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PREFACE

Structures have traditionally been designed to work below their critical
load, because any instability was normally identified as connected to
failure or loss of functionality. Instability and bifurcation were viewed
simply as potentially dangerous phenomena and hence structural de-
formations under load were required to be small. Recently, a variety
of soft structures have been considered in mechanics. These are struc-
tures that work in a large deformation regime, where elastic elements
are subject to extreme deformations and loads well beyond the critical
values for buckling. Examples of structures that exhibit excellent me-
chanical performance even under severe deformation conditions are
found in biological systems, deployable space structures, and a variety
of devices in everyday use.

The lesson from nature is that the possibility of exploiting highly
deformable structures, made for instance of rubber or gel, may open
new and unexpected technological possibilities.

The exploration of these possibilities is the focus of this volume
and of the so-called Extreme Mechanics, an emerging branch of the
instability of solids and structures. This branch is aimed at the in-
vestigation of instabilities as related to pattern formation and the
subsequent nonlinear behaviour of large deformations.

Here the challenge is the design of deformable and bi-stable mech-
anisms, which can give superior mechanical performance and which
will have an impact on many high tech applications such as stretchable
electronics, nanotube serpentines, deployable structures for aerospace
engineering, cable deployment in the ocean, as well as on sensors and
flexible actuators and vibration absorbers.

This monograph is the collection of the Lecture Notes for the Ad-
vanced School ’Extremely Deformable Structures’ held at the Interna-
tional Centre for Mechanical Sciences (CISM) in Udine, Italy, June
2-6 2014. The course was given by six lecturers and attended by nearly
fifty participants from eight European and four extra European coun-
tries. The chapters are devoted to an introduction to the methods used
in the study of the stability of elastic structures in the finite dimen-
sional case (A. Lazarus, C. Maurini and S. Neukirch), in the infinite
dimensional case for the Euler elastica (D. Bigoni, F. Bosi, D. Mis-
seroni, F. Dal Corso, and G. Noselli), and to the advanced problem



of the dynamics of a naturally curved elastica (B. Audoly, A. Callan-
Jones, and P.-T. Brun). Two-dimensional problems are introduced
with the purpose of analyzing the mechanics of two-dimensional pe-
riodic and highly deformable cellular structures (K. Bertoldi) and of
the folding and deployment of thin-shells (S. Pellegrino). Structural
concepts are linked to the modelling of growth processes occurring in
biology (A. Erlich, Th. Lessinnes, D. E. Moulton, and A. Goriely).
It is believed that the volume can represent a valid introduction to the
field of extreme mechanics.

I wish to thank the Rectors of the CISM Professors E. Guazzelli,
F. Pfeiffer, and F.G. Rammerstorfer, the Secretary General Profes-
sor B.A. Schrefler and all the staff for the warm hospitality and kind
assistance during the course. Finally, I would like to gratefully ac-
knowledge support from the FP7-PEOPLE-IDEAS-ERC-2013-ADG-
340561-INSTABILITIES.

Davide Bigoni
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New phenomena in nonlinear elastic
structures: from tensile buckling to

configurational forces

D. Bigoni∗, F. Bosi∗, D. Misseroni∗, F. Dal Corso∗ and G. Noselli†

∗ DICAM, University of Trento, Trento, IT
† SISSA-International School for Advanced Studies, Trieste, IT

Abstract The theory of the planar elastica is presented in detail
and is used to illustrate problems of buckling of a slender structure
under tensile dead loading, of buckling as related to constraint’s cur-
vature, and of configurational forces. These problems are important
tools in the design of compliant mechanisms, in the emergent field
of soft robotics and for the understanding of snake and fish locomo-
tion.

1 Introduction

The problem of the planar elastica has a long history, leading back to Jacob
Bernoulli (1654-1705), Daniel Bernoulli (1700-1782), Leonhard Euler (1707-
1783), and Pieter van Musschenbroek (1692-1761), but is still relevant and
rich with applications at times quite unexpected ones. The elastica has
attracted a great interest in the past and has involved contributions from
first-class scientists, including Kirchhoff, Love, and Born. Research on the
elastica marked the initiation of the calculus of variations and promoted
the development of the theory of elliptic functions. Nowadays the elastica
represents a useful introduction to the theory of nonlinear bifurcation and
stability, but is also an important tool in the field of soft robotics and in the
design of compliant mechanisms. Moreover, the elastica can be effectively
used to explain snake or fish locomotion and to design snake-like robots.

The theory of the Euler elastica is addressed in detail in Section 2 and
includes an analysis of the instability of equilibrium configurations. The
elastica theory is applied to the problem of tensile buckling, in which an
elastic rod bifurcates under tensile dead loading, due to the presence of
an internal slider constraint, see Section 3. This problem opens a new
perspective on buckling problems, which were usually believed to occur
only for compressive loads. The influence of the constraint’s curvature on
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buckling and post-critical behaviour is analyzed in Section 4, with reference
to elastic systems representing examples of compliant mechanisms. The
concept of ‘Eshelby-like’ or ‘configurational’ forces in elastic structures is
introduced in Section 5, and this represents the key to the understanding of
snake locomotion. In fact, roughly speaking, a snake can be idealized as an
elastic rod whose propulsion arises from the release of elastic energy that
is responsible of an Eshelby-like force. It is shown that this force strongly
affects the bifurcation and stability of elastic rods, as explained in Section 6,
and that it can be used in the design of a new elastic arm weighing device,
Section 7.

2 The Euler elastica

The purpose of this section is to introduce the theory of the Euler’s elastica
with reference to an elastic, inextensible rod subject to large deflections and
with different types of constraints at its ends. When a rectilinear (in its un-
deformed, reference state) elastic rod is compressed, the determination of
the critical load and of the post-critical behaviour provides a beautiful exam-
ple of linear and nonlinear eigenvalue problems. We will follow and general-
ize the treatment of Bigoni (2012). Classical references are Timoshenko and
Gere (1961), Love (1927), and Reiss (1969), whereas recent work has been
presented by Wang (1997), Vaz (2003), Mikata (2007) and by O’Reilly and
Peters (2011, 2012). The stability of the equilibrium configurations will also
be addressed, which has been previously treated by Maddocks (1984), Man-
ning et al. (1998), Hoffman et al. (2002), Manning (2009, 2014), Kuznetsov
and Levyakov (1999, 2002), and by Levyakov and Kuznetsov (2010).

2.1 The kinematics of an inextensible planar rod

We consider an inextensible planar rod of length l, rectilinear in its refer-
ence configuration and smoothly deformed into the current configuration as
shown in Fig. 1. In the deformed configuration, a generic point can be picked
up using a curvilinear coordinate s ∈ [0, l] (corresponding to x0 ∈ [0, l] in
the undeformed, straight configuration), such that the inextensibility of the
rod implies that x0 = s and thereby dx0 = ds.

If we write e1 and e2 as unit vectors, see Fig. 1, then the displacement
u of point x0 from the reference configuration is given by

u = u1(x0)e1 + u2(x0)e2 = x− x0, (1)

which, by introducing the (twice-continuously differentiable) deformation
function

x = g(x0), (2)

2
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Figure 1. The kinematics of an elastic inextensible rod of length l, rectilinear in
the reference configuration. The displacement of a generic point x0 of coordinate x0 is
u(x0) = x − x0. Note that inextensibility implies that the curvilinear coordinate s is
equal to the coordinate x0, namely, s = x0.

and noting that the point x0 has coordinate x0e1, becomes

u = g(x0e1)− x0e1. (3)

Since e1 is fixed, the dependence of function g on the unit vector can be
omitted, so that equation (2) becomes the parametric representation of the
curve describing the elastica.

Let us consider now two neighbouring points of the reference configu-
ration at coordinates x0 and x0 + ω0, defining the vector t0 = ω0e1. This
vector is mapped into

g(x0 + ω0e1)− g(x0), (4)

so that, assuming ω0 to be small, a Taylor series expansion of the deforma-
tion around ω0 = 0 yields the transformed vector (tangent to the deformed
line at x)

F(ω0e1), (5)

where

F =
∂g

∂x0
=
(
u
′

1 + 1
)

e1 ⊗ e1 + u
′

2e2 ⊗ e1 + e2 ⊗ e2, (6)

in which a prime denotes differentiation with respect to the coordinate x0 =
s and the symbol ‘⊗’ denotes the dyadic product.

3
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Since the elastica is assumed inextensible, the length of the transformed
vector F(ω0e1) must remain equal to the length of the initial vector t0 =
ω0e1, therefore from equation (5) we obtain

|Fe1| = 1, (7)

which, using equation (6) yields

u
′

1 + 1 = ±
√

1− (u
′
2)2. (8)

Differentiation of equation (8) finally provides the inextensibility constraint
in the form

u
′′

1 = ∓ u
′

2u
′′

2√
1− (u

′
2)2

. (9)

Since the inextensibility constraint is enforced and the tangent to the elas-
tica at x is given by the unit vector t

t =
(
u
′

1 + 1
)

e1 + u
′

2e2 = ±
√

1− (u
′
2)2 e1 + u

′

2e2, (10)

the angle θ of inclination of the tangent t to the elastica at x can be intro-
duced to satisfy

sin θ = x
′

2 = u
′

2, cos θ = x
′

1 = ±
√

1− (u
′
2)2. (11)

Equation (11)2 shows that the ‘+’ sign in equation (8) refers to moderate
deflection, for which cos θ remains positive. Furthermore, the length d of
the projection of the elastica onto the e1-axis can be written as

d =

l∫
0

cos θds = ±
l∫

0

√
1− (u

′
2)2 ds. (12)

The unit vector n normal to the elastica at x can be obtained through
differentiation (with respect to s) of the scalar product t · t, so that t

′
is

found normal to t in the form

t
′

= ∓ u
′

2u
′′

2√
1− (u

′
2)2

e1 + u
′′

2 e2, (13)

or, equivalently, in the form

t
′

= −θ
′
sin θe1 + θ

′
cos θe2. (14)

4
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The unit normal n can therefore be obtained from t
′

through division
by its modulus |t

′
|, that is, the so-called ‘curvature’

|t
′
| = |u′′2 |√

1− (u
′
2)2

= |θ
′
|, (15)

thus obtaining

n = sgn{u
′′

2 (u
′

1 + 1)}
(
−u
′

2e1 +
√

1− (u
′
2)2 e2

)
, (16)

or equivalently
n = sgn(θ

′
) (− sin θe1 + cos θe2) . (17)

In conclusion, the signed curvature χ reads

χ = sgn(u
′

1 + 1)
u
′′

2√
1− (u

′
2)2

, or χ = θ
′
. (18)

2.2 Constitutive equation, total potential energy and the elastica

The constitutive equation used for the inextensible planar elastica comes
from Jacob Bernoulli’s celebrated assumption, which, neglecting the effects
of normal and shearing forces, defines a linear relation between the bending
moment M(s) and the curvature θ

′
(s) as

M(s) = Bθ
′
(s), (19)

where B is the bending stiffness (considered constant along the rod), defined
as the product of the Young’s modulus with the principal moment of inertia
of the cross section of the rod about the axis normal to the inflection plane.

With reference to the elastic systems reported in Fig. 2, where the rod is
loaded at its right end by a longitudinal force P , the total potential energy
V(θ(s)) can be written as

V(θ(s)) =

l∫
0

B
(θ
′
(s))2

2
ds− P

l − l∫
0

cos θ(s)ds

−R l∫
0

sin θ(s) ds, (20)

where the first integral is the bending strain energy, the second term cor-
responds to the work done by the external force P , and R is a Lagrange
multiplier (representing –as will be shown below– the vertical reaction at
the supports) enforcing a global kinematic compatibility condition that cor-
responds to the vanishing of the relative, vertical displacement of the rod

5
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Figure 2. An elastic, inextensible rod loaded by an axial thrust P (positive when
compressive) and subject to different constraints at its ends.

extremities. This condition will be enforced while considering the systems
(v.) and (vi.) of Fig. 2, as well as in a particular case of system (i.). In con-
trast, the multiplier R will be set to zero for the elastic structures (ii.)-(iv.).

The functional (20) is defined over the set of kinematically admissible
rotation fields, meaning every differentiable rotation field θ(s) satisfying
the boundary conditions introduced by the constraints at the ends of the
systems (i.)-(vi.) reported in Fig. 2, namely

i)
∫ l

0
sin θ(s)ds = 0,

ii) θ(l) = 0,

iii) θ(0) = 0,

iv) θ(0) = θ(l) = 0,

v) θ(0) = 0 and
∫ l

0
sin θ(s)ds = 0,

vi) θ(0) = θ(l) = 0 and
∫ l

0
sin θ(s)ds = 0.

(21)

6
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Let us consider now variations θ̃(s) of the rotation field θ(s), satisfying the
boundary conditions relevant to each system, namely

i)
∫ l

0
sin θ̃(s)ds = 0,

ii) θ̃(l) = 0,

iii) θ̃(0) = 0,

iv) θ̃(0) = θ̃(l) = 0,

v) θ̃(0) = 0 and
∫ l

0
sin θ̃(s)ds = 0,

vi) θ̃(0) = θ̃(l) = 0 and
∫ l

0
sin θ̃(s)ds = 0.

(22)

Keeping into account integration by parts

l∫
0

θ
′
(s)θ̃

′
(s) ds = −

l∫
0

θ
′′
(s)θ̃(s) ds+ θ

′
(l)θ̃(l)− θ

′
(0)θ̃(0),

the first variation δV of functional V is obtained as

δV =

l∫
0

[
θ
′′
(s) +

P

B
sin θ(s) +

R

B
cos θ(s)

]
θ̃(s) ds− θ

′
(l)θ̃(l) + θ

′
(0)θ̃(0),

(23)
holding for all kinematically admissible variation θ̃(s).

Imposing the vanishing of the first variation (23) for every admissible
variation θ̃(s) yields the nonlinear differential equation for the elastica

θ
′′
(s) +

P

B
sin θ(s) +

R

B
cos θ(s) = 0, (24)

and the following natural boundary conditions for the cases (i.)-(iii.) and
(v.)

i) θ
′
(0) = θ

′
(l) = 0,

ii) θ
′
(0) = 0,

iii) θ
′
(l) = 0,

v) θ
′
(l) = 0.

(25)

7
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Notice that in the equilibrium equation (24) it is apparent that the Lagrange
multiplier R corresponds to the vertical reaction at the supports, which are
always null except in the following cases:

� for the structure (i.), in the special situation when the two supports
coincide;

� for the structure (v.);

� for the structure (vi.), when antisymmetric buckling modes are con-
sidered.

Simply supported elastica Let us start by considering the doubly pinned
rod (i.), so that, defining λ2 = P/B, the equations governing the equilibrium
of the elastica are

θ
′′
(s) + λ2 sin θ(s) = 0 ∀ s ∈ [0, l], governing diff. equation

θ
′
(0) = θ

′
(l) = 0, b.c.: null moment at both supports

u1(0) = 0, b.c.: null horiz. displ. at left support

u2(0) = u2(l) = 0, b.c.: null vert. displ. at both supports

u
′

1(s) = cos θ(s)− 1 ∀ s ∈ [0, l], diff. equation for the horizontal displ.

u
′

2(s) = sin θ(s) ∀ s ∈ [0, l]. diff. equation for the vertical displ.
(26)

Equations (26) define a nonlinear eigenvalue problem, for which the triv-
ial solution θ(s) = u1(s) = u2(s) = 0 is always possible, so that the question
arises whether nontrival solutions exist or not. Bifurcation corresponds to
the situation in which the trivial solution (or possibly a bifurcated solution)
of (26) splits into two or more, as λ passes through a critical value λcr,
called ‘bifurcation point’.

Before embarking in the solution of the non-linear problem (26), let us
consider its linearization about the trivial solution θ(s) = 0, such that the
horizontal displacement is null, i.e. u1(s) = 0, and the remaining equations

8
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read

θ
′′
(s) + λ2θ(s) = 0 ∀ s ∈ [0, l], governing diff. equation

θ
′
(0) = θ

′
(l) = 0, boundary conditions

u2(0) = u2(l) = 0, boundary conditions

u
′

2(s) = θ(s) ∀ s ∈ [0, l]. diff. equation for the vertical displ.
(27)

Equations (27) define a linear eigenvalue problem, also called ‘Sturm-
Liouville problem’ (Broman, 1970). It admits the infinite solutions

θ(s) = An cos
nπs

l
, n = 0, 1, 2, ... (28)

and

u2 = A0 = 0, n = 0︸ ︷︷ ︸
trivial solution

, u2 =
lAn
nπ

sin
nπs

l
, n = 1, 2, ...︸ ︷︷ ︸

nontrivial solutions

(29)

where the trivial solution holds for every thrust P , while the nontrivial
solutions hold if and only if

λ = λn =
nπ

l
, ⇔ P = P crn =

n2π2B

l2
, n = 1, 2, ... (30)

which defines the Euler’s critical loads. As a consequence of the lineariza-
tion, the amplitudes An (n = 1, 2, ...) of the bifurcation modes remain un-
determined, nevertheless the critical loads correctly identify the bifurcation
points on the trivial path, λn, as will be proven below.

