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a b s t r a c t

Dynamics of thick interfaces separating different regions of elastic materials is

investigated. The interfaces are made up of elastic layers or inertial truss structures.

The study of evanescent mode propagation and transmission properties reveals that the

discrete nature of structural interfaces introduces unusual filtering characteristics in the

system, which cannot be obtained with multilayered interfaces. An example of

metamaterial is presented, namely, a planar structural interface, which acts as a flat

lens, therefore evidencing the negative refraction and focussing of elastic waves.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of structural interface has been introduced by Bigoni and Movchan (2002) to model a situation broadly
encountered in natural and artificial systems, where a real structure—possessing finite-thickness—joins continuous
materials. In elastostatics, Bertoldi et al. (2007a, b) have shown that the introduction of structural interfaces involves a
non-local mechanical behaviour and allows the achievement of special mechanical properties (such as mendering of elastic
stress concentrations), particularly in composite materials and in the related problem of bridged cracks (Bertoldi et al.,
2007c). Independent results supporting the findings by Bertoldi et al. have been presented by Tang et al. (2005), with
reference to the problem of adhesion, and by Sumigawa et al. (2008), who provide experimental observation of imperfect
interfaces consisting of nano-springs (Robbie et al., 1996, 1999).

Bigoni and Movchan (2002) noticed that a thick interface2 possesses a mass that can strongly influence dynamic
characteristics, both for structural interfaces and for interfaces made up of inertial elastic layers. In this field, their
preliminary calculations performed for Bloch–Floquet waves in stratified structured media demonstrate that structural
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2 The adjective ‘thick’ is used here to contrast with the known models of zero-thickness interfaces, see for a description Bertoldi et al. (2007a).

Zero-thickness interfaces have been tailored to provide a relation between traction and jump in displacement, without consideration of inertial effects.
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interfaces can be designed to determine unusual filtering properties for elastic waves.3 Similar calculations on periodic
structures and composites have been performed by various authors,4 however they all address periodic structures, while a
structural interface commonly occurs ‘isolated’, say, in a non-periodic manner. Therefore, an aim of the present article is to
characterize dynamic response of non-periodic structural interfaces, made up of a finite-thickness stack of elastic layers, or
combinations of elastic layers alternated with truss-like structures (so that we assign the name ‘structural interface’ to all
interfaces in which a discrete structure is present). Filtering properties of these structures are compared, giving evidence of
behaviours typical of discreteness, via the transfer matrix techniques (used to analyze interaction of electromagnetic
waves with stratified structures by Lekner, 1994 and Felbacq et al., 1998), which enable us to characterize localization,
filtering and polarization properties of the given discrete-continuous systems within a given frequency range. In particular,
the following results are found.

� Structural interfaces are shown to provide filtering properties which remain unchallenged employing layered
interfaces. It is shown for instance that a structural interface can be designed to filter an extremely narrow range of
frequencies, while infinite frequencies are always transmitted employing layered interfaces. Moreover, a class of slow
waves propagating within structural and layered interfaces with a low reflection coefficient is identified. Although in
the low frequency limit the reflection properties of both interfaces are similar, a visible difference is found in reflection
of slow waves for frequencies corresponding to the optical bands in the dispersion diagrams.
� Simple models for the analysis of propagation of evanescent waves within structural and layered interfaces are

provided, so that the frequencies can be found corresponding to the maximum exponential decay, in other words, to the
maximum wave attenuation. These simple models represent the necessary tool for the design of optimal insulating
devices.
� Periodic systems are known to support waves of low group velocities, so that they can be used as delay line devices.

However, the reflection of the elastic energy at a thick interface is an important issue limiting the performance of these
devices. Simple models are shown to provide the way to tune the reflection and transmission coefficients of these
systems within a given frequency range.

In parallel with the above-mentioned studies, topical research has grown upon the so-called ‘metamaterials’, which for
electromagnetic waves are composite nanomaterials structured on a scale smaller than the wavelength (Pendry et al.,
1999) and for elastic waves are material exhibiting exponential localization of vibration modes for a certain frequency
range (Movchan and Guenneau, 2004; Movchan and Slepyan, 2007; Guenneau et al., 2007) and displaying ‘negative mass
density effects’ (Milton and Willis, 2007).

Metamaterials can also be tailored to produce the so-called ‘wave cloaking’, namely, a system guiding waves around an
object to make it ‘invisible’ (Pendry et al., 2006; Leonhardt and Philbin, 2006) or a negatively refracting shell displaying
anomalous resonances hiding a set of dipole sources located nearby (Milton and Nicorovici, 2006; Milton et al., 2008). In
particular, the first experimental observation of acoustic cloaking was reported by Farhat et al. (2008) for linear surface
waves in a fluid, while a numerical proof of cloaking of coupled in-plane pressure and shear waves was reported by Brun
et al. (2009).

An aim of the present article is to show that structural interfaces can be designed to produce metamaterials for

elastic waves, so that the two concepts are bridged. Therefore, as electromagnetic metamaterials were experimentally
shown to lead to a negative index of refraction (Smith and Kroll, 2000),5 and to focus acoustic signals through structured
slab lens (Guenneau et al., 2007; Ding et al., 2007; Sukhovich et al., 2008; Zhang et al., 2009), we extend these results to

elastic waves, providing an example of a structural interface that can exhibit negative refraction and produce imaging of a

vibrating source. This result leads to a possible design of a flat interface, evidencing focussing of elastic signal of a desired
frequency.

The structure of the present article is as follows. Geometry of a structural interface and a certain class of
asymptotic approximations are given in Section 2. The transfer matrix method is applied in Section 3 to investigate the
dispersion, filtering and transmission properties of structural and layered interfaces of finite width. Finally, focussing
of the elastic signal via interaction with a structural interface and the effects of negative refraction are addressed in
Section 4.

