q
handycam at 25 frames p,
exhibiting flutter instabil

0.40 s and the til

Figure 1.9. The five different
Noselli [BIG 11]. (1) Aluminum v
thickness 5 mm, weight 3 g; (2) (
5 mm, weight 18 g; (3) cylindrical
22 g; (4) steel wheel with V-shap
weight 17 g; (5) cylindrical steel \1

When the mass of the whet
cos a2 el +sin a2 e2) force P ,



omb friction

'gence instability related to dry
d Noselli [BIG 11]. In their
's double pendulum [ZIE 77],
the system with a tangential

ieved by endowing the double
i to slide with friction on a
1 setting and Figure 1.8 for a

!Noselli [BIG 11] to show the
ies such as flutter and divergence.
ly rotating wheel, constrained to
Follower force offrictional origin

a transversal reaction between
ents was created by hanging a
ver.

G 11] analyzed the stability of
shown in Figure 1.9; however,
be massless, so the aim of this
of a heavy wheel.

Surprising Instabilities of Simple Elastic Structures 9

Figure 1.8. A sequence of images (taken from a movie recorded with a Sony
handycam at 25 frames per second) of the structure shown in Figure 1.7 and
exhibiting flutter instability. The whole sequence of images was recorded in

0.40 s and the time interval between two images was 0.08 s

Figure 1.9. The five different wheels used in the experimental tests by Bigoni and
Noselli [BIG 11]. (1) Aluminum wheel with V-shaped cross-section, external diameter 15 mm,
thickness 5 mm, weight 3 g; (2) cylindrical steel wheel, external diameter 25 mm, thickness
5 mm, weight 18 g; (3) cylindrical steel wheel, external diameter 25 mm, thickness 6 mm weight
22 g; (4) steel wheel with V-shaped cross-section, external diameter 25 mm, thickness 6 mm,
weight 17 g; (5) cylindrical steel wheel, external diameter 25 mm, thickness 10 mm, weight 36 g

When the mass of the wheel is taken into account, this is subject to a radial (e r =

cos a2 el +sin a2 e2) force P and to a tangential (e, = - sin a2 el +cos a2 e2) force
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T applied at the contact point with the moving plate as shown in Figure 1.10. These
forces can be expressed in component form as

The assumption of Coulomb friction at the contact point between the wheel and
the plate allows us to write

~A~
I k,
~ -------------- /1-------

In equation [1.14], mb m2
l-i , the mass of the rod of leng
and I w r are, respectively, the
vertical axis and the principal
and its rotation axis.

Figure 1.10. A three-degree-of-fr
orthogonal follower force T provi
which moves with velocity ofmod,
connected through two rotational
wheel has mass m -», radius r -» an

Now imposing condition [
6a3, we arrive at the system (
dynamics of the system

[1.11]

[1.13]

[1.12]if 6; = 0 ,

if 6; = 0 ,

if 6; # 0 ,

p = - P cos a 2el - P sin a 2 e2 ,

T = -Tsina2 el + Tcos a2 e2.

6; = vp cos a2 - h sin(al - a2)al ,

6; = rv» sin a2 + h cos(al - a2)al + l2a2 .

where the two scalar quantities P and T have been introduced. Note that P and T are
positive quantities when the forces acting on the wheel are directed as in Figure 1.10,
and, in general, their absolute values equal to IPI and ITI, respectively.

where R is the vertical reaction applied at the wheel and orthogonal to the moving
plane, J.Ls and J.Ld are the static and dynamic friction coefficients , respectively, and 6;
and 6~ are the radial and the tangential components of the velocity of the wheel with
respect to the plate, which can be expressed in the forms

The system is characterized by three-degrees-of-freedom, denoted by aI, a2 and
a3, and the latter representing the rotation of the wheel about its axis (see Figure 1.10).
Moreover, m w , r w and hw are the mass , the radius and the thickness of the wheel.

