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Abstract The theory of flutter instability in structures and solids

is presented, starting from the illuminating case of the Ziegler dou-

ble pendulum, continuing with the Beck and Pflüger columns, and

ending with the conditions for flutter in solids, considering in partic-

ular nonassociative elastoplastic models for granular and rock-like

materials. The role of dissipation, leading to the so-called ‘Ziegler

paradox’ is presented in detail. It is explained how to obtain a tan-

gential follower load in a structure by exploiting Coulomb friction

and it is shown that structures working in a flutter condition can

reach a limit cycle, in which they behave as self-oscillating devices.

1 Introduction

Friction during sliding contact between solids has been usually advocated as
a source of self-excited vibrations and dynamical instabilities (Den Hartog,
1956; Ibrahim, 1994a,b); examples are the violin string being excited by a
bow, the brake ‘squeal’ (in other words, high frequency noise), the ‘chatter’
(low-frequency noise) produced by the cutting tool of a machine, the ‘song’
of a fingertip moved upon the rim of a glass of water, and the unstable fault
slip in the Earth’s crust, which generates an earthquake. These mechanical
instabilities are often undesirable and lead to excessive damage or wear of
the pieces involved in sliding, so that the principal motivation for their
study is to ensure their better elimination. However, a recent approach to
the mechanics of structures is their exploitation as compliant mechanisms
for soft robot arms or energy harvesting devices, even in the range of large
displacements and beyond critical loads. In this line of research, flutter
instability could be profitably used, see for instance (Doaré and Michelin,
2011).
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The most common and older explanation of these friction-related insta-
bilities is through the introduction of stick and slip behaviour (an alternate
switch between static and kinetic friction), modelled as a drop of the friction
coefficient with the relative velocity of the two solids in contact. This ap-
proach was initiated by Den Hartog (1931, 1956) and generalized in different
ways, see among others, Rice and Ruina (1983).

Without invoking variable friction, but rather assuming constant, time-
independent, Coulomb friction, an unstable behavior has been theoretically
proven (but only with reference to the linearized equations governing the
problem, see Adams, 1995; Martins et al., 1999; Simões and Martins, 1998;
Nguyen, 2003), so that instability appears to be intrinsically related to even
the simplest model of frictional sliding. In parallel to these works, elasto-
plastic continua characterized by flow rule nonassociativity, the counterpart
of Coulomb friction for solids, have been demonstrated to display blowing-
up unstable waves, as related to the frictional behaviour of the material
(Rice, 1977; Loret, 1992; Bigoni and Willis, 1994; Bigoni, 1995; Bigoni and
Loret, 1999; Loret et al., 2000; Piccolroaz et al., 2006).

In all the above-mentioned works, in which instability is proven for con-
stant friction, the concept of flutter is introduced, a nomenclature borrowed
from the instability occurring in elastic structures subject to follower forces.
The best known of these structures are the so-called ‘Ziegler double pendu-
lum’, a 2 d.o.f. system with concentrated elasticity, and the ‘Beck’s column’,
an elastic cantilever rod subject to a tangential force at its free end. The
analogy between flutter in a continuum and in a structure is more strict
than it may appear at a first glance, in fact, in both cases: (i.) flutter initi-
ates when a complex conjugate eigenvalue solution for vibrations emerges,
which corresponds to an oscillation of increasing amplitude; (ii.) a neces-
sary condition for flutter is the lack of symmetry (or self-adjointness) in the
mechanical system; (iii.) in a space of parameters, flutter occurs usually
within a region, which separates stability from divergence, the latter be-
ing an exponentially blowing-up motion; (iv.) flutter ultimately leads to a
self-sustaining oscillation, which absorbs energy from a steady source.

In solids1 flutter instability has been only theoretically predicted, but
never experimentally detected. This was also true for the structural flutter,
where the practical realization of the tangential force necessary for the insta-

1 Kröger et al. (2008) and Neubauer et al. (2005) report examples of self-excited vibra-

tions related to fluctuating orthogonal forces at the contact between two elements or

to geometrical effects and non-conservative restoring forces. In the former case, the

system is already oscillating (while the focus of this book chapter is on systems subject

to a steady source of energy) and in the latter case the instability is observed in a

system with finite degrees of freedom.
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bility was considered the major unsolved problem2, until Bigoni and Noselli
(2011) (see also Bigoni et al., 2014, 2018) experimentally and theoretically
showed how to generate a tangentially follower force in the Ziegler dou-
ble pendulum through an element in sliding contact against a plate under
constant Coulomb friction.

The aim of the present chapter is to review the problem of flutter insta-
bility in both structures and solids, from the specific perspective pursued
by the author in the last twenty-five years. In particular, it is believed that
solids and structures are akin from the point of view of flutter instability, so
that they display several common features and that this instability is pos-
sible when an element draws energy from frictional sliding against another
element.

The chapter is organized as follows.

• The illuminating case of the Ziegler double pendulum (Section 2.1)
will show: (i.) how lack of symmetry of the geometrical stiffness
matrix is responsible for flutter (Section 2.1); (ii.) why flutter cannot
be detected with a quasi-static bifurcation analysis (Section 2.3); (iii.)
how viscosity decreases the flutter load and (iv.) what is the so-called
‘Ziegler paradox’, for which a vanishing small viscosity yields a strong
decrease in the flutter load (Section 2.4).

• The equations governing the dynamics of the Beck’s column will be ob-
tained from a general setting, namely, from the planar Euler elastica,
in which restrictions on the magnitude of the deflection are not in-
cluded (Section 2.5). The Beck’s column, analyzed in a generalization
given by Pflüger and including also internal and external dissipation
(Section 2.7), will reveal that a continuous system displays essentially
the same mechanical behaviour found for the Ziegler double pendulum,
namely, that lack of symmetry (called now ‘self-adjointness’, Section
2.8) is a necessary condition for flutter and that the load producing
the instability is significantly lowered by the presence of viscosity.

2 Koiter (1996) proposed the ‘elimination of the abstraction of follower forces as external

loads from the physical and engineering literature on elastic stability’ and concluded

with the warning: ‘beware of unrealistic follower forces’. In an attempt of realizing

these forces, experiments with water or air flowing from a nozzle were conducted by

Herrmann et al. (1966) and Paidoussis (2014), while a solid motor rocket was fixed at

the end of an elastic column by Sugiyama et al. (1995, 2000). In the former case, there

are hydrodynamical effects affecting the motion, while in the latter case the rocket has

a non-negligible variable mass and burns so fast that a long-term analysis of the motion

is prevented. Therefore, in both cases the follower tangential force invented by Ziegler,

1952 is not properly realized, see the exhaustive discussion by Elishakoff (2005).
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• Numerical analyses will show that the dynamic motion of both the
Ziegler double pendulum and the Beck’s column reach a limit cy-
cle (Section 2.9). Therefore, these structures are examples of self-
oscillating mechanisms (Jenkins, 2013), in which a source of steady
energy produces an oscillatory motion of given frequency. This fre-
quency can be varied by changing the geometry and stiffness of the
system.

• The possibility is shown to generate a follower force from sliding
Coulomb friction (Section 2.10), a concept introduced by Bigoni and
Noselli (2011), which is based on an extreme form of orthotropic fric-
tion, null in the direction orthogonal to the sliding. It is also antic-
ipated that a device similar to that employed for the Ziegler double
pendulum can be designed to produce flutter instability in the Beck
and Pflüger rods (Bigoni et al., 2018).

• The behaviour of a continuous elastoplastic material, in which the
yielding is pressure-sensitive and the plastic flow nonassociative, is
introduced (Section 3) from a simple 2 d.o.f. model of contact with
Coulomb friction (Section 3.1).

• With reference to nonassociative and pressure-sensitive elastoplastic
solids, the problem of plane waves is solved with reference to the load-
ing branch of the constitutive operator3 and is shown to be governed
by the eigenvalues of the acoustic tensor (Section 3.3). Strain localiza-
tion into planar bands is explained in terms of vanishing of an eigen-
value of the acoustic tensor (Section 3.4). The conditions for flutter
instability in the above-mentioned solids are finally analyzed (Section
3.5) and it is explained that this instability has to be considered more
frequent than it is usually believed.

• As conclusions, a discussion on the state-of-the-art and the perspec-
tives in the research on flutter instability in solids and structures is
reported (Section 4).

2 Flutter for structural systems

Flutter in structural systems is analyzed under the hypothesis that follower
forces are present. In general, these forces do not admit a potential and
therefore are non-conservative, so that work can be extracted in a closed

3 The treatment is limited to the linearized version of contact with friction and to

the linearized incremental plasticity, so that the complex role of nonlinarity is not

considered for simplicity. The interested reader is addressed to Bigoni and Petryk

(2002) for further details on this delicate issue.
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path of deformation. This can easily be understood with reference to the
two structures shown in Fig. 1. One of these structures is made up of two
rigid bars jointed together with a hinge and constrained with another hinge
at one end, while at the other end a load is applied, which remains coaxial
with the bar to which it is applied. The other structure is a clamped elastic
rod subject to a force, which remains tangential to the elastica at the free
end. The load, as illustrated in the figure caption, is capable of producing
a positive work in a closed deformation loop.

1

2

3

P

P

P

Figure 1. A tangential follower force is applied: (left) at the right end of
a two-degree-of-freedom system composed by two hinged rigid bars; (right)
at the free end of a clamped elastic rod. The load is not conservative,
since in the closed loops 1−→ 2−→ 3 (for the structure on the left) and
1−→ 2−→ 3,−→ 4,−→ 1, (for the structure on the right) a positive work is
produced by the applied force. The deformation loop sketched in the de-
formable rod shown on the right is based on a small displacement assump-
tion and consists in a rotation of the loaded end (1−→ 2, during which the
load does not work), which is followed by a translation of the end (2−→ 3,
during which a positive work is produced), by another rotation at fixed
position (3−→ 4, during which the load does not work), and, finally, by
an horizontal translation back to the initial position (4−→ 1, during which
work is not produced).

2.1 The Ziegler double pendulum

Flutter and divergence instability can be vividly and simply illustrated
with reference to a structure, invented more than sixty years ago by Ziegler
(1952, 1977). The structure is the double pendulum shown in Fig. 2, made
up of two rigid bars, connected through an elastic hinge and fixed with
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another elastic hinge at one end. The structure is subject to a tangential
follower load on the free end, which remains coaxial to the second rigid rod
and can produce positive work in a closed loop (as explained in Fig. 1).

P
k1 k2

l1 l2

d

m1 m2

P

k1

k2

m1

m2

a1

A B C

a2

e1

e2

A

B

C

D

D

m3

E
h

m3

E

H

H

Figure 2. The Ziegler double pendulum, namely, a two-degree-of-freedom
system subject to a follower (non-conservative) load (the force P, applied
at C, remains always parallel to the rod BC). In addition, a dead (conserva-
tive) load (the force H, applied at C, remains always parallel to e1) is also
included for reference. The rods are rigid and massless and connected with
two springs of stiffness k1 and k2; three concentrated masses m1, m2, and
m3 are present. Two cases will be analyzed, H = 0 corresponding to purely
follower load and P = 0 corresponding to purely conservative load. In the
former case, quasi-static bifurcation is excluded, but flutter and divergence
instability will be shown to be always possible for sufficiently high P. In the
latter case, quasi-static bifurcation occurs and only divergence instability is
possible.

Subject to the follower load, the Ziegler double pendulum (Fig. 2) is
considered, where two rotational springs of stiffnesses k1 and k2 provide the
elasticity and three concentrated masses the inertia. The generic configura-
tion of the system remains determined by the two Lagrangean parameters
α1 and α2. The concentrated masses m1 and m3 are located at the points
D and E, at a distance d from A and h from B, while the concentrated mass

6



In CISM Lecture Notes No. 586 “Dynamic Stability and Bifurcation in Nonconservative Mechanics” (Ch. 1), edited by:

D. Bigoni and O. Kirillov, Springer, ISBN 978-3-319-93721-2, doi 10.1007/978-3-319-93722-9

m2 is located at C. The tangential follower load P, applied at C and taken
positive when compressive, maintains the direction parallel to the rod BC.
In addition to this force, a second load, produced by a conservative dead
force H, is also applied at C. The analysis of a mechanical system similar
to that under consideration (in which the mass m3 is not present) can be
found in (Herrmann, 1971; Ziegler, 1952, 1953, 1956, 1977; Nguyen, 1995).

Governing equations for the double pendulum A simple static anal-
ysis of the structure shown in Fig. 2 is sufficient to conclude that only
the trivial (straight) configuration satisfies equilibrium when only the fol-
lower load P is applied (in fact equilibrium of the rod BC is only possible if
α1 = α2, and equilibrium of the complex ABC additionally requires α1 = 0),
so that quasi-static bifurcations are excluded. Therefore, flutter and diver-
gence instabilities, which will be found to occur in the Ziegler double pendu-
lum, necessary represent dynamical instabilities, the former will be shown
to consist in an oscillatory vibration of increasing amplitude, while the lat-
ter in an exponentially growing motion. Note that the situation changes
when only the dead load H is applied, in which case non-trivial equilibrium
configurations and therefore quasi-static bifurcations are possible.