3 Parnell (2007), Bigoni et al. (2008) and Gei et al. (2009) have shown that dynamical properties can be strongly influenced by prestress, which may

be used as a tuning parameter in the design of filtering devices for elastic waves.
4 Elastic Bloch–Floquet waves in inhomogeneous lattice structures were studied by Martinsson and Movchan (2003), addressing band gap properties

for both truss and frame like structures. Spectral properties of elastic waves in a doubly periodic array of coated inclusions were analyzed by Platts and

Movchan (2004). In particular, for the case of soft anisotropic coating, the effective conditions of imperfect interface were imposed on the inclusion

boundaries, and it has been shown that the stiffness parameters of such a coating can be chosen in such a way that the inclusions become neutral in the

long-wave limit. The influence of perturbation of the geometry for periodic stacks on the band gap structure was analyzed by Guenneau et al. (2008).
5 Negative index refraction makes a focussing flat lens possible, as theorized by Veselago (1968) and further can lead to sub-wavelength imaging

(Pendry, 2000).
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2. Structural interface and the corresponding homogenization approximation

We begin with the description of the structural interface, which is used to filter or slow down elastic waves within
certain frequency intervals. In particular, we follow Bigoni and Movchan (2002), where inertial interfaces have been
introduced in the model of coated inclusions and the corresponding dynamic properties have been linked to the theory of
Bloch–Floquet waves in structured media.

We select the geometry of the structural interface as shown in Fig. 1. In the figure, the basic unit cell (of thickness d) is
shown on the right and is made up of two elastic layers of thickness d0/2 (mass density r0 and shear modulus m0) and two
massless truss-structures connected through a stiff layer (sketched black), which ‘condenses’ the mass m of the structure.
The structural interface joins two isotropic elastic media (of mass density ra and rb and shear stiffness ma and mb) and is
made up of a p-times repetition of the unit cell (p 2 Nþ \f0g), so that the interface has a thickness pd.

We note the following two special cases: (i) the interface is reduced to an inertial truss structure made up of two
massless truss structures containing a ‘heavy’ layer and dividing an elastic space, when p=1 and the elastic layers of the
unit cell are identical to the elastic media jointed by the interface; (ii) a periodic structure alternating elastic layers with
inertial truss-structures is obtained when p-1.

Direct analytical treatment of the interfacial structure shown in Fig. 1 is awkward due to structural complexity, but can
be pursued numerically (and such calculations will in particular be used to obtain results on negative refraction presented
in Section 4). In addition to the numerical approach, we feel crucial for design purposes to provide simple analytical
approximations of the interface, useful in the characterization of the dynamical properties of the structure in a wide range
of the frequency spectrum. The simplest approximation of the unit cell shown in Fig. 1 on the right is the interface shown
in Fig. 2a consisting of a two-layer continuous elastic system and labeled ‘layered interface’ in the following. This can be
conveniently employed in the case of shear plane waves polarized parallel to the interface, that will be addressed in
Section 3.

For more general purposes, the simplified unit cell shown in Fig. 2b can be employed and this will be addressed as
‘structural interface’. When compared to the layered model, the structural system evidences special properties, that will be
addressed later.

In order to represent an approximation of the unit cell shown in Fig. 1 on the right, the stiffness of the system has to be
calibrated. In particular, as indicated in Fig. 1 on the right, the elementary cell of the structure, periodic in the vertical
direction, includes thin elastic bars inclined at a certain angle Z. Following the scheme of Fig. 2b, the simplified structure is
reduced to a longitudinal spring of effective stiffness

g¼ EA

d2
1

sinZ cos2 Zþ ĝ, ð1Þ

where E is the Young modulus and A the area per unit thickness of the bars forming the truss structure and ĝ is a correction
factor introduced to take into account the flexural behaviour of the bars. We also have an inertial, stiff layer within the

Fig. 1. Layered structural interface of thickness pd joining two elastic media with shear modulus mj and density rj ðj¼ a,bÞ. The interface is obtained as a

p-times repetition of the unit cell shown on the right.

0 0 1

Fig. 2. Approximations to the interface unit cell shown in Fig. 1 on the right. (a) Bilayered unit cell: the continuous phases have shear moduli m0 and m1,

densities r0 and r1 and thicknesses d0 and d1, respectively. (b) Structural unit cell: the continuous phase has shear modulus m0, density r0 and total

thickness d0, the spring–mass system has stiffness g and mass m.
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structural interface, which is ‘condensed’ in the concentrated mass m shown in Fig. 2b. Since the layer is assumed rigid
when compared to the stiffness of the truss-like structure, it does not affect Eq. (1), at least in a first approximation.

To prove the consistency of the approximation (1), we consider the structure shown in Fig. 1, made periodic taking the
number of unit cells p-1. Anticipating results obtained in Section 3.2, we show here that the in-plane elastic Bloch–
Floquet waves (Eq. (17)) propagating orthogonally and polarized parallel to the interfaces (i.e. in antiplane shearing—

Eq. (2)) through the infinite structure have dispersion properties similar to those found in the simpler structure obtained
adopting the unit cell shown in Fig. 2b, with the choice (1) and ĝ ¼ 0 of the homogenization parameters. In particular, the
dispersion equation (15) for the structure reported in Fig. 2b can be obtained in a closed analytical form and then solved
numerically with respect to the circular frequency o for fixed values of the Bloch parameter f. Results are reported in
Fig. 3 and compared with a finite element calculation of the whole structure.6

It is noted that the acoustic branches reported in Figs. 3a and b (the latter is a detail of the former) for the structural
interface and its ‘spring/mass’ approximation are almost identical, whereas a small discrepancy is observed only in the first
optical branch. For higher frequencies there is an optimal agreement between finite-element and analytical results up to
the point in which the eigenmodes of the low density inclined bars are excited by the wave propagation.

This illustrative computation suggests that the simple geometry of Fig. 2b can be used to approximate low frequency
wave propagation within solids containing the structural interface shown in Fig. 1.

