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A ductile metal matrix (modelled as a nonlinear elastic material) containing a dilute
suspension of an iso-oriented lamellar stiff phase (modelled as stiffeners, i.e. zero
thickness, rigid inclusions) is subject to a simple shear of finite amount, parallel to the
inclusion orientation, and subsequently perturbed through an incremental Mode I
loading, uniform at infinity. Solution to this problem permits analytical investigations of
the emergence of shear bands and their interaction with a rigid inclusion (involving a
stress square-root singularity at its tip) and discloses the mechanisms of ductile failure in
reinforced materials (explaining for instance the experimental evidence that shear bands
tend to nucleate and grow parallel to thin hard inclusions). Finally, investigated beyond
the elliptic range, the obtained solution becomes non-unique and reveals non-decay and
singularity of the fields, facts that provide analytical justification for the difficulties
associated with numerical treatment of shear bands.
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1. Introduction

Experimental evidence in ductile matrix materials containing a second stiff phase
shows that localized deformations in the form of shear bands nucleate at
inclusion boundaries, where they grow and subsequently develop complex
interactions between themselves and the second phase. Therefore, the presence of
defects is crucially important in the understanding of failure in ductile matrix
composites, particularly when defects involve stress concentrations, as is the case
of the lamellar suspensions experimentally investigated in metals (Öztürk et al.
1991), plastics (Bigoni et al. 2008) and rocks (Misra & Mandal 2007). In these
composites, only an analytical solution can detail the structure of singularities
related to the sharpness of both lamellae and shear bands, while numerical
approaches can hardly have the necessary resolution. The objective of the
present article is to derive one such solution, through a generalization of results
obtained by Dal Corso et al. (2008), and to employ it to investigate the complex
interaction between singularities and shear bands at the inclusion tip. To
this purpose, a rigid line inclusion, a so-called ‘stiffener’, is analysed embedded
in an elastic incompressible infinite material (in the examples we will refer to a
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F. Dal Corso and D. Bigoni144
J2-deformation theory material) deformed under plane strain. The medium is
assumed to be subject to a simple shear deformation of finite amount parallel to
the inclusion line, which generates a uniform state of strain and stress, both
having principal directions inclined with respect to the stiffener line. Taking this
configuration as reference in a relative Lagrangian description, the response is
analysed to an incremental uniform Mode I loading at infinity,1 so that the
solution can be explored near the border of ellipticity loss, where the incremental
fields are shown to self-organize along shear bands.

The obtained Mode I loading analytical solution shows the development of two
shear bands, with, for low hardening, the one closest in alignment with the
stiffener being the more pronounced.2 Therefore, a stiffener embedded in a low
hardening matrix tends to focus the deformation parallel to its line, a finding
substantiated by the experimental results of Misra & Mandal (2007), referring to
geological formations and to models prepared with polymethylmethacrylate
containing metal inclusions.3

Finally, accepting the fact that decay of the incremental fields does not occur
and incremental strain and stress becomes infinite along certain shear band
directions, the obtained solution is extended and investigated outside ellipticity,
namely, in the parabolic and hyperbolic regimes. Here, it is shown that the
solution is not unique, so that one, two, three or four (one or two) differently
inclined shear bands are predicted to become possible in the hyperbolic
(parabolic) range. This result substantiates with an analytical solution the
well-known difficulties connected to the numerical treatment of ill-posed (i.e.
non-elliptic) boundary-value problems.
2. Stiffener neutrality during simple shear of an elastic material

With reference to figure 1, a block of a material is subject to a simple shear
deformation when two displacement components are null (along axes x̂2 and x̂3)
and the other component, û1, depends linearly only on x̂02, namely