The principle of virtual works, denoting the scalar product with " . ", is written as

p. 6C + T· (6C + rw 6a 3 e.) - (klal + ,Blad 5al +

- [k2(a2 - a l ) + ,B2(a2 - a l )](6a2 - 6al) +
[1.14]

holding for every virtual displacement 6C, 6GI and 6G2, functions of the virtual
rotations &~l , 6c~2 and 6a 3.
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[1.11]
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Figure 1.10. A three-degree-of-freedom system subject to a tangential follower force P and
orthogonal follower force T provided by afreely rotating wheel sliding withfriction on a plate,
which moves with velocity ofmodulus V p . The two rods, of linear mass density p, are rigid and
connected through two rotational springs of stiffness k 1 and k2 and viscosity {31 and {32. The
wheel has mass m «, radius T w and thickness hw[1.12]. t .

Cp + CY3 T w = 0 ,

.oduced. Note that P and Tare
l are directed as in Figure 1.10,
TI, respectively.

and orthogonal to the moving
efficients, respectively, and 6;
: the velocity of the wheel with
[1S

[1.13]

In equation [1.14], mI, m2 and m w are, respectively, the mass of the rod oflength
h, the mass.of the rod of length l2 and the mass of the wheel, whereas h 3 , 123 , 1w 3

and 1w r are, respectively, the principal moment of inertia of the two rods about the
vertical axis and the principal moment of inertia of the wheel about the vertical axis
and its rotation axis.

Now imposing condition [1.14] and invoking the arbitrariness of 8al , 8a2 and
8a3, we arrive at the system of three nonlinear differential equations, governing the
dynamics of the system

eedom, denoted by aI, a2 and
about its axis (see Figure 1.10).
l the thickness of the wheel.

product with " . ", is written as

[1.15]

[1.14]

8G 2 , functions of the virtual
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We note from equations [1.12]-[1.15] that ab a2, a3, P and T are the five
unknowns, function of time. Moreover, in the case in which sliding between the
wheel and the plate is active, a situation corresponding to 6; # 0, one additional
condition has to be imposed in order to find the solution, namely, that the force
applied to the wheel, P + T, must be directed parallel , but opposite to the relative
plate/wheel velocity, C+ vp el + a3 Tw et, a condition yielding

P
T

[1.16]

New examples of structure
been given, slightly generalizi:
broad set of systems behaving j

and practically realized.

The effects of a constraini
shown that the introduction (
spring strongly affects the P
multiple equilibrium configu:
magnitude.

The nonlinear system of equations has been numerically solved, and for this
purpose the function "NDSolve" of Mathematica 6.0 has been used, together with a
viscous smooth approximation of the friction law [1.12] (see [ODE 85, BIG 11]).

In Figure 1.11, a comparison is found (in terms of al and a2) between the
numerical results for the case of a massless (solid curves) and a heavy (dashed curve)
-wheel. These results have been obtained for a dead weight W corresponding to the
onset of flutter instability and assuming wheel number 3 as shown in Figure 1.9.
From the results shown in Figure 1.11, we can conclude that the inertia of the wheel
only slightly contributes to the motion of the system and can therefore be neglected.

Finally, we have presented
by dry friction in the Ziegler
related to a heavy frictional c
these are negligible for the
experimental setting, but may

The structures considered i
and artificial materials, which
nanoscale.
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542 3
Time [s]

2 3
Time [s]

-0.25

0.25

Figure 1.11. The instantaneous rotations 0:1 and 0:2 of the Ziegler pendulum 's rods,
numerically obtained as functions oftime, for massless (solid curves) and heavy (dashed curves,
the assumed wheel is number 3 in Figure 1.9) wheels. The results have been obtained for
a dead load W at the onset of flutter, a plate velocity vp = 50 mm/s and initial conditions
0:1 = 0:2 = 10

Instability in tension, effects of a constraint's curvature and follower loads induced
by dry Coulomb friction are new phenomena that open an important perspective in the
design of structures that can become unstable at prescribed loads.

1.5. Conclusions
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New examples of structures exhibiting buckling under tensile dead loading have
been given, slightly generalizing previous findings by the authors and showing that a
broad set of systems behaving in a counterintuitive and innovative way can be invented
and practically realized.