In the sequel of this paper, we shall use the transfer matrix method to analyze not only infinite structures, but also finite
thickness interfaces, which can be designed to slow down waves of certain frequency and polarization.

3. Filtering by layered metamaterials

In order to design a structural interface to possess desired filtering properties, analytical formulae become of primary
importance, so that we approximate the structural interface shown in Fig. 1 replacing the unit cell shown on the right with
the structural unit cell shown in Fig. 2b and with the layered cell shown in Fig. 2a.

Instead of limiting our study only to Bloch–Floquet waves, we address the problem using the transfer matrix
method, which has been developed in the recent literature and extended to the related homogenization problems
(see Lekner, 1994; Felbacq et al., 1998). A brief outline of the method is given below, with emphasis on the contribution of
the discrete part of the structure. Finally, we draw a comparison between the transmission properties of structural
(Fig. 2b) and layered (Fig. 2a) interfaces, showing that unusual properties, such as negative refraction, can be attributed to
the structural model. This leads to the construction of flat lens devices, which may refocus elastic waves generated by a
finite size source on the other side of the structural slab, a problem attacked in Section 4 with a numerical
technique directly on the structure shown in Fig. 1 and showing the reason to refer to materials of such type as
‘metamaterials’.

Fig. 3. Dispersion diagram for a truss-like structural interface compared to the spring/mass model. (a) Initial six frequency pass bands. (b) Detail of

(a): the acoustical branch and the first optical branch. Analytical solution is given in solid lines, numerical simulations in dashed lines.

6 A finite element model (built in Comsol& ver. 3.5) has been used to simulate the Bloch–Floquet waves propagating within the two-dimensional

structure of Fig. 1. For the case when the wave vector is aligned with the x-axis we construct the dispersion diagram, which shows the frequency o as a

function of the Bloch parameter f (see Fig. 3). The parameters used for this computation are as follows:

� elastic continua joined by the interface: E=200 MPa, n¼ 0:3, r¼ 7800 kg=m3 ,

� bars of the truss structures: E=10 MPa, n¼ 0:3, r¼ 10 kg=m3, A=0.1 m2/m, Z¼ 0:2 rad,

� inertial layers: E=2�106 MPa, n¼ 0:3, r¼ 452 273:9 kg=m3.
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3.1. Transfer matrix method for structural interfaces

Let us consider the layered structure reported in Fig. 1 with the unit cells shown in Fig. 2. For simplicity, we restrict the
analysis to antiplane harmonic shear waves propagating at normal incidence and we indicate with u(x) the component of
the displacement along the z-axis.

3.1.1. Elastic layer

The field equation of time-harmonic motion with circular frequency o for an elastic layer of thickness d, characterized
by a shear modulus m and density r is given by

@2uðxÞ

@x2
þ
r
m
o2uðxÞ ¼ 0: ð2Þ

The wave form can be expressed in terms of complex amplitudes A and B as

uðxÞ ¼ A exp ðikxÞþB exp ð�ikxÞ, ð3Þ

where i is the imaginary unit and the wave number k is related to the circular frequency by

k¼oc, c¼

ffiffiffiffi
r
m

r
, ð4Þ

so that cm¼ ffiffiffiffiffiffiffirmp is the elastic impedance and the equation of motion (2) results to be now automatically satisfied.
At the layer interfaces, located at x=x0 and x=x1=x0+d, displacements and tractions are related through the transfer

matrix [M]=mij, defined as

uðx1Þ

m@u

@x
ðx1Þ

2
4

3
5¼ m11 m12

m21 m22

" # uðx0Þ

m@u

@x
ðx0Þ

2
4

3
5: ð5Þ

Using the expression (3) we can obtain the transfer matrix in the form

M¼
cosd

sind
Q

�Qsind cosd

2
64

3
75, ð6Þ

where Q ¼ mk and d¼ kd is the phase increment.
Note that the eigenvalues of the transfer matrix (6) are

cosd7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 d�1

p
¼ expð7 idÞ: ð7Þ

3.1.2. Structural interface

We consider now a structural interface as depicted in Fig. 2b where the structural part is made up of two springs and a
concentrated mass. Now, the transfer matrix is defined to connect the displacements and forces (per unit length) on the
right to the same functions evaluated on the left, and calculations on the structural part invoking time-harmonic behaviour
allow us to obtain the matrix

M¼

g�mo2

g
2g�mo2

g2

�mo2 g�mo2

g

2
6664

3
7775, ð8Þ

which is unimodular.
The eigenvalues of the transfer matrix (8) are

1�
m

g
o27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

g
o2

m

g
o2�2

� �s
, ð9Þ

so that the dependence on the circular frequency o is algebraic for the structural interface, while it is trigonometric for a
continuous layer, as shown by Eq. (7). Moreover, the eigenvalues (9) are necessarily complex (real) at sufficiently small
(high) frequency.

3.1.3. Two-element systems

For the systems shown in Fig. 2 the transfer matrix is obtained through multiplication of the matrices corresponding
to the single elements. In particular, for the bilayer shown in Fig. 2a, we have to multiply two matrices of the type (6),
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Author's personal copy

thus obtaining

M¼

cosd0cosd1�
Q0

Q1
sind0sind1

1

Q0
sind0cosd1þ

1

Q1
cosd0sind1

�Q0sind0cosd1�Q1cosd0sind1 cosd0cosd1�
Q1

Q0
sind0sind1

2
6664

3
7775, ð10Þ

where di (i=0,1) is the phase increment of the i-th phase, and Qi ¼ miki (i=0,1).
For a structural interface made up of an elastic layer connected to a spring/mass/spring system (Fig. 2b), the structural

interface transfer matrix has the following entries:

m11 ¼
g�mo2

g
cosd0�

Q0ð2g�mo2Þ

g2
sind0,

m12 ¼
2g�mo2

g2
cosd0þ

g�mo2

gQ0
sind0,

m21 ¼�mo2cosd0þ
Q0

g ðmo2�gÞsind0,

m22 ¼
g�mo2

g
cosd0�

mo2

Q0
sind0: ð11Þ

3.1.4. p-Element systems

For a stack of p unit cells of structural (Fig. 2b) or layered (Fig. 2a) type, the transmission and reflection properties can
be obtained by simple multiplication of the unimodular unit cell matrix layer defined by Eq. (10) or (11), thus obtaining the
transfer matrix