û1 x̂02
� �

Zgx̂02 and û2 Z û3 Z 0; ð2:1Þ

so that, if a point at x̂02Zh horizontally displaces of s, we can determine the
dimensionless parameter gZs/h, controlling the amplitude of shear deformation.
1 Since the state of prestress is arbitrarily inclined with respect to the inclusion line, the solution
obtained in the present article generalizes that previously given by Dal Corso et al. (2008), where a
stiffener aligned parallel to the principal axes of prestress has been considered. Note that Mode I
loading is defined with respect to the axes parallel and orthogonal to the stiffener.
2 Differently from results presented by Bigoni et al. (2008), now the two axial symmetries are lost,
so that the shear bands are not symmetrical with respect to the stiffener line and one of the two
becomes a preferential failure mode.
3We include in appendix B of this article, the solution where a stiffener is forced to incrementally
rotate (through application of an external incremental bending moment) by a given amount,
a problem modelling the mechanical fields generated through the so-called ‘vane test’ in soil
mechanics. Differently from the case when the inclusion is embedded in a matrix and loaded at
infinity, in this situation, we show that the two shear bands more inclined with respect to the
stiffener become the preferred failure modes.
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Figure 1. Simple shear deformation (arctan gZ348 has been assumed in the sketch, so that
wLz54.3188 and wEz35.6828). (a) Reference configuration and (b) configuration at a shear amount
gZs/h, with indicated Lagrangian and Eulerian principal axes, inclined at wL and wE, respectively.
Note that the circle in the reference configuration becomes a strain ellipse in the deformed
configuration, so that a stiffener parallel to the x̂1-axis leaves the material unperturbed at every
stage of the simple shear deformation.
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The left (B) and right (C) Cauchy–Green deformation tensors can be
calculated from the displacement field (2.1) and result in

BZ I Cgðê15ê2 C ê25ê1ÞCg2ê15ê1

and

CZ I Cgðê15ê2 C ê25ê1ÞCg2ê25ê2;

9>=
>; ð2:2Þ

where ê1 and ê2 are the two unit vectors parallel to the x̂1 and x̂2 axes,
respectively.

The eigenvectors of B and C define the principal Eulerian and Lagrangian
axes, so that in the x̂1–x̂2 plane these are

fvjgZ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4C gKðK1Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Cg2

ph i2r gKðK1Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Cg2

p
; 2

n o

and

fujgZ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4C gCðK1Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Cg2

ph i2r KgKðK1Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Cg2

p
; 2

n o
;

9>>>>>>>>>>=
>>>>>>>>>>;

ð2:3Þ

(where jZ1, 2) respectively, while the principal stretches result is given by

lj ZKðK1Þj g
2
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C

g

2

� �2
r

; ð2:4Þ

where jZ1, 2. Note that
l1K l2 Zg; ð2:5Þ

so that if gO0 (!0) then l1Ol2 (l1!l2).
The eigenvectors (2.3) yield the inclination of the Eulerian, wE, and

Lagrangian, wL, axes with respect to the x̂1-axis

wE Z
1

2
arctan

2

g

� �
and wL Z

p

2
KwE: ð2:6Þ
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With reference to the Cauchy–Green deformation tensors (2.2), we note that a
fibre parallel to the x̂1-axis, singled out by the unit vector ê1 remains
unstretched, since

ê1$Cê1 Z ê1$B
K1ê1 Z 1; ð2:7Þ

so that the fibres parallel to the x̂1-axis in figure 1 are so-called ‘zero elongation
lines’ (Weissenberg 1948). As a conclusion, a stiffener parallel to the shear
deformation leaves the material unperturbed.

For a material isotropic in the reference configuration, the Cauchy stress is
coaxial to the left Cauchy–Green deformation tensor B, so that in the Eulerian
principal reference system we have the spectral representation

T ZT1v15v1CT2v25v2CT3e35e3; ð2:8Þ
where, in the x̂1–x̂2 reference system, the unit vectors v1 and v2, equations (2.3)1,
are now defined by the components

fv1gZ fcos wE; sin wEg and fv2gZ fKsin wE; cos wEg: ð2:9Þ
Therefore, in the x̂1–x̂2 reference system, we have

T̂11 ZT1 cos
2wECT2 sin

2wE; T̂22 ZT1 sin
2wE CT2 cos

2wE

and

T̂12 Z
T1KT2

2
sin 2wE;

9>>>>=
>>>>;

ð2:10Þ

from which the well-known ‘universal relation’

T̂11KT̂22 ZgT̂12 ð2:11Þ
is obtained.