Let us now solve the nonlinear problem (26). First of all, we note that if

θ(s), u1(s), u2(s),

represent a solution corresponding to λ2, the fields

±θ(s) + 2nπ, u1(s), ±u2(s), n = ...,−2,−1, 0, 1, 2, ...

also represent solutions (symmetrical with respect to the x1–axis) and the
fields

±θ(s) + (2n+ 1)π, −u1(s)− 2s, u2(s), n = ...,−2,−1, 0, 1, 2, ...

are valid for −λ2. These are symmetric solutions with respect to the x1– or
the x2–axis and, without loss of generality, will be ignored in the following.

9
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Therefore, defining θ̂ = θ(ŝ), where ŝ is the curvilinear coordinate at which
the bending moment is null, for the case under consideration

θ̂ = θ(0), (31)

and we only address solutions such that 0 ≤ θ̂ ≤ π. A multiplication of
equation (26)1 by θ

′
(s) yields

d

ds

[
1

2
(θ
′
(s))2 − λ2 cos θ(s)

]
= 0, (32)

so that its integration, considering the boundary conditions (26)2 and equa-
tion (31), leads to

θ
′
(s) = λ

√
2(cos θ(s)− cos θ̂), (33)

where we have selected the positive root, since the two solutions merely
differ in sign.

An equation formally identical to equation (33) is usually obtained in
the analysis of the oscillation of a simple pendulum (Temme, 1996), so that
it is a standard expedient to operate the following change of variables

κ = sin
θ̂

2
, κ sinφ(s) = sin

θ(s)

2
, (34)

leading through trigonometric formulae to the differential problem

dφ(s)

ds
= λ

√
1− κ2 sin2 φ(s). (35)

The boundary conditions imply that sinφ(0) = 1 and sin2 φ(l) = 1, so that

φ(0) =
4h+ 1

2
π, φ(l) =

2j + 1

2
π, h, j = 0,±1,±2, ... (36)

and therefore integration of equation (35) by separation of the variables
yields

sλ =

φ(s)∫
4h+1

2 π

dφ√
1− κ2 sin2 φ

, h = 0,±1,±2, ... (37)

which, for s = l, becomes

lλ =

2j+1
2 π∫

4h+1
2 π

dφ√
1− κ2 sin2 φ

, h, j = 0,±1,±2, ... (38)

10
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Taken over one period, the integral (38) is equal to 2K(κ), where

K(κ) =

π
2∫

0

dφ√
1− κ2 sin2 φ

, (39)

is the complete elliptic integral of the first kind or the so-called ‘real quarter
period of the elliptic function’ (Byrd and Friedman, 1954; Temme, 1996).

The integral in equation (38) can be rewritten as a function of an integer
m as

lλ = 2mK(κ), ⇔ P =
B

l2
4m2

[
K

(
sin

θ̂

2

)]2

, (40)

an equation providing the relation between the applied load P and the rota-
tion of the left rod’s extremity associated to them–th bifurcation mode (Reiss,
1969).

For small θ̂, a Taylor series expansion of equation (40) provides exactly
equation (30), thus proving that the critical Euler loads (30), calculated from
the linearized theory, correctly determine the bifurcation points emanating
from the trivial path. Note that this results has a conceptual relevance,
since it validates the calculations usually done on the linearized eigenvalue
problem.

Let us go back now to equation (37) and note that the integral on the
right-hand side can always be written as

φ(s)∫
4m+1

2 π

(· · ·) ds = −

4m+1
2 π∫

0

(· · ·) ds+

φ(s)∫
0

(· · ·) ds, (41)

so that, since (Byrd and Friedman, 1954)

4m+1
2 π∫

0

dφ√
1− κ2 sin2 φ

= (4m+ 1)K(κ), m = 0,±1,±2, ... (42)

we obtain

sλ+ (4m+ 1)K(κ) =

φ(s)∫
0

dφ√
1− κ2 sin2 φ

, m = 0,±1,±2, ... (43)

which provides

φ(s) = am (sλ+ (4m+ 1)K(κ), κ), m = 0,±1,±2, ... (44)

11
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where ‘am’ denotes the Jacobi amplitude function of modulus κ. Employing
the property (Byrd and Friedman, 1954)

am (x± 2nK(κ), κ) = am (x, κ)± nπ, n = 0,±1,±2, ...

equation (44) can be simplified to

φ(s) = am (sλ+K(κ), κ) + 2mπ, m = 0,±1,±2, ... (45)

so that the definition of φ(s), equation (34)2, yields

sin
θ(s)

2
= κ sn (sλ+K(κ), κ), (46)

where ‘sn’ is the Jacobi sine amplitude function, defined as

sn (x, κ) = sin (am (x, κ)) . (47)

A substitution of equation (46) into equation (33), where the identity
cos θ = 1− 2 sin2(θ/2) is employed, yields

θ
′
(s) = 2λκ cn (sλ+K(κ), κ), (48)

where ‘cn’ is the Jacobi cosine amplitude function, defined as

cn (x, κ) = cos (am (x, κ)) .

Note that, due to the properties

cn (K(κ), κ) = cn (3K(κ), κ) = cn [(2m+1)K(κ), κ] = 0, m = 0,±1,±2,±3

the boundary conditions (26)2, namely θ
′
(0) = θ

′
(l) = 0, are satisfied1.

According to equations (11) and (26)(5,6), the differential equations de-
termining the points x of the deformed elastica are

x
′

1(s) = cos θ(s), x
′

2(s) = sin θ(s), (49)

which, since cos θ = 1 − 2 sin2(θ/2) and sin θ = 2 sin(θ/2)
√

1− sin2(θ/2),

and using equation (46), provide the two differential equations

x
′

1(s) = 1− 2κ2 sn2(sλ+K(κ), κ),

x
′

2(s) = 2κ sn (sλ+K(κ), κ)dn (sλ+K(κ), κ),

(50)

1 Equation (40) has been used in the boundary condition at θ
′
(l).
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where ‘dn’ is the Jacobi elliptic function, defined as

dn (sλ+K(κ), κ) =
√

1− κ2 sn2(sλ+K(κ), κ). (51)

Since the following differentiation rules are known (Byrd and Friedman,
1954)

∂

∂ x
E(x, κ) =

√
1− κ2 sin2 x,

∂

∂ x
am (x, κ) = dn (x, κ),

∂

∂ x
cn (x, κ) = − sn (x, κ) dn (x, κ),

(52)

where E(x, κ) is the incomplete elliptic integral of the second kind of mod-
ulus κ,

E(x, κ) =

x∫
0

√
1− κ sin2 tdt,

taking into account the boundary conditions (26)3,4, we integrate equations
(50), thus arriving at the equations describing the deformed shape of the
elastica2

x1(s) = −s+
2

λ
{E [am (sλ+K(κ), κ) , κ]− E [am (K(κ), κ) , κ]} ,

x2(s) = −2κ

λ
cn(sλ+K(κ)),

(53)

which are identical with those provided by Love (1927). For compressive
loads (P > 0) the displacement u1(l) is negative and, since |u1(l)| = l−x1(l),
its absolute value can be immediately obtained from equations (53)1 in the
form

|u1(l)| = 2l − 2

λ
{E [am (lλ+K(κ), κ) , κ]− E [am (K(κ), κ) , κ]} , (54)

so that using now equation (40) we obtain

|u1(l)|
l

= 2− E [am ((2m+ 1)K(κ), κ) , κ]− E [am (K(κ), κ) , κ]

mK(κ)
, m = 1, 2, ...

(55)

2These relations are also valid for the hinged-clamped case (ii), where the value of λ

as a function of the rotation at the inflexion point, θ̂ = θ(0), is obtained through the

relation lλ = (2m− 1)K
(

sin
θ̂

2

)
.
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Figure 3. Dimensionless load Pl2/(π2B) of a doubly supported rod versus dimen-
sionless displacement u1(l)/l. The first three primary bifurcation points and branches
are reported together with the first three secondary bifurcation points. All equilibrium
configurations on the second and third branch are unstable (dashed curves). The first
branch becomes unstable after the secondary bifurcation point.

which eventually can be simplified to (Reiss, 1969)3

|u1(l)|
l

= 2− 2E (κ)

K(κ)
, (56)

where E(π/2, κ) = E(κ) represents the complete elliptic integral of the
second kind. Note that equation (56) is independent of the bifurcation
mode m, so that the displacement of the right pin of the rod depends only
on θ̂ (through κ).

The mid-span deflection of the rod, null for even values of the mode m,
can be evaluated for odd m as

|u2(l/2)|
l

=
κ

mK(κ)
, m = 1, 3, 5, ... (57)

3The following identities turn out to be useful (Byrd and Friedman, 1954):

am [K(κ), κ] = π/2, am[(2m+ 1)K(κ), κ] = (2m+ 1)π/2, E(nπ/2, κ) = nE(κ).
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Figure 4. Deformed shapes for the first two modes m = 1, 2 of a doubly supported
rod at different values of parameters setting the deformation: the initial inflexion angle
θ̂ = {0, 10◦, 45◦, 90◦, 135◦, 160◦} and corresponding dimensionless displacement of the
end of the rod u1(l)/l = {0, 0.008, 0.149, 0.543, 1.049, 1.340} for both the modes. The
deformed shapes of the elastica represent the post-critical behaviour of the structure.

In summary, for a given θ̂ and for a given mode m we can calculate the
corresponding λ (using equation (40)) and u1(l) (using equation (56)) and
plot the elastica (using equations (53)). The bifurcation diagram showing
the load P (made dimensionless through multiplication by l2/(π2B)) as
a function of the displacement of the right pin of the rod (divided by l)
is shown in Fig. 3. In the figure, the first three critical loads and the
corresponding three branches are reported. We may note that the branches
do not cross each other and the load is continuously increasing during the
post-critical behaviour.

The deformed elastic lines have been evaluated and plotted in Fig. 4 for
the first two branches at fixed values of θ̂, namely, {10◦,45◦,90◦,135◦, 160◦}.
These values of rotation correspond to rod end displacements, respectively
equal to {0.008, 0.149, 0.543, 1.049, 1.340} l. Note that in Fig. 4 also the

undeformed configuration, corresponding to θ̂ = 0◦, is reported in order to
provide the scale bar for the displacement.

It should be noticed that the line of thrust (joining the two forces in
Fig. 4) intersects the elastica at points of inflexion (where θ

′
= 0), separating

different so-called ‘bays’ in the Love’s terminology.
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Figure 5. Sketches of the in-plane secondary bifurcation modes of the simply supported
elastica, referred to the first (upper part) and second (lower part) mode. When the two
supports coincide the structure can suffer a rigid-body rotation. During this rotation,
the horizontal load drops to zero (value reached when the elastica is rotated by 90◦),
so that the force is maintained by the vertical reaction of the support. For rotation
angles greater than 90◦ (not reported) the force changes sign. For an horizontal dead
load, the structure becomes unstable when the two supports coincide and snaps to the
configuration u1 = −2l, where it is in equilibrium with a tensile load.

In-plane secondary bifurcations of the simply-supported elastica
Let us go back to Fig. 3 and note that on each bifurcated branch there is a
secondary bifurcation point (marked with a circle). This condition occurs
when the two supports of the rod coincide, namely, when u1(l) = −l, cor-

responding to θ̂ = 130.7099◦ and different load values: Pl2/(πB) = 2.1833
for the first mode, Pl2/(πB) = 8.7335 for the second mode, Pl2/(πB) =
19.6504 for the third mode, and so on.

These secondary bifurcation modes, which passed unnoticed until Mad-
docks (1984) (see also Kuznetsov and Levyakov, 2002), have a simple ex-
planation. In fact, when the two supports of the rod momentarily coincide
during deformation along the bifurcation path, the structure can rigidly ro-
tate about the pin. During the rigid-body rotation, vertical reactions are
generated at the two supports, so that the horizontal load P drops and is
reduced to zero when the structure is rotated by 90◦. Similarly, further
rotations imply a negative horizontal force. This situation is sketched in
Fig. 5, with reference to the first two modes.

For the case of imposed horizontal load, the situation in which the two
supports coincide marks an instability point in the sense that: (i.) at this
point the structure rigidly rotates and snaps to the configuration u1 =
−2l, where it is subject to a tensile load; (ii.) equilibrium configurations

belonging to the post-critical path m = 1 and θ̂ > 130.7099◦ are unstable.
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Doubly clamped elastica The equations governing the equilibrium con-
figurations of a doubly clamped elastica are

θ
′′
(s) +

P

B
sin θ(s) +

R

B
cos θ(s) = 0 ∀ s ∈ [0, l], governing diff. equation

θ(0) = θ(l) = 0, b.c.: null rotation

u1(0) = 0, b.c.: null horizontal displ.

u2(0) = u2(l) = 0, b.c.: null vertical displ.

u
′

1(s) = cos θ(s)− 1 ∀ s ∈ [0, l], diff. eq. for horiz. displ.

u
′

2(s) = sin θ(s) ∀ s ∈ [0, l]. diff. eq. for vert. displ.
(58)

Similarly to the case of a simply supported rod, equations (58) define
a nonlinear eigenvalue problem, for which the trivial solution θ(s) = 0 is
always possible, so that we look for non-trivial solutions.

When symmetric deformed configurations are considered, such that 2m
inflection points are present, vertical equilibrium requires that R = 0 and so
the differential equation (58)1 reduces to that governing the previous case
of a simply supported rod.

A different solution arises when antisymmetric configurations are sought.
In this case, 2m + 1 inflection points are present and a non-zero vertical
reaction R acts at the constraints. A linearization of the problem (58)
about the solution θ(s) = 0 leads to

θ
′′
(s) +

P

B
θ(s) = −R

B
∀ s ∈ [0, l], governing diff. equation

θ(0) = θ(l) = 0,

l∫
0

θ(s)ds = 0. boundary conditions

(59)

Equations (59) define a linear eigenvalue problem that admits the trivial
solution θ(s) = 0 for every thrust P , whereas infinite, non trivial (sym-
metric and antisymmetric) solutions are only possible when the following
characteristic equation is satisfied

2

(
1− cos

√
Pl2

B

)
=

√
Pl2

B
sin

√
Pl2

B
, (60)

17



In CISM Lecture Notes No. 562
“Extremely Deformable Structures” D. Bigoni

Ed. Springer, Wien–New York, 2015
ISBN 978-3-7091-1876-4 doi 10.1007/978-3-7091-1877-1

Figure 6. Deformed (and undeformed) configuration for the first (symmetric) mode
of the doubly clamped rod. Note that, thanks to symmetry, the problem is reduced to
the analysis of a cantilever rod of length l/4 loaded with an end thrust P .

defining the Euler’s bifurcation loads for the doubly clamped rod as

P cr1 =
4π2B

l2
, P cr2 =

8.1830π2B

l2
, P cr3 =

16π2B

l2
, P cr4 =

24.1872π2B

l2
, ...

(61)
where an odd (even) subscript in the definition of the critical loads corre-
sponds to symmetric (antisymmetric) bifurcation paths.

Symmetric buckling modes With reference to the symmetric buckling
modes with 2m inflection points (R = 0), the rotation field θ(s) is solution
of the following differential problem

θ
′′
(s) + λ2 sin θ(s) = 0 ∀ s ∈ [0, l],

θ(0) = θ(l) = 0,
(62)

so that, a multiplication of equation (62)1 by θ
′
(s) and its integration leads

to

θ
′
(s) = ±λ

√
2(cos θ(s)− cos θ̂), (63)

where, in this case, θ̂ represents the angle of rotation at the inflection point
at the coordinate s = l/4.

In order to facilitate the analytical description, the symmetry properties
can be exploited, so that four simply clamped rods, of equal length l/4, can
be identified in the structure, as sketched in Fig. 6.

Therefore, limiting the attention only to one quarter of the rod, s ∈
[0, l/4], and considering the positive root (representing the curvature) of
equation (63) for s ∈ [0, l/4], the change of variables (34) leads to the
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differential problem
dφ(s)

ds
= λ

√
1− κ2 sin2 φ. (64)

The boundary conditions for the considered problem imply that sinφ(0) = 0
and sinφ(l/4) = 1, so that

φ(0) = hπ, φ(l/4) =
2j + 1

2
π, h, j = 0,±1,±2, ... (65)

and therefore integration of equation (64) by separation of the variables
yields

sλ =

φ(s)∫
hπ

dφ√
1− k2 sin2 φ

, h = 0,±1,±2, ... (66)

which, for s = l/4, becomes

l

4
λ =

2j+1
2 π∫
hπ

dφ√
1− k2 sin2 φ

, h, j = 0,±1,±2, ... (67)

and can be rewritten as a function of an odd integer m as

lλ = 2(m+1)K(κ), ⇔ P =
B

l2
4(m+1)2

[
K

(
sin

θ̂

2

)]2

, m = 1, 3, 5, ...

(68)
This equation provides the relation between the applied load P and the rota-
tion θ̂ at the inflection point (s = l/4) associated with the odd (symmetric)
m–th buckling mode.

For small θ̂, a Taylor series expansion of equation (68) provides exactly
the odd critical Euler’s loads calculated through linearization of the govern-
ing equations and reported in equation (61).