The equations of motion for the system can be obtained starting from
the position vectors of the three concentrated masses m1, m2 and m3

D−A = d cosα1e1 + d sinα2e2,

E−A = (l1 cosα1 + h cosα2) e1 + (l1 sinα1 + h sinα2) e2,

C−A = (l1 cosα1 + l2 cosα2) e1 + (l1 sinα1 + l2 sinα2) e2,

(1)

where e1 and e2 are the two unit vectors singling out the horizontal and
vertical directions respectively, so that the forces P and H, of moduli P and
H, can be expressed as

P = −P cosα2e1 − P sinα2e2, H = −He1. (2)

The velocities of points D, C, and E (the time derivative is denoted by

7



In CISM Lecture Notes No. 586 “Dynamic Stability and Bifurcation in Nonconservative Mechanics” (Ch. 1), edited by:

D. Bigoni and O. Kirillov, Springer, ISBN 978-3-319-93721-2, doi 10.1007/978-3-319-93722-9

a superimposed dot) are

Ḋ = −d (α̇1 sinα1e1 − α̇1 cosα1e2) ,

Ċ = (−l1α̇1 sinα1 − l2 α̇2 sinα2) e1

+(l1α̇1 cosα1 + l2 α̇2 cosα2) e2,

Ė = (−l1α̇1 sinα1 − h α̇2 sinα2) e1

+(l1α̇1 cosα1 + h α̇2 cosα2) e2,

(3)

so that the accelerations D̈, C̈ and Ë of the masses m1, m2 and m3 can be
evaluated as

D̈ = −d
(
α̇2
1 cosα1 + α̈1 sinα1

)
e1 − d

(
α̇2
1 sinα1 − α̈1 cosα1

)
e2,

C̈ =
(
−l1α̇2

1 cosα1 − l1α̈1 sinα1 − l2 α̇
2
2 cosα2 − l2 α̈2 sinα2

)
e1

+
(
−l1α̇2

1 sinα1 + l1α̈1 cosα1 − l2 α̇
2
2 sinα2 + l2 α̈2 cosα2

)
e2,

Ë =
(
−l1α̇2

1 cosα1 − l1α̈1 sinα1 − h α̇2
2 cosα2 − h α̈2 sinα2

)
e1

+
(
−l1α̇2

1 sinα1 + l1α̈1 cosα1 − h α̇2
2 sinα2 + h α̈2 cosα2

)
e2.

(4)

Noting that the moments transmitted by the rotational springs to the
rods are k1α1 and k2(α2 − α1), the principle of virtual power writes as

(P+H) · δC−m1D̈ · δD−m2C̈ · δC−m3Ë · δE

−k1α1δα1 − k2(α2 − α1)(δα2 − δα1) = 0,

(5)

where ‘ · ’ denotes the scalar product and the virtual velocities δC, δD, δE
have the same expressions provided by equations (3) with the ‘˙’ replaced
by ‘δ’.

The virtual power of the external loads is

(P+H) · δC = Pl1 sin(α1−α2)δα1+H (l1δα1 sinα1 + l2 δα2 sinα2) . (6)

It is noted that, while the conservative load H admits the potential

W (α1, α2) = H (l1 cosα1 + l2 cosα2 − l1 − l2) , (7)
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so that

H · δC = −∂W
∂α1

δα1 −
∂W

∂α2
δα2, (8)

the nonconservative force P does not admit one, as demonstrated by the
condition

∂ sin(α1 − α2)

∂α2
6= ∂0

∂α1
. (9)

Imposing now the virtual power equation (5) and invoking the arbitrari-
ness of δα1 and δα2 yields the two equations

[
m1d

2 + (m2 +m3)l
2
1

]
α̈1 + (m2l2 +m3h)l1α̈2 cos (α1 − α2)

+(m2l2 +m3h)l1α̇
2
2 sin (α1 − α2) + k1α1 + k2(α1 − α2)

−Pl1 sin (α1 − α2)−Hl1 sinα1 = 0,

(m2l2 +m3h)l1α̈1 cos (α1 − α2) + (m2l
2
2 +m3h

2)α̈2

−(m2l2 +m3h)l1α̇
2
1 sin (α1 − α2)− k2(α1 − α2)

−Hl2 sinα2 = 0,

(10)

governing the (nonlinear) dynamics of the system.
The differential equations (10), linearized near the trivial (equilibrium)

configuration α1 = α2 = 0, can be written, in matrix form, as





m1d
2 + (m2 +m3)l

2
1 (m2l2 +m3h)l1

(m2l2 +m3h)l1 m2l
2
2 +m3h

2





︸ ︷︷ ︸

mass matrix





α̈1

α̈2





+










stiffness matrix
︷ ︸︸ ︷




k1 + k2 −k2

−k2 k2



+

geometric matrix
︷ ︸︸ ︷




−l1(P −H) Pl1

0 −Hl2


















α1

α2



 = 0.

(11)

Note that the mass matrix and the stiffness matrix are both real, sym-
metric, and positive definite, while the geometric matrix is real, but unsym-
metric, thus introducing the only source of unsymmetry. More specifically,
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the unsymmetry comes only from the presence of the follower load P , but
not from the dead load H.

Time-harmonic vibrations of the double pendulum Looking for
time-harmonic vibrations near the equilibrium configuration, the Lagrangean
parameters αj are assumed to be harmonic functions of time

αj = aj e
−iΩ t, j = 1, 2, (12)

where aj are (complex) amplitudes, Ω is the (possibly complex) circular
frequency, and i is the imaginary unit (i =

√
−1), so that a substitution of

equations (12) into equations (11) yields









k1 + k2 − l1(P +H) −k2 + Pl1

−k2 k2 −Hl2





−Ω2





m1d
2 + (m2 +m3)l

2
1 (m2l2 +m3h)l1

(m2l2 +m3h)l1 m2l
2
2 +m3h

2













a1

a2



 = 0.

(13)

The algebraic system (13) represents a generalized eigenvalue problem
for Ω2, that after introducing the mass M, the stiffness K, and geometric
G matrices, can be written as

[
K+G− Ω2M

]
a = 0, (14)

which would be a standard eigenvalue problem if M would be equal to
the identity. However, the mass matrix M is real, symmetric and pos-
itive definite, so that its square root M1/2 (defined in such a way that
M1/2M1/2 = M) is invertible. Therefore, the generalized eigenvalue prob-
lem (14) can be rewritten as

[

(K+G)M−1/2 − Ω2M1/2
]

M1/2a = 0. (15)

Therefore a multiplication byM−1/2 transforms the nonstandard eigenvalue
(14) into a standard one

[

M−1/2 (K+G)M−1/2 − Ω2I
]

M1/2a = 0, (16)

where the matrix M−1/2 (K+G)M−1/2 is not symmetric because of the
unsymmetry of G, which in turn follows from the presence of the follower
load P . It can be concluded from equation (16) that:
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a necessary condition for the eigenvalues Ω2 to be complex conju-
gate (a situation which will be identified with the flutter instabil-
ity) is that the geometric matrix G be unsymmetric, otherwise,
if G is symmetric, the eigenvalues will always be real.

A generalization to n d.o.f. The generalized eigenvalue problem (14)
applies to all mechanical systems (with smooth and bilateral constraints)
with finite, say n, degrees of freedom. The mass matrix M becomes n ×
n, but remains symmetric and positive definite, so that the generalized
eigenvalue problem can be cast in the standard form (16), where now all
matrices are n × n. The stiffness matrix is also symmetric and positive
definite, therefore the only possible source of unsymmetry remains G, so
that it may be concluded that in all cases where G is symmetric, complex
conjugate eigenvalues (and therefore flutter instability) are excluded.

2.2 The standard case as a reference: the dead load H on the
double pendulum

Assuming that the double pendulum is loaded only with the dead loading
H, so that P = 0, and introducing now the dimensionless variables,

ρ1 =
m1

m2
, ρ2 =

m3

m2
, y1 =

d

l1
, y2 =

h

l2
,

λ =
l1
l2
, k =

k1
k2
, ω2 =

m2l
2
2Ω

2

k2
, η =

Hl1
k2

,

(17)

matrix G becomes symmetric (so that complex eigenvalues are excluded)
and the generalized eigenvalue problem (13) can be compacted so that the
matrix multiplying vector [a1, a2] is now





(ρ1y
2
1 + ρ2 + 1)λ2ω2 − 1− k + η λω2(1 + ρ2y2) + 1

λω2(1 + ρ2y2) + 1 ω2(1 + ρ2y
2
2)− 1 + η/λ



 , (18)

and nontrivial solutions become possible when its determinant vanishes, a
condition providing

ω2 =
β1 − ηδ2 ±

√

∆(η)

2a
, (19)

where the discriminant is

∆(η) = (β1 − ηδ2)
2 − 4ac(η), (20)

11



In CISM Lecture Notes No. 586 “Dynamic Stability and Bifurcation in Nonconservative Mechanics” (Ch. 1), edited by:

D. Bigoni and O. Kirillov, Springer, ISBN 978-3-319-93721-2, doi 10.1007/978-3-319-93722-9

and

a = λ2
[
y21ρ1 + (1− y2)

2ρ2 + y21y
2
2ρ1ρ2

]
> 0,

β1 = λ
[
2 + 2y2ρ2 + λ(1 + y21ρ1 + ρ2)

]
+ (k + 1)(1 + ρ2y

2
2) > 0,

δ2 = 1 + λ(1 + y21ρ1 + ρ2) + ρ2y
2
2 > 0,

c(η) = η2/λ− η(1 + 1/λ+ k/λ) + k,

(21)

Now the problem (13) is symmetric, because follower forces are absent,
so that ∆(η) cannot be negative. Therefore, two solutions for ω2 remain
positive for loads inferior to the critical load, namely, to the smaller, Hcr,
of the two buckling loads

Hcrl1
k2

Hsupl1
k2







=
1 + k + λ∓

√

(λ− k)2 + 1 + 2k + 2λ

2
> 0. (22)

At Hcr, and also at Hsup, one of the solutions for ω2 vanishes, so that the
critical load coincides with that calculated using the static method, because
at Hcr and at Hsup the matrix (18) becomes singular for ω = 0 and its
determinant is c(η).

For loads H higher than the critical load, the solutions ω2 become:

– one positive and one negative when: H ∈ (Hcr, Hsup) ,

– two negative when: H > Hsup.

(23)

As a consequence, the four solutions Ω

Ω = ± 1

l2

√

k2
m2

√
√
√
√β1 − ηδ2 ±

√

(β1 − ηδ2)
2 − 4ac(η)

2a
, (24)

are all four real for loads smaller than Hcr, two real and two forming one
purely imaginary complex conjugate pair for loads higher than Hcr, but
smaller than Hsup, and four split into two purely imaginary complex con-
jugate pairs at a load higher than Hsup.

The purely imaginary complex pair always contains an element which,
multiplied by −i, provides an exponentially blowing-up solution, which cor-
responds to divergence instability. Therefore, for dead load, either stability
or divergence instability may only occur.

12



In CISM Lecture Notes No. 586 “Dynamic Stability and Bifurcation in Nonconservative Mechanics” (Ch. 1), edited by:

D. Bigoni and O. Kirillov, Springer, ISBN 978-3-319-93721-2, doi 10.1007/978-3-319-93722-9

Note that, as a particular case, the critical load (22) for k1 = k2 = K
and l1 = l2 = L (λ = 1) simplifies to

Hcr =
(3−

√
5)K

2L
≈ 0.382

K

L
. (25)

The effect of viscosity on the buckling of the double pendulum subject
only to dead loading H can be investigated assuming that the two elastic
hinges become viscoelastic. Viscosity reacts to an angular relative velocity
of the connected rods with a couple, so that, denoting with c1 and c2 the
two coefficients of viscosity of the hinges, equation (11) is modified through
the addiction of the term





c1 + c2 −c2

−c2 c2









α̇1

α̇2



 , (26)

which has exactly the same form of the elastic stiffness matrix.
Equation (14) becomes therefore

[
K+G− iΩC− Ω2M

]
a = 0, (27)

where the viscosity matrix C contains the ci coefficients in equation (26)
and the dynamics is governed by the nontrivial solutions of




(ρ1y
2
1 + ρ2 + 1)λ2ω2 − 1− k + iω(1 + c)ǫ+ η

λω2(1 + ρ2y2) + 1− iǫω

λω2(1 + ρ2y2) + 1− iǫω

ω2(1 + ρ2y
2
2)− 1 + iǫω + η/λ









a1

a2



 = 0,

(28)

where the following dimensionless constants have been introduced

c =
c1
c2
, ǫ =

c2

l2
√
k2m2

. (29)

The characteristic equation, obtained from the matrix (28) and written with
the notation ω̃ = −iω, becomes

p0ω̃
4 + p1ω̃

3 + p2ω̃
2 + p3ω̃ + p4 = 0, (30)

13
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where

p0 = λ2
(
ρ2 + ρ1y

2
1 − ρ2y2 + ρ22y2 + ρ1ρ2y

2
1y2 − ρ22y

2
2

)
,

p1 = ǫ
(
1 + c+ 2λ+ λ2 + λ2ρ2 + λ2ρ1y

2
1 + ρ2y2

+cρ2y2 + 2λρ2y2) ,

p2 = 1 + cǫ2 − η + k + λ
[
2− η + λ− (η − λ)

(
ρ2 + ρ1y

2
1

)]

+ρ2y2 (1− η + k + 2λ) ,

p3 = ǫ

(

c− η + k − η(1 + c)

λ

)

,

p4 = −η + k + η
λ (η − 1− k) .

(31)

Note that the notation ω̃ = −iω, corresponds to Ω̃ = −iΩ, so that the
time harmonic assumption, equation (12), becomes αj = aj exp Ω̃t, and the
instability occurs when Re[ω̃] > 0.

A quasi-static solution of equation (30) corresponds to ω̃ = 0 and can be
found when p4 = 0, which provides the two buckling loads (22). Therefore,
the presence of the viscosity does not alter the quasi-static bifurcations of
the double pendulum with dead load H; it will be shown that the situation
changes when follower load are present.

2.3 The follower force P on the double pendulum

Assuming that the Ziegler double pendulum is loaded only with the
follower force P, so that H = 0, and using again the dimensionless variables
(17), except that η is now replaced by

γ =
Pl1
k2

, (32)

the generalized eigenvalue problem (13) can be compacted and leads to the
condition of vanishing of the determinant of the matrix





(ρ1y
2
1 + ρ2 + 1)λ2ω2 − 1− k + γ λω2(1 + ρ2y2) + 1− γ

λω2(1 + ρ2y2) + 1 ω2(1 + ρ2y
2
2)− 1



 , (33)
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a condition which immediately provides the two solutions for ω2

ω2 =
β1 − γβ2 ±

√

(β1 − γβ2)
2 − 4ka

2a
, (34)

where a and β1 are the same coefficients as in the list (21), again reported
below to facilitate reading

a = λ2
[
y21ρ1 + (1− y2)

2ρ2 + y21y
2
2ρ1ρ2

]
> 0,

β1 = λ
[
2 + 2y2ρ2 + λ(1 + y21ρ1 + ρ2)

]
+ (k + 1)(1 + ρ2y

2
2) > 0,

β2 = 1 + λ+ y22ρ2 + y2λρ2 > 0.