Mp
¼

m11Up�1ðxÞ�Up�2ðxÞ m12Up�1ðxÞ

m21Up�1ðxÞ m22Up�1ðxÞ�Up�2ðxÞ

 !
, ð12Þ

where mij are the entries of the matrix (10) or (11), x=(m11+m22)/2 and Up(x) is the Chebyshev polynomial of the second
type7 or, equivalently,

UpðcosfÞ ¼

sin½ðpþ1Þf�
sinf

for jxj ¼ jcosfjo1,

ð�1Þp
sinh½ðpþ1Þx�

sinhx
for jxj ¼ jcosfj41, ðx¼ ImfÞ:

8>>><
>>>:

ð13Þ

3.2. Periodic media

We are now in a position to exploit the previous results to solve a periodic infinite medium made up of unit cells
consisting of elastic layers alternated with structural interfaces, thus recovering via another route the same results
obtained by Bigoni and Movchan (2002).

In particular, considering the two-layer system (10) as the unit cell of an infinite periodic media, we impose that the cell
behaves as a single homogeneous elastic layer to obtain the Bloch–Floquet dispersion relation. To achieve this condition,
we have to impose coincidence of the eigenvalues of transfer matrices of Eq. (6) (introducing the parameter f instead of d),
and of Eq. (10), which reduces to coincidence of the traces, since the matrices are unimodular. We obtain the condition

cosf¼ cosðc0d0oÞcosðc1d1oÞ�
1

2

Q0

Q1
þ

Q1

Q0

� �
sinðc0d0oÞsinðc1d1oÞ, ð14Þ

which corresponds to the dispersion relation obtained by Bigoni and Movchan (2002, their Eq. (38), in which their
parameter dh is now f).

In a similar vein, to analyze a periodic structure made up of an elastic layer alternated with a structure, the unit cell
shown in Fig. 2b, we impose

cosf¼
g�mo2

g
cosðc0d0oÞ�

1

2g
mo2gþ2Q2

0

Q0
�Q0

mo2

g

� �
sinðc0d0oÞ, ð15Þ

which corresponds to the dispersion relation obtained by Bigoni and Movchan (2002, their Eq. (56), in which their
parameter dh is now f).

7 U0(x)=1, U1(x)=2x, Up(x)=2xUp�1(x)�Up�2(x).
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In the dispersion equations (14) and (15), f plays the role of the Bloch–Floquet parameter, so that the nature of the
solution changes if f has to be taken real or complex. This is ruled by the trace of the transfer matrix M of the unit cell,
connecting displacements and tractions at the left x=xN and right x=xN +1 interfaces of the unit cell as

~uNþ1 ¼M ~uN , ~uN ¼ uðxNÞ,
@u

@x
ðxNÞ

� �T

, ð16Þ

so that for the Bloch–Floquet waves

~uNþ1 ¼ expð7 ifÞ ~uN , f 2 C, ð17Þ

the following different regimes can be classified as follows:

� jtrðMÞjo2: pass band condition, ~uNþ1 ¼ expð7 ifÞ ~uN , f 2 R;
� trðMÞ ¼ 72: standing wave condition, ~uNþ1 ¼ 7 ~uN , f¼ 0,p;
� jtrðMÞj42: stop band condition, ~uNþ1 ¼ 7expð�xÞ ~uN , a solution exponentially decaying, in which f¼ p�ix, or f¼ ix,

x40.

It is important to stress that

x¼ ImðfÞ ¼ logðjcosfjþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 f�1

q
Þ, ð18Þ

is the analytical expression for the decay exponent within a given stop band that has to be maximized to design the
maximum attenuation interface (to work within that given stop band).

3.2.1. Comparison between structural interfaces and two-layer systems

The results on periodic systems allow us to quantify effects connected to the presence of structural interfaces within a
continuous elastic medium. A comparison between numerical solutions and results provided by Eq. (15) has been
anticipated in Fig. 3.

Our interest is now the analysis of more detailed features. In particular, we show that although for propagating modes
at low frequencies the homogenization approximation of the structural system leads to a continuum limit described by the
layered interface of Fig. 2a, the higher frequency vibrations as well as evanescent modes may differ for the cases of layered
and structural systems. This is illustrated below by a comparative analysis of the dispersion diagrams.

In Fig. 4 the dispersion curves are plotted for layered and structural interfaces. Results for bilayered interfaces are shown
in Fig. 4a with

m0 ¼ 76:9 MPa, r0 ¼ 7800 kg=m3, d0 ¼ 0:01 m,

m1 ¼ 7:69� 103 MPa, r1 ¼ 7800 kg=m3, d1 ¼ 0:03 m, ð19Þ

for the unit interface of Fig. 2a. Fig. 4b is given for structural interfaces with m0, r0 and d0 given in Eq. (19) for the
continuous phase and

m¼ 234 kg=m2, g¼ 5130� 103 MPa=m, ð20Þ

for the structural interface, corresponding to inclined bars of Fig. 1 with

Z¼ 0:2 rad, E¼ 24:2� 103 MPa, A¼ 0:1 m2=m: ð21Þ

It is shown that the structural interface in Fig. 4b has unique properties as a result of the ‘mix’ between continuous and
discrete nature of the two layers composing the unit cell. It can transmit selected ranges of frequencies without an upper

Fig. 4. Dispersion curves and decay exponent for thick interfaces (Eqs. (14), (15) and (18)). For propagating waves solid lines indicate the normalized

angular frequency c0d0o (rad) as a function of the Bloch parameter f (rad). For non-propagating waves, dashed lines describe c0d0o (rad) versus the

decay exponent x (rad). (a) Layered interface (Eq. (19)). (b) Structural interface (Eqs. (19), (20) and (21)).
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limit. As a consequence of the introduction of the inertial truss structure, at increasing frequency o the dispersion diagram
presents narrower and narrower optical pass bands characterized by low group velocity, where the central frequency of
such branches is determined by the continuous layers, as can be easily checked from the dispersion relation (15).