Going back to equation (66) and employing the definition of φ(s), equa-
tion (34), in addition to the odd nature of Jacobi amplitude function,
namely,

am (x, κ) = −am (−x, κ),

we can write the rotation field along the rod as4

θ(s) = 2arcsin (κ sn (sλ, κ)) ∀ s ∈ [0, l]. (69)

4We may note that the equations describing the rotational field, equation (69), and the

shape of the elastica, equation (70), remain the same also for structure (iii). The only

difference lies in the relation between the load P and the angle of the free end θ̂ = θ(l),

associated to the m-th bifurcation mode, which is lλ = (2m− 1)K
(

sin
θ̂

2

)
.

19



In CISM Lecture Notes No. 562
“Extremely Deformable Structures” D. Bigoni

Ed. Springer, Wien–New York, 2015
ISBN 978-3-7091-1876-4 doi 10.1007/978-3-7091-1877-1

Figure 7. The solution of the elastica superimposed to a photo of fluid (an epoxy
resin) forming a meniscus near the boundary of a teflon mould shows that the shape of
an elastic cantilever (marked in red) subjected to large displacements (induced by a dead
force applied at its free end) is identical to the shape of a fluid meniscus in a capillary
channel.

According to equations (11) and (69), and taking into account the bound-
ary conditions (21)6, the analytical formulae describing the shape of the
elastica for the entire rod, with s ∈ [0, l], can be written as5

x1(s) = −s+
2

λ
{E [am (sλ, κ) , κ]} ,

x2(s) =
2κ

λ
[1− cn(sλ)] .

(70)

It might be interesting to notice that a formal analogy exists between
the two differential equations governing the equilibrium configurations of
an elastic rod and the free surface of a fluid meniscus, see Lamb (1928).
Specifically, the term P/B of the elastica is replaced in the case of a fluid
meniscus by the ratio between the unit weight and the surface tension of
the fluid. This fact is depicted in Fig. 7, where the deformed shape of a
clamped elastic rod has been superimposed to a photo of a meniscus formed
by an epoxy resin at a boundary of a teflon mould.

Proceeding with our treatment, since |u1(l)| = l−x1(l), the displacement
of the point of application of the force can be immediately obtained from

5Equations (70) describe also the deformed configuration of system (iv), together with

the relation (40), providing a connection between the thrust P and the angle θ̂ = θ(l/2)

for different m buckling modes.
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equation (70)1 in the form

|u1(l)|
l

= −2

(
E(κ)

K(κ)
− 1

)
, (71)

which is independent of the bifurcation mode m, so that the displacement
of the right end of the rod depends only on θ̂ (through κ). The bifurcation
diagram showing the load P (made dimensionless through multiplication by
l2/(π2B)) as a function of the displacement of the right-hand movable end
of the rod (divided by l) is shown in Fig. 9 together with the bifurcation
diagram valid for antisymmetric buckling modes. In the figure, the first
three critical loads and the corresponding three branches (two symmetric
and one antisymmetric) are reported. The deformed elastic lines have been
evaluated and plotted in Fig. 10 for the first symmetric branch (first buckling
mode) at fixed values of |u1(l)|/l = {0, 0.2, 0.6, 1.0, 1.4}, together with the
first anti-symmetric branch (second buckling mode), described by equations
(86), (89), and (95). Note that in Fig. 10 also the undeformed configuration
is reported, providing the scale bar for the displacements.

Antisymmetric buckling modes Let us now go back to equations (58)
and solve them in the case of antisymmetric (even) buckling modes charac-
terized by 2m+ 1 inflection points (R 6= 0). Antisymmetry properties allow
us to conclude that one inflection point is located at s = l/2, so that we
may observe that the structure can be regarded as composed of two equal
clamped-hinged rods subject to an end thrust P , see Fig. 8. Therefore, we
consider only one half of the rod, such that its equilibrium is governed by
the following differential problem6

θ
′′
(s) +

P

B
sin θ(s) +

R

B
cos θ(s) = 0 ∀s ∈ [0, l/2] ,

θ(0) = θ
′
(l/2) = 0,

l/2∫
0

sin θ(s)ds = 0.

(72)

We write γ2 =
√
P 2 +R2/B and we introduce the angle ψ(s) = θ(s) + β,

where β defines the inclination of the resultant of P and R with respect to

6We note that the equations for the structure (v.) correspond to those governing the

antisymmetric equilibrium configuration of the structure (vi.).
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Figure 8. Deformed configuration for the second (antisymmetric) mode of the doubly
clamped rod. Note that, thanks to the antisymmetry, one inflection point is located at
the mid-span, so that the problem can be reduced to a clamped-guided rod of length l/2.

the horizontal axis, so that

cosβ =
P√

P 2 +R2
, sinβ =

R√
P 2 +R2

, (73)

and the differential problem (72) can be rewritten as

ψ
′′
(s) + γ2 sinψ(s) = 0 ∀ s ∈ [0, l/2]

ψ(0) = β, ψ
′
(l/2) = 0,

l/2∫
0

sin (ψ(s)− β) ds = 0.

(74)

Before proceeding with the derivation of the non-trivial solutions of the
differential problem (74), let us define θ(l/2) = −θ∗, such that ψ(l/2) =
−ψ∗ = −θ∗ + β and an inflection point exists at s = l∗, where the angle
of rotation is defined as θ(l∗) = θ∗, with θ

′
(l∗) = 0 (note that ψ(l∗) = ψ∗

and ψ
′
(l∗) = 0), see Fig. 8. Multiplication of equation (74)1 by ψ

′
(s) and

integration in the variable s yields

d

ds

[
1

2
(ψ
′
(s))2 − γ2 cosψ(s)

]
= 0, (75)

so that imposition of the boundary conditions at the inflection point s = l∗

leads to

ψ
′
(s) = ±λ

√
2(cosψ(s)− cosψ∗), (76)
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where the + (−) sign corresponds to a positive (negative) curvature. Keep-
ing in mind the sketch of Fig. 8, equation (76) provides the following con-
ditions

ψ
′
(s) = +λ

√
2 (cosψ(s)− cosψ∗) ∀ s ∈ (0, l∗) ,

ψ
′
(s) = −λ

√
2 (cosψ(s)− cosψ∗) ∀ s ∈ (l∗, l/2) .

(77)

It is a standard expedient to operate the following change of variables

η = sin
ψ∗

2
, η sinω(s) = sin

ψ(s)

2
, (78)

leading to the following differential equation

dω(s)

ds
= ±γ

√
1− η2 sin2 ω(s). (79)

Furthermore, the boundary conditions imply that

ω(0) = ωβ , ω(l∗) =
π

2
, ω (l/2) = −π

2
, (80)

where ωβ = arcsin

(
1

η
sin

(
β

2

))
.

Therefore, separation of the variables and integration of the positive root
of equation (79) between 0 and l∗ yields

l∗∫
0

γds =

π
2∫

ωβ

dω√
1− η2 sin2 ω

, (81)

which expresses the non-trivial solution for l∗, related to η, γ and β as

l∗γ = K(η)−K (ωβ , η) , (82)

where

K(x, η) =

x∫
0

dω√
1− η2 sin2 ω

, (83)

is the incomplete elliptic integral of the first kind. Now, let us integrate the
negative root of equation (79) between l∗ and l/2. By using the Riemann
theorem and the following property for the integral of even functions

−

−π2∫
π
2

dω√
1− η2 sin2 ω

= 2

π
2∫

0

dω√
1− η2 sin2 ω

(84)
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we obtain

γ

(
l

2
− l∗

)
= 2K(η), (85)

so that, considering the periodicity of the boundary conditions (80) and
using equations (82) and (85), we arrive at

γl = 2 [(m+ 1)K(η)−K (ωβ , η)] m = 2, 4, 6, ... (86)

Note that equation (86) provides the relation between the external load
P and the angles θ∗ (through η and ψ∗) and β associated with the even,
antisymmetric m–th buckled mode. The relation above provides one of the
two equations to be solved for the problem under consideration. The other
relation that allows for the solution of the problem can be obtained from
equation (72)3, which can be rewritten as

l∗∫
0

sin (ψ(s)− β) ds+

l/2∫
l∗

sin (ψ(s)− β) ds = 0, (87)

so that, considering equations (78), we obtain

ψ∗∫
β

sinψ cosβ

γ
√

2(cosψ − cosψ∗)
dψ −

ψ∗∫
β

sinβ cosψ

γ
√

2(cosψ − cosψ∗)
dψ+

−
−ψ∗∫
ψ∗

sinψ cosβ

γ
√

2(cosψ − cosψ∗)
dψ +

−ψ∗∫
ψ∗

sinβ cosψ

γ
√

2(cosψ − cosψ∗)
dψ = 0.

(88)

The third integral in equation (88) is null (in fact the integrand is an odd
function of ψ), whereas the other terms can be rewritten, by using equation
(78) and by exploiting the following relations

cosψ = 1− 2 sin2(ψ/2), sinψ = 2 sin(ψ/2)

√
1− sin2(ψ/2),

in the final form (Mikata, 2007)

−2η cosωβ
(
1− 2η2 sin2 ωβ

)
+ 2η sinωβ

√
1− η2 sin2 ωβ

{
(m+ 1)

[
2E(η)+

−K(η)
]
− [2E(ωβ , η)−K(ωβ , η)]

}
= 0, m = 2, 4, 6, ...

(89)
Equations (86) and (89) are highly non-linear and allow for the determi-
nation of the nontrivial, antisymmetric equilibrium solution. The relation
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between β and θ∗ (the former contained in ωβ and the latter in η) can
be numerically obtained from equation (89) and used into equation (86) to
obtain the relation P − θ∗.

Our aim is now to compute the deformed shape of the buckled rod. To
this purpose, we first integrate equation (79) from s = 0 to a generic point
on the left of the inflection s = l∗

s∫
0

γds =

ω(s)∫
ωβ

dω√
1− η2 sin2 ω

. (90)

We then consider the decomposition (41), equation (78)2, and the following
properties of the elliptic function ‘sn’ (Byrd and Friedman, 1954)

sn(−x+ 2K(η), η) = −sn(−x, η) = sn(x, η), (91)

such that we obtain

sin
(ω

2

)
= η sn [γs+K(ωβ , η), η] ∀s ∈ [0, l]. (92)

Finally, integration of the kinematic fields (11) provides the analytical
expressions for the deformed shape of the rod, holding for s ∈ (0, l), as7

7Equation (95) holds also for the structure (v.), together with

γl = (2m+ 1)K(η)−K
(
ωβ , η

)
, m = 1, 2, 3, ... (93)

and

−2η cosωβ
(
1− 2η2 sin2 ωβ

)
+2η sinωβ

√
1− η2 sin2 ωβ

{
(2m+ 1) [2E(η)−K(η)]−

[
2E(ωβ , η)−K(ωβ , η)

]}
= 0,

(94)

defining the relation between P , β and θ∗ associated with the m–th bifurcation mode.
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x1(s) = + sinβ

[
−2η

γ
cn
(
γs+K(ωβ , η), η

)
+

2η

γ
cn
(
K(ωβ , η), η

)]
+ cosβ

{
−s+

2

γ

[
E [am (γs+K(ωβ , η), η) , η]

− E [am (K(ωβ , η), η) , η]
]}
,

x2(s) = cosβ

[
−2η

γ
cn
(
γs+K(ωβ , η), η

)
+

2η

γ
cn
(
K(ωβ , η), η

)]
− sinβ

{
−s+

2

γ

[
E [am (γs+K(ωβ , η), η) , η]

− E [am (K(ωβ , η), η) , η]
]}
.

(95)

The displacement of the movable, clamped end, where the thrust is ap-
plied, can be obtained from equation (95), since |u1(l)| = l − x1(l). For a
given θ∗ and a given even mode m, we can obtain β (through equation (89)),
P (using equations (86) and (73)) and |u1(l)| (through equation (95)1). The
bifurcation diagram showing the load P (made dimensionless through multi-
plication by l2/(π2B)) as a function of the displacement of the right movable
end of the rod (divided by l) is shown in Fig. 9, together with the bifur-
cation diagram valid for the first and third symmetric buckling mode, see
equation (71).

In-plane secondary bifurcation of the doubly clamped elastica It
can be noticed from Fig. 9 that the doubly clamped elastica, i.e. the struc-
ture (vi.), exhibits a secondary bifurcation (marked with a circle) occurring

when the two ends of the rod coincide, namely, when θ̂ = 130.7099◦ 8. Under
this condition, an ‘8-shaped’ unstable equilibrium configuration is realized
by the rod (see the sketches in Fig. 10) and vertical reactions are gener-
ated at its ends. By further increasing the external thrust P , the rod snaps
onto the stable, ‘S-shaped’ configuration corresponding to the antisymmet-
ric second mode (Domokos, 1994), see also Fig. 12. The stability of the
equilibrium configurations will be addressed in the next section.

8The angle θ̂ = 130.7099◦ corresponds to the value κ = 0.9089, which is the root of the

equation 2E(κ)−K(κ) = 0.
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Figure 9. Dimensionless load Pl2/(π2B) for a doubly clamped rod versus the di-
mensionless displacement |u1(l)|/l. The first three bifurcation points and branches are
reported together with the secondary bifurcation point. The solid lines represent stable
equilibrium configurations, while dashed curves correspond to unstable configurations.
Note that the first branch becomes unstable after the secondary bifurcation point.

2.3 Stability of the elastica

The stability of the elastica equilibrium configurations can be judged
by analyzing the sign of the second variation of the total potential energy
V with respect to variations θ̃(s) compatible with the boundary conditions
reported in equation (22), plus the supplementary condition

l∫
0

θ̃(s) cos θ(s) ds = 0, (96)

following from the vanishing of the integral constraint in equations (22)1,
(22)5, and (22)6 and holding for the systems (i.), (v.) and (vi.), in which
both the ends of the rod are constrained to null vertical displacements.
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Figure 10. Deformed elastic lines for the first two modes m = 1, 2 (symmet-
ric and antisymmetric) at different values of dimensionless displacements |u1(l)|/l =
{0, 0.2, 0.6, 1.0, 1.4}. The deformed shapes of the elastica represent the post-critical be-
haviour of the structure.

The second variation of the functional V can be computed as

δ2V =

l∫
0

[(
θ̃
′
(s)
)2

− P

B
θ̃2(s) cos θ(s) +

R

B
θ̃2(s) sin θ(s)

]
ds, (97)

an equation that, using integration by parts

l∫
0

(
θ̃
′
(s)
)2

ds = −
l∫

0

θ̃
′′
(s)θ̃(s) ds,

yields

δ2V = −
l∫

0

[
θ̃
′′
(s) +

P

B
θ̃(s) cos θ(s)− R

B
θ̃(s) sin θ(s)

]
θ̃(s) ds, (98)

for all kinematically admissible rotation fields θ̃(s), so that the stability
criterion reads

δ2V

{
> 0 stability,

< 0 instability.
(99)
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In order to treat condition (98), let us denote with φn(s) (where s ∈ [0, l])
the non-trivial solutions of the following Sturm-Liouville problem9

φ
′′

n(s) + δn

(
P

B
cos θ(s)− R

B
sin θ(s)

)
φn(s) = CRn cos θ(s), (101)

subject to the following constraints representing the boundary conditions
(21)

i) φ
′

n(0) = φ
′

n(l) = 0 and
∫ l

0
cos θ(s)φn(s)ds = 0,

ii) φ
′

n(0) = φn(l) = 0,

iii) φn(0) = φ
′

n(l) = 0,

iv) φn(0) = φn(l) = 0,

v) φn(0) = φ
′

n(l) = 0 and
∫ l

0
cos θ(s)φn(s)ds = 0,

vi) φn(0) = φn(l) = 0 and
∫ l

0
cos θ(s)φn(s)ds = 0.

(102)

In the equations above, φn(s) are the eigenfunctions associated to the eigen-
values δn with weight function

P

B
cos θ(s)− R

B
sin θ(s), (103)

and CRn is a constant that represents the isoperimetric constraint (96) and
is ‘linked’ to R, so that for the unconstrained systems (for the systems (ii.),
(iii.), (iv.), and (i.), but the last except when the two supports coincide)
CRn = 0.

It is known (Broman, 1970) that: (i.) problem (101) admits a countably
infinite set of eigenvalues δn and these can be arranged in an increasing
sequence (δn < δn+1 for each integer n)10, (ii.) δn −→ ∞ when n −→ ∞,

9When isoperimetric constraints are not present, namely condition (96) is absent, sta-
bility can also be addressed by evaluating the eigenvalues δn of the following Sturm-
Liouville problem

−φ
′′
n(s)−

(
P

B
cos θ(s)−

R

B
sin θ(s)

)
φn(s) = δnφn(s). (100)

When at least one eigenvalue is negative, the associated equilibrium configuration is

unstable, while, if all eigenvalues are positive, the equilibrium is stable, see Manning et

al. (1998) and Hoffman et al. (2002).
10Note in addition that δn ≥ 0, see Broman (1970), pag. 41 – 44.
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(iii.) the system φn(s) is an orthogonal system with the weight function
(103). Multiplication of the differential equation (101) by φn and integration
between 0 and l yields (keeping into account the boundary conditions (102)
and using integration by parts)

δn

l∫
0

(
P

B
cos θ(s)− R

B
sin θ(s)

)
φ2
n(s) ds =

l∫
0

(φ
′

n(s))2 ds, (104)

while writing equation (101) for the eigenfunction φm, that is

φ
′′

m(s) + δm

(
P

B
cos θ(s)− R

B
sin θ(s)

)
φm(s) = CRm cos θ(s), (105)

and combining equations (101) and (105) multiplied by φm and φn, re-
spectively, integration between 0 and l (taking into account the boundary
conditions) provides the following orthogonality condition

l∫
0

φn(s)φm(s)

(
P

B
cos θ(s)− R

B
sin θ(s)

)
ds = 0, n 6= m. (106)

Condition (104) defines a norm and equation (106) a weighted orthogonality
condition for the functions φn(s) with weight function (103).