(35)

From the pair of solutions (34) for ω2, four solutions for Ω follow

Ω = ± 1

l2

√

k2
m2

√
√
√
√β1 − γβ2 ±

√

(β1 − γβ2)
2 − 4ka

2a
. (36)

Note that:
• It can be shown that both the the discriminant ∆ = (β1 − γβ2)

2−4ka
and the coefficient β1 are strictly positive when γ = 0, in other words,
∆(0) > 0 and β1(0) > 0, so that all solutions Ω are real, which
is coherent with the fact that the structure has to be stable when
unloaded.

• For tensile load, γ < 0, all solutions Ω are real, which means that the
structure is stable.

• As graphically represented in Fig. 3, the following conditions can be
established:

β1 − γβ2 > 0 ⇐⇒ γ <
β1
β2
,

(β1 − γβ2)
2 − 4ka < 0 ⇐⇒ β1

β2
− 2

√
k a

β2

< γ <
β1
β2

+
2
√
k a

β2
.

(37)

The following three possibilities only arise.
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Figure 3. Graphical study of equation (34), showing a ‘competition’ be-
tween a linear β1 − γβ2 and a parabolic (β1 − γβ2)

2 − 4ka term. Note that
the magnitude of the follower load P is included in the variable γ, which
determines the stability behaviour of the structure shown in Fig. 2 in the
case H = 0.

• Stability: two real and positive values for ω2, which correspond to
four real Ω (two positive and two negative) and occur when γ < β1/β2
and (β1 − γβ2)

2 − 4ka > 0; vibrations are sinusoidal.

• Flutter instability: two complex conjugate values for ω2, which
correspond to two complex conjugate pairs for Ω and occur when
(β1 − γβ2)

2 − 4ka < 0; four exponential solutions exist, namely, two
unstable (which blow-up) and the other two decaying with time.

• Divergence instability: two real and negative values for ω2, which
correspond to two purely imaginary conjugate pairs for Ω and occur
when γ > β1/β2 and (β1 − γβ2)

2 − 4ka > 0; vibrations become ex-
ponential functions of time, two of which amplify (denoting unstable
behaviour) and two decay.

It should be noted that, while stability is always verified at sufficiently
small load, flutter and divergence always occur when the load is sufficiently
high, independently of the geometry and stiffness of the system. Moreover,
flutter instability determines an interval of load separating stability from
divergence.
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As a conclusion, the response is stable when:

P < Pflu, (38)

where

Pflul1
k2

=

λ
[
2 + 2y2ρ2 + λ(1 + y21ρ1 + ρ2)

]
+ (k + 1)(1 + ρ2y

2
2)− 2

√
k a

1 + λ+ y22ρ2 + y2λρ2
,

(39)

is the critical load for flutter instability, which occurs when the load P falls
within the interval:

Pflu ≤ P < Pdiv (40)

where

Pdivl1
k2

=

λ
[
2 + 2y2ρ2 + λ(1 + y21ρ1 + ρ2)

]
+ (k + 1)(1 + ρ2y

2
2) + 2

√
k a

1 + λ+ y22ρ2 + y2λρ2
,

(41)

is the critical load for divergence instability, which occurs for loads P higher
than or equal to Pdiv.

Note that at the onset of flutter and divergence instabilities only two
values of Ω are found from equation (36), both real and with opposite signs
in the case of flutter, pure imaginary and with opposite signs in the case of
divergence.

In the particular case in which there are only two masses, m3 = 0,
namely, ρ1 = ρ, ρ2 = 0, y1 = y, the flutter load, equation (39), becomes

Pflul1
k2

=
(1 + λ)2 + (λy

√
ρ−

√
k)2

1 + λ
. (42)

Therefore the load for flutter can be minimized in the situation where

√
k = λy

√
ρ, ⇐⇒

√

k1
k2

=
d

l2

√
m1

m2
, (43)

which corresponds to

Pflu = k2

(
1

l1
+

1

l2

)

, (44)
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while the divergence load becomes

Pdiv = k2

(
1

l1
+

1

l2

)

+ 4k1
l2
l1

(
1

l1 + l2

)

. (45)

If it is assumed for simplicity l1 = l2 = L, d = l1, k1 = k2 = K, and
m1 = m2, the critical loads for flutter and divergence become simply

Pflu = 2
K

L
, Pdiv = 4

K

L
. (46)

It can finally be concluded that, in a linearized context, while divergence
instability corresponds to a motion growing exponentially in time, flutter
instability corresponds to a blowing-up oscillation. Note that both these two
instabilities cannot be detected with a quasi-static analysis.

The above statement is confirmed in Fig. 4, where results are reported as
numerical solution of the linear differential system (11) for H = 0 and with
the initial conditions α1 = α2 = 0.5◦ (α1 = α2 = −0.5◦ for divergence) and
α̇1 = α̇2 = 0. For the numerical solution, the following parameters (taken to
be representative of the structural model that will be presented in Section
2.10) have been selected:

l = 3 d = 3h = 100mm, m1 = 12m2 = 4m3 = 552 g,

k1 = k2 = 0.189Nm,

(47)

which correspond from equations (39) and (41) to a flutter load Pflu ≈ 4.8N
and to a divergence load Pdiv ≈ 8.8N, so that P = 6.8N (P = 15.4N) has
been assumed for the simulation of flutter (of divergence). A sequence 0.44
(0.2) seconds long of configurations at different instants of time is reported in
Fig. 4, where each configuration is drawn at fixed intervals of time (0.04 s).
The oscillatory blow-up (The exponential growth) of the solution is clearly
visible in the case of flutter (of divergence).

Flutter cannot be detected via quasi-static bifurcation analysis
Equation (42) shows that the flutter load for the Ziegler double pendulum
with two masses, depends on the mass distribution of the system, through
parameters y and ρ. This distribution, which does not influence the quasi-
static behaviour, alters the load for flutter instability. In fact, if equation
(42) is employed for the same set of parameters (stiffness and entity of
masses) which yield the critical loads (46), but with a different disposition
of masses, namely, y1 = d/l1 = 1/2 (instead than y1 = 1), the following
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Flutter instability

time [s]

Divergence instability

time [s]

Figure 4. A sequence (0.44 s for flutter and to 0.2 s for divergence) of
deformed configurations at consecutive time intervals of 0.04 seconds of the
Ziegler double pendulum (sketched in Fig. 2 with H = 0) and exhibiting
flutter (upper part) and divergence (lower part) instability. Results have
been obtained through a linearized analysis, equations (11), with initial
conditions α1 = α2 = 0.5◦ (α1 = α2 = −0.5◦ for divergence) and α̇1 =
α̇2 = 0, at the load P = 6.8N inside the flutter region (upper part) and at
the load P = 15.4N inside the divergence region (lower part). The values
of parameters employed for the analysis are reported in the list (47).
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critical loads for flutter and divergence instability are obtained

Pflu(y1 = 1/2) =

(

2 +
1

8

)
K

L
, Pdiv(y1 = 1/2) =

25

8

K

L
. (48)

The fact that two different critical loads for flutter and divergence in-
stability, namely, (46) and (48) are calculated for two mechanical systems
differing only in the their mass distribution, which would not influence re-
sults calculated with the quasi-static criterion for bifurcation, shows that

the quasi-static criterion for bifurcation is inadequate to calculate critical
loads of systems subject to follower loads.

2.4 Surprising effects related to the viscosity: the Ziegler para-
dox

The effect of viscosity on the flutter and divergence instability of the
Ziegler double pendulum subject to the follower load P can be investigated
by assuming that the two elastic hinges become viscoelastic, thus adding to
equation (11) the term (26), to yield again equation (27), where now the
geometric matrix G contains P . The dynamics of the double pendulum is
governed by the nontrivial solution of





(ρ1y
2
1 + ρ2 + 1)λ2ω2 − 1− k + iω(1 + c)ǫ+ γ

λω2(1 + ρ2y2) + 1− iǫω

λω2(1 + ρ2y2) + 1− iǫω − γ

ω2(1 + ρ2y
2
2)− 1 + iǫω









a1

a2



 = 0,

(49)

where the dimensionless constants (29) have been used.
Assuming for simplicity l1 = l2 = L, k1 = k2 = K, ρ1 = 1, ρ2 = 0,

y1 = 1, λ = 1, k = 1, c = 1, the problem (49) leads to the following
characteristic equation

det





2ω2 − 2 + 2iǫω + γ ω2 + 1− iǫω − γ

ω2 + 1− iǫω ω2 − 1 + iǫω



 = 0, (50)

which, written with the notation ω̃ = −iω, becomes

p0ω̃
4 + p1ω̃

3 + p2ω̃
2 + p3ω̃ + p4 = 0, (51)
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where

p0 = 1, p1 = 6ǫ, p2 = 6 + ǫ2 − 2γ, p3 = 2ǫ, p4 = 1. (52)

Note that the notation ω̃ = −iω, corresponds to Ω̃ = −iΩ, so that the
time harmonic assumption, equation (12), becomes αj = aj exp Ω̃t, and the
instability occurs when Re[ω̃] > 0 (divergence when Im[ω̃] = 0 and flutter
when Im[ω̃] 6= 0). Note also that, differently from the case of dead loading,
the characteristic equation (51) does not admit quasi-static solutions, ω̃ = 0,
because p4 cannot vanish.

The analysis of the nature of the solutions to the characteristic equation
(51) can be performed using the Routh-Hurwitz criterion for a fourth-degree
polynomial (see for instance Ziegler, 1977), so that stability is assured when

p1 > 0, p1p2 − p0p3 > 0, (p1p2 − p3)p3 − p21p4 > 0, p4 > 0, (53)

providing the following limit condition for stability

P ∗

flu =

(
4

3
+
ǫ2

2

)
K

L
. (54)

The behaviour of the Ziegler double pendulum with viscoelastic hinges
is shown in Fig. 5, where the real and imaginary parts of the eigenvalue ω̃
are reported for three cases:

• The case in which the viscosity is absent ‘from the beginning’, which is
governed by the characteristic equation provided by the determinant
of the matrix (33);

• The viscoelastic case, which is governed by the characteristic equation
(51) for two coefficients of viscosity, ǫ = 0.1 and 0.5.

Fig. 5 shows that in the undamped case the real part of ω̃ remains null,
until the critical load for flutter (46) is reached, namely, γ = 2. After this
value is met, the solution displays a positive real part, denoting an unstable
character. The instability corresponds to flutter (and not to divergence)
because, in addition to the positive real part, ω̃ displays also an imaginary
part. In the cases of viscoelastic hinges, the critical value for flutter de-
creases to γ = 1.338 (to γ = 1.458), for ǫ = 0.1 (for ǫ = 0.5). It should
be noted that at decreasing viscosity the curves in the figure tend to the
undamped case, but the critical load for flutter tends to that obtained from
equation (54), in the limit of ǫ→ 0, namely, γ = 4/3 ≈ 1.333.

The critical load for flutter in the ‘undamped system’ (46), namely, in
the case when the viscosity of the hinges is absent ‘from the beginning’, is
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notably higher than the value (54), so that a comparison between the flutter
loads (46) and (54) leads to the following conclusions:

• the critical load for flutter is an increasing function of the viscosity
parameter ǫ,

• but this critical load at sufficiently small viscosity is smaller than the
critical load calculated under the hypothesis that viscosity is absent,
so that for instance if Pflu = 2K/L for the undamped system, P ∗

flu

decreases to 1.338K/L and 1.458K/L for ǫ equal to 0.1 and 0.5, re-
spectively. Despite the fact that this behaviour is counter-intuitive,
because adding an extra viscous ‘constraint’ to a system would ap-
parently seem not lower a critical load, the conclusion is that the in-
troduction of a small viscosity in the Ziegler double pendulum reduces
the critical load;

• in the limit of vanishing viscosity, ǫ → 0, equation (54) yields P ∗

flu =
4/3K/L, which does not coincide with (and is noticeably lower than)
the flutter load for the undamped system (46), calculated for absent
viscosity. This result is so surprising that it is known as ‘the Ziegler
paradox’ and implies that the flutter load calculated in the absence of
viscosity is meaningless, as for a real structure some small, but never
null, viscosity does always exist.

The paradox was first discovered by Ziegler (1952), later framed in the
general context of instability theory by Bottema (1956), and quoted by
Bolotin (1963) as one of the most important theoretical aspects in stability
when nonconservative forces are present. A modern and general discussion
on the paradox can be found in (Kirillov, 2005, 2013). The destabilizing
effect of viscous forces is now an accepted concept in mechanics and leads to
the concept of ‘dissipation instabilities’ (Krechetnikov and Marsden, 2007;
Kirillov and Verhulst, 2010, see also the chapter written by O. Doaré in the
present book).

2.5 The deformation of an elastic rod: the Euler’s elastica

The determination of the static and dynamic behaviour of an elastic
inextensible rod subject to large deflection is a problem of great interest,
which is here addressed in a two-dimensional context (in a reference system
denoted through the two unit vectors e1 and e2). The purpose of this
section is to provide the Euler elastica theory, including the case in which the
material behaviour of the rod is viscoelastic and various external loadings
are present, thus providing a generalization of Bigoni (2012) and Bigoni
et al. (2015). Classical references are Love (1927), Reiss (1969), Audoly
and Pomeau (2010).
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~

undamped

e = 0.5
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Figure 5. Behaviour (at varying the dimensionless load parameter γ) for
the viscoelastic Ziegler double pendulum of the eigenvalue ω̃, solved from
equation (51). Two values, 0.1 and 0.5, of the viscosity dimensionless param-
eter ǫ are considered, together with the undamped case, where the viscosity
is absent ‘from the beginning’. The structure with ǫ = 0.1 (with ǫ = 0.5)
suffers flutter instability at γ = 1.338 (at γ = 1.458), showing that the
inclusion of viscosity lowers the flutter load from the value γ=2 obtained in
the absence of viscosity. The Ziegler paradox is evident, because a vanishing
small viscosity produces a drop in the flutter load from the value γ=2 of
the undamped system, to γ = 4/3, corresponding to the damped system in
the limit ǫ→ 0.
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Kinematics An inextensible rod of length l is considered, rectilinear in the
reference configuration and smoothly deformed, as shown in Fig. 6. In the
undeformed and deformed configurations, the generic point can be picked up
using a coordinate x0 ∈ [0, l] in the reference configuration and a curvilinear
coordinate s ∈ [0, l] in the current configuration, so that inextensibility
implies x0 = s and therefore dx0 = ds.

n

t

x

x0

u( )x0

0 l e1

e2

s

d

J

h

Figure 6. The kinematics of an elastic inextensible rod of length l, rectilin-
ear in the reference configuration. Displacement of a point of coordinate x0
is u(x0) = x − x0e1. Note that inextensibility implies that the curvilinear
coordinate s is equal to the coordinate x0, namely, s = x0.