The comparative analysis of the dispersion diagrams in Figs. 4a and b suggests that for the low frequencies, covering the
first three pass bands, the dispersion curves for layered and structural interfaces agree well with each other. On the other
hand, a visible difference exists for evanescent waves, even at low frequencies, which is reflected in the values of the
localization exponent x plotted dashed and correspondingly by the coordinates of the points Cj, Dj (j=1,y,4), characterizing
the ‘depth’ of the band gaps.

The decay exponent x displays a maximum at a frequency within each stop band; these maxima, labeled Cj and Dj in
Fig. 4 and reported in Table 1, correspond to the frequencies providing the maximum wave attenuation. For the structural
interface the maximum decay exponents increase at increasing frequency o, while this is not true for the layered elastic
interfaces.

Regarding the continuous layered interface, computations summarized in Fig. 4 show that, with the choice

r1d1 ¼m and 2
m1

d1
¼ g, ð22Þ

the two types of interfaces may display very similar dispersion properties at low frequencies.
On the contrary, for higher frequencies the structure of pass bands in Figs. 4a and b remains different. In particular, the

pass bands for the structural interface do not show periodicity (in the frequency spectrum of o), as one would expect in the
case of the layered medium.

3.3. Reflection and transmission properties for structural interfaces

Let us consider a structural interface, composed of a finite number of continuous-elastic and structural layers,
embedded in an infinite elastic medium, with constants ra and ma on the left of the layer and rb and mb on the right. The
incident and reflected waves on the left of the interface admit the representation

uðxÞ ¼ AIexpðikaxÞþARexpð�ikaxÞ, ð23Þ

where AI and AR are the incident and reflection amplitudes, while the transmitted wave on the right of the interface is given
by

uðxÞ ¼

ffiffiffiffiffiffi
ma
mb

s
AT expðikbxÞ, ð24Þ

with AT denoting the transmission amplitude.
The following system can be written upon the introduction of the appropriate transfer matrix characterizing the

structured slab (see Section 3.1)ffiffiffiffiffiffi
ma
mb

s
AT eikbx1

iQbAT eikbx1

" #
¼ ½M�

AIe
ikax0þARe�ikax0

iQaðAIe
ikax0�ARe�ikax0 Þ

" #
, ð25Þ

(where Qa ¼ maka and Qb ¼ mbkb), which can be solved for the amplitudes AR and AT of the reflected and transmitted waves
in the form

AR ¼
QaQbm12þm21þ iðQam22�Qbm11Þ

QaQbm12�m21þ iðQam22þQbm11Þ
e2ikax0 ,

AT ¼

ffiffiffiffiffiffi
mb

ma

s
2iQa

QaQbm12�m21þ iðQam22þQbm11Þ
eiðkax0�kbx1Þ, ð26Þ

where we have introduced the normalization AR ¼ AR=AI , AT ¼ AT=AI .
The normalized reflected R and transmitted T=1�R energies are given by

R¼ jARj
2 ¼
ðQaQbm12þm21Þ

2
þðQam22�Qbm11Þ

2

ðQaQbm12�m21Þ
2
þðQam22þQbm11Þ

2
,

Table 1

Maximum decay exponents x and corresponding normalized frequency c0d0o for the attenuation curves of Fig. 4, referred to layered (Cj) and structural

(Dj) interfaces.

C1 C2 C3 C4 D1 D2 D3 D4

x 1.76 2.29 2.04 0.74 1.82 2.67 3.15 3.49

c0d0o 2.13 4.78 7.49 9.82 2.16 4.89 7.83 10.83
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T ¼ jAT j
2 Qb

Qa
¼

4QaQb

ðQaQbm12�m21Þ
2
þðQam22þQbm11Þ

2
, ð27Þ

so that we have total transmission for R=0 (T=1) and total reflection for R=1 (T=0).
In the case of a structured slab made up of a p-repetition of the unit cells as shown in Fig. 2, the normalized reflection

and transmission amplitudes are obtained using the transfer matrix given by Eq. (10) or by Eq. (11)

AR ¼
QaQbm12þm21þ iðQaðm22�spÞ�Qbðm11�spÞÞ

QaQbm12�m21þ iðQaðm22�spÞþQbðm11�spÞÞ
e2ikax0 ,

AT ¼

ffiffiffiffiffiffi
mb

ma

s
2iQaS�1

p ðxÞe
iðkax0�kbxpÞ

QaQbm12�m21þ iðQaðm22�spÞþQbðm11�spÞÞ
, ð28Þ

with xp�x0=pd. The parameter spðxÞ ¼ Sp�1ðxÞ=Sp�2ðxÞ in Eq. (28) takes into account that the slab is made up of p unit cells.
The reflected and transmitted energies are

R¼
ðQaQbm12þm21Þ

2
þðQaðm22�spÞ�Qbðm11�spÞÞ

2

ðQaQbm12�m21Þ
2
þðQaðm22�spÞþQbðm11�spÞÞ

2
,

T ¼
4QaQbS�2

p ðxÞ

ðQaQbm12�m21Þ
2
þðQaðm22�spÞþQbðm11�spÞÞ

2
: ð29Þ

Finally, we note that, in the absence of the layer (M=I and d=0), Eqs. (26) provide the reflection and transmission
amplitudes at a perfect interface separating two infinite media of elastic contrast ma=mb, namely,

AR ¼
Qa�Qb

QaþQb
e2ikax0 , AT ¼

ffiffiffiffiffiffi
mb

ma

s
2Qa

QaþQb
eiðka�kbÞx0 , ð30Þ

and the reflected and transmitted energies, given by Eqs. (27) simplify now to

R¼
ðQa�QbÞ

2

ðQaþQbÞ
2

, T ¼
4QaQb

ðQaþQbÞ
2
: ð31Þ

3.3.1. Structural interfaces joining two elastic half spaces

We consider the elastic system described in the upper part of Fig. 5b where two different elastic half spaces (labeled a
and b as in the previous section) are joined by a structural interface made up of two springs of stiffness g and a
concentrated mass m.