Therefore, the system φn(s) with weight function (103) can be used
to provide a Fourier series representation (converging in the mean) to the
square-integrable function θ̃(s),

θ̃(s) =

∞∑
n=1

cnφn(s), (107)

where cn are the Fourier coefficients.
We do not need to specify the coefficients cn, rather we can simply

substitute the Fourier representation (107) into condition (98) and keep
into consideration equation (101) to obtain

δ2V =

l∫
0

[ ∞∑
n=1

(δn − 1)cnφn(s)

(
P

B
cos θ(s)− R

B
sin θ(s)

)]

×

[ ∞∑
m=1

cmφm(s)

]
ds,

(108)
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which, employing conditions (104) and (106) finally becomes

δ2V =

∞∑
n=1

(1− 1

δn
)c2n

l∫
0

(φ
′

n(s))2 ds

 > 0 stability,

< 0 instability,
(109)

so that we arrive at the following stability requirement δn /∈ [0, 1] stability,

δn ∈ [0, 1] instability,
(110)

where δn are solutions of the Sturm-Liouville problem (101). The values
δn = 0 or δn = 1 represent ‘transition’ points and thus are called ‘critical’.

Stability of the simply supported elastica Let us consider first the
stability of the straight configuration of a simply supported rod, such that
cos θ(s) = 1. In this case, R = CRn = 0 and the Sturm-Liouville problem,
equation (101), becomes

φ
′′

n(s) + δn
P

B
φn(s) = 0, φ

′

n(0) = φ
′

n(l) = 0, (111)

which has the nontrivial solutions

φn(s) = cos
nπs

l
, δn =

P crn
P
, (112)

where P crn is the Euler’s critical load corresponding to the n-th buckling
mode, so that when δ1 < 0 or δ1 > 1 (0 < δ1 < 1) the straight configuration
is stable (unstable) and P < P cr1 (P > P cr1 )11.

To judge the stability of the deformed configurations, we can substitute
equation (40) into equation (50) to obtain

cos θ(s) = 1− 2κ2 sn2
[(s
l
2m+ 1

)
K(κ), κ

]
, (113)

11This statement hold also true for other structures when R = 0, namely systems (ii.),
(iii.) and (iv.), whose nontrivial solutions are

ii) φn(s) = cos
π + 2nπ

2

s

l
,

iii) φn(s) = sin
π + 2nπ

2

s

l
,

iv) φn(s) = sin
nπs

l
,

with δn =
P crn
P

.
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and rewrite the Sturm-Liouville problem (101) using the dimensionless vari-
able s̃ = s/l ∈ [0, 1], so that, for a given mode m and rotation of the rod end

κ = sin(θ̂/2), the smallest eigenvalue δm has to be determined as solution
of

φ
′′

m(s̃) + δm 4m2K2(κ)
{

1− 2κ2 sn2 [(2ms̃+ 1)K(κ), κ]
}
φm(s̃) = 0, (114)

(where now a prime denotes differentiation with respect to s̃) subject to the
boundary conditions (101)2, namely, φ

′

m(0) = φ
′

m(1) = 0.
The solutions of equation (114) can be easily computed by means of

a numerical routine. As noticed by Kuznetsov and Levyakov (2002), a
numerical procedure can be easily set, solving the differential equation (114)
with the boundary conditions

φm(0) = 1, φ
′

m(0) = 0, (115)

so that the trivial solution is always eliminated and iterations on δm can
be performed to match the condition φ

′

m(1) = 012. A numerical integration
and iterations performed on the basis of a bisection method yield the graphs
reported in Fig. 11.

The smallest eigenvalues δm for the first three modes m = 1, 2, 3 are re-
ported versus the inclination θ̂ (in degrees) of the ends of the deformed rod.
It is clear that the first mode, m = 1, is stable (the eigenvalues range be-

tween 1 and 10) until the two supports coincide for θ̂ = 130.7099◦, at which
point the eigenvalues become discontinuous and fall to values within [0, 1]

(in particular, δ1 = 9.9228 at θ̂ = 130.7◦ and δ1 = 0.0059 at θ̂ = 130.8◦).
All modes higher than the first (m = 2, 3) are unstable with eigenvalues
belonging to [0, 1]. Note that for the considered modes, all the eigenvalues

coincide when θ̂ ≥ 130.7099◦.
With respect to the unstable configuration that occurs at θ̂ > 130.7099◦

for m = 1 (Maddocks, 1984), the instability mode and the corresponding
‘self-intersecting’ elastica is illustrated through an experiment in Bigoni
(2012).

12The nontrivial solution of the Sturm-Liouville problem (101) for the systems (ii.), (iii.)
and (iv.) can be numerically found using the following boundary conditions

ii) φ
′
m(0) = 0, φm(l) = 0, φm(0) = 1,

iii) φm(0) = 0, φ
′
m(l) = 0, φm(l) = 1,

iv) φm(0) = 0, φm(l) = 0, φ
′
m(0) = 1.

In all these cases, the first mode, m = 1, is stable (all eigenvalues are external to

[0, 1]), while the higher modes m = 2, 3 are both unstable with at least one eigenvalue

belonging to the interval [0,1].
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Figure 11. The smallest eigenvalues δm of the Sturm-Liouville problem (114) as

functions of the rotation θ̂ of the ends of the simply supported rod. These determine the
stability of the different modes of the elastica (m = 1, 2, 3 are investigated). The light
gray region corresponds to stability, so that only the first mode m = 1 is stable and only
until the two supports of the rod coincide, a situation corresponding to θ̂ = 130.7099◦.

We finally note that, with the proposed procedure to check stability, it is
not directly possible to conclude that all the modes withm > 1 are unstable,
though physical intuition suggests that this might be the case. In fact, our
stability study for the modes m = 2, 3 substantiates the Love’s (Love, 1927)
statement according to which ‘the instability of forms of the elastica with
more than the smallest possible number of inflexions between the ends is
well known as an experimental fact’.

Stability of the doubly clamped elastica We move now to the analysis
of a doubly clamped rod: system (vi.) in Fig. 2. Stability of the straight
configuration can be analyzed by noting that sin θ(s) = 0 and cos θ(s) = 1,
so that the Sturm-Liouville problem (101) becomes

φ
′′

n(s) + δn
P

B
φn(s) = CRn, φn(0) = φn(l) = 0,

l∫
0

φn(s)ds = 0, (116)

and admits solutions in the following form

φn(s) = A1 cos

(√
δn P

B
s

)
+A2 sin

(√
δn P

B
s

)
+
A3B

δn P
, (117)
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where A1, A2, and A3 are constants. By substitution of equation (117) into
the boundary conditions of the Sturm-Liouville problem (116), we arrive at
a system of homogeneous equations for A1, A2 and A3 which can be written
in the following matrix form

δn P

B
0 1

cos

(√
δn P

B
l

)
sin

(√
δn P

B
l

)
B

δn P

δn P

B
sin

(√
δn P

B
l

)
δn P

B
cos

(√
δn P

B
l

)
l




A1

A2

A3

 =


0

0

0

 .

(118)
Therefore, nontrivial solutions of the system (117) can be obtained by im-
posing the vanishing of the determinant of its coefficient matrix. This leads
to the following characteristic equation

2

[
cos

(√
δn P

B
l

)
− 1

]
+

√
δn P

B
l sin

(√
δn P

B
l

)
= 0, (119)

which can be numerically solved for δn to show that the straight, natural
configuration is stable only for P < P cr1 . In fact, when P > P cr1 at least
one eigenvalue δn belongs to the interval [0, 1], and therefore the trivial
configuration becomes unstable.

We explore in what follows the stability of the nontrivial equilibrium
configurations and, to that purpose, we make use of the numerical proce-
dure proposed by Levyakov and Kuznetsov (2010) while retaining as much
as possible the notation employed by those authors13. We introduce the
dimensionless arc-length s̃ = s/l ∈ [0, 1], such that the Sturm-Liouville
problem (101) for a given mode m can be rewritten as

φ
′′

m(s̃) + δm L(s̃)φm(s̃) = CRmN(s̃), (120)

where

L(s̃) =


P

B
cos θ(s̃), for odd modes

P

B
cos θ(s̃)− R

B
sin θ(s̃), for even modes

(121)

13The analysis of stability with isoperimetric constraints can be also performed follow-

ing Manning et al. (1998), Hoffman et al. (2002) and Manning (2009, 2014) through

the conjugate point theory.
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and N(s̃) = cos θ(s̃). Notice that, for the odd buckling modes with 2m
inflections, equation (68)1 can be substituted into the definition of cos θ(s)
to obtain

cos θ(s̃) = 1− 2κ2 sn2 [(2(m+ 1)s̃)K(κ), κ] , m = 1, 3, 5, (122)

which is a function of the rotation θ̂ of the rod at the inflection point.
For the even buckling modes with 2m+ 1 inflections, we can write

cos θ(s̃) = sinβ [2η sn [γs̃+K(ωβ , η), η] dn [γs̃+K(ωβ , η), η]]

+ cosβ
[
1− 2η2 sn2 [γs̃+K(ωβ , η), η]

]
,

sin θ(s̃) = cosβ [2η sn [γs̃+K(ωβ , η), η] dn [γs̃+K(ωβ , η), η]]

− sinβ
[
1− 2η2 sn2 [γs̃+K(ωβ , η), η]

]
,

(123)

where β, γ, P and R can be computed through equations (89), (86) and
(73) as functions of the rotation θ∗ of the rod at inflection point. Notice also
that equations (120) are subjected to the boundary conditions φm(0) = 0,
φm(1) = 014 and to the additional constraint

1∫
0

φm(s̃)N(s̃)ds̃ = 0. (124)

The numerical procedure to compute the eigenvalues δm consists in par-
titioning the interval 0 ≤ s̃ ≤ 1 into n segments of equal length h = n−1,
such that the coordinates of the starting points of the segments can be
denoted by si−1 = h(i − 1), with i = 1, ..., n. For the i-th segment, the
functions L(s̃) and N(s̃) are approximated by their average values Li and
Ni as computed at the midpoint of the segment, so that equation (120)
becomes

φ
′′

m(s̃) + δm Li φm(s̃) = CRmNi, (125)

an ordinary differential equation with constant coefficients, which solution
is

φm(s̃) = A1iF1i(s̃− s̃i−1) +A2iF2i(s̃− s̃i−1) + CRm
Ni
δn Li

. (126)

In equation (126), A1i and A2i are constants, whereas the coefficients F1i

and F2i are defined for δmLi > 0 as

F1i(s̃− s̃i−1) = cos ai(s̃− s̃i−1), F2i(s̃− s̃i−1) = sin ai(s̃− s̃i−1), (127)

14For the system (v.) the boundary conditions are φm(0) = φ
′
m(1) = 0.

35



In CISM Lecture Notes No. 562
“Extremely Deformable Structures” D. Bigoni

Ed. Springer, Wien–New York, 2015
ISBN 978-3-7091-1876-4 doi 10.1007/978-3-7091-1877-1

while for δmLi < 0 they are

F1i(s̃− s̃i−1) = cosh ai(s̃− s̃i−1), F2i(s̃− s̃i−1) = sinh ai(s̃− s̃i−1), (128)

with ai =
√
|δm Li|. Furthermore, the constants A1i and A2i can be ex-

pressed by means of φm(s̃i−1) = φm,i−1 and by means of φ
′

m(s̃i−1) = φ
′

m,i−1

as

A1i = φm,i−1 − CRm
Ni
δm Li

, A2i =
φ
′

m,i−1

ai
, (129)

so that the quantity φm(s̃i) = φm,i at the right end of the segment is
computed as

φm,i = φm,i−1 F1i(h) + φ
′

m,i−1

F2i(h)

ai
+ CRmNi

1− F1i(h)

δm Li
, (130)

and its derivative reads

φ
′

m,i = φm,i−1 F
′

1i(h) + φ
′

m,i−1

F
′

2i(h)

ai
− CRmNi

F
′

1i(h)

δm Li
. (131)

The general solution of equation (125) can now be constructed by using
equations (130)-(131) and the condition of continuity of φm and φ

′

m at the
extremities of every integration segment. Since equation (125) is linear,
its general solution can be written as a combination of three particular
solutions, that is

φm(s̃) = c1ϕ1(s̃) + c2ϕ2(s̃) + CRmϕ3(s̃), (132)

where c1 and c2 are constants. Using the following initial data

ϕ1(0) = 1, ϕ
′

1(0) = 0, CRm = 0,

ϕ2(0) = 0, ϕ
′

2(0) = 1, CRm = 0,

ϕ3(0) = 0, ϕ
′

3(0) = 0, CRm = 1,

(133)

the functions ϕi(s̃) (i = 1, 2, 3) can be constructed separately using the
recurrence relations (130) and (131). Note that the particular solutions
ϕi(s̃) can also be obtained by numerically solving the differential equation
(120) –where φm(s̃) is replaced by ϕi(s̃)– through the function NDSolve of
Mathematica c© and imposing the boundary conditions (133).

By substituting the general solution (132) into the relation (124), the
constraint can be rewritten as

1∫
0

[c1ϕ1(s̃) + c2ϕ2(s̃) + CRmϕ3(s̃)]N(s̃)ds̃ = 0, (134)
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while the boundary conditions φm(0) = 0 and φm(1) = 0 provide the fol-
lowing relations

c1 = 0,

c1ϕ1(1) + c2ϕ2(1) + CRmϕ3(1) = 0.
(135)

Equations (134) and (135)2 represent an homogeneous system of algebraic
equations for c2 and CRm, which can be rewritten in matrix form as

ϕ2(1) ϕ3(1)

1∫
0

ϕ2(s̃)N(s̃)ds̃

1∫
0

ϕ3(s̃)N(s̃)ds̃


 c2

CRm

 =

 0

0

 . (136)

Nontrivial solutions of the system (136) can be obtained by imposing
the vanishing of the coefficient matrix’s determinant ∆, so that, by varying
the eigenvalue δm from 0 to 1, we can study the behaviour of ∆. When at
least one value of δm ∈ [0, 1] exists such that the determinant vanishes, the
non trivial solution of (132) satisfies the boundary conditions, so that the
corresponding equilibrium configuration is unstable. Therefore, the stability
of the equilibrium configurations of the doubly clamped elastica can be
judged by analyzing the determinant ∆, which becomes15

∆ = ϕ2(1)

1∫
0

ϕ3(s̃)N(s̃)ds̃− ϕ3(1)

1∫
0

ϕ2(s̃)N(s̃)ds̃, (137)

where the integrals have to be numerically computed. The above mentioned
numerical procedure arrives at the results reported in Fig. 9, where a stable
(unstable) equilibrium path is depicted by a solid (dashed) curve. Note the
secondary bifurcation point that is highlighted in the figure by a circle along
the red path: once the critical configuration is attained such that the two
ends of the rod touch, the elastic system snaps from the fist into the second
mode.

In order to better understand the instability mode that takes place for
m = 1 and θ̂ > 130.7099◦, a qualitative experiment was performed with
a beam model made up of a PMMA strip of overall dimensions 490 mm ×

15For the elastic system (v.), the determinant of the coefficient matrix is ∆ =

ϕ
′
2(1)

1∫
0

ϕ3(s̃)N(s̃)ds̃− ϕ
′
3(1)

1∫
0

ϕ2(s̃)N(s̃)ds̃.
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Figure 12. An experiment documenting the stability predictions obtained for the
doubly clamped elastica. Configurations (1) and (2) of the first mode are stable for
|u1(l)|/l < 1; the photo (3) shows an unstable self-intersecting configuration of the first
symmetric mode beyond the secondary bifurcation point (note that this configuration is
held in position by hand, otherwise the structure would snap to configuration (4)). The
configuration realized in (4) for the second ‘S-shaped’ antisymmetric mode is stable when
|u1(l)|/l > 1.

25 mm × 1.5 mm. The realization of the corresponding ‘self-intersecting’
configurations of the elastica was made possible by providing the model
with a longitudinal 13 mm wide cut, dividing the strip into two parts (one
12 mm wide and the other ‘∩-shaped’ with each of the two legs 6 mm wide).
Four configurations of the model are reported in Fig. 12, fully confirming
the theoretical expectations.
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3 Buckling under tensile dead loading

Buckling of elastic structures is known from the ancient times16 and is typ-
ically associated to compressive forces17. Examples have been provided of
elastic systems exhibiting buckling under a tensile load, such as those pro-
posed by Ziegler (1977), though instability of these structures is clearly
linked to the presence of compressed elements, which are responsible for
buckling18. Another example of tensile buckling is that reported by Gajew-
ski and Palej (1974), but in that case the applied load is not dead, rather
it is provided by a container partially filled with a liquid, i.e., an example
of live load.