The displacement u of the point x0e1 (where e1 is the unit vector singling
out the axis of the undeformed rod) from the reference configuration is

u = u1(x0)e1 + u2(x0)e2 = x− x0e1, (55)

which, introducing the (twice-continuously differentiable) deformation

x = g(x0), (56)

becomes
u = g(x0)− x0e1. (57)
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Equation (56) is the parametric representation of the curve describing
the elastica.

Two neighbor points are considered of the reference configuration at
coordinates x0 and x0 + ω0, defining the vector t0 = ω0e1. This vector is
mapped to

g(x0 + ω0)− g(x0), (58)

so that, assuming ω0 small and performing a Taylor series expansion of the
deformation around ω0 = 0, yields the transformed vector (tangent to the
deformed line at x0) as

∂g

∂x0
ω0 = [(u′1 + 1) e1 + u′2e2] ω0, (59)

where the superscript ′ denotes differentiation with respect to the coordinate
x0 = s.

Since the elastica is assumed inextensible, the transformed vector ω0∂g/∂x0
must maintain the same length of the initial vector ω0e1, a constraint which
from equation (59) can be expressed as

∣
∣
∣
∣

∂g

∂x0

∣
∣
∣
∣
= 1, (60)

which, using equation (59) yields

u′1 + 1 = sgn {u′1 + 1}
√

1− (u′2)
2. (61)

A derivative of equation (61) with respect to s, finally provides the inexten-
sibility constraint in the form

u′′1 = −sgn {u′1 + 1} u′2u
′′
2

√

1− (u′2)
2
. (62)

Since the inextensibility constraint is enforced, the unit vector t, tangent to
the elastica at x, is given by

t = (u′1 + 1) e1 + u′2e2 = sgn {u′1 + 1}
√

1− (u′2)
2 e1 + u′2e2, (63)

and the angle θ of inclination of the tangent t to the elastica at x can be
implicitly provided through the expressions

sin θ = x′2 = u′2, cos θ = x′1 = u′1 + 1 = sgn {u′1 + 1}
√

1− (u′2)
2. (64)
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The signed length d of the projection of the elastica onto the e1 axis is

d =

∫ l

0

cos θds = l + u1(l)− u1(0) =

∫ l

0

sgn {u′1 + 1}
√

1− (u′2)
2 ds, (65)

while the signed projection onto the e2 axis is

h =

∫ l

0

sin θds = u2(l)− u2(0). (66)

The unit vector n normal to the elastica at x can be obtained through
differentiation (with respect to s) of the scalar product t · t, so that t′ is
found to be orthogonal to t in the form

t′ = −sgn {u′1 + 1} u′2u
′′
2

√

1− (u′2)
2
e1 + u′′2e2, or

t′ = −θ′ sin θe1 + θ′ cos θe2,

(67)

and therefore the unit normal n can be obtained from equations (67)1 or
(67)2, through division by the modulus |t′|, which is the so-called ‘curvature’

|t′| = |u′′2 |
√

1− (u′2)
2
= |θ′|, (68)

thus obtaining

n = sgn {u′′2}
(

−sgn {u′1 + 1}u′2e1 +
√

1− (u′2)
2 e2

)

or,

n = sgn{θ′} (− sin θe1 + cos θe2) .

(69)

The signed curvature is

θ′ = sgn {u′1 + 1} u′′2
√

1− (u′2)
2
, (70)

Finally, the following unit vector m is introduced

m = sin θe1 − cos θe2, (71)

which is orthogonal to t and rotated of π/2 anticlockwise from it, so that it
is always parallel to n, but may differ in sign, and it satisfies the following
relations

t′ = −θ′m, m′ = θ′t. (72)
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Force and internal action The elastica is subject to external forces and
couples, which are assumed to be applied at points (‘concentrated forces’)
or diffused along the line (‘forces per unit length’) of the elastica. It is also
assumed that forces and moments are transmitted internally to the elastica,
so that when this is ideally cut at a point and the internal forces given
evidence, they represent the internal action, and provide the equilibrium of
the rod, ideally separated into two parts, Fig. 7.

Figure 7. The action, force a(s) and moment M(s), internal to a deformed
rod element. The Newton’s law of action-reaction requires that if on the left
side of the ideal cut, dividing the rod into two parts, the action is represented
by the pair a(s) and M(s), on the right side the internal action becomes
−a(s) and −M(s). The unit vectors m and t single out the normal and
the tangential directions, respectively.

In the plane e1–e2 the internal action is comprised of a force a(s) and
a moment vector M(s)e3, where e3 is the unit vector orthogonal to the
plane. The figure 7 also shows that the internal action obeys the Newton’s
law of action-reaction, so that if on the left of the cut (characterized by the
tangent vector t ‘exiting’ from the rod) the internal action is given by the
pair a(s) and M(s), on the right hand (vector t ‘entering’ in the rod) the
internal action is −a(s) and −M(s).

The internal force a is split into a normal, N (s), and a shear, T (s),
component in the reference system t and m as

a(s) = N (s)t(s) + T (s)m(s), (73)
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so that considering the equilibrium of a generic part of the rod free of
concentrated forces, but subject to a generic distributed load q, Fig. 8, the
following conditions can be written down

−a(s1) + a(s2) +

∫ s2

s1

q(s) ds = 0,

[

M(s)e3 + [P (s)−O]× a(s)
]s2

s1
+

∫ s2

s1

[P (s)−O]× q(s) ds = 0,

(74)

where P (s) denotes a generic point on the elastica comprised between the
two end points s1 and s2.

Figure 8. The equilibrium of a part of a deformed rod free of concentrated
forces, but subject to a distributed load q, defined per unit length. The
internal action is represented through vector a(s) and moment M(s).

Since for every continuously differentiable function f(s) the following
identity holds true

−f(s1) + f(s2) =

∫ s2

s1

f ′(s) ds, (75)

equation (74)1 can be rewritten as
∫ s2

s1

[a′(s) + q] ds = 0, (76)

an equation which can be localized, because it holds true for every interval
(s1, s2) free of concentrated forces, so that the following equation is obtained

a′(s) + q = 0. (77)
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On application again of the property (75) to equation (74)2 yields

∫ s2

s1

[M′(s)e3 + P ′(s)× a(s) + (P (s)−O)× (a′(s) + q(s))] ds = 0, (78)

where P ′(s) = t, so that equation (77) leads to the following condition

∫ s2

s1

[M′(s)e3 + t× a(s)] ds = 0, (79)

which can be localized and, keeping into account equation (73), provides

M′(s) = T (s). (80)

The equations (77) and (80) are the equilibrium equations holding for the
internal action along the rod. These equations can be written in components
as

N ′ + θ′T + q · t = 0,

T ′ − θ′N + q ·m = 0,

M′(s) = T (s),

(81)

which hold true regardless the nature of the material of which the rod is
made up.

Finally, it can be noticed that equations (81)1 and (81)3 can be combined
to obtain

N ′ + θ′M′ = −q · t. (82)

2.6 Constitutive equation and dynamics

For simplicity the elastica is assumed to be clamped at its left end,
subject along the axis to forces per unit length of components q1 and q2
and to a load P (with components −P1 and −P2) at the other end (Fig. 9).

The constitutive equation used for the elastica is the following viscoelas-
tic generalization of the Jacob Bernoulli’s assumption that the deflection
curvature is linearly proportional to the bending moment

M(s) = Bθ′(s) +Dθ̇′(s), (83)

in which a superimposed dot denotes the time derivative, B is the bending
stiffness, assumed constant for simplicity (in the linear beam theory B equals
the product between the Young modulus of the rod and the moment of
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e1

e2

P2

P1

q1

q2

s

s+ (s)- -u s1 u s1( )

u2(s)-u s2( )

Figure 9. The clamped elastica subject to two forces P1 and P2 at the free
end and to the forces per unit length q1 and q2.

inertia of its cross section), and D, assumed constant, accounts for the
viscosity of the rod4.

Note that for a purely elastic rod (D = 0) with constant bending stiff-
ness B, a substitution of equation (83) into equation (82) provides the two
equivalent conditions

(

N +B
(θ′)2

2

)′

= −q · t,

(

N +
M2

2B

)′

= −q · t. (87)

With reference to two arbitrary points s and σ of the elastica, the fol-
lowing geometrical (thus holding for every constitutive equation of the rod)

4 In a linearized theory, assuming for a rod a uniaxial σ1 − ǫ1 constitutive law with an
elastic term (singled out by the elastic modulus E) and a viscous term (characterized
by a constant η) in the form

σ1 = Eǫ1 + ηǫ̇1, (84)

the bending moment is given by

M =

∫
A

σ1y dA = E

∫
A

ǫ1y dA+ η

∫
A

ǫ̇1y dA, (85)

where A is the cross section of the rod and y is the position of a point measured
orthogonally to the neutral axis. In a linearized theory ǫ = yθ′ and ǫ̇ = yθ̇′, so that
the bending moment becomes

M = EIθ′ + ηIθ̇′, (86)

where I =
∫
A
y2 dA is the moment of inertia of the rod’s transverse section.
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relations can be written

u2(σ)−u2(s) =
∫ σ

s

sin θ(ξ)dξ, σ+u1(σ)−s−u1(s) =
∫ σ

s

cos θ(ξ)dξ, (88)

so that the bending moment at the generic point s can be calculated as
generated by the following external loads

• (i.) the end force P of components −P1 and −P2,

• (ii.) the inertia force −ρü,
• (iii.) the external dissipative force −κu̇ (defined per unit length of the

rod, for instance the force generated by the air drag during vibrations),

• the diffused load q(s), with components q1 and q2,

in the form

M(s) = P1

∫ l

s

sin θ(σ)dσ − P2

∫ l

s

cos θ(σ)dσ

−
∫ l

s

(

ρü2(σ) + κu̇2(σ)− q2(σ)
)(

σ + u1(σ)− s− u1(s)
)

dσ

+

∫ l

s

(

ρü1(σ) + κu̇1(σ)− q1(σ)
)(

u2(σ)− u2(s)
)

dσ.

(89)

Equating the ‘external’ moment (89) produced by the loads to the ‘in-
ternal’ moment generated by the curvature, equation (83), yields

Bθ′(s) +Dθ̇′(s)− P1

∫ l

s

sin θ(σ)dσ + P2

∫ l

s

cos θ(σ)dσ

+

∫ l

s

(

ρü2(σ) + κu̇2(σ)− q2(σ)
)(

σ + u1(σ)− s− u1(s)
)

dσ

−
∫ l

s

(

ρü1(σ) + κu̇1(σ)− q1(σ)
)(

u2(σ)− u2(s)
)

dσ = 0.

(90)

A calculation of the first derivative of equation (90) with respect to s
and use of equations (64) yields
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θ′′ +
D

B
θ̇′′(s)

+
1

B

[

P1 +

∫ l

s

(

ρü1(σ) + κu̇1(σ)− q1(σ)
)

dσ

]

sin θ(s)

− 1

B

[

P2 +

∫ l

s

(

ρü2(σ) + κu̇2(σ)− q2(σ)
)

dσ

]

cos θ(s) = 0,

(91)

which is the equation of the Euler’s elastica, generalized to include (in addi-
tion to the two loads P1 and P2): internal viscosity (parameter D), external
dissipation (parameter κ), external loading per unit length (parameter q),
inertial forces (ρü, where ρ is the mass density per unit length).

In the special case of a purely elastic rod D = 0, subject only to end
loads P1 and P2, equation (91) reduces to the well-known form of the elastica
(Bigoni, 2012; Bigoni et al., 2015)

θ′′(s) +
P1

B
sin θ(s)− P2

B
cos θ(s) = 0. (92)

Linearization. Assuming small oscillations about a rectilinear configura-
tion, the rotation θ is small, so that equations (64) provide

u′2(s) ≈ θ(s) u′1(s) ≈ 0. (93)

Equation (93)2 implies that u1 = 0 for the clamped rod and therefore equa-
tion (91) simplifies to

Bu′′′2 (s) +Du̇′′′2 (s) +

(

P1 −
∫ l

s

q1(σ) dσ

)

u′2(s)

−P2 −
∫ l

s

(

ρü2(σ) + κu̇2(σ)− q2(σ)
)

dσ = 0,

(94)

which can be derived with respect to s to finally achieve the usual equation
of the linearized theory (IV and roman numerals denote derivatives with
respect to the variable x, which singles out points of the rod’s axis)

BuIV2 (x) +Du̇IV2 (x) +

(

P1 −
∫ l

x

q1(σ) dσ

)

uII2 (x) + q1(x)u
I
2(x)

+ρü2(x) + κu̇2(x)− q2(x) = 0,

(95)
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Equation (95) governs the small vibrations of a straight viscoelastic rod
of bending stiffness B and internal viscosity D, of mass ρ per unit length,
prestressed with axial loads P1 and q1, subject to transverse load q2 per
unit length, and external viscosity κ (a simplified version of this equation
is reported by Graff, 1975).

Boundary conditions

At the clamped end of the rod, s = 0, the following geometrical constraints
have to be imposed:

u1(0) = u2(0) = 0, θ(0) = 0, (96)

while at the loaded end of the rod, s = l, the following conditions on the
internal action hold:

N (l) = P · t(l), T (l) = P ·m(l), M(l) = 0, (97)

where P = −P1e1 − P2e2, so that

N (l) = −P1 cos θ(l)− P2 sin θ(l),

T (l) = −P1 sin θ(l) + P2 cos θ(l), M(l) = 0.