In such a case, the reflected energy is

R¼
ðQa�QbÞ

2
ðg�mo2Þ

2g2þ½mo2g2�QaQbð2g�mo2Þ�2

ðQaþQbÞ
2
ðg�mo2Þ

2g2þ½mo2g2þQaQbð2g�mo2Þ�2
: ð32Þ

Fig. 5. Reflected energy R as a function of the normalized frequency o=o for: (i) a structural interface and (ii) a one-layer interface connecting semi-

infinite media a and b, with ma ¼ 10 MPa, ra ¼ 1000 kg=m3, and mb ¼ 450 MPa, rb ¼ 5000 kg=m3. Results are also compared to the situation in which the

two half spaces are jointed with a perfect contact condition (namely, without any structural or layered interface). These three situations are sketched in

part (b): structural interface with c=o ¼mo ¼ 0:287 MPa s (solid line), layered interface with m0 ¼ 50 MPa, r0 ¼ 3000 kg=m3, d0o ¼ 202:8 m=s (dashed

line) and perfect contact (dashed-dotted line).
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Note that, for given properties of the elastic half spaces ðma,mb,ra,rb) and prescribed frequency o, we can select the
stiffness of the spring and the mass of the system as

g¼o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mambrarb

4
p

, m¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimambrarb
4
p

o , ð33Þ

(corresponding to the internal resonance mode of the structural interface), so that we obtain a total transmission condition,
a property which cannot be achieved in the case of a non-inertial interface. In fact, for m=0 the reflected energy becomes

R¼
g2ðQa�QbÞ

2
þ4Q2

aQ2
b

g2ðQaþQbÞ
2
þ4Q2

aQ2
b

, ð34Þ

(reducing to R¼ 1=ð1þg2Þ if Qa ¼Qb), which is a monotonically decreasing function of the stiffness g ranging from

R¼
ðQa�QbÞ

2

ðQaþQbÞ
2

, ð35Þ

when g-1, as in Eq. (31a), to R=1 when g¼ 0 (in which case the two half spaces are disconnected). This simple result
underlines the role of the inertial effects in the interface for the reduction of the amount of energy reflection.

In the case of an interface made up of an elastic layer, the reflected energy can be calculated as

R¼
Q2

0 ðQa�QbÞ
2 cos2ðc0d0oÞþðQ2

0�QaQbÞ
2 sin2

ðc0d0oÞ
Q2

0 ðQaþQbÞ
2 cos2ðc0d0oÞþðQ2

0 þQaQbÞ
2 sin2

ðc0d0oÞ
, ð36Þ

which for given ma, mb, ra, rb, and frequency o can be zero if and only if

m0r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mambrarb

p
, d0 ¼

1

o
p
2
þnp

� � ffiffiffiffiffiffim0

r0

r
, ð37Þ

for every n 2 Nþ \f0g. Therefore, a total transmission condition can be achieved through both the structural interface and
the layer interface. However, the differences between the two systems are substantial. With reference to Fig. 5 (obtained
for ma ¼ 10 MPa, ra ¼ 1000 kg=m3, and mb ¼ 450 MPa, rb ¼ 5000 kg=m3), we see that, even for high contrast between the
elastic media, the structural interface allows us to obtain a sharp filter, leaving full transmission for the frequency o¼o
and practically truncating all higher frequencies. The interface obtained with the elastic layer realizes the total
transmission condition for infinite countable frequencies o=o ¼ 1þ2n ðn 2 Nþ \f0gÞ, and practically does not truncate
higher frequencies (R is always inferior than 0.77). This provides us with an example of a dynamical effect which can be
achieved only with a structural interface.

3.3.2. Results for layered and structural interfaces

We focus now the attention on the transmission properties of layered and structural interfaces, structures which may
find applications in the design of delay lines for wave guide systems for elastic waves. We report in Fig. 6 the normalized
reflected energy R 2 ½0,1� as a function of the normalized frequency c0d0o for finite slabs composed of p=4 unit interfaces,
the same as those considered in Fig. 4. The finite thickness interface is interposed between elastic media labeled a and b,
with: ma ¼ 200 MPa, ra ¼ 5000 kg=m3, mb ¼ 100� 103 MPa, rb ¼ 16 000 kg=m3.

It is clearly shown that the presence of a finite number of unit cells creating the interfaces generates oscillations in the
reflected energy, so that it becomes possible to select finite ranges of frequency in which the reflection is very small or even
approaches zero, by optimally designing the unit cell. This is a remarkable result, since we have seen that in the case of two
elastic solids in perfect contact [p=0, see Eq. (31)], the reflected energy is R=90.5% and the reflected energy is even higher
in the case of infinitely many (periodic, p-1) unit cells, as shown in Felbacq et al. (1998) (who proved that the reflected
energy tends to the superior envelope of the R-curves, when p-1). Therefore, the fact that the interface has a finite
thickness allows to dramatically change the transmission properties, as we have already noticed in the simpler case of one
structural interface.