The first example of an elastic system exhibiting buckling under tensile
dead loading has been provided by Zaccaria et al. (2011) and is reported
in Fig. 13. The one-degree-of-freedom structure comprises two rigid bars,
hinged at their extremities and internally connected through a ‘slider’, a
mechanical, frictionless device that keeps the two bars parallel, leaving the
possibility of relative transversal sliding. Notice that the two bars compos-
ing the elastic system are subject to tension.

The buckling load and the equilibrium paths of the structure sketched in
Fig. 13 can be easily computed with reference to its deformed shape, that
is defined by the rotation φ. The elongation of the system reads

∆ = 2l

(
1

cosφ
− 1

)
, (138)

so that the total potential energy is

V(φ) =
1

2
kφ2 − 2Fl

(
1

cosφ
− 1

)
, (139)

and the solutions of the equilibrium problem are

F =
k

2l

φ cos2 φ

sinφ
, (140)

16In fact, it has been experimentally investigated by Pieter van Musschenbrok (1692-

1761) and mathematically solved by Leonhard Euler (1707-1783).
17We refer here only to manifestations of structural instability and not of material in-

stability such as necking of cylindrical bars, wrinkling of membranes and shear bands

formation.
18For instance, one of these examples can be exemplified as a system of three rigid bars

of equal length and connected by elastic hinges, whose natural configuration is the

flat, folded configuration AB-BA-AB (like after flattening the Z letter). When the

endpoints A and B are pulled apart, this system of 3 bars unfolds by an instability,

but buckling here is clearly due to the element subject to compression.
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Figure 13. Bifurcation of an elastic one-degree-of-freedom system under tensile dead
loading. The system comprises two rigid bars of length l that are internally jointed by a
slider, whereas a rotational spring of stiffness k provides the elasticity to the structure.
An imperfect system is also shown on the left, and its imperfection is given by the initial
inclination φ0 of the bars. Note that bifurcation is ‘purely geometrical’ and is induced by
the internal constraint which transmits rotation, but not shear. The bifurcation diagram
is reported on the right for φ0 = {0◦, 1◦, 10◦} and shows that the structure suffers
softening once the critical load is attained.

plus the trivial solution φ = 0, ∀F . The stability of the equilibrium solu-
tions can be judged by studying the sign of the higher order derivatives of
the total potential energy V(φ). For the system being considered, we find
that the trivial solution is stable up to the critical load

Fcr =
k

2l
, (141)

while the nontrivial path, evidencing softening, is always unstable. The
imperfect system, characterized by an initial rotation φ0, can be analyzed
in a similar manner. In fact, its elongation reads now as

∆ = 2l

(
1

cosφ
− 1

cosφ0

)
, (142)

and hence the total potential energy becomes a function of both the rotation
φ and of the imperfection φ0, that is

V(φ, φ0) =
1

2
k (φ− φ0)

2 − 2Fl

(
1

cosφ
− 1

cosφ0

)
, (143)

so that the equilibrium configurations are obtained as

F =
k

2l

(φ− φ0) cos2 φ

sinφ
. (144)
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The buckled model under tensile load
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rotational stiffness k
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Figure 14. The practical realization of the one-degree-of-freedom system sketched in
Fig. 13 (left). Two wooden rods have been employed and joined by means of a linear
bearing, whereas elasticity has been provided to the system by clamping a thin metal
strip to the hinge at the left end of the structure. The buckled configuration, as obtained
by pulling with a dead load at the right end of the structure, is reported on the right.
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Figure 15. Two one-degree-of-freedom elastic systems composed by two rigid bars in-
ternally joined either with a slider (left) or with a parallelogram linkage (right). Although
the linearized behaviour of the two examples is the same, it turns out that buckling under
tensile loading is only feasible when the internal constraint is realized with a slider.

In order to provide experimental evidence of buckling under tensile dead
loading, a physical model was built that resembles the structure sketched in
Fig. 13. Specifically, two wooden rods were joined by means of two linear
bearings (type Easy Rail SN22-80-500-610 from Rollon R©), whereas elasticity
was provided to the system by clamping a thin metal strip to its left end.
The prototype is shown in Fig. 14, together with its buckled configuration
as obtained by hanging a dead load at its right end.

Notice that bifurcation of the system in Fig. 13 is ‘purely geometrical’
and due to the presence of the internal constraint that connects the rigid
bars. The central role of the slider in promoting tensile buckling can be
further emphasized by comparing the two structural systems sketched in
Fig. 15. Although the linearized behaviour of the two examples is the same,
it turns out that by replacing the slider (left) with a parallelogram linkage
(right) tensile buckling is suppressed and the structure can only buckle for
a compressive force.

Once we have understood the crucial role played by the slider in favoring
tensile buckling, we can exploit the concept to invent other structures with
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Figure 16. A one-degree-of-freedom elastic system (left) subject to a tensile dead
load and having a linear elastic spring of stiffness k acting within the slider. Buckling
of this structure still occurs by tensile loading, but now the post-critical behavior (right)
exhibits hardening and hence is stable.

specific elastic responses.
A first example is that of Fig. 16, where the rotational spring has been

replaced by a linear spring of stiffness k acting within the slider. It is worth
noting that buckling still occurs for a tensile dead load, but now the post-
critical behavior shows hardening instead of softening and consequently is
stable.

Another example of structures buckling under tensile loading is shown
in Fig. 17. A ‘T-shaped’ frame comprises three sliders and is simultaneously
loaded by a horizontal force F and a vertical force αF , whereas elasticity
is again provided by a rotational spring of stiffness k. Buckling and post-
critical behaviour of this system are highly sensitive to the ratio α between
the vertical and the horizontal force as shown on the right-hand side of
Fig. 17.

A further generalization of the concepts presented above to elastic struc-
tures is possible by replacing the rigid bars of the system of Fig. 13 by two
flexible elastic rods of equal length l and bending stiffness B, clamped at
their outer extremities and internally connected by a slider, see Fig. 18.
This elastic structure was first proposed and analyzed in detail by Zaccaria
et al. (2011).

With reference to the sketch of Fig. 18, the determination of the critical
loads of the system under consideration requires integration of the linearized
equation of the elastica,

d4v(z)

dz4
− α2 sgn(F )

d2v(z)

dz2
= 0, (145)

where F is assumed positive when tensile and α2 = |F |/B. Equation (145)
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Figure 17. A ‘T-shaped’ frame exhibiting tensile buckling. The structure (left) com-
prises three sliders and is simultaneously subject to a horizontal force F and a vertical
force αF ; elasticity is provided by a rotational spring of stiffness k. Note that both buck-
ling and post-critical behaviour (right) are significantly influenced by the ratio α between
the two applied forces.
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Figure 18. An elastic structure exhibiting buckling both under tensile (F > 0) and
compressive (F < 0) loading. The structure has been designed by replacing the rigid bars
of the one-degree-of-freedom system with elastic, flexible rods of length l and bending
stiffness B.
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holds for both the left and right rod, denoted in the following by ‘−’ and ‘+’,
respectively, and its integration requires the following boundary conditions
to be imposed (a prime denotes differentiation with respect to z),

v−(0) = v
′

−(0) = v+(l) = v
′

+(l) = 0, zero displ. and rot. at clamps

v
′

−(l) = v
′

+(0), continuity of rot. at the slider

v
′′′

− (l) = v
′′′

+ (0) = 0, zero shear force at the slider

v
′′

−(l)− v′′+(0) = α2 sgn(F )[v−(l)− v+(0)]. equilibrium of the slider
(146)

For the case of elastic rods of equal length19, we obtain the following char-
acteristic equations for the critical loadssinh (α l) [1− α l tanh (α l)] = 0, forF > 0,

sin (α l) [1 + α l tan (α l)] = 0, forF < 0.
(147)

showing that there is only one bifurcation load in tension, whereas there
are infinite bifurcation loads in compression. Specifically, buckling of the
elastic structure depicted in Fig. 18 occurs when

Fcr(2l)
2

π2B
= +0.58, −3.17, −4, −15.19, −16, ... (148)

A more detailed analysis of the structure, including the determination
of its post-critical behaviour, can be developed through integration of the
nonlinear equation of the elastica. To attack this problem we start by em-
ploying the local reference systems shown in Fig. 19, and then we impose one
global kinematic compatibility condition and three equilibrium conditions.
These are listed in the following.

� Kinematic compatibility condition: the jump in displacement across
the slider (measured orthogonally to the line of the elastica), i.e. ∆s,
can be related to the angle of rotation of the slider Φs as[

x−1 (l−) + x+
1 (l+)

]
tan Φs + x−2 (l−) + x+

2 (l+) + ∆s = 0, (149)

where x±1 (l±) and x±2 (l±) are the coordinates of the elastica evaluated
at s = l±. Note that Φs is assumed positive when anticlockwise and
∆s is not restricted in sign (negative in the case of Fig. 19).

19The treatment of the more general case of two rods of different length is reported in

Zaccaria et al. (2011).
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Figure 19. A sketch of the planar problem of the elastica at large displacements under
tensile axial loading. Note the local reference systems employed to carry out the analysis.

� Global equilibrium of the structure: since the slider can only transmit
a moment and a force R orthogonal to it, equilibrium of the structure
requires that (see the inset of Fig. 19)

R =
F

cos Φs
, (150)

where F is the external, axial force applied to the system, assumed
positive (negative) when tensile (compressive). Since Φs ∈ [−π/2, π/2],
R is positive (negative) for tensile (compressive) loading. Notice also
that with the above definitions we have

θ+(0) = θ−(0) = 0, θ+(l+) = θ−(l−) = −Φs. (151)

� Rotational equilibrium of the slider:

κ−s + κ+
s =

R

B
∆s, (152)

where B is the bending stiffness of the rods and κ±s denotes their
curvature evaluated at s = l±. Note that B is positive by definition,
but R, κ±s and ∆s can take any sign.

� Equation of the elastica for both the rods:

θ
′′
(s)− R

B
sin θ(s) = 0, (153)
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where θ(s) is the rotation of the normal to the elastica at each point
s, assumed positive when anticlockwise.

Equation (153) is usually20 written with a sign ‘+’ replacing the sign
‘−’, meaning that R is assumed positive when compressive.

Integration of the elastica (details can be found in Zaccaria et al., 2011)
leads to the coordinates x1 and x2 of the deformed elastic rod expressed in
terms of the co-ordinate u = s/ξ

√
|R|/B, that is

x1 =
1

ξ α̃

[(
2− ξ2

)
u− 2 E [am [u, ξ] , ξ] + 2ξ2sn [u, ξ] cn [u, ξ]

]
,

x2 =
2

ξ α̃

√
1− ξ2

(
1− dn [u, ξ]

dn [u, ξ]

)
,

(154)

for a tensile (R > 0) axial load, whereas for a compressive (R < 0) axial
load 

x1 =
1

ξ α̃

[(
ξ2 − 2

)
u+ 2 E [am [u, ξ] , ξ]

]
,

x2 =
2

ξ α̃
(1− dn [u, ξ]) .

(155)

To derive equations (154)-(155), the constants of integration have been
chosen such that x1 and x2 vanish at s = 0, whereas α̃ =

√
|R|/B. More-

over, am, dn, sn, cn and E are elliptic functions (Byrd and Friedman, 1971)
of modulus ξ = 2α̃/

√
κ2
s + 4α̃2H(R), in which H denotes the Heaviside step

function.
With reference to Fig. 19, we may also note that the horizontal displace-

ment ∆c of the right clamp can be written in the form

∆c =
x−1 (l−) + x+

1 (l+)

cos Φs
−
(
l+ + l−

)
. (156)

Finding the axial load F as a function of the slider rotation Φs, or
similarly as a function of the end displacement ∆c, is not particularly diffi-
cult, although the procedure involves the numerical solution of the nonlin-
ear equation that arises from the global kinematic compatibility condition
(149), see Zaccaria et al. (2011) for details. For reference, computed de-
formed elastica in tension and compression (the first mode in tension and
the first mode in compression) are reported in Fig. 20.

20 See equation (24), where R has be taken null and P plays the role of R in equation

(153).
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Figure 20. Deformed shapes in tension (left) and in compression (right) of the struc-
ture shown in Fig. 19 (with rods of equal length) at a slider rotation of 30◦. Note that
the scale of the axes is 2l.

Figure 21. Computed deformed shapes (red lines) superimposed on photos taken
during experimentation. Note the remarkable agreement between theory and experiments
both in the case of a test under tensile (left) and compressive (right) loading.

The theoretical predictions have been compared with experimental re-
sults obtained by means of the structural model shown in the inset of Fig. 22.
A first comparison is reported in Fig. 21, where computed deformed shapes
(red, solid curves) have been superimposed on photos taken during experi-
mentation. Note the remarkable agreement between theory and experiments
both in the case of a test under tensile and compressive loading. An ad-
ditional comparison between experiments and theory is reported in Fig. 22
in terms of buckling load and post-critical response of the elastic structure
shown in the inset.

As a final remark, we emphasize the analogy between the deformed shape
of an elastic rod buckled in tension and the shape of a water meniscus in a
capillary channel (already pointed out, see Fig. 7). This can be appreciated
from the comparison reported in Fig. 23 and is a consequence of the fact
that both the physical phenomena are governed by the same differential
equation.

4 Influence of constraint’s curvature on buckling

The influence of the constraints upon the stability of elastic, structural
systems has been pointed out by Zaccaria et al. (2011), showing that a
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Figure 22. Buckling and post-critical response of the elastic system: theoretical pre-
diction (black dashed line) versus experiments reported in red (tension) and blue (com-
pression) lines. Numbers in degrees refer to slider rotations.
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Figure 23. The shape of a water meniscus in a capillary channel (left: photo near a
water-air-Polycarbonate contact superimposed to the solution of the elastica, highlighted
with a yellow line) versus the elastic line of a rod buckled under tensile loading (right:
photo taken during an experiment).
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Figure 24. A one-degree-of-freedom structure (with a rotational elastic spring at its
left end) evidencing compressive (right) or tensile (left) buckling as a function of the
curvature of the constraint (a circular profile with constant curvature, χ̂ = ±4) along
which the pin on the right of the structure has to slide.

slider can induce tensile buckling of elastic structures, and by Bigoni et al.
(2012, 2014a), demonstrating the deep influence of the constraint curvature
on buckling and post-critical behaviour.

In fact, the curvature of a constraint plays a fundamental role in a bi-
furcation problem, as highlighted by the one-degree-of-freedom structure
shown in Fig. 24, where a rigid bar is connected to a rotational spring on its
left end and to a roller on its right end, which is constrained to move along
a circle of radius Rc centered on the bar’s axis. The structure is subject to
a horizontal force F , so that when this load is compressive and the circle
degenerates to a line (null curvature), the structure buckles at the compres-
sive force F = −k/l. But the curvature of the circle strongly affects the
critical load, which results to be tensile in the case of negative curvature
(Ft = k/(3l), for χ̂ = l/Rc = −4, see Fig. 24 on the left) and compressive in
the case of positive curvature (Fc = −k/(5l), for χ̂ = l/Rc = 4, see Fig. 24
on the right).

To extend this analysis to systems with diffuse elasticity, the rigid bar can
be replaced by an elastic rod, as shown in Fig. 25, and the fully nonlinear
problem can be solved through integration of the elastica, see Bigoni et
al. (2012) for the treatment. The analytical solution to this problem is
reported in Fig. 26 and is compared with results of experiments shown as
orange lines. A remarkable feature of the system is the force reversal found
along the post-critical behaviour both in tension and in compression (points
‘2’ and ‘5’ in the figure).

Since the constraint’s curvature deeply influences both buckling and
post-critical behaviour, one may think to exploit this feature in an alter-
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Figure 25. The elastica problem of a rod clamped at the left end and constrained to
slide with a roller along a circle at its right end. Note the reference system employed in
the analysis.
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‘S-shaped’, bi-circular profile. Deformed shapes are also reported in the insets.
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Figure 27. A one-degree-of-freedom structure (left) with one end constrained to slide
along a generic, curved profile. Three distinct post-critical behaviours are shown (centre)
together with the shape of the constraint (right) that was designed to realize them.
Specifically, the three force-versus-rotation relations correspond to a sinusoidal, a circular
and a constant (or ‘neutral’) elastic behaviour.

native way. In other words, one could think to design the shape of the
constraint’s profile (on which one end of the elastic system is prescribed to
move) to obtain a ‘desired post-critical behaviour’ (for details see Bigoni
et al., 2012). Fig. 27 reports on three examples of elastic structures with
curved profiles designed to obtain a sinusoidal, a circular, and a constant
post-critical response in terms of force F versus rotation φ. Furthermore,
experiments have been performed to confirm the relation between the ge-
ometry of the constraint’s profile and post-critical response of elastic sys-
tems. As an example, Fig. 28 shows the setup that was used to carry out
experiments on the one-degree-of freedom structure exhibiting a ‘neutral’
post-critical behaviour shown in Fig. 27 (for further details see Bigoni et
al., 2012, 2014a).

5 Eshelby-like forces in elastic structures with
variable length

Eshelby (1956) introduced the concept of configurational force, acting on
inhomogeneities or defects in solids to move them until the total potential
energy is minimized. In other words, considering a defect in an elastic body
characterized by a configurational parameter ν, so that the total potential
energy of the body is V(ν), the configurational force is defined as

−∂V(ν)

∂ν
.