The effects of a constraint's curvature have been further investigated: we have
shown that the introduction on a curved constraint profile of an elastic, torsional
spring strongly affects the post-critical behavior of the system and may lead to
multiple equilibrium configurations, corresponding to an external force of zero
magnitude.

Finally, we have presented also a detailed analysis of flutter instability as induced
by dry friction in the Ziegler double pendulum. In this system, dynamical effects
related to a heavy frictional constraint have been determined. The results show that
these are negligible for the values of a constraint's inertia pertinent to our
experimental setting, but may become interesting in other situations.

The structures considered in our study can be combined to design flexible systems
and artificial materials, which may find broad applications, even at the micro- and
nanoscale.

1.6. Acknowledgments

Financial support from the European FP7 - Intercer2 project (PIAP-GA-2011­
286110-INTERCER2) is gratefully acknowledged.

1.7. Bibliography

[BIG 11] BIGONI D ., NOSELLI G. , "Experimental evidence of flutter and divergence
instabilities induced by dry friction" , Journal of the Mechanics and Physics of Solids ,
vol. 59,no. 10,pp.2208-2226,2011.

[BIG 12a] BIGONI D ., Nonlinear Solid Mechanics. Bifurcation Theory and Material
Instability , Cambridge University Press, 2012.

[BIG 12b] BIGONI D., MISSERONI D. , NOSELLI G. , et aI., "Effects of the constraint's
curvature on structural instability: tensile buckling and multiple bifurcations", Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences , vol. 468,
no. 2144,pp. 2191-2209, 2012.

[DOA 11] DOARE 0 ., MICHELIN S. , "Piezoelectric coupling in energy-harvesting fluttering
flexible plates: linear stability analysis and conversion efficiency", Journal of Fluids and
Structures, vol. 27, no. 8, pp. 1357-1375,2011.

[ELI 05] ELISHAKOFF 1., "Controversy associated with the so-called 'follower force': critical
overview", Applied Mechanics Reviews , vol. 58, no. 2, pp. 117-142,2005.



14 Nonlinear Physical Systems

[KIR 10] KIRILLOV O.N., VERHULST E , "Paradoxes of dissipation-induced destabilization
or who opened Whitney's umbrella?", ZeitschriJt fUr Angewandete Mathematik und
Mechanik, vol. 90,no.6,pp.462-488,2010.

[KGI96] KOlTER W.T. , "Unrealistic follower forces", Journal of Sound and Vibration,
vol. 194, no. 4,pp. 636-638, 1996.

[ODE 85] ODEN J.T. , MARTINS J.A.C., "Models and computational methods for dynamic
friction phenomena", Computer Methods in Applied Mechanics and Engineering, vol. 52,
no. 1-3,pp.527-634, 1985.

[SUG 95] SUGIYAMA Y, KATAYAMA K. , KINO! S., "Flutter of a cantilevered column under
rocket thrust", Journal ofAerospace Engineering, vol. 8, no. 1, pp. 9-15, 1995.

[ZAC 11] ZACCARIA D., BIGONI D., NOSELLI G. , et al., "Structures buckling under tensile
dead load", Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences , vol. 467 , no. 2130 , pp. 1686-1700,2011.

[ZIE 77] ZIEGLER H ., Principles of Structural Stability, Birkhauser Verlag, Basel, Stuttgart,
1977.

WKB Sob
Equilibr

In this chapter, we present
problems for the Schrodinger
obtained in a series of papers I
properties of the underlying cl:
have studied the case where th
Hamiltonian flow. This occurs,
Much is encoded in what we
which we describe here in detai
Cauchy problem is that of the
point.

2.1. Introduction

In this chapter, we sum up I

BON 11, BON, ALE 08] cone
semi-classical Schrodinger ope

P = -h2!1 +V(x) ,

Chapter written by Jean-Fran.
Maher ZERZERI.


	Title
	Chapter1
	0196_001
	0196_003
	0196_005
	0196_007
	0196_008
	0196_009
	0196_010
	0196_012
	0196_013