As in Section 3.2.1, we can observe the agreement in the transmission properties of the structural interface and its
continuous layered counterpart (see Fig. 6b). However, for higher frequency pass bands, shown in Fig. 6a, the oscillations in
the reflected energy are visibly different for the cases of structural and layered interfaces. This distinction is shown in
greater detail in Fig. 6c, which suggests that the slow waves can be transmitted through a structured interface, but the
frequencies of such transmission will be different for the structural interface and its homogenized continuous layered
counterpart. Needless to say, the oscillations within a pass band region are linked to the resonance frequencies of the finite
stack, and the number of oscillations increases with the increase of the number of elementary cells placed within the stack.

It follows from Figs. 4 and 6 that the oscillations in the reflected energy R correspond to the optical and acoustic
branches in the dispersion diagrams, whereas in the stop bands R-1. If we concentrate our attention on the optical
branches, we can select a frequency range in which the wave propagates with low group velocity, but still without
reflecting a substantial amount of energy. This is an important property that can be achieved also with a small number of
unit cells and can be used to build delay line devices for elastic waves.
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4. Negative refraction. Focussing of elastic waves by a flat lens

A structural interface can be adopted to design a flat device exhibiting a negative refraction within a suitably chosen
interval of frequencies. For the purpose of illustration, we consider the structural interface introduced in Fig. 1. The
elementary cell is shown in the insert of Fig. 7 and in Fig. 8, with the structure being periodic in the z direction.

We use a homogeneous isotropic elastic medium on the right and on the left of the discrete interface. The material
parameters for the structure and the ambient medium are the same and correspond to normalized moduli for fused silica.
We consider the ratio l=m¼ 2:3 between the Lamé constants and a density r tailored to give a shear velocity in the
homogeneous media vs ¼ ðcsÞ

�1
¼

ffiffiffiffiffiffiffiffiffi
m=r

p
¼ 1 m=s.

Fig. 6. Reflected energy R as a function of the normalized frequency c0d0o for an interface composed of p=4 unit cells and connecting two elastic media a
and b, with ma ¼ 200 MPa, ra ¼ 5000 kg=m3, and mb ¼ 100� 103 MPa, rb ¼ 16 000 kg=m3. Results are given for structural interface (solid line) and layered

interface (dashed line) and compared to the situation in which the two half spaces are perfectly connected (dashed-dotted line). The unit cells are the

same as in Fig. 4. The diagrams (b) and (c) show in detail the reflected energy within the frequency ranges B and C. The figure shows that with optimally

designed thick interfaces reflected energy can be ‘tuned’ and that the full transmission condition can be approached.

Fig. 7. Dispersion curves for a structural interface. The results correspond to fused silica for both the structure and the ambient media. The normalized

elastic parameters are: Lamé constants ratio l=m¼ 2:3, phase velocity vs ¼
ffiffiffiffiffiffiffiffiffi
m=r

p
¼ 1 m=s. Point A: intersection between the first optical branch

(continuous grey line) and dispersion curve for shear waves propagating in homogeneous isotropic elastic space (dashed grey line). The localized

eigenmode at point A is reported in color in the insert.
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The choice of the appropriate range of frequencies for which negative refraction and focussing is observed is clarified as
follows. For the periodic discrete structure consisting of infinite doubly periodic arrays of elementary cells, the dispersion
diagram in Fig. 7 shows the normalized frequency csdo as a function of the Bloch parameter f. The slope of the dashed
grey ray emanating from the origin, given by

csdo
f
¼

cso
k
¼ 1 ð38Þ

is chosen to correspond to a shear wave propagating in the ambient homogeneous elastic medium, which is non-
dispersive. The frequency cs do¼ 0:71 rad is then chosen to correspond to the intersection point A between this ray and the
first ‘optical mode’ on the dispersion diagram.

Then, a transmission problem is considered for the interface and a point source, placed sufficiently close to the interface
boundary (and indicated with an arrow in Fig. 8). The eigenmode shown in the insert of Fig. 7 corresponds to the time
harmonic displacement field at the point A of intersection of the shear wave ray and the ‘optical dispersion curve’; we note
that the group velocity at this particular point is negative. The pulsating force is applied inclined at 451. The result shown in
Fig. 8 displays the mirror image of the point source on the right side of the interface. Although some changes occur when
the orientation of the point force is altered, the current computation delivers a good illustrative example of a structural
interface, where slow waves can be used to model negative refraction and focussing of elastic waves.

The example demonstrates that a structured interface of appropriate type is applicable for modeling metamaterials of
desired filtering properties. In particular, the interface can be designed to transmit slow waves of certain frequencies and to
exhibit negative refraction, leading to a focussing effect.

5. Conclusions

Numerical analyses under the Bloch–Floquet condition and analytical results obtained on simple homogenized
structural models for the interface (via the transfer matrix technique) substantiate the conclusion that elastodynamics of
structural interfaces opens new possibilities in the design of filtering devices for elastic waves. It has been shown that
certain filtering properties can be achieved only by employing structural, instead of continuous, interfaces. Finally, a first
example has been given in which a pulsating point force located at the left of a structural interface displays a symmetric
image on the right of it, thus behaving as a flat lens for elastic waves via negative refraction. This result may prelude the
possibility of obtaining high-resolution focussing properties for elastodynamic waves employing structural interfaces, a
finding which could be used for the design of apparatuses for various applications, for instance, medical.

Acknowledgments

Part of this research was performed while two of the authors were visiting faculty at the Department of Mathematical
Sciences, University of Liverpool (D.B. and M.B.) and at the Institute of Mathematics and Physics of the University of
Aberystwyth (D.B.). M.B. visited Liverpool University under the EPSRC-GB Grant no. EP/F027125/1. D.B. also gratefully
acknowledges financial support from PRIN Grant no. 2007YZ3B24 ‘Multi-scale Problems with Complex Interactions in
Structural Engineering’ financed by Italian Ministry of University and Research.

References

Bertoldi, K., Bigoni, D., Drugan, J.W., 2007a. Structural interfaces in linear elasticity. Part I: nonlocality and gradient approximations. J. Mech. Phys. Solids
55 (1), 1–34.