The Peach-Koehler force acting on a dislocation, the crack-extension force of
fracture mechanics, and the material force developing on a phase boundary

51



In CISM Lecture Notes No. 562
“Extremely Deformable Structures” D. Bigoni

Ed. Springer, Wien–New York, 2015
ISBN 978-3-7091-1876-4 doi 10.1007/978-3-7091-1877-1

Figure 28. The experimental setup employed to test the one-degree-of-freedom system
prescribed to move along a profile that was designed to provide a constant post-critical
response.

in a solid under loading are all known examples of Eshelby forces, so that
they are considered nowadays the cornerstone of a well-developed theory
(see for instance Gurtin, 2000; Kienzler and Herrmann, 2000; Maugin, 1993,
2011; Dascalu et al., 2010; Bigoni and Deseri, 2011). The purpose of this
section is to show that Eshelby-like forces can develop in elastic structures
when the configuration of the structure changes. The simplest example of
evidence of a configurational force is shown in Fig. 29, where an elastic
inextensible rod of total length l̄, bending stiffness B, and straight in its
undeformed configuration is constrained with a sliding sleeve on the left
end and loaded with a transversal dead load P at the other end. The
sliding sleeve fully constrains rotation and vertical displacement for the
part of the rod currently contained in it, but leaves the possibility of free
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Figure 29. An elastic rod of total length l̄, constrained with a sliding sleeve on its
left, is subject to a transversal load P on its right end. Equilibrium of this configuration
is impossible, because a horizontal Eshelby-like force is generated in the sliding sleeve.
The Eshelby-like force equals the square of the bending moment at the end of the sliding
sleeve, P 2(l̄ − lin)2, divided by twice the flexural bending stiffness of the rod, 2B.

horizontal sliding (without friction). Therefore, the elastic system has a
variable length l̄− lin and the total potential energy V(lin) can be evaluated
as a function of the free configurational parameter lin, defining the amount
of the rod constrained by the sliding sleeve. Restricting for the moment
attention to small displacements of the rod, the linear elastic solution for
this structure yields a transverse displacement at the point of application
of the force equal to P (l̄ − lin)3/(3B), so that the total potential energy is

V(lin) =
P 2(l̄ − lin)3

6B
. (157)

In analogy with the Eshelby concept of configurational force, the derivative
of the potential energy (157) with respect to the configurational parameter
lin yields the following non-null horizontal Eshelby-like force

−∂V(lin)

∂lin
=
P 2(l̄ − lin)2

2B
=
M2

2B
. (158)

Note that the equilibrium for the elastic system (Fig. 29) is impossible
since the Eshelby-like force (158) is not null except in the trivial cases of
P = 0 or lin = l̄. The Eshelby-like force can also be expressed in terms of
the transverse displacement at the loaded end of the structure vl̄ = P (l̄ −
lin)3/(3B) as

−∂V(lin)

∂lin
=

9B

2(l̄ − lin)2

(
vl̄

l̄ − lin

)2

, (159)

showing that for small deflections the force is small, but, as we will see later,
this force grows and becomes dominant when displacements are large.

Following Bigoni et al. (2015), an inextensible elastic rod (straight in its
unloaded configuration, with bending stiffness B and total length l̄) is con-
sidered now in a more general setting. In particular, the rod is constrained
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Figure 30. Structural scheme of the elastic system used to demonstrate an Eshelby-
like force. The elastic rod of total length l̄ is subject to a dead vertical load P on its
right end, is constrained with a sliding sleeve inclined at an angle α (with respect to
the vertical) and has a axial dead force S applied at its left end. The presence of the
Eshelby-like force M2/(2B) influences the force S at equilibrium, which results different
from P cosα. The other reactions at the end of the sliding sleeve are the force P sinα
perpendicular to the axis of the sleeve and the counterclockwise reaction moment Pe.

with a sliding sleeve as in Fig. 29, but is now inclined with respect to the
horizontal direction and is subject at one end to an axial (dead) force S,
while the other end is subject to a dead load P (inclined at an angle α), see
Fig. 30.

Introducing the curvilinear coordinate s ∈ [0, l̄], the length lin of the
segment of the rod inside the sliding sleeve, and the rotation θ(s) of the
rod’s axis, the constraint imposes the condition

θ(s) = 0 for s ∈ [0, lin].

Denoting by a prime the derivative with respect to s, the bending moment
along the elastic rod is M(s) = Bθ

′
(s), so that at the loaded end of the rod,

the zero-moment boundary condition θ
′
(l̄) = 0 has to hold.

The total potential energy of the system is

V(θ(s), lin) = B

l̄∫
lin

[
θ
′
(s)
]2

2
ds− P

[
l̄ cosα− cosα

l̄∫
lin

cos θ(s)ds

+ sinα

l̄∫
lin

sin θ(s)ds

]
− S lin,

(160)
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which at equilibrium becomes

V(θeq(s, leq), leq) = B

l̄∫
leq

[
θ
′

eq (s, leq)
]2

2
ds− S leq − P

[
l̄ cosα

− cosα

l̄∫
leq

cos θeq(s, leq)ds+ sinα

l̄∫
leq

sin θeq(s, leq)ds

]
,

(161)

where leq is the length of the amount of the elastic rod inside the sliding
sleeve and θeq is the rotation of the rod’s axis at the equilibrium.

The Eshelbian force related to the presence of the sliding sleeve can be
calculated by differentiating with respect to leq the total potential energy
at equilibrium, equation (161), which, considering the Leibniz’s rule21, be-
comes

∂V(leq)

∂leq
= B

l̄∫
leq

θ
′

eq(s)
∂θ
′

eq(s)

∂leq
ds+ P

[
cosα

l̄∫
leq

sin θeq(s)
∂θeq(s)

∂leq
ds

− sinα

l̄∫
leq

cos θeq(s)
∂θeq(s)

∂leq
ds

]
− P cosα−B

[θ
′

eq(leq)]
2

2
− S.

(163)

From equation (163), keeping into account integration by parts

θ
′

eq

∂θ
′

eq

∂leq
=

(
θ
′

eq

∂θeq
∂leq

)′
− θ

′′

eq

∂θeq
∂leq

, (164)

the elastica

Bθ
′′

eq(s) + P [cosα sin θeq(s) + sinα cos θeq(s)] = 0, s ∈ [leq, l̄] (165)

21 The Leibniz rule of differentiation is

d

dζ

β(ζ)∫
α(ζ)

f(x, ζ)dx = f(β, ζ)
dβ

dζ
− f(α, ζ)

dα

dζ
+

β(ζ)∫
α(ζ)

∂f(x, ζ)

∂ζ
dx. (162)
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and the boundary condition θ
′

eq(l̄) = 0, the following expression for the
Eshelby-like force is obtained

−∂V(leq)

∂leq
= B

[θ
′

eq(leq)]
2

2
+Bθ

′

eq(leq)
∂θeq
∂leq

∣∣∣∣
s=leq

+ P cosα+ S. (166)

Considering that θeq is a function of s − leq and of the angle of rotation
of the rod at the loaded end θl̄ (function itself of leq) one arrives at the
following condition

∂θeq
∂leq

∣∣∣∣
s=leq

= − ∂θeq
∂s

∣∣∣∣
s=leq

+
∂θeq
∂θl̄

∂θl̄
∂leq

∣∣∣∣
s=leq

. (167)

Since θeq is always zero at s = leq for all θl̄, the second term in the right-hand
side of equation (167) is null, so that equation (167) becomes

∂θeq
∂leq

∣∣∣∣
s=leq

= −θ
′

eq(leq). (168)

Therefore, the vanishing of the Eshelby-like force, namely, of the derivative
of the total potential energy V(leq) with respect to leq, eqn (166), represents
the global axial equilibrium for the structure shown in Fig. 30

M2

2B︸︷︷︸
Eshelby-like force

= S + P cosα, (169)

where M = Bθ
′

eq(leq) is the reaction moment, equal to Pe, where e is the
load eccentricity (to the sliding sleeve).

The term M2/(2B) is a ‘counterintuitive term’ which depends on the
configurational parameter leq (and would be absent if the elastic rod were
constrained with a movable clamp instead than a sliding sleeve) and is for
this reason indicated as the ‘Eshelby-like force’. This term has wrongly
been neglected by a number of authors who have considered sliding sleeve
constraints. On the other hand, a term M2/(2B) was previously correctly
considered in a context different from that addressed here, namely, adhesion
mechanics, in which the term is equated to an ‘adhesion energy’ (Majidi,
2007; Majidi et al., 2012) .

In the following the existence of the Eshelby-like force (169) will be theo-
retically demonstrated via two independent approaches, namely an asymp-
totic method and a variational technique.
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5.1 Asymptotic technique

The Eshelby-like force (169) can be obtained via an asymptotic approach
(inspired by the work by Balabukh et al. (1970)) where an imperfect sliding
sleeve having a small gap ∆ (the distance between the two rigid, friction-
less and parallel surfaces making the sliding device) is considered, Fig. 31.
Within this gap, the elastic rod is deflected, so that ϑ(∆) denotes the angle
at its right contact point, where the forces H, V , M are applied. The length
of the rod detached from the two surfaces representing the imperfect sliding
sleeve is denoted with a(∆). The frictionless contact generates the reaction
forces R and Q, in equilibrium with the axial dead force S at the other end.
For small ∆, the equilibrium is given by

Q =
M

a(∆)
, R = V +

M

a(∆)
, S =

(
V +

M

a(∆)

)
ϑ(∆)−H. (170)

On application of the virtual work for a linear elastic inextensible rod yields
the geometric quantities a(∆) and ϑ(∆)

a(∆) =

√
6B∆

M
, ϑ(∆) =

1

2

√
6M∆

B
, (171)

so that forces Q, R and S can be rewritten as

Q = M

√
M

6B∆
, R = V +M

√
M

6B∆
, S =

M2

2B
+
V

2

√
6M∆

B
−H.
(172)

In the limit of perfect (zero-thickness) sliding sleeve, ∆→ 0, the horizontal
component of the reaction R does not vanish, but becomes the Eshelby-like
force (169)

lim
∆→0

R(∆)ϑ(∆) =
M2

2B
. (173)

5.2 Variational technique

The total potential energy (160) has a movable boundary lin, so that it
is expedient (Courant and Hilbert, 1962; Majidi et al., 2012) to introduce
a small parameter ε and take variations (subscript ‘var’) of an equilibrium
configuration (subscript ‘eq’) in the form

θ(s, ε) = θeq(s) + εθvar(s), lin(ε) = leq + εlvar , (174)

with the boundary conditions

θeq(leq) = 0, θ(leq + εlvar) = 0, θ
′

eq(l̄) = 0. (175)
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Figure 31. Deformed configuration of an elastic rod within an imperfect sliding sleeve
made up of two smooth, rigid and frictionless planes placed at a distance ∆. Applied
and reaction forces (left) and values obtained in the limit ∆→ 0, revealing the Eshelbian
force (right).

A Taylor series expansion of θ(lin) for small ε yields

θ(leq + εlvar, ε) = θeq(leq) + ε
(
θvar(leq) + θ

′

eq(leq)lvar

)
+
ε2

2
lvar

(
2θ
′

var(leq) + θ
′′

eq(leq)lvar

)
+O

(
ε3
)
,

(176)

so that the boundary conditions (175) lead to the following compatibility
equations

θvar(leq) + θ
′

eq(leq)lvar = 0, 2θ
′

var(leq) + θ
′′

eq(leq)lvar = 0. (177)

Taking into account the Leibniz rule of differentiation (162) and the
boundary (175) and compatibility (177) conditions, through integration by
parts, the first variation of the functional V is obtained in the following form

δεV = −
l̄∫

leq

[
Bθ
′′

eq(s) + P (cosα sin θeq(s) + sinα cos θeq(s))
]
θvar(s)ds

+

[
B
θ
′

eq(leq)
2

2
− P cosα− S

]
lvar,

(178)
so that the equilibrium equations (165) and (169) are derived, the latter of
which, representing the so-called ‘transversality condition’ of Courant and
Hilbert (1962), provides the Eshelby-like force.

5.3 Analytical expression of the Eshelby-like force

The equilibrium configuration of the elastic rod satisfies the elastica
equation (165) (see Love, 1927; Bigoni, 2012), that introducing the auxil-
iary angle ϕ(s) = θeq(s) + α and the dimensionless load λ2 = P/B writes
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as
ϕ
′′
(s) + λ2 sinϕ(s) = 0, s ∈ [leq, l̄] (179)

subject to the boundary conditions ϕ(leq) = α and ϕ
′
(l̄) = 0. Integration

of equation (179) yields

ϕ
′
(s) = ±λ

√
2 [cosϕ(s)− cos(θl̄ + α)], (180)

taken in the following with the ’+’ sign, so that introducing the change of
variable

η = sin
θl̄ + α

2
, η sinφ(s) = sin

ϕ(s)

2
, (181)

where θl̄ = θeq(l̄) represents the rotation measured at the free end of the
rod, we end up with the following differential problem

φ
′
(s) = λ

√
1− η2 sin2 φ(s), (182)

subject to φ(leq) = m = arcsin [sin(α/2)/ η] and φ(l̄) = π/2.
Restricting the attention to the first (stable) mode of deformation, the

integration of equation (182) leads to the relation between the rotation
measured at the free end of the rod θl̄ and the applied vertical load

P =
B

(l̄ − leq)2
[K (η)−K (m, η)]

2
, (183)

where K (η) is the complete elliptic integral of the first kind (39), whereas
K (m, η) is the incomplete elliptic integral of the first kind (83). Moreover,
through the integration of equation (182) and the implemented change of
variable, the rotation field (for the first mode) can be obtained as

θeq(s) = 2 arcsin

[
η sn

(
(s− leq)

√
P

B
+K(m, η), η

)]
− α, (184)

where sn is the Jacobi sine amplitude function (47).
The Eshelby-like force (169) can be expressed, taking into account equa-

tion (180), as
M2

2B
= 2P

(
η2 − sin2 α

2

)
, (185)

so that the axial force S at the end of the sliding sleeve (which has been
experimentally measured through a load cell by Bigoni et al. (2015)) is given
by

S = −P cos (α+ θl̄) = −P cosα+ 2P

(
sin2 θl̄ + α

2
− sin2 α

2

)
︸ ︷︷ ︸

Eshelby-like force

. (186)
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From equation (186) it can be noted that the load S is (in modulus) bounded
by P and that it tends to P only in the ‘membrane limit’, when B tends to
zero and θl̄ + α to π.

The following three different cases may arise, explaining the experiments
shown in Fig. 33:

(i.) the elastic rod within the sliding sleeve is in compression, or ‘pushed
in’, if θl̄ + α < π/2;

(ii.) the elastic rod within the sliding sleeve is unloaded if θl̄ + α = π/2;

(iii.) the elastic rod within the sliding sleeve is in tension, or ‘pulled out’,
if θl̄ + α > π/2.

The case of null axial force, S = 0, occurs when M2/(2B) equals the
axial component of the dead load, P cosα, and corresponds to deformed
configurations having the tangent at the free end orthogonal to the direction
of the load P , as in Fig. 33 (center).

Finally, it can be noted that the Eshelby-like force M2/(2B) is greater
than the applied load P when

cosα− 2 cos2

(
θl̄ + α

2

)
> 0. (187)

Regions in the θl̄ − α plane where the axial force S is positive/negative
and where M2/(2B) > P are shown in Fig. 32. From the figure it can be
concluded that M2/(2B) > P is possible only for positive axial load, S > 0,
and high deflections of the rod (for rotations at the free end θl̄ greater than
π/3).

5.4 Experimental evidence of configurational force

Fig. 33 gives a qualitative (but indisputable) proof of the existence of
the Eshelby-like force in the structure shown in Fig. 30, in fact for this
system equilibrium is only possible when equation (169) is satisfied, so that
the presence of the Eshelby-like force (parallel to the direction of sliding)
explains the reason why the configuration shown in the central photo in
Fig. 33 is in equilibrium and why the rod is ‘expelled’ from the sliding
sleeve in the lower photo.

‘Expulsion’ of the elastic rod is consequent to a value of the Eshelby-like
force exceeding the axial component of P , namely, P cosα. Quantitative
experiments are reported in Bigoni et al. (2015), whereas movies of the ex-
periments can be found at http://ssmg.unitn.it/eshelbylikeforce.html. The
purpose is now to analyze the effects of Eshelby-like force on bifurcation
and instability of structures.

60



In CISM Lecture Notes No. 562
“Extremely Deformable Structures” D. Bigoni

Ed. Springer, Wien–New York, 2015
ISBN 978-3-7091-1876-4 doi 10.1007/978-3-7091-1877-1

Figure 32. Regions in the plane θl̄ − α where S > 0, S < 0 and M2/(2B) > P .

6 Configurational forces and buckling

To highlight the effects of configurational forces on elastic structures, we
consider the problem in which a blade (an elastic planar rod) is forced to
penetrate into an elastic compliant sliding sleeve clamp (a frictionless sliding
sleeve with a final linear spring of stiffness k) through the application of a
dead compressive load P at the other end.