(98)

Linearization. Assuming small oscillations about a rectilinear configura-
tion, the conditions (96) and (98) simplify to

u1(0) = u2(0) = u′2(0) = 0,

N (l) = −P1 − P2θ(l), T (l) = −P1θ(l) + P2, M(l) = 0.

(99)

Note that in a linearized setting, the term M2 has to be disregarded
in equation (87)2, so that N ′ = q · t. Therefore, the linearized boundary
conditions (99) are consistent with the internal action only if the term P2θ(l)
is negligible, so that N (l) = −P1. The term can be neglected for instance
in the case of tangentially follower force, treated in the next Section, in fact
in this case P2 = P sin θ(l) ≈ Pθ(l), so that N (l) = −P1 − P2θ

2(l) ≈ −P1.

2.7 The Beck and Pflüger rods

Beck (1952) and Pflüger (1950, 1955) have introduced two schemes of
cantilever rod, which are clamped at one end and subject to a tangential
load at the other, Fig. 10. The Pflüger rod is a generalization of the Beck
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M

Figure 10. The Beck (left) and the Pflüger (right) rods. Note that the
difference between the two structures is the presence in the latter of a con-
centrated mass M at its end.

rod, because in the former structure there is a concentrated mass positioned
at the end where the tangential load is applied. These mechanical systems
can be considered as the continuous elastic realization of the Ziegler double
pendulum.

It should be noted that non-trivial static equilibrium, where θ̇ = 0, can
be shown to be impossible for both the Beck and Pflüger rods, regardless the
magnitude of displacements (but for deformed configurations in which the
normal force inside the rod remains compressive). In fact, equation (87)2,
valid for D = 0 or θ̇ = 0, in the absence of tangential diffuse load, q · t = 0,
implies

N +
M2

2B
= constant, (100)

so that, since M = 0 and N = −P at the loaded end of the rod, the
condition

N +
M2

2B
= −P, (101)

has to hold true along the axis of the Beck and Pflüger rods in a static
solution. The condition (101) can only be satisfied in the rectilinear con-
figuration, because M2 ≥ 0 and |N | ≤ |P |, so that only the undeformed
configuration is a possible static solution.
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Linearized analysis of the Pflüger rod

Denoting the rod’s deflection u2 as −v (so that the transverse displacement
is positive when opposite to e2), equation (95) governs the linearized dy-
namics of a straight rod, in which the relation θ(x) = −vI(x) holds true.
The moment-curvature viscoelastic constitutive relation (83) becomes now

M(x, t) = −BvII(x, t)−Dv̇II(x, t), (102)

where a superimposed dot denotes the time derivative. The shear force T (x)
can be computed from equation (81)3 to be the derivative of the bending
moment, so that, for constants moduli B and D, it can be written as

T (x, t) = −BvIII(x, t)−Dv̇III(x, t). (103)

For the Pflüger column of length l with a concentrated mass M (rota-
tional inertia of the mass is neglected), the boundary conditions can easily
be deduced from equations (99) and are

v(0, t) = vI(0, t) = 0, clamped end,

M(l, t) = −BvII(l, t)−Dv̇II(l, t) = 0, loaded end,

T (l, t) = −BvIII(l, t)−Dv̇III(l, t) = −Mv̈(l, t), loaded end.

(104)

The linearized differential equation of motion (95) which governs the
dynamics of a rod subject to small displacements, to an an axial force P
(positive when compressive), and to a distributed external damping κ is

BvIV (x, t) +Dv̇IV (x, t) + PvII(x, t) + κv̇(x, t) + ρv̈(x, t) = 0, (105)

which, introducing the dimensionless quantities

ξ =
x

l
, τ =

t

l2

√

B

ρ
, p =

Pl2

B
, α = arctan

(
M

ρl

)

,

η =
D

Bl2

√

B

ρ
, γ =

κl2√
ρB

,

(106)

can be rewritten as

vIV (ξ, τ) + ηv̇IV (ξ, τ) + pvII(ξ, τ) + γv̇(ξ, τ) + v̈(ξ, τ) = 0, (107)

where now a roman numeral denotes differentiation with respect to ξ and a
dot differentiation with respect to τ .
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Governing equations Assuming time-harmonic vibrations of pulsation
ω̃

v(ξ, τ) = ṽ(ξ)eω̃τ , (108)

equation (107) yields a linear differential equation for ṽ(ξ), which can be
written as

L[ṽ] = −ω̃2ṽ, (109)

where the differential operator L is defined as

L[Y ] = (1 + ω̃η)
d4 Y

dξ4
+ p

d2 Y

dξ2
+ ω̃γ Y, (110)

and has to be complemented by the boundary conditions (104) now rewrit-
ten as

ṽ(0) = ṽ′(0) = 0, clamped end,

ṽ′′(1) = 0, loaded end,

(1 + ηω̃)ṽ′′′(1)− ω̃2 tan(α)ṽ(1) = 0, loaded end.

(111)

The differential problem (109) with the boundary conditions (111) al-
ways admits the trivial solution ṽ = 0.

The characteristic equation of the differential equation (109) is

λ4(1 + ηω̃) + λ2p+ γω̃ + ω̃2 = 0, (112)

which admits the two solutions for λ2

λ21,2 =
−p±

√

p2 − 4(1 + ηω̃)(γω̃ + ω̃2)

2(1 + ηω̃)
. (113)

Therefore, the solution for ṽ becomes

ṽ(ξ) = A1 sinh(λ1ξ) +A2 cosh(λ1ξ) +A3 sin(λ2ξ) +A4 cos(λ2ξ), (114)

where Ai (i = 1, .., 4) are arbitrary constants.
A substitution of the solution (114) into the boundary conditions (111)

yields an algebraic system of equations which admits non-trivial solutions
at the vanishing of the matrix of coefficients














0 1 0 1

λ1 0 λ2 0

λ21 sinhλ1 λ21 coshλ1 −λ22 sinλ2 −λ22 cosλ2

a41 a42 a43 a44














(115)
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where

a41 = (1 + ηω̃)λ31 coshλ1 − ω̃2 tanα sinhλ1,

a42 = (1 + ηω̃)λ31 sinhλ1 − ω̃2 tanα coshλ1,

a43 = −(1 + ηω̃)λ32 cosλ2 − ω̃2 tanα sinλ2,

a44 = (1 + ηω̃)λ32 sinλ2 − ω̃2 tanα cosλ2.

(116)

Noting that the λi’s are functions of the applied load p, the pulsation ω̃,
the viscosity η, and the damping γ, nontrivial solutions for the vibrations
of the Pflüger rod correspond to the fulfillment of the condition

f(p, ω̃, α, γ, η) = 0, (117)

where

f(p, ω̃, α, γ, η) = (1 + ηω̃)(λ41 + λ42)

+2(1 + ηω̃)λ21λ
2
2 coshλ1 cosλ2

+λ1λ2(1 + ηω̃)(λ22 − λ21) sinhλ1 sinλ2

−ω̃2 tanα
λ21 + λ22
λ1λ2

[λ2 sinhλ1 cosλ2

−λ1 coshλ1 sinλ2].

(118)

For a given elastic system, the dimensionless parameters α, γ, and η
are fixed. Therefore, for a fixed value of the dimensionless load p, equation
(117) can be solved for ω̃. If the real part of ω̃ is positive, the system is
unstable and in this case, if ω̃ has also a complex part, flutter instability
occurs, otherwise divergence instability occurs.

Note that both flutter instability and divergence instability occur for the
Pflüger column (the former is achieved at critical loads smaller than those
inducing the latter), except in the limit case of the Beck column (α = 0),
where the divergence load tends to infinity and it is therefore not found.

An example of determination of flutter instability for the Beck column
in the presence of internal damping, but not external, is reported in Fig.
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11, where the following values of parameters have been used:

l = 0.350 m, ρ = 0.0546 kg/m, B = 0.0332 Nm2,

D = 7.078× 10−6 Nsm2, P = 5.5 N.

(119)

The branches of the real (Re[ω̃]) and imaginary (Im[ω̃]) parts of the pul-
sation for vibration of the Beck column are reported in Fig. 11 as functions
of the dimensionless load p.

The undamped case (in which damping is absent ‘from the beginning’)
is reported on the upper part of Fig. 11, where flutter occurs at p =
20.05 a value found by Beck (1952), which is much higher than the value
(2.467) associated with Euler’s buckling of the same structure subject to
dead loading. For the Beck’s column divergence is not found. The case in
which the only dissipation source is the internal damping is shown on the
lower part, where the flutter load decreases to p = 10.94. Flutter occurs
when a real branch of the pulsation ω̃ becomes positive (with non-null values
of its imaginary part). This figure shows clearly the strong detrimental effect
of dissipation on the flutter critical load, which decreases from p = 20.05 to
p = 10.94.

An example of determination of flutter for the Pflüger column in the
presence of internal damping, but not external, is reported in Fig. 12,
where, in addition to the values of the parameter list (119), M/(ρl) = 1 has
been assumed, so that tanα = 1.

The most important difference between results reported in Fig. 11 and
Fig. 12 is that for the Pflüger column divergence instability also occurs
in addition to flutter, so that the two critical loads for these instabilities
determine the flutter region. In the undamped case (where damping is
not introduced) the critical loads for flutter and divergence are respectively
p = 16.51 and p = 30.22 (on the upper part of Fig. 12), which become
p = 7.78 and p = 30.52 when internal damping is present (on the lower part
of Fig. 12).

It can be therefore concluded that the presence of internal damping
increases the size of the flutter region by strongly decreasing the flutter
load and by slightly increasing the divergence load.

It is finally noticed that rotary damping (in other words a damping
connected to the rotation of the rod’s cross section) has also been considered,
the interested reader is addressed to (Lottati and Elishakoff, 1987).
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Figure 11. Branches of the real (Re[ω̃]) and imaginary (Im[ω̃]) parts of the
pulsation for vibration of the Beck column as functions of the dimensionless
load p. The undamped case (in which damping is absent ‘from the begin-
ning’) is reported on the upper part, where flutter occurs at p = 20.05.
The case in which internal damping is present (but there is no external
damping) is shown on the lower part. Here, the flutter load decreases to
p = 10.94. Flutter occurs when a real branch of the pulsation ω̃ becomes
positive (with non-null values of its imaginary part). Note the detrimental
effect of dissipation on the critical load for flutter.
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Figure 12. Branches of the real (Re[ω̃]) and imaginary (Im[ω̃]) parts of the
pulsation for vibration of the Pflüger column (with tanα =M/(ρl) = 1) as
functions of the dimensionless load p. The undamped case (in which damp-
ing is absent ‘from the beginning’) is reported on the upper part, where
flutter (marked with the subscript f) occurs at p = 16.51 and divergence
(marked with the subscript d) at p = 30.22. The case in which internal
damping is present (but there is no external damping) is shown on the
lower part. Here, the flutter load decreases to p = 7.78, while the diver-
gence load increases to p = 30.52. The flutter load strongly decreases with
the introduction of the internal viscosity, while the divergence load slightly
increases.
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2.8 Self-adjointness, an exclusion condition for flutter

For discrete systems, unsymmetry of the geometric matrix in equation
(11) is a necessary condition for flutter instability, which is in fact impossible
for dead loading, ruled by a symmetric matrix. It is important now to obtain
a condition similar to symmetry for discrete systems, which excludes flutter
instability for continuous systems.

It is assumed, for simplicity, a null internal and external viscosity, η =
γ = 0, and the Beck rod (where α = 0) is considered. Moreover, for
comparison, the ‘standard’ case of dead loading is also treated.

In both cases of follower and dead load, the differential operator is the
same, which is the following reduction of the operator (110),

L[Y ] =
d4 Y

dξ4
+ p

d2 Y

dξ2
, (120)

so that the differential equation (109), complemented with the boundary
conditions

ṽ(0) = ṽI(0) = 0, clamped end,

ṽII(1) = 0, loaded end,

ṽIII(1) =

{
0, loaded end for follower load,

−pṽI(1), loaded end for dead load,

(121)

becomes a Sturm-Liouville problem (Broman, 1970) for a fourth-order dif-
ferential equation (note that the only difference between dead and follower
load is in the boundary condition involving the shear force). For this dif-
ferential problem self-adjointness excludes complex eigenvalues ω̃2, so that
flutter instability is a-priori ruled out.

The condition of self-adjointness (or symmetry) of the differential oper-
ator L [defined by equation (120)] is

∫ 1

0

L[Y (ξ)]X(ξ) dξ =

∫ 1

0

L[X(ξ)]Y (ξ) dξ, (122)

which has to hold for every pair of functions X(ξ) and Y (ξ), both satisfying
the boundary conditions (121).

A repeated use of integration by parts, namely,

Y IVX =
(
Y IIIX

)I −
(
Y IIXI

)I
+
(
Y IXII

)I

−
(
Y XIII

)I
+ Y XIV ,

Y IIX =
(
Y IX

)I −
(
Y XI

)I
+ Y XII ,

(123)
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allows to obtain the following identity

∫ 1

0

L[Y (ξ)]X(ξ) dξ =

∫ 1

0

L[X(ξ)]Y (ξ) dξ

+ p
(
Y IX − Y XI

)1

0

+
(
Y IIIX − Y IIXI + Y IXII − Y XIII

)1

0
,

(124)

which makes evident that the self-adjointness condition (122) involves the
boundary conditions and is equivalent (for the problem under consideration)
to

(
Y IIIX − Y IIXI + Y IXII − Y XIII

)1

0
+ p

(
Y IX − Y XI

)1

0
= 0. (125)

Imposition of the boundary conditions (121)1,2 at the clamp and the
null moment condition at the loaded end (121)3 yields the following self-
adjointness condition

Y III(1)X(1)− Y (1)XIII(1) + p
(
Y I(1)X(1)− Y (1)XI(1)

)
= 0, (126)

valid for both the structures subject to the follower load and to the dead
load, because the two structures differ only in the boundary condition on
shear, equation (121)4.

A consideration of the boundary condition (121)4 shows that the self-
adjointness condition (126) is satisfied for dead loading, in which case flutter
instability is excluded, but is not satisfied for follower load, so that flutter
instability becomes possible in that case.