Bertoldi, K., Bigoni, D., Drugan, J.W., 2007b. Structural interfaces in linear elasticity. Part II: effective properties and neutrality. J. Mech. Phys. Solids 55 (1),
35–63.

Bertoldi, K., Bigoni, D., Drugan, J.W., 2007c. A discrete-fibers model for bridged cracks and reinforced elliptical voids. J. Mech. Phys. Solids 55 (5),
1016–1035.

Bigoni, D., Gei, M., Movchan, A.B., 2008. Dynamics of a prestressed stiff layer on an elastic half space: filtering and band gap characteristics of periodic
structural models derived from longwave asymptotics. J. Mech. Phys. Solids 56 (7), 2494–2520.

Bigoni, D., Movchan, A.B., 2002. Statics and dynamics of structural interfaces in elasticity. Int. J. Solids Struct. 39 (19), 4843–4865.
Brun, M., Guenneau, S., Movchan, A.B., 2009. Achieving control of in-plane elastic waves. Appl. Phys. Lett. 94 (6), 061903.
Ding, Y., Liu, Z., Qiu, C., Shi, J., 2007. Metamaterial with simultaneously negative bulk modulus and mass density. Phys. Rev. Lett. 99 (9), 093904.
Farhat, M., Guenneau, S., Enoch, S., Movchan, A.B., 2008. Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys. Rev. Lett. 101 (13),

134501.

Fig. 8. Focussing effect for a point source (inclined at 451 and sketched black) at normalized frequency csdo¼ 0:71 rad, corresponding to the point A in

Fig. 7.

M. Brun et al. / J. Mech. Phys. Solids 58 (2010) 1212–1224 1223



Author's personal copy

Felbacq, D., Guizal, B., Zolla, F., 1998. Limit analysis of the diffraction of a plane wave by a one-dimensional periodic medium. J. Math. Phys. 39 (9),
4604–4607.

Gei, M., Movchan, A.B., Bigoni, D., 2009. Band-gap shift and defect-induced annihilation in prestressed elastic structures. J. Appl. Phys. 105 (6), 063507.
Guenneau, S., Movchan, A.B., Petursson, G., Ramakrishna, S.A., 2007. Acoustic metamaterials for sound focussing and confinement. New J. Phys. 9, 399.
Guenneau, S., Movchan, A.B., Movchan, N.V., Trebicki, J., 2008. Acoustic stop bands in almost-periodic and weakly randomized stratified media:

perturbation analysis. Acta Mech. Sin. 24 (5), 549–556.
Lekner, J., 1994. Light in periodically stratified media. J. Opt. Soc. Am. A 11 (11), 2892–2899.
Leonhardt, U., Philbin, T.G., 2006. General relativity in electrical engineering. New J. Phys. 8, 247.
Martinsson, P.G., Movchan, A.B., 2003. Vibrations of lattice structures and phononic band gaps. Q. J. Mech. Appl. Math. 56, 45–64.
Milton, G.W., Willis, J.R., 2007. On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. London A 463 (2079),

855–880.
Milton, G.W., Nicorovici, N.A.P., 2006. On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. London A 462 (2074),

3027–3059.
Milton, G.W., Nicorovici, N.A.P., McPhedran, R.C., Cherednichenko, K., Jacob, Z., 2008. Solutions in folded geometries, and associated cloaking due to

anomalous resonance. New J. Phys. 10, 115021.
Movchan, A.B., Guenneau, S., 2004. Split-ring resonators and localized modes. Phys. Rev. B 70 (12), 125116.
Movchan, A.B., Slepyan, L.I., 2007. Band gap Green’s functions and localized oscillations. Proc. R. Soc. London A 463 (2086), 2709–2727.
Parnell, W.J., 2007. Effective wave propagation in a prestressed nonlinear elastic composite bar. IMA J. Appl. Math. 72 (2), 223–244.
Pendry, J.B., 2000. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85 (18), 3966–3969.
Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., 1999. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave

Theory Tech. 47 (11), 2075–2084.
Pendry, J.B., Schurig, D., Smith, D.R., 2006. Controlling electromagnetic fields. Science 312, 1780.
Platts, S.B., Movchan, N.V., 2004. Phononic band gap properties of doubly periodic arrays of coated inclusions. In: Bergman, D.J., Inan, E. (Eds.), Continuum

Models and Discrete Systems, NATO Science Series II: Mathematics, Physics and Chemistry, vol. 158. Kluwer Academic Publishers, pp. 287–294.
Robbie, K., Brett, M.J., Lakhtakia, A., 1996. Chiral sculptured thin films. Nature 384 (6610), 616.
Robbie, K., Broer, D.J., Brett, M.J., 1999. Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature 399 (6738),

764–766.
Smith, D.R., Kroll, N., 2000. Negative refractive index in left-handed materials. Phys. Rev. Lett. 85 (14), 2933–2936.
Sukhovich, A., Jing, L., Page, J.H., 2008. Negative refraction and focussing of ultrasound in two-dimensional phononic crystals. Phys. Rev. B 77 (1), 014301.
Sumigawa, T., Hirakata, H., Takemura, M., Matsumoto, S., Suzuki, M., Kitamura, T., 2008. Disappearance of stress singularity at interface edge due to

nanostructured thin film. Eng. Fract. Mech. 75 (10), 3073–3083.
Tang, T., Hui, C.-Y., Glassmaker, N.J., 2005. Can a fibrillar interface be stronger and tougher than a non-fibrillar one? J R. Soc. Interface 2 (5), 505–516.
Veselago, V.G., 1968. Electrodynamics of substances with simultaneously negative value of e and m. Sov. Phys. Uspekhi 10, 509–514.
Zhang, S., Yin, L., Fang, N., 2009. Focussing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102 (19), 194301.

M. Brun et al. / J. Mech. Phys. Solids 58 (2010) 1212–12241224