A structural system with a free end loaded with an axial dead force
was shown to exhibit several surprising and counterintuitive mechanical
behaviours by Bigoni et al. (2014b) and will not be repeated here. In the
following, the governing equations will be obtained for the structures shown
in Fig. 34, differing only in the boundary conditions at the right end. These
structures are similar to those analyzed in Section 2, except for the presence
of the Eshelby-like force, arising from the sliding sleeve and which strongly
affects the post-critical behaviour and its stability (see Bigoni et al., 2014b).

6.1 Finite number of critical loads

The Euler formula for an inextensible elastic planar rod (of length l)
provides the n-th critical load (associated to the n-th instability mode) as

Pcr,n =
π2B

(ρnl)
2 , n ∈ N+, (188)
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Figure 33. The practical realization of the elastic structure shown in Fig. 30 reveals
an axial Eshelby-like force, so that, while at low vertical force (2 N) the elastic rod
tends, as expected, to slip inside the sliding sleeve (upper photo), at 6 N the equilibrium
is surprisingly possible (note that the tangent at the loaded end of the elastic rod is
horizontal, see the photo in the centre) and at 10 N the elastic rod is expelled from the
sliding sleeve (lower photo), even if the system is inclined at 15◦ with respect to the
horizontal direction (α = 75◦).
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Figure 34. The penetrating blade is an elastic planar rod whose free length l is
a function of the amount of the applied axial dead load P . The blade slides into a
frictionless sleeve and is restrained by an axial linear spring, while at the other loaded
end three types of constraints are considered: clamped (upper), constrained rotation
(center) and simply supported (lower).

where ρn is a slenderness factor (depending on the constraints applied to
the elastic system22). Equation (188) shows that the n-th critical load Pcr
is unique whenever the rod length l is fixed, but this uniqueness may be lost
when the length becomes a function of the applied axial load, l = l(P ).

If an axial spring is introduced (as shown in Fig. 34), the elastic rod (or
‘blade’) can penetrate the constraint (a sliding sleeve) by a length leq, so

22 With reference to a structure with the left end constrained by a sliding sleeve, the
factor ρn is

� ρn = 1/(n + 1) for n = 1, 3, 5, ..., ρ2 ≈ 0.350, ρ4 ≈ 0.203, and ρn ≈ 1/(n + 1) for
n = 6, 8, 10, ... for the structure with the clamped right end, Fig. 34 (upper part);

� ρn = 1/n, for the structure with constrained rotation at the right end, Fig. 34
(central part);

� ρ1 = 0.699, ρ2 = 0.407 ρn ≈
2

2n+ 1
for n ≥ 3, for the structure with simply

supported right end, Fig. 34 (lower part).
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that

l(P ) = l̄ − leq(P ), (189)

where l̄ is the outer length of the blade at null axial load P , l(P = 0) = l̄.
In the particular case of a linear spring with stiffness k and considering the
blade in the straight configuration23 the equilibrium equation in the axial
direction is given by

P = kleq, (190)

so that the length of the outer part of the blade is l(P ) = l̄ − P/k and the
Euler formula (188) becomes

Pcr,n =
π2B

ρ2
n

(
l̄ − Pcr,n

k

)2 , n ∈ N+. (191)

The determination of the critical load Pcr,n defined by equation (191) leads
to the following cubic equation,

p3
cr,n − 2p2

cr,n + pcr,n −
4

27qn
= 0, n ∈ N+, (192)

where pcr,n and qn are respectively the dimensionless n-th critical load
and dimensionless relative stiffness (spring stiffness multiplied by the rod’s
length and divided by a critical load) of the elastic system given as,

p =
P

kl̄
, qn =

4ρ2
nkl̄

3

27π2B
, n ∈ N+. (193)

Note that the dimensionless stiffness parameter is positive, qn > 0, and that
the dimensionless critical load has to satisfy the following inequality,24

pcr,n ≤ 1, n ∈ N+, (194)

to avoid the the full penetration of the blade, occurring when l(P ) < 0.
From the cubic equation (192) it can be concluded that:

23If the rod is in a deformed configuration, an Eshelby-like force affects the axial equi-

librium, see section 5.
24 This restriction holds only for the calculation of the critical loads. Indeed, equilibrium

configurations with p ≥ 1 are possible for non-trivial deformation paths (see Bigoni et

al., 2014b).
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i) since all the coefficients of the cubic equation (192) are real, the follow-
ing infinite sequence always exists of real roots

pCcr,n =
1

3

2 + 3

√
qn

2− qn + 2
√

1− qn
+

3

√
2− qn + 2

√
1− qn

qn

 > 1,

n ∈ N+,

(195)

all violating the constraint (194) and thus representing mathematical
solutions which are meaningless from mechanical point of view;

ii) in the case when for a given m ∈ N+ the inequality

qm+1 < 1 < qm, or equivalently

(
ρ1

ρm

)2

< q1 <

(
ρ1

ρm+1

)2

,

(196)
is satisfied, in addition to the sequence of real roots (195) other 2m real
roots exist for the cubic equation (192),

pAcr,n

pBcr,n

 =
1

3

[
2− 1± i

√
3

2
3

√
qn

2− qn + 2
√

1− qn

−1∓ i
√

3

2

3

√
2− qn + 2

√
1− qn

qn

]
, n ∈ N+

(197)

satisfying

0 < pAcr,n ≤ pAcr,m ≤ pBcr,m ≤ pBcr,n < 1, n ≤ m n,m ∈ N+

(198)
so that 2m critical loads are obtained, corresponding to two critical
loads referred to the same n-th instability mode;

iii) in the particular case when qm = 1 (or equivalently q1 = ρ2
1/ρ

2
m), two

real roots associated to the m-th mode (197) are coincident,

pAcr,m = pBcr,m =
1

3
, m ∈ N+, (199)

therefore 2m− 1 critical loads are obtained in this case.
In Bigoni et al. (2014b) it is shown that pAcr corresponds to a critical

buckling load, while pBcr to a critical restabilization load for which the trivial
path returns to be stable. In a similar vein, it can be concluded for the
structures now under consideration that:
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Figure 35. Dimensionless bifurcation loads pcr,n (buckling load pAcr,n and restabiliza-

tion load pBcr,n) as a function of the dimensionless relative stiffness q1. Note that if the
stiffness ratio q1 decreases then the n-th buckling load increases while the n-th restabi-
lization load decreases, and the number of bifurcation modes can even reduce to zero in
the case of ‘highly compliant systems’ (q1 < 1), where bifurcation does not exist.

� for fixed properties of the rod, a reduction of the spring stiffness k
leads to an increase of the buckling load pAcr (a result agreeing with
Tarnai, 1980) and to a reduction of the restabilization load pBcr;

� differently from the behaviour observed in usual structures, the elastic
systems under consideration can have a countable (finite) number of
critical loads;

� ‘highly compliant systems’ (q1 < 1) do not show any bifurcation.

6.2 Non-trivial configurations for the blade

Clamped blade Let us consider the system shown in Fig. 34 (upper
part), where an inextensible elastic planar rod is forced to penetrate a slid-
ing sleeve, restrained by an axial linear spring of stiffness k, through the
application of a dead compressive load P at the other end, which is con-
strained by a movable clamp.

Considering only the outer part of the rod at an equilibrium configura-
tion with θ(s) = 0 for s ∈ [0, leq] and introducing the dimensionless axial
load λ2 = P/B, the rotation field at equilibrium θeq(s) (unknown for the
outer part, s ∈ [leq, l̄]) is a solution of the following differential problem
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d2θeq(s)

ds2
+ λ2 sin θeq(s) = 0, s ∈

(
leq, l̄

)
θeq (leq) = θeq

(
l̄
)

= 0,

dθeq(s)

ds

∣∣∣∣
s=

l̄+3leq
4

= 0,

λ2 =
k

B
leq +

1

2

[
θ
′

eq(leq)
]2
,

(200)

Equation (200)4 represents the equilibrium in the axial direction, reveal-

ing the presence of the configurational force B
[
θ
′

eq(leq)
]2
/2 (Bigoni et al.,

2014b). For conciseness, only the first bifurcation mode will be analyzed,
so that the symmetry of the problem allows us to consider only the first
quarter of the outer blade, similarly to Section 2.2. The rotation at the
inflection point is θeq

(
(l̄ + 3leq)/4

)
= θq so that, through a change of vari-

able and the Riemann theorem, an integration of the differential problem
(200) leads to the relation between the load parameter λ and the angle θq
as follows

4K
(

sin
θq
2

)
= λ

[
l̄ − λ2B

k

(
1− 2 sin2 θq

2

)]
. (201)

The coordinates x1(s) and x2(s) of the rod’s axis in the deformed con-
figuration for s ∈

(
leq, l̄

)
can be computed from rotation field θeq(s) by

integration of equation (11) as

x1(s) = −s+
2

λ
E

[
am

(
λ (s− leq) , sin

θq
2

)
, sin

θq
2

]
− leq,

x2(s) =
2

λ
sin

θq
2

[
1− cn

(
λ (s− leq) , sin

θq
2

)]
.

(202)

Rotationally constrained blade The differential problem governing the
equilibrium of the system reported in Fig. 34 (center), where the elastic
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blade is constrained in rotation at its loaded end, is

d2θeq(s)

ds2
+ λ2 sin θeq(s) = 0, s ∈

(
leq, l̄

)
θeq (leq) = θeq

(
l̄
)

= 0,

dθeq(s)

ds

∣∣∣∣
s=

l̄+leq
2

= 0,

λ2 =
k

B
leq +

1

2

[
θ
′

eq(leq)
]2
,

(203)

where the rotation at the inflection point (mid-span of the outer part of the
elastic rod, s = (l̄+ leq)/2) is denoted with θm. For this system, the relation
between the dimensionless load parameter λ and the rotation at the rod’s
mid-span θm is written for the first buckling mode as

2K
(

sin
θm
2

)
= λ

[
l̄ − λ2B

k

(
1− 2 sin2 θm

2

)]
. (204)

The coordinates x1(s) and x2(s) of the rod’s axis in the deformed configu-
ration can be computed from the rotation field θeq(s) through integration of
equation (11) and result to be expressed by equation (202), already obtained
in the previous case of clamped end.

Simply supported blade Considering the system shown in Fig. 34 (lower
part), where the elastic planar rod is simply supported at its loaded end and
may slide into the frictionless sliding sleeve, the rotation field θ(s) of the
outer part of the rod is obtained as the solution of the following differential
problem

d2θeq(s)

ds2
+
P

B
sin θeq(s) +

R

B
sin θeq(s) = 0, s ∈

(
leq, l̄

)
θeq (leq) = 0,

dθeq(s)

ds

∣∣∣∣
s=l̄

= 0,

l̄∫
0

sin θ(s)ds = 0,

√
P 2 +R2

B
=

k

B
leq +

1

2

[
θ
′

eq(leq)
]2
.

(205)
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Figure 36. The penetrating blade with a simply supported end in a deformed config-
uration. An inflection point exists at s = l∗, where the rotation angle is denoted with
θ(s = l∗) = θ∗. The angle β defines the inclination with respect to the horizontal direc-
tion of the resultant vector, sum of the the applied load P and of the vertical reaction of
the support R.

Note that equation (205)5 is the equilibrium equation in the sliding direction
of the rod, where the ‘Eshelby-like’ force can be recognized. Introducing
the dimensionless load γ2 =

√
P 2 +R2/B and the angle ψ(s) = θeq(s) + β,

where β is the angle of inclination of the resultant vector sum of P and R
(see Fig. 36), the differential problem (205) can be rewritten as

d2ψ(s)

ds2
+ γ2 sinψ(s) = 0, s ∈

(
leq, l̄

)
ψ (leq) = β,

dψ(s)

ds

∣∣∣∣
s=l̄

= 0,

l̄∫
0

sin (ψ(s)− β) ds = 0,

√
P 2 +R2

B
=

k

B
leq +

1

2

[
ψ
′
(leq)

]2
.

(206)

Similarly to the antisymmetric buckling modes of a doubly clamped rod
(Section 2.2), it is a standard expedient to operate the following change of
variables

η = sin
ψ∗

2
, η sinω(s) = sin

ψ(s)

2
, (207)

where ψ∗ = θ∗+β. For the first bifurcation mode, integration of the differen-
tial problem (206) leads to the following relation between the dimensionless
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load parameter γ and the angle β

3K (η)−K (η, ωβ) = γ

[
l̄ − γ2B

k

(
1− 2η2

)]
, (208)

where ωβ = arcsin

(
η−1 sin

(
β

2

))
. Using the dimensionless parameters (193)

it is possible to rewrite equation (208) in the following form

pq1

(
1− p

(
1− 2η2

))2
=

(
1− 2 sin2 β

2

)
[3K(η)−K (η, ωβ)]

2
. (209)

The relation between the load P and the kinematic parameter θ∗ can now
be obtained by considering, in addition to eqn (209), the condition (205)4,
which provides a relation between θ∗ and β, so that, similarly to equation
(89), we obtain

0 = −2η cosωβ
(
1− 2η2 sin2 ωβ

)
+2η sinωβ

√
1− η2 sin2 ωβ {3 [2E(η)−K(η)]− 2E(ωβ , η) +K(ωβ , η)} .

(210)
Equations (209) and (210) are highly non-linear and determine the non-
trivial solution. The relation between β and θ∗ (the former contained in ωβ
and the latter in η) can be numerically obtained from equation (210) and
used into equation (209) to obtain the relation between P and θ∗.

Finally, the coordinates x1(s) and x2(s) of the rod’s axis in the deformed
configuration for s ∈

(
leq, l̄

)
can be computed from the rotation field θeq(s)

by integrating equation (11) as
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x1(s) = + sinβ

[
−2η

γ
cn
(
γ (s− leq) +K(ωβ , η), η

)
+

2η

γ
cn
(
K(ωβ , η), η

)]
cosβ

{
−s+

2

γ

[
E [am (γ (s) +K(ωβ , η), η) , η]

− E [am (K(ωβ , η), η) , η]
]}
,

x2(s) = cosβ

[
−2η

γ
cn
(
γ (s) +K(ωβ , η), η

)
+

2η

γ
cn
(
K(ωβ , η), η

)]
− sinβ

{
−s+

2

γ

[
E [am (γ (s) +K(ωβ , η), η) , η]

− E [am (K(ωβ , η), η) , η]
]}
.

(211)

7 The elastica arm scale

The integration of the elastica and the concept of configurational forces so
far developed are now employed in the design of an innovative weighing de-
vice. It is well-known that for millennia the equal and unequal arm balance
scales have been used (for instance the classic Roman balance, see Fig. 37
left), and still are used (see the overview by Robens et al., 2014), to measure
weight by exploiting the equilibrium of a rigid lever, so that a deformation
of the arms would merely represent an undesired effect. On the other hand,
the modern digital weighting systems, inspired by the principle of the spring
balance (which was invented at the end of the 17th century by R. Hooke,
Fig. 37 on the right), are based on the strain of an elastic element, so that
equilibrium is always satisfied and a counterweight is not needed.

A new concept is now introduced of an ‘elastica arm scale’, based on
the exploitation of nonlinear kinematics and configurational mechanics of
elastic rods, following Bosi et al. (2014). The new scale has deformable
arms, so that an inflected equilibrium configuration is employed to measure
weight and the scale can work both with or without a counterweight. In a
sense, this new type of balance is a combination of a rigid arm balance with
a spring balance, because equilibrium and deformation are both simultane-
ously exploited. The prototype of the elastica arm scale is shown on the
right of Fig. 38, as a realization of the scheme reported on the left of the
same figure, where an elastic rod (of total of length l̄ + l∗ and inclined at
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Figure 37. A steelyard based on rigid lever principle (left) and a spring balance based
on deformation (right).

Figure 38. Scheme (left) and prototype (right) of the deformable arm scale. An elastic
lamina of bending stiffness B is inserted into a sliding sleeve of length l∗ inclined at an
angle α with respect to the vertical direction. The length of the left part of the lamina
is aeq , while the length of the second is l̄ − aeq .

an angle α ∈ [0, π/2] with respect to the vertical loads applied at its ends)
is free to slide in a frictionless sleeve of length l∗. For given loads (P1 and
P2), the scale admits an equilibrium configuration, possible by virtue of the
flexural deformation of the arms.

The presence of ‘Eshelby-like’ forces (see section 5) at the ends of the
sliding sleeve defines the nonlinear equilibrium equation in the sliding di-
rection that can be written as

(P1 + P2) cosα+
M2

1 −M2
2

2B︸ ︷︷ ︸
Eshelby-like forces

= 0, (212)
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or, equivalently, but with reference to the angles at the ends of the elastic
rod, as the following ‘geometrical condition’ of equilibrium

P1 cos(α+ θ0) + P2 cos(α+ θl̄+l∗) = 0, (213)

representing the balance of axial thrust of the deformable scale (0 ≤ α+θ0 ≤
α and π/2 ≤ α+ θl̄+l∗ ≤ π). The equilibrium equations of the two arms of
the scale are

Bθ
′′

eq(s)− Pj sin
[
θeq(s)− (−1)jα

]
= 0, (214)

where j = 1 for the left arm (s ∈ [0, aeq]) and j = 2 for the right one
(s ∈

[
aeq + l∗, l̄ + l∗

]
). From integration of these two differential equations

we can obtain the relations between the applied loads P1 and P2, the kine-
matical parameters θ0 and θl̄+l∗ and the lengths of the two arm aeq and
l̄ − aeq as

aeq

√
P1

B
= K (κ1)−K (m1, κ1) ,

(
l̄ − aeq

)√P2

B
= K (κ2)−K (m2, κ2) ,

(215)
where K (κj) and K (mj , κj) are respectively the complete (39) and incom-
plete (83) elliptic integral of the first kind, and

κ1 = sin
θ0 + α+ π

2
, m1 = arcsin

 sin
α+ π

2
κ1

 ,
κ2 = sin

θl̄+l∗ + α

2
, m2 = arcsin

 sin
α

2
κ2

 ,
κ1 sinφ1(s) = sin

θeq(s) + α+ π

2
, κ2 sinφ2(s) = sin

θeq(s) + α

2
.