2.9 Beyond the linearized solution: limit cycle behaviour

The stability analysis developed so far for the Beck and Pflüger columns
is based on the time-harmonic solution, which is valid for the linearized
equations of motion (95). This analysis is valid therefore only in a neigh-
borhood of the instability point, but neglecting nonlinear terms becomes
unacceptable when the motion starts to grow.

For the Ziegler double pendulum, the linearized problem is governed by
equations (11) and the nonlinear dynamics by the equations (10), which
can be integrated in time to provide the behaviour of the Ziegler double
pendulum in the flutter and divergence regions, where large displacements
and rotations are allowed. This integration has been numerically performed
(using the function NDSolve of Mathematica 10.0) for the following values
of constants:
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l1 = l2 = 0.1m, k1 = k2 = 0.189Nm, c1 = c2 = 0.006Nms,
m1 = m2 = 0.2Kg, m3 = 0, d = l1, P = 1.5P ∗

flu,
with P ∗

flu evaluated through equation (54) and an initial imperfection α1 =
α2 = 0.1◦.

Numerical integration leads to the trajectory plotted in the phase plane
reported in Fig. 13. It is clear from Fig. 13 and from Fig. 14, which

Figure 13. Trajectory in the α1–α2 phase plane for the Ziegler double
pendulum (with viscoelastic hinges), which attains a stable limit cycle.

completes the phase portrait by showing the angular velocities α̇1 and α̇2

(plotted as functions of the rotations α1 and α2), that the Ziegler double
pendulum reaches a stable limit cycle (see also D’Annibale et al., 2015).

When the structure reaches a limit cycle, self-sustained vibrations occur
and the system behaves as a self-oscillating structure (Jenkins, 2013). The
attainment of a limit cycle is a consequence of the dissipation, which is
represented by the viscosity of the hinges for the Ziegler double pendulum.
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Figure 14. Angular velocities α̇1 (upper part) and α̇2 (lower part) as func-
tions of the rotations α1 and α2, completing the phase portrait (see also
Fig. 13), of the Ziegler double pendulum (with viscoelastic hinges), which
reaches a stable limit cycle.
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For the Beck’s column in the absence of external damping, but in the
presence of internal damping, Fig. 15, shows the trajectory of the end of
the rod, while Fig. 16 and Fig. 17 complete the phase portrait by reporting
the velocities of the end of the rod, plotted, respectively, as functions of the
displacement components and in a u̇1–u̇2 representation. Values from the
list (119) of parameters have been used.

Figure 15. Trajectory of the loaded end of the Beck’s column (the dis-
placement components utip1 and utip2 of the rod’s end are reported) with
internal, but not external, dissipation, showing the achievement of a limit
cycle. Note that this limit cycle is a closed loop, which is rather flat and
therefore hardly visible.

Figs. 15–17 have been obtained with a nonlinear computational model,
implemented in the finite element software ABAQUS Standard 6.13-2. Specif-
ically, 2-nodes linear elements of type B21 (in the ABAQUS nomenclature)
were employed to discretize the viscoelastic rod of constant, rectangular
cross section. A number of 20 elements was found to be sufficient to ad-
equately resolve for the rod dynamics. A linear viscoelastic model of the
Kelvin-Voigt type was implemented for the constitutive response of the
rod by means of a UMAT user subroutine, such that the bending moment
was proportional to the rod curvature and its time derivative respectively
through the elastic and viscous moduli. In the analysis, a rod of length l =
0.35 m, B = 0.0332 Nm2, D = 7.078×10-6 Nsm2, and density ρ = 0.0546
kg/m was subject at its tip to a tangential follower force P = 5.5 N (inside
the flutter region). The dynamic analysis was performed by exploiting the
default settings of ABAQUS Standard 6.13-2 and with a time increment of
10-4 seconds.

Figs. 15–17 suggest that the Beck’s column reaches a limit cycle, even if
the attainment of this limit cycle has not been formally proven, because the
system has infinite degrees of freedom and only a numerical analysis was
performed.
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Figure 16. Velocities u̇1 (upper part) and u̇2 (lower part) as functions of
the displacements u1 and u2, showing the achievement of a limit cycle for
the Beck’s column (with internal, but not external) dissipation.
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Figure 17. Velocity u̇2 as function of the velocity u̇1, showing the achieve-
ment of a limit cycle for the Beck’s column (with internal, but not external)
dissipation.

2.10 Follower forces from Coulomb friction

The way to generate a follower force from Coulomb friction is shown in
Fig. 18, referred to the Ziegler double pendulum. The idea is to mount
a little wheel (of negligible rotational inertia) on the end of the pendulum
and to force it to slide against a plate with a contact force which can be
calibrated. Assuming that the sliding is governed by a simple Coulomb law,
the force transmitted at the rod end is: (i.) coaxial to the rod (because the
wheel is free of rotating and cannot transmit any orthogonal force) and (ii.)
proportional, through a friction coefficient, to the load creating the contact
force between the wheel and the plate.

In this way an extremely orthotropic friction is introduced, which trans-
mits only a highly directional force, coaxial to the second rod of the Ziegler
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Figure 18. The way to produce a force coaxial to a rod from sliding friction;
a freely rotating wheel of negligible mass is mounted at the end of the Ziegler
double pendulum and is constrained to slide against a rigid plate (upper
part). The way of calibrating the force which compresses the wheel against
the plate is to use the Ziegler double pendulum itself as a lever subject to
a load W generating a contact force R and thus the follower force P by
friction (lower part).

double pendulum.
The scheme to generate a tangentially follower force is an idealization, so

that its practical realization can introduce difficulties. However, Bigoni and
Noselli (2011) have designed, manufactured and tested a device and have
shown that it works in reality, with negligible discrepancies with respect to
the conceptual scheme. Without entering into details (the interested reader
is referred to Bigoni and Noselli, 2011), it was possible to measure the onset
of flutter and divergence instability in terms of applied loads (Fig. 19) and
to measure the time variation of the accelerations at the end of the double
pendulum (Fig. 20).

Results shown in Fig. 19 demonstrate that a critical load for flutter
and divergence instability is found and that the experiments support the
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Applied vertical load providing the tangential force via friction [N]

flutter without damping

flutter with damping

stability divergence

Figure 19. Experimental investigation on flutter and divergence instabil-
ity with the apparatus sketched in Fig. 18. An increasing vertical load
(producing the follower force via friction) is applied for a fixed sliding ve-
locity of the plate against the wheel (50mm/s). Experimental results are
shown with spots and theoretical predictions are reported with horizontal
bars. The model in which viscosity is absent ‘from the beginning’ predicts
flutter (divergence) instability to occur at a load higher (smaller) than the
load calculated when viscosity is present. In particular, the flutter (diver-
gence) load with viscosity is 0.70 (1.49) times the value calculated in the
absence of viscosity. Therefore the experimental results provide evidence of
the destabilizing effect of viscosity.

conclusion that viscosity is a destabilizing factor. Fig. 20 shows that the
measured acceleration at the end of the structure displays an oscillation
initially blowing-up and later converging into a limit cycle.

The scratch left by the sliding wheel on the plate (highlighted with red
spots) is visible in a photo reported in Fig. 21, where also the nonlinear
solution is indicated (with a white curve). It can be pointed out in general
that a definite agreement is observed between all experimental results and
the model predictions.

The experimental apparatus designed by Bigoni and Noselli can be de-
veloped to test continuously deformable structures. A new device has been
recently designed, manufactured, and tested by Bigoni et al. (2018). This
device allows for new testings on the Beck’s and Pflüger rods, shows that
the Beck’s model of tangentially follower force can be realized in practice,
and provides the first experimental evidence that the viscous dissipation
decreases the flutter load.

2.11 Self-oscillating systems

The realization of the Ziegler double pendulum through frictional slid-
ing against an external plate is an example of self-oscillating system5, in

5 Self-oscillators are distinct from forced and parametric resonators, in which the power

that sustains the motion must be externally modulated.
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Figure 20. Measured acceleration (at the end of the Ziegler double pendu-
lum) versus time (6 seconds are reported on the left) during a flutter test,
performed with the apparatus sketched in Fig. 18 for a load in the middle
of the flutter region and a plate velocity of 75mm/s. The part of the figure
on the right is a detail of the part on the left, referred to the initial 1.5 s
time interval. Results of a numerical nonlinear (and linear) simulation at
the same load and with initial conditions α1 = α2 = 0.5◦ are reported in
red (in blue). The solution of the linear equations (blue curve) has been in-
terrupted at 1.5 s since the blow-up was too high. Note the initial increase
in the amplitude of the acceleration denoting flutter (well captured even
by the linearized viscoelastic analysis), and the following stabilization (well
captured by the nonlinear analysis) into a limit cycle.

which a input of steady energy (the frictional force transmitted from the
plate to the structure in the present case), lacking periodicity, induces and
maintains a self-oscillation of constant frequency (Jenkins, 2013). In other
words, the complex ‘Ziegler double pendulum-external plate’ displays, in the
flutter region, self-excited vibrations, in which the oscillating system draws
energy from the plate, a mechanism similar to wind induced oscillations of
suspension bridges and iced telephone wires.

3 Flutter in frictional solids

Until now the presentation was limited to structures. Now elastoplastic
solids will be addressed with the purpose of showing that, when frictional
behaviour is taken into account, phenomena akin to flutter and divergence
in structural systems may occur even in a continuous medium.

Micromechanisms such as sliding between grains or at micro-fissures are
typical of granular or rock-like materials and introduce effects of friction in
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Figure 21. The scratch left by the wheel on the plate of the apparatus
shown in Fig. 18, compared with the nonlinear solution (obtained numer-
ically), for a load in the middle of the flutter region and a plate velocity
of 100mm/s. Initial conditions α1 = α2 = 0◦ and α̇1 = α̇2 = 0.5 rad/s
have been used to produce the numerical results. The red spots along the
scratches are positions of the wheel corresponding to photos taken with a
high speed camera; the scratch left during the experiment is clearly visi-
ble in the initial part of the test, not evidencing detachments. The whole
sequence corresponds to a 2.04 s interval of time.

the inelastic constitutive modelling of solids. As a consequence, this mod-
elling is characterized by pressure-sensitivity of yielding (in other words,
an increase with the mean pressure of the shear stress needed to produce
yielding) and dilatant/contractant inelastic deformation. Consideration of
these constitutive features leads to the so-called ‘nonassociative elastoplas-
ticity’, introduced by Mróz (1963, 1966), Mandel (1962, 1966) and Maier
(1970), which can be thought as the counterpart of the model of contact
with Coulomb friction in continuum mechanics.
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3.1 Contact with Coulomb friction vs. nonassociative elastoplas-
ticity

The close analogy between the equations governing contact between
solids with Coulomb friction and the constitutive equations of nonasso-
ciative elastoplasticity can be appreciated by the simple model illustrated
below with reference to a masonry-like material.

A typical contact between two ‘bricks’ is sketched on the left in Fig.
22, which is idealized with the simple model reported on the center in the
same figure. In particular, a point mass capable of moving only in the
horizontal direction is attached to two springs of stiffness kN and kT . The
vertical displacement uN of the end of the vertical spring (subject to the
compressive force pN ) is purely reversible (and due to the spring deformation
only), while the displacement uT of the end of the horizontal spring (subject
to the tangential force pT ) is the sum of the reversible deformation of the
spring itself, plus a possible slip usT of the point mass on the rigid horizontal
constraint.

pT, uT
uT

pT

uN

kT

kN

pN, uN

pN

uT

s

pT

pN

f = mtan
-1

b # uT

. s

a
p slip
.

p stick
.

Figure 22. Contact with friction between two ‘bricks’ (left); a simple model
of this, involving Coulomb friction (center); the Coulomb criterion of friction
(right). Note the normal a to the Coulomb criterion and direction of slip b
(the symbol ‘♯’ means ‘parallel’). Force ‘points’ {p} = {pN , pT } inside the
criterion (grey zone) correspond to stick, while for points at the boundary
of the criterion stick or slip may occur, depending on the direction of the
rate ṗ = {ṗN , ṗT }; in particular, stick (slip) corresponds to ṗ · a < 0 (=
0). Note that the non-parallelism of a to b implies that the model does not
obey the so-called ‘normality (or associativity) rule’, which is a♯b, so that
the model is ‘nonassociative’.

The analysis is limited to the condition of contact (so that separation
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and the so-called ‘grazing’ are not considered, see Radi et al., 1999), corre-
sponding to a compressive (assumed positive) normal force pN > 0.

The Coulomb friction condition, playing the role of the yield
condition in plasticity, sets a limit to the possible components
pT , pN of the force vector p in the form

f(pN , pT ) ≤ 0, (127)

where

f(pN , pT ) = |pT | − µpN , (128)

in which µ is the friction coefficient. A geometrical interpreta-
tion of criterion (127) is given in Fig. 22 on the right: force
states p, represented as points of coordinates pN , pT , cannot
lie outside the region bounded by the two inclined lines, which
graphically represent the Coulomb yield criterion.

Inside the Coulomb criterion: stick When condition (127) is satis-
fied with the strict inequality ‘<’ (corresponding to elastic behaviour in
plasticity), stick occurs, so that there cannot be slip, u̇sT = 0, and the cor-
responding behaviour is reversible and governed by the linear relation

p = Eu,

[
pN

pT

]

=

[
kN 0

0 kT

] [
uN

uT

]

, (129)

where E is the matrix collecting the elastic stiffness of the springs.

At the boundary of the Coulomb criterion: stick/slip When con-
dition (127) is satisfied with the equality ‘=’, both slip (u̇sT 6= 0) or stick
(u̇sT = 0) (corresponding to plastic flow or elastic unloading in plasticity)
may occur.

In particular, stick (or slip) occurs if the rate of force is ‘directed’ inward
(or tangential to) the friction condition (Fig. 22), namely

a · ṗ

{
< 0, stick,

= 0, slip,
(130)

where a is the gradient of f

[a] =

[
∂f

∂p

]

= [−µ, sgn pT ]T . (131)
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For stick behaviour, the response is purely reversible, namely

|pT | − µpN = 0, and a · ṗ < 0, =⇒ ṗ = Eu̇, (132)

but slip is governed by rate equations.

Rate equations governing the slip For slip behaviour, the rate equa-
tions for contact can be obtained from the following three assumptions.