(216)
Note that, when α+ θl̄+l∗ = π/2 the equilibrium equation (213) implies

P1 = 0, so that a counterweight is not needed.
Furthermore, when the sliding sleeve is in the vertical direction, namely

α = 0◦, the equilibrium is governed by the following purely geometrical
condition, visibly satisfied in Fig. 39,

P2 cos
(
θl̄+l∗

)
+ P1 = 0, (217)

where the two weights have to satisfied the condition

0 ≤ P1

P2
≤ 1. (218)
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Figure 39. Example of use of the elastica arm scale when the sliding sleeve is in the
vertical direction, α = 0. The Eshelby-like force guarantees equilibrium of the elastic
lamina subject to two loads P2 = 2N and P1 = 3N, so that the angle θl̄+l∗ is equal to
131.81◦.

7.1 Mode of use of the elastic scale

The following modes of use of the elastica arm scale can be envisaged.

� The easiest way to use the elastica arm scale is with reference to
equation (213) and therefore measuring the two angles θ0 and θl̄+l∗ .
In this way, assuming that P1 and α are known, P2 can be evaluated.
Note that the knowledge of the bending stiffness B is not needed in
this mode of use.

� Another mode of use of the elastica arm scale is through the measure
of the length aeq. Knowing P1, B, and α, the weight P2 can be
determined in the following steps:

i) Equation (215)1 gives θ0;

ii) Equation (213) gives θl̄+l∗ as a function of the unknown P2;

iii) Equation (215)2 can be numerically solved for the unknown P2.

Note that equations (215) define aeq as a one-to-one function respectively
of θ0 (first equation) and of θl̄+l∗ (second equation), while equation (213)
defines a unique relation between θ0 and θl̄+l∗ . Therefore, excluding all
deformations of the elastica which would be unstable even for clamped ends,
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Figure 40. The elastica arm scale: equilibrium length aeq versus weight P2 for different
inclinations α = {0; 30; 60; 90}◦. The values of the counterweight P1 and the parameter
B/l̄ are the same adopted in the experiments reported by Bosi et al. (2014).

when the equilibrium solution of equations (215) and (213) exists, it is also
unique.

The graph reported in Fig. 40 can be used in the second of the above-
listed modes of use of the elastica arm scale to obtain the value of P2 from
the measured length aeq. The inclination of the scale α can be adjusted to
obtain a desired range of variation for the measured weight P2 or sensitivity
S (see Section 7.2). In fact, when α increases from 0◦ (vertical configuration)
to 90◦ (horizontal configuration), the range of measure for the weight tends
to increase, up to the case when all possible values of P2 can be covered,
namely α = 90◦.

7.2 Sensitivity analysis and comparisons between different scales

The performance of the elastica arm scale can be appreciated through
a comparison with the steelyard (Fig. 37, left), a simple device still used
nowadays. The comparison is performed through the sensitivity parameter
S, when the properties of the scales (inclination angle α, bending stiffness
B, length l̄) are varied.

Steelyard The steelyard is based on the principle of the lever with two
rigid arms, so that it operates exactly as the second mode of use of the
elastica arm scale, presented in Section 7.1. In this scale the equilibrium
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equation is guaranteed by the moment balance at the fulcrum

P1aeq = P2

(
l̄ − aeq

)
, (219)

where P1 is the counterweight associated with the left arm of length aeq,
whereas P2 represents the weight (to be measured) linked with the right
arm of length l̄ − aeq (see also the scheme in Fig. 41). Therefore, also for
the unequal balance, once the values of the counterweight P1 and the total
length of the two rigid arms l̄ are fixed, after measuring the length aeq, the
value of unknown load P2 can be obtained from the linear equation (219).

Sensitivity analysis The concept of sensitivity associated to scales allows
to compare the precisions in weighing (Robens et al. (2014)). According to
DIN/ISO, sensitivity is defined as the response of a measuring instrument,
which may be an angle or a length, divided by the corresponding change in
the stimulus, that is in our case the weight to be evaluated. For the con-
sidered scale, the sensitivity S is defined as the ratio between the observed
variation of aeq and the corresponding variation of the measured weight P2

for a fixed value of the counterweight P1,

S =
∂aeq
∂P2

. (220)

For the steelyard, taking into account the equilibrium equation (219), the
sensitivity can be evaluated as

Ssteelyard =
P1 l̄

(P1 + P2)
2 , (221)

while the sensitivity S of the elastica arm scale can be evaluated only nu-
merically due to the non-linearity of the equilibrium equations (215) and
(213).

Comparison between the steelyard and the elastica arm scale A
comparison between the unequal arm balance and the elastica arm scale is
reported in Fig. 41, where the equilibrium length aeq as a function of the
unknown weight P2 is shown on the left, while the sensitivity S, representing
the tangent to the curve on the left, is shown on the right. From Fig. 41
(left), it can be noted that, while the steelyard can measure every value
of the weight P2, for the elastica arm scale there is a minimum value for
the weight P2 that can be measured, except in the case when the device
is in the horizontal position (α = 90◦). On the other hand, the sensitivity
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Figure 41. Comparison between the performances of a steelyard and of the elastica
arm scale for different inclinations α = {0◦; 30◦; 60◦; 90◦}: equilibrium length aeq (left)
and sensitivity S (right) are reported versus the weight to be measured P2. The values
of the counterweight P1 and the parameter B/l̄2 have been assumed fixed and equal to
the same values adopted in the experiments performed by Bosi et al. (2014).

analysis shows that the inclined elastica arm scale (α 6= 0) can measure
weights with a precision higher than that observed with the steelyard. In
fact, once P2 is fixed, the sensitivity S increases at increasing inclination
towards the vertical configuration (α = 0◦), where possible effects due to
friction are also considerably reduced.

Comparison between different elastica arm scales Finally, a com-
parison between elastica arm scales with two different values for B/l̄2 each
with different inclinations α is shown in Fig. 42. The figure shows that a
decrease (increase) in the parameter B/l̄2 leads to an increase (decrease) in
both the range of measured weights P2 and of sensitivity S. Therefore, a
more accurate device can be realized either by reducing the rod’s bending
stiffness (at fixed length l̄) or by increasing the length l̄ (at fixed bending
stiffness B).

A proof-of-concept device showing how the elastica arm balance works
was realized by Bosi et al. (2014), movies of the experiments can be found
at http://ssmg.unitn.it/elasticscale.html.

7.3 A perspective view on configurational forces

Configurational or Eshelby-like forces emerge in a mechanical system
when the possibility arises of a change in configuration with a consequent
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Figure 42. Comparison between two elastica arm scales differing in the parameter
B/l̄2 for two different inclinations α = {30◦; 60◦}: equilibrium length aeq (left) and
sensitivity S (right) are reported versus the weight to be measured P2.

release of elastic energy. These forces are therefore more widespread than
the few simple structural examples shown above. For instance, configura-
tional forces have been revealed under torsion (Bigoni et al., 2014c) and
the same forces are responsible for snake locomotion; in fact the sliding
sleeve used in the above structural systems can be viewed as a frictionless,
narrow channel in which an elastic rod can move. Our results show that
motion along this channel can be induced even when the applied forces are
orthogonal to it, which is the essence of the locomotion strategy employed
by a snake, which exploits lateral friction to generate a constraint (similar
to the channel) and releases bending energy to generate a propulsive force,
see Gray (1974), Gray and Lissmann (1950) and Gray (1953).

8 A concluding remark

The study of the Euler’s planar elastica is useful from many points of view:
it represents a nice introduction to the complex behaviour of nonlinear me-
chanical systems and provides an important tool in the design of flexible
mechanisms such as in the emergent field of soft robotics. Indeed, we have
used this tool to create elastic structures capable of displaying new mechan-
ical behaviour, such as tensile instability, configurational forces, restabiliza-
tion of the trivial path, and an innovative measuring device.

In a world where machines drive blind researchers along unknown and
often false directions, our structures have been sketched on a piece of pa-
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per and solved usually by hand calculations, sometimes with the help of
a numerical solver, before the development of experiments. The solutions
have guided the design of prototypes capable of giving evidence to phenom-
ena first discovered with the ‘paper solution’. The evidence was usually
so closely following predictions that we found our experiments loving our
theory.

Acknowledgements Financial support of the FP7-PEOPLE-IDEAS-ERC-
2013-ADG-340561-INSTABILITIES is gratefully acknowledged.

Bibliography

L.I. Balabukh, M.N. Vulfson, B.V. Mukoseev and Ya G. Panovko (1970).
On work done by reaction forces of moving supports. Research on Theory
of Constructions, Moscow. 18, 190-200.

D. Bigoni and L. Deseri (2011). Recent Progress in the Mechanics of Defects.
Springer.

D. Bigoni (2012). Nonlinear Solid Mechanics. Bifurcation theory and mate-
rial instability. Cambridge University Press.

D. Bigoni, D. Misseroni, G. Noselli and D. Zaccaria (2012). Effects of the
constraints curvature on structural instability. Proc. Roy. Soc. A, 468,
2191-2209.

D. Bigoni, D. Misseroni, G. Noselli and D. Zaccaria (2014a) Surprising
instabilities of simple elastic structures. In Nonlinear Physical Systems -
Spectral Analysis, Stability and Bifurcations, Kirillov, N. and Pelinovsky,
D.E. Eds., Wiley, 1-14; ISBN: 978-1-84821-420-0.

D. Bigoni, F. Bosi, F. Dal Corso and D. Misseroni (2014b). Instability of a
penetrating blade. J. Mech. Phys. Solids, 64, 411-425.

D. Bigoni, F. Dal Corso, D. Misseroni and F. Bosi (2014c). Torsional loco-
motion. Proc. Roy. Soc. A, 470 (2171), 20140599.

D. Bigoni, F. Dal Corso, F. Bosi and D. Misseroni (2015). Eshelby-like forces
acting on elastic structures: theoretical and experimental proof. Mech.
Materials, 80, 368-374.

F. Bosi, D. Misseroni, F. Dal Corso and D. Bigoni (2014). An Elastica Arm
Scale. Proc. Roy. Soc. A, 470 (2169), 20140232.

A. Broman (1970). Introduction to Partial Differential Equations: From
Fourier Series to Boundary-Value Problems. Addison-Wesley, London.

P.F. Byrd and M.D. Friedman (1954). Handbook of elliptic integrals for
engineers and scientists. Springer-Verlag, Berlin.

R. Courant and D. Hilbert (1962). Methods of Mathematical Physics. J.
Wiley and Sons, New York.

79



In CISM Lecture Notes No. 562
“Extremely Deformable Structures” D. Bigoni

Ed. Springer, Wien–New York, 2015
ISBN 978-3-7091-1876-4 doi 10.1007/978-3-7091-1877-1

C. Dascalu, G.A. Maugin and C. Stolz (2010). Defect and Material Mechan-
ics. Springer.

G. Domokos (1994). Global description of elastic bars. Z. Angew. Math.
Mech., 74, T289-T291.

J.D. Eshelby (1956). The continuum theory of lattice defects. Solid State
Phys., 3 (C), 79-144.

V.I. Feodosyev (1977). Selected Problems and Questions in Strength of Ma-
terials. MIR, Moscow.

A. Gajewski and R. Palej (1974). Stability and shape optimization of an
elastically clamped bar under tension (in Polish). Rozprawy Inzynierskie
- Engineering Transactions, 22, 265-279.

Gray, J. (1946) The mechanism of locomotion in snakes. J. Exp. Biol. 23,
101-120.

Gray, J. and Lissmann H.W. (1950) The kinetics of locomotion of the grass-
snake. J. Exp. Biol. 26, 354-367.

Gray, J. (1953) How animals move. Cambridge University Press.
M.E. Gurtin. (2000). Configurational forces as basic concept of continuum

physics. Springer.
K.A. Hoffman, R.S. Manning and R.C. Paffenroth (2002). Calculation of the

stability index in parameter-dependent calculus of variations problems:
buckling of a twisted elastic strut. SIAM J. Appl. Dyn. Syst., 1 (1),
115-145.

R. Kienzler and G. Herrmann (2000). Mechanics in Material Space.
Springer.

V.M. Kuznetsov and S.V. Levyakov (1999). Secondary loss of stability of
an euler rod. J. Appl. Mech. Tech. Phy., 40 (6), 1161-1162.

V.M. Kuznetsov and S.V. Levyakov (2002). Complete solution of the sta-
bility problem for elastica of Euler’s column. Int. J. Non-Linear Mech.,
37 (6), 1003-1009.

H. Lamb (1928). Statics. Cambridge University Press.
S.V. Levyakov and V.M. Kuznetsov (2010). Stability analysis of planar equi-

librium configurations of elastic rods subjected to end loads. Acta Mech.,
211, 73-87.

A.E.H. Love (1927). A treatise on the mathematical theory of elasticity.
Cambridge University Press.

J.H. Maddocks (1984). Stability of nonlinear elastic rods. Arch. Rat. Mech.
Analysis, 85 (4), 311-354.

C. Majidi (2007). Remarks on formulating an adhesion problem using Eu-
ler’s elastica. Mech. Res. Comm., 34 (1), 85-90.

C. Majidi, O.M. O’Reilly and J.A. Williams (2012). On the stability of a
rod adhering to a rigid surface: Shear-induced stable adhesion and the
instability of peeling. J. Mech. Phys. Solids, 60 (5), 827-843.

80



In CISM Lecture Notes No. 562
“Extremely Deformable Structures” D. Bigoni

Ed. Springer, Wien–New York, 2015
ISBN 978-3-7091-1876-4 doi 10.1007/978-3-7091-1877-1

R.S. Manning, K.A. Rogers and J.H. Maddocks (1984). Isoperimetric con-
jugate points with application to the stability of DNA minicircles. Proc.
Roy. Soc. A, 454 (1980), 3047-3074.

R.S. Manning (2009). Conjugate points revisited and Neumann-Neumann
problems. SIAM Review, 51 (1), 193-212.

R.S. Manning (2014). A catalogue of stable equilibria of planar extensible
or inextensible elastic rods for all possible dirichlet boundary conditions.
J. Elast., 115 (2), 105-130.

G.A. Maugin (1993). Material Inhomogeneities in Elasticity, Applied Math-
ematics and Mathematical Computation. Springer, London.

G.A. Maugin (2011). Configurational forces: Thermodynamics, physics,
mathematics and numerics. Taylor and Francis Ltd, New York.

Y. Mikata (2007). Complete solution of elastica for a clamped-hinged beam,
and its applications to a carbon nanotube. Acta Mech., 190, 133-150.

O.M. O’Reilly and D.M. Peters (2011). On Stability Analysis of Three Clas-
sical Buckling Problems for the Elastic Strut. J. Elast., 105, 117-136.

O.M. O’Reilly and D.M. Peters (2012). Nonlinear stability criteria for tree-
like structures composed of branched elastic rods. Proc. Roy. Soc. A,
468, 206-226.

M. Potier-Ferry (1987). Foundations of elastic postbuckling theory. Buck-
ling and Post-Bucklings, Lecture Notes in Physics, Springer Berlin Hei-
delberg, 288, 1-82.

E.L. Reiss (1969). Column buckling: An elementary example of bifurcation.
Bifurcation theory and nonlinear eigenvalue problems. W.A. Benjamin
Inc., New York, 1-16.

E. Robens, S.A.A. Jayaweera and S. Kiefer (2014). Balances. Instruments,
Manufacturers, History. Springer Berlin Heidelberg.

J. Tarnai (1980). Destabilizing effect of additional restraint on elastic bar
structures. Int. J. Mech. Sci., 22 (6), 379-390.

N.M. Temme (1996). Special functions. John Wiley and Sons, New York.
S.P. Timoshenko and J.M. Gere (1961). Theory of elastic stability. McGraw-

Hill, New York.
B. Van Brunt (2005). The calculus of variations. Springer.
M.A. Vaz and D.F.C. Silva (2003). Post-buckling analysis of slender elastic

rods subjected to terminal forces. Int. J. Nonlinear Mech., 38, 483-492.
C.Y. Wang (1997). Post-buckling of a clamped-simply supported elastica.

Int. J. Nonlinear Mech., 32 (6), 1115-1122.
D. Zaccaria, D. Bigoni, G. Noselli and D. Misseroni (2011). Structures buck-

ling under tensile dead load. Proc. R. Soc.A, 467, 1686-1700.
H. Ziegler (1977). Principles of Structural Stability. Birkhauser Verlag,

Basel und Stuttgart.

81