• 1. Additive decomposition of slip into reversible and irreversible rates
(analogous in plasticity to the decomposition into elastic and plastic
rates)

u̇ = u̇r + u̇s, (133)

where the superimposed dot denotes derivative with respect to a time-
like parameter, governing the loading program.

• 2. The rate of force is related to the reversible rate of slip (analogous
in plasticity to the rule that the rate of stress is related, through the
elastic fourth-order tensor, to the elastic deformation rate)

ṗ = Eu̇r. (134)

• 3. The slip rule (analogous in plasticity to the plastic flow rule)

u̇s = λ̇b, λ̇ ≥ 0, (135)

where λ̇ is a non-negative slip multiplier and b rules the direction of
the rate of slip, so that in the case of Fig. 22

[b] = [0, sgn pT ]
T
. (136)

Note that b is not parallel to a, so that in the representation of Fig. 22
(on the right) it is not normal to the Coulomb friction condition. The model
is therefore said ‘not to follow the normality rule’ or to be ‘nonassociative’,
meaning that the so-called ‘associativity’ or ‘normality’ rule corresponds to
the situation in which b is parallel to a.

Prager consistency The rate constitutive equations for contact slip can
be obtained from the so-called ‘consistency equation’ [the analogous in plas-
ticity of the Prager (1949) consistency condition], expressing the fact that
since the force cannot ever violate the condition of friction, slip may occur
only when the rate of force remains tangential to the friction condition,
equation (130)2, so that the following condition is obtained

a · ṗ = 0, ⇐⇒ a ·

(

Eu̇− λ̇Eb
)

= 0, (137)
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from which λ̇ can be calculated in the form

|pT | − µpN = 0, and a · ṗ = 0, =⇒ λ̇ =
a ·Eu̇

a ·Eb
, (138)

so that the slip/stick condition becomes

a ·Eu̇

a ·Eb







> 0 slip

< 0 stick

(139)

while the transition condition a ·Eu̇ = 0 represents the so-called ‘neutral
loading’.

Rate equations for slip in final, incrementally-nonlinear form The
following rate constitutive equations for contact with friction are finally
deduced

ṗ =







Eu̇, if |pT | − µpN < 0,

Eu̇− 〈a ·Eu̇〉
a ·Eb

Eb if |pT | − µpN = 0,

(140)

which, in the case considered in Fig. 22, become the rate equations of contact
with Coulomb friction

ṗN = kN u̇N , ṗT = kT u̇T − 〈−µkN u̇N + kT u̇T sgn pT 〉 sgn pT . (141)

The operator 〈·〉 in equations (140) and (141) is the so-called ‘Macaulay
bracket’, defined for every α ∈ R as 〈α〉 = (|α|+ α)/2.

The Macaulay bracket operator provides the rate piecewise lin-
earity (a simple form of incremental nonlinearity, which distin-
guishes between slip and stick) typical of elastoplasticity (where
‘stick’ is replaced by ‘elastic unloading’ and ‘slip’ by ‘plastic load-
ing’).

Equations (140) are formally identical to the rate constitutive equations
of nonassociative ideal (i.e. with null hardening) elastoplasticity. In the
equations of elastoplasticity ṗ is replaced by the rate of stress, u̇ by the de-
formation rate, a by the yield function gradient, b by the plastic flow mode
tensor and E by the fourth-order elastic tensor. In the problem of contact
with friction, exactly as for the rate constitutive equations of nonassociative
elastoplasticity, it turns out that:

• The contact condition (140) is written in a rate form and
cannot be resolved into equations involving finite quantities
(to understand this important point it suffices to consider
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that the knowledge of a finite displacement uT at given
value of vertical force pN does not determine the tangen-
tial force pT , since the irreversible part of displacement usT
is not known and this can be obtained only through inte-
gration in time of the rate equations).

• The rate equations are incrementally nonlinear and char-
acterized by an elastic

ṗ = Eu̇, (142)

and a plastic

ṗ = Cu̇, C = E− 1

a ·Eb
Eb⊗Ea, (143)

branch [the symbol ‘⊗’ is the dyadic product].
• The constitutive tensor C characterizing the plastic branch

is not symmetric; therefore the structure of problems in-
volving friction is not self-adjoint. Note that the fact that
C is not symmetric follows from the difference between a
and b. The former vector is normal to the friction criterion
(see Fig. 22), while the latter is not. Therefore, the model
lacks ‘normality’ or in other words is ‘nonassociative’, in the
sense that the slip rule ‘associated’ to the friction criterion
requires b to be parallel to a.

3.2 The rate equations of nonassociative elastoplasticity for fric-
tional solids

Elastoplasticity is based on the concept of yield function

f(σ,K) ≤ 0, (144)

depending on the stress σ and on a set of internal variables K governing
the inelastic deformation of the material. Negative values of f determine
elastic states, for which only elastic deformation is possible, while plastic
flow may occur only when f = 0. Positive values of f are excluded.

The rate equations of incremental elastoplasticity can be derived from
the following four assumptions:

• 1. Additive decomposition of elastic, ǫ̇e, and plastic, ǫ̇p, strain rates

ǫ̇ = ǫ̇
e + ǫ̇

p, (145)

where ǫ̇ is the rate of strain, so that the superimposed dot denotes
derivative with respect to a time-like parameter, governing the loading
program.
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• 2. The rate of stress σ̇ is related to the rate of elastic strain

σ̇ = E [ǫ̇e], (146)

through a fourth-order elastic tensor E .
• 3. The plastic flow rule

ǫ̇
p = λ̇P, λ̇ ≥ 0, (147)

where λ̇ is a non-negative plastic multiplier and P is a symmetric,
second-order tensor, which rules the direction of the rate of plastic
strain.

• 4. The hardening rule

− ∂f

∂K · K̇ = λ̇H, (148)

where H is the hardening modulus, positive for hardening, null for
ideal plasticity, and negative for softening.

Imposing the Prager consistency, namely, ḟ = 0 for plastic flow, yields

ḟ =
∂f

∂σ
· σ̇ +

∂f

∂K · K̇ = Q · E [ǫ̇]− λ̇Q · E [P]− λ̇H = 0, (149)

from which the plastic multiplier is obtained

λ̇ =
< Q · E [ǫ̇] >
H +Q · E [P]

, (150)

where <> denotes the Macaulay brackets.
As a conclusion, the rate equations of elastoplasticity can be written as

σ̇ =







E [ǫ̇], if f < 0,

E [ǫ̇]− < Q · E [ǫ̇] >
g

E [P], if f = 0,

(151)

where the plastic modulus g (assumed strictly positive) is defined as

g = H +Q · E [P]. (152)

The elastic branch of the constitutive equations (151) is simply the elastic
fourth-order tensor, E , while the plastic branch can be written in a form
similar to (143), namely

C = E − 1

g
E [P]⊗ ET [Q], (153)

which shows the following interesting features:
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• Assuming the major symmetry of E , the operator C is symmetric if
and only if P is proportional to Q, in other words when (for a scalar
α) P = αQ;

• Defining the stiffness of C in terms of the second-order work ǫ̇ · C[ǫ̇], it
is evident that the elastic stiffness can be smaller than the elastoplastic
stiffness, when (ǫ̇ · E [P])

(
QET [ǫ̇]

)
< 0.

The normality rule corresponds to P = Q, which determines the asso-
ciative elastoplastic model, and corresponds to a symmetric operator (153).
Generally speaking, the choice of P as related to Q should be based on
experimental results. These show that many solids (and in particular gran-
ular materials) exhibit a peculiar kind of non-associativity, involving only
the volumetric part of plastic deformation. This case of special interest cor-
responds to so-called deviatoric associativity, where the deviatoric parts of
P and Q are aligned, so that

P = χ1 Ŝ+
χ2

3
I , Q = ψ1 Ŝ+

ψ2

3
I , (154)

where Ŝ ∈ Sym is traceless, χ1 and ψ1 are assumed strictly positive. The
parameters ψ2 and χ2 respectively describe the pressure-sensitivity and the
dilatancy (when χ2 > 0) or contractility (when χ2 < 0) of the material.
In the case of the Drucker-Prager model and the flow rule nonassociativity
used, among many others, by Bigoni and Loret (1999), the parameters can
be rewritten as

χ1 = cosχ, χ2 =
√
3 sinχ, ψ1 = cosφ, ψ2 =

√
3 sinφ,

Ŝ =
devσ

|devσ| ,
(155)

where devσ = σ − I (trσ/3) is the deviatoric stress.

3.3 The propagation of incremental plane waves

The rate equations of elastoplasticity are incrementally nonlinear, in the
sense that the rate response is different for plastic loading or elastic unload-
ing, a property evidenced by presence of the Macaulay brackets in equation
(151). Therefore, every solution, even in rate form, is the solution of a
nonlinear problem. Under this nonlinearity assumption, the usually simple
problem of sinusoidal wave propagation in an infinite body becomes compli-
cated (Bigoni and Petryk, 2002). Therefore, wave propagation in plasticity
is usually analyzed for acceleration waves, viewed as propagating discon-
tinuity surfaces for the acceleration (Hill, 1962; Mandel, 1962; Raniecki,
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1976; Bigoni, 2012). However, the acceleration wave approach for plastic
waves provides exactly the same result that it is found for sinusoidal incre-
mental waves restricted to the loading branch of the constitutive operator.
Therefore, to simplify the treatment, incremental disturbances in the form
of plane sinusoidal waves will be considered in the following with reference
to the plastic branch of the constitutive equation (151), so that ‘rates’ will
be identified with ‘increments’, namely, σ̇ becomes the increment of stress
∆σ and ǫ̇ becomes the gradient of an incremental displacement, ∇w.

An infinite, homogeneously deformed and stressed elastoplastic material
is considered, so that equilibrium and compatibility are trivially satisfied.
Any incremental dynamic solution must satisfy the incremental equations
of motion (when body forces are absent)

div∆σ = ρẅ, (156)

where ρ is the mass density of the material and ẅ is an incremental accel-
eration. Incremental solutions are sought in the following sinusoidal wave
form

w = Re {aeik(n · x±ct)}, (157)

where i =
√
−1, n is the unit vector of propagation, a is the (possibly

complex) wave amplitude vector, k is the (positive) wave number, c is the
(possibly complex) wave speed.

Adopting the complex notation, the gradient and the time derivative of
equation (157) are

∇w = ikw ⊗ n, ẇ = ±ickw, (158)

while the second gradient and second time-derivative are

∇ (∇w) = −k2 w ⊗ n⊗ n, ẅ = −c2k2 w. (159)

Inserting equations (159) into the momentum balance (156) leads to the
propagation condition

(A(n)− c2I)a = 0, (160)

where A(n) is the acoustic tensor defined, for every vector g, as

A(n)g =
1

ρ
E [g ⊗ n]n− g · ET [Q]n

ρg
E [P]n, (161)

so that the squared propagation velocities c2 are the eigenvalues of the
acoustic tensor corresponding to the loading branch of the constitutive
elastoplastic operator.

On the basis of the nature of the three eigenvalues of the acoustic tensor,
the following nomenclature can be introduced (Rice, 1977).
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• Stability occurs when all values for c2 are strictly positive, so that
waves propagate sinusoidally with a finite speed;

• divergence instability corresponds to a real and negative value for c2,
so that waves grow exponentially during propagation;

• flutter instability corresponds to two complex conjugate eigenvalues
c2, so that an oscillation blowing-up in time is predicted.

The following conclusions can be drawn.

• In the case when E is hyperelastic (and thus possesses all symmetries)
and for the associative flow rule P = Q, the eigenvalues c2 are always
real and the corresponding eigenspaces orthogonal, so that flutter in-
stability is excluded.

• Therefore, a necessary condition for flutter instability is that the plas-
tic flow be nonassociative, P 6= Q.

It may also be easily seen from the form of the acoustic tensor (161)
that the nonassociativity of the flow rule opens the possibility that a wave
involving plastic loading can travel faster than an elastic unloading wave,
characterized by the acoustic tensor Ael(n) defined, with reference to an
arbitrary vector g, as

Ael(n)g =
1

ρ
E [g ⊗ n]n. (162)

This possibility, called ‘achronic state’, occurs when a plastic eigenvalue is
larger than any of the elastic eigenvalues and leads to possible dynamical
instabilities (Sandler and Rubin, 1987; Pucik et al., 2015; Burghardt and
Brannon, 2015; Brannon, 2007).

3.4 Strain localization into planar bands

Considering an infinite solid body, subject to a continued path of uniform
strain, the condition that an incremental (or rate) strain localizes into a
planar band of infinite extent can be analyzed in terms of vanishing speed
of a planar plastic wave, c = 0, which corresponds to the singularity of the
acoustic tensor A(n), equation (161), for at least one direction n, namely

detA(n) = 0, strain localization condition. (163)

Assuming that the elastic fourth-order tensor E be positive definite and
assuming ρ = 1, the condition (163) can be rewritten as

det

[

I− 1

g
A−1

el (n)p⊗ q

]

= 0, (164)

60



In CISM Lecture Notes No. 586 “Dynamic Stability and Bifurcation in Nonconservative Mechanics” (Ch. 1), edited by:

D. Bigoni and O. Kirillov, Springer, ISBN 978-3-319-93721-2, doi 10.1007/978-3-319-93722-9

where

p = E [P]n, q = ET [Q]n. (165)

Using the algebraic property det(I + a ⊗ b) = 1 + a · b, the strain lo-
calization condition (164) can be written in terms of a critical value of the
plastic modulus

gEcr = q ·A−1
el (n)p. (166)

The fact that condition (163), and therefore (166), corresponds to the
possibility of a localization of strain can be understood by considering that
the emergence of a discontinuity surface (of unit normal vector n) for the
strain rate during a continued homogeneous deformation is conditioned by
the fulfillment of the following two conditions.

• Incremental equilibrium across the discontinuity surface, which re-
quires continuity of the traction rate

[[σ̇]]n = 0, (167)

where the bracket [[·]] denotes the jump across the surface of the rel-
evant argument.

• Validity of the Maxwell compatibility conditions, which specify a form
for the jump in the gradient of the velocity∇u̇ across the discontinuity
surface

[[∇u̇]] = g ⊗ n, (168)

where g represents the jump in the normal derivative of the gradient
of velocity.

The condition (167) has a simple mechanical interpretation, while the
condition (168) is more complicated and merits a detailed explanation. A
field quantity which is prescribed to remain continuous across a surface, but
may admit a discontinuity in its gradient, has to remain continuous when
the directional derivatives are taken tangential to the discontinuity surface.
Consideration of the tangential derivative leads to equation (168). This
point can be exemplified with the following two examples.

Example 1. Twinning shear deformation A deformation such as that
sketched in Fig. 23 is often found in crystals and is composed of two mirror-
like simple shears, where the symmetry line defines the ‘twinning plane’.
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a

x

u

e1

e2

f1

f2

Figure 23. Twinning shear deformation of plane f1, across which the in-
cremental displacement u̇ is continuous, but not its gradient.

An incremental displacement u̇ such as that reported in Fig. 23 has the
following form

u̇ = |x · f2|f1, (169)

where f1 is the unit vector defining the twinning line and f2 is its orthogonal
complement to define a basis. The gradient of the incremental displacement
is

∇u̇ = sgn(x · f2)f1 ⊗ f2, (170)

where sgn(x · f2) provides the jump in the derivative orthogonal to the twin-
ning plane. Therefore, the jump in the gradient of incremental displacement
is

[[∇u̇]] = 2f1 ⊗ f2, (171)

which is in the fom (168), because f2 is the normal to the discontinuity plane
and 2f1 is the jump of the normal derivative of the incremental displacement
across the same plane.

Note that in the reference system e1–e2

f1 = cosαe1 + sinαe2, f2 = − sinαe1 + cosαe2, (172)

condition (170) becomes

[[∇u̇]] = 2
(
−e1 ⊗ e1 sinα cosα+ e1 ⊗ e2 cos

2 α

−e2 ⊗ e1 sin
2 α+ e2 ⊗ e2 sinα cosα

)
,

(173)

an expression which ‘hiddens’ the dyadic structure of the Maxwell compat-
ibility (168).
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Example 2. An incremental deformation is considered where the incre-
mental displacement depends on the variable x2 only through its absolute
value, y = |x2|, so that u̇ = u̇(x1, y, x3) and its gradient in components is

∇u̇ =









u̇1,1 sgn(x2)u̇1,y u̇1,3

u̇2,1 sgn(x2)u̇2,y u̇2,3

u̇3,1 sgn(x2)u̇3,y u̇3,3









. (174)

The jump in the gradient across the plane x2 = 0 of unit normal e2 can be
written as

[[∇u̇]] =









0 2u̇1,y 0

0 2u̇2,y 0

0 2u̇3,y 0









, (175)

so that the mathematical structure (168) is recovered, namely,

[[∇u̇]] = g ⊗ e2, (176)

with
g = 2u̇1,ye1 + 2u̇2,ye2 + 2u̇3,ye3. (177)

The condition for strain localization (163) can now be derived by combin-
ing equations (167) and (168) with the plastic branch of the rate constitutive
equations (153). Therefore, the mechanical meaning of the condition (163),
implying the possibility of a localization of deformation into a planar band,
becomes clear.

It should be noted that in the ‘standard’ case of the associative flow rule,
P = Q, the acoustic tensor is symmetric. Therefore, the usual situation is
that, during a uniform strain path of a material, the hardening modulus
evolves from a positive value, vanishes for perfectly plastic behaviour, and
finally becomes negative for strain softening. During this evolution, the
eigenvalues of the acoustic tensor are initially positive and decreasing func-
tions of the strain hardening, so that when a critical value of the hardening
modulus is met, one of these eigenvalues vanishes and the plastic deforma-
tion starts to localize into a planar band.

After plastic localization occurs, usually (the situation can be much more
complicated, see Gajo et al., 2004) the material outside the band starts to
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elastically unload, while the material inside the band continues to deform
plastically.

For associative elastoplasticity at small deformation, the critical hard-
ening modulus for strain localization is never positive, so that localization
occurs for perfectly plastic or softening behaviour. However, the situation
is different both when large deformation effects are taken into account or
when the flow rule is nonassociative, in which cases strain localization may
occur even during hardening.

3.5 The analysis of the acoustic tensor and flutter instability

The most important results on flutter instability relative to small strain
nonassociative elastoplasticity, based on isotropic elasticity, are due to Loret
(1992) and Loret et al. (1990) and are now presented following Bigoni (2012)
and Bigoni and Zaccaria (1994). Results relative to nonassociative plasticity
with anisotropic elastic behaviour were provided by Bigoni and Loret (1999)
and Bigoni et al. (2000).

An isotropic elastic tensor E is assumed in the following for a material
with unit mass density, ρ = 1, so that the elastic acoustic tensor is

Ael(n) = (λ+ µ)n⊗ n+ µI, (178)

where λ and µ are the Lamé constants. The acoustic tensor corresponding
to the plastic branch of the constitutive equation (151) is given by

A(n) = (λ+ µ)n⊗ n+ µI− 1

g
p⊗ q, (179)

where

q = λ(trQ)n+ 2µQn, p = λ(trP)n+ 2µPn, (180)

are linear functions of n. Assuming that n × q 6= 0, the following non-
orthogonal dual bases for the three-dimensional Euclidean space are em-
ployed

e1 = n, e2 = q, e3 =
n× q

|n× q| ,

e1 =
(q2)n− (q · n)q

q2 − (q · n)2
, e2 =

q− (q · n)n

q2 − (q · n)2
, e3 = e3,

(181)

which satisfy the property ei · ej = δij , where δij is the Kronecker delta.
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Projected onto the bases (181), the acoustic tensor writes as

[A] =









e1 ·Ae1 e1 ·Ae2 e1 ·Ae3

e2 ·Ae1 e2 ·Ae2 e2 ·Ae3

e3 ·Ae1 e3 ·Ae2 e3 ·Ae3









, (182)

so that the eigenvalue problem for (179) yields the characteristic equation

det





λ+ 2µ− η − 1
gp · n 0

(λ+ µ)q · n µ− 1
gp · q− η 0

0 − 1
gp · e3 µ− η



 = 0, (183)

where η is the generic eigenvalue of the acoustic tensor (179). The three
solutions to the characteristic equation (183) are the eigenvalue µ and the
two roots of the polynomial equation:

η2 −
(

λ+ 3µ− 1

g
p · q

)

η +(λ+ 2µ)

(

µ− 1

g
p · q

)

+
1

g
(λ+ µ)(p · n)(q · n) = 0.

(184)

Strain localization into a planar band of unit normal n, equation (166),
occurs when η = 0 in equation (184), which corresponds to the following
critical condition for the plastic modulus

gEcr(n) = − λ+ µ

µ(λ+ 2µ)
(p · n)(q · n) +

p · q

µ
. (185)

Flutter instability is equivalent to the condition that the discriminant ∆
of the second-order polynomial in equation (184) assumes negative values.
The discriminant can be written as

∆ =

(

λ+ 3µ− 1

g
p · q

)2

− 4µ(λ+ 2µ)

(

1− gEcr(n)

g

)

, (186)

where gEcr(n) represents the critical plastic modulus for strain localization
at fixed n, equation (185). Therefore, it can be concluded that (Bigoni and
Zaccaria, 1994):

For a given direction n, flutter is always excluded for values of
the plastic modulus less than or equal to the critical plastic mod-
ulus for strain localization in a band orthogonal to that direction
n.
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Straightforward manipulation of the discriminant (186) yields the necessary
and sufficient conditions for flutter

(n · p)(n · q) > 0, & (n · p)(n · q)− p · q > 0, & g ∈ (g1, g2), (187)

where

g1
g2

}

=
1

λ+ µ

(√

(n · p)(n · q)±
√

(n · p)(n · p)− p · q
)2

. (188)

If deviatoric associativity (154) is assumed, a simple calculation shows that
condition (187)2 is never satisfied, which leads to the conclusion (Loret
et al., 1990; Brannon and Drugan, 1993):

For elastic-plastic solids in the presence of isotropic elasticity
and deviatoric associativity (154) with parameters χ1 and ψ1

being strictly positive, complex eigenvalues of the acoustic tensor
are excluded.

However, coincident eigenvalues are possible. These may be determined by
requiring that the discriminant (186) be null, which occurs when one of the
following two conditions is satisfied

(n · p)(n · q) = 0, and g = gCcr(n) = − p · q

λ+ µ
, (189)

or
(n · p)(n · q) = p · q, and g = gCcr(n) =

p · q

λ+ µ
. (190)

Assuming isotropic elasticity and deviatoric associativity (154), it is easy to
obtain that

p · q− (n · p)(n · q) = 4µ2χ1ψ1

(

Ŝn · Ŝn− (n · Ŝn)2
)

≥ 0. (191)

Therefore

(n · p)(n · q) = 0 =⇒ p · q ≥ 0 =⇒ gCcr(n) ≤ 0, (192)

so that Case (189) is not interesting. Examining Case (190), equation (184)
provides two coincident solutions equal to µ. Therefore:

The acoustic tensor (for certain n) has an eigenvalue equal to
µ, with multiplicity 3, when condition (190) is satisfied.

Now the critical plastic modulus for such a coalescence can be determined,
noting that the following condition holds true at coalescence

Ŝn · Ŝn = (n · Ŝn)2, (193)
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and is verified if and only if n is an eigenvector of Ŝ, but in this case n is
also an eigenvector of E [P] and E [Q].

Therefore, the critical plastic modulus for coalescence of eigenvalues is

gCcr = max
i=1,2,3

(E [P])i(E [Q])i
λ+ µ

, (194)

where E has the isotropic form and the index i, not summed, denotes prin-
cipal components of E [P] and E [Q] (in the same reference system).

To summarize with the above specific example at hand, for deviatoric
associativity, complex eigenvalues of the acoustic tensor are excluded, but
coalescence of three eigenvalues may be verified. When this coalescence
occurs and with reference to the above example, Bigoni and Loret (1999)
have shown that a perturbation in terms of a small (appropriate) elastic
anisotropy superimposed on the isotropic elastic law is sufficient to trigger
flutter. Therefore, even if for the considered model complex eigenvalues
are excluded, flutter as induced by physically motivated perturbations is
possible and the critical condition corresponds to coalescence of the three
eigenvalues of the acoustic tensor.

When coalescence is considered, Bigoni and Loret (1999) have shown
that this situation may occur even if the constitutive operator is positive
definite, a situation similar to what happen with the Ziegler double pendu-
lum, where flutter occurs in the absence of any static bifurcation.

4 Concluding remarks on flutter instability in

structures and solids

Flutter instability has been shown to be related to friction in both struc-
tures (where a follower force may be induced by higly anisotropic Coulomb
friction) and elastoplastic solids (where frictional terms introduce a lack of
symmetry in the constitutive equations).

For structural systems, numerical simulations which keep into account all
nonlinearities (included those related to frictional contact) show that flutter
initially corresponds to an oscillation blowing-up in time (as the linearized
solution correctly predicts), but later this oscillation reaches a limit cycle,
so that the structure behaves as a self-oscillating device. This behaviour is
fully confirmed by experiments and can be considered indisputable.

For solids the situation is more complex. Available analytical solutions
based on linearization predict the possibility of flutter as induced by nonas-
sociativity of the plastic flow. In this context, flutter is understood in terms
of waves blowing-up during propagation. Numerical evidences of flutter are
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still inconclusive both in showing a clear blowing-up and in predicting the
achievement of a limit cycle.

The blowing-up of a signal during its propagation in a solid should not
be too surprising, as materials obeying elastoplasticity with nonassociative
flow rule have been shown to produce useful energy in closed loading cycles
(Petryk, 1985). This circumstance does not necessarily violate conservation
of energy, because a release of energy can be produced at the expense of
the strain energy stored in the material in connection with the presence of
initial prestress (always needed to generate plastic flow).

Analysis of constitutive models describing the behaviour of granular ma-
terials (Gajo et al., 2004) reveals that flutter instability should be consid-
ered more common than one could expect, a fact in agreement with the
observation that granular matter is prone to unstable releases of energy.
However, due to the effects of nonlinearities, the instability of flutter could
be less ‘explosive’ than the exponential blow-up predicted by the linearized
analysis.

Although experimental results indisputably showing flutter in a contin-
uum are not available, there is evidence of oscillatory instabilities occurring
in different situations involving the mechanics of granular materials and
pointing to flutter instability.

One of these instabilities is responsible of the so-called ‘singing (or squeak-
ing) sand’, a phenomenon known since a long time (it was reported by Marco
Polo in his Il milione and by Charles Darwin in his Voyage of the Beagle)
and consisting in the emission of an audible sound when certain types of
sand are subject to shearing deformation. The grains of singing sands are
coated with a silica layer and are of quartz or calcareous nature; the grain-
size distribution is often uniform, and the grains roughly rounded. All
these elements suggest that the squeaking of the sand is strictly related to
intergranular friction, which is indeed the key element accounted for in the
current models of this phenomenon (Andreotti and Bonneau, 2009; Dagois-
Bohy et al., 2012). Sound emissions have also be noticed during straining of
other granular materials such as snow (Patitsas, 2015). In all cases the fric-
tional nature of the material and the vibrational origin of the phenomenon
suggest a connection to flutter instability in a continuum.

Another phenomenon which can be thought to be in relation with flutter
instability in solids is the so-called ‘silo music’ and ‘silo quake’, occurring
during discharge of granular matter stored in silos. These structures fail
with a much higher frequency than other industrial equipments (Carson
and Holmes, 2003), frequently develop localized buckling (Fig. 24) and may
also collapse, leading to loss of use.

During the operational life of silos, vibrations and repeated quakes occur
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Figure 24. Local buckling in two silos (near Bazzano, Italy).

at characteristic frequencies, leading to noise and even strong acoustic emis-
sion (nicknamed ‘music’). These vibrations have relations with the failure
of the structure and therefore have been thoroughly analyzed (Muite et al.,
2004; Tejchman and Gudehus, 1993; Wilde et al., 2010). Several mechani-
cal effects have been evidenced: (i.) resonant interactions between granular
matter and silo structure, (ii.) formation of arch mechanisms in the granu-
lar body and (iii.) stick-slip motion at the interface between container and
contained. Flutter instability may certainly play a role in this phenomenol-
ogy.
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