Although all the subsequent developments are fully general, we will refer in
the examples to a J2-deformation theory material defined by the power-law
strain energy density

W Z
K

N C1
eNC1
e ; ð2:12Þ

where K is a positive stiffness parameter; N2]0,1] is the strain-hardening
exponent; and ee is the effective strain that, for the plane strain case, reduces to

ee Z
2ffiffiffi
3

p jej; ð2:13Þ

in which eZe1Zlog l1 is the logarithmic stretch, a function of g through equation
(2.4). For a J2-deformation theory material, we obtain

T̂11

T̂22

)
Z pG

mgffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Cg2

p
coth 2e

; T̂12 Z
4m�e

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Cg2

p and T3 Z p; ð2:14Þ

where p is the mean stress and m and m� are incremental shear moduli that
depend on the current stretch in the following way:4

mZm02ejejNK1 coth 2e and m� ZNm0jejNK1; ð2:15Þ

4 Note that the J2-deformation theory material is a nonlinear elastic material isotropic in the
unloaded state. Owing to the fact that the incremental shear moduli m and m� tend to infinity when
e tends to zero (and N!1), the ratio m�/m tends to N (and therefore is different from 1).

Proc. R. Soc. A (2009)
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Figure 2. Simple shear of an elastic, incompressible, J2-deformation theory material: stress
response for finite-shear-amplitude g at (a) low (NZ0.1) and (b) high (NZ0.8) strain hardening.
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where

m0 Z
K

3

2ffiffiffi
3

p
� �NK1

: ð2:16Þ

Considering small shear amplitude g, the constitutive relations (2.14) become

T̂11

T̂22

)
Z pG

m0

2N
jgjNC1 and T̂12 Z signðgÞ m0

2NK1
jgjN : ð2:17Þ

The deviatoric stress and the shear stress, made dimensionless through
division by K, are reported in figure 2 for a J2-deformation theory material, at
(a) low (NZ0.1) and (b) high (NZ0.8) strain hardening. Note that it is evident
from equation (2.17), that for gZ0, the curve representing the deviatoric stress
has a horizontal tangent and the curve representing the shear stress has a vertical
tangent. Although the vertical tangent is not visible in figure 2b, it is easy to
check its existence; in fact, the incremental equations corresponding to equation
(2.17) become

_T11 Z _T22 Z _p and _T12 Zm� _g; ð2:18Þ
where _g ð _pÞ represents the shear (mean stress) increment and m� tends to infinity
when g tends to zero. Moreover, the curve relative to NZ0.1 coincides with that
plotted by Harren et al. (1989, fig. 2).
3. Mode I perturbation of an elastic infinite medium prestressed through
a finite shear parallel to an embedded stiffener

A rigid-line inclusion is analysed embedded in an elastic material, homogeneously
prestressed within the elliptic regime by a simple shear and subject to an
incremental Mode I deformation uniform at infinity (for uniform Mode II loading,
the stiffener leaves the medium unperturbed). We start by briefly introducing
the incremental constitutive equations.

(a ) Incremental constitutive equations

The incremental response of an incompressible, nonlinear elastic material
homogeneously deformed under a plane strain condition, can be described
through the linear relation (Bigoni & Dal Corso 2008)
Proc. R. Soc. A (2009)
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_t ZK½VvT�C _pI ; ð3:1Þ
where ($)T denotes the transpose; _t is the increment of the nominal (unsymmetrical)
stress tensor t; Vv is the gradient of incremental displacement (satisfying the
incompressibility constraint tr VvZ0); and _p is the incremental in-plane mean
stress. The fourth-order constitutive tensor K, describing orthotropy (aligned
parallel to the current principal stress directions), is a function of the current state of
stress, and its componentsKijhk (for instance given by Bigoni & Dal Corso 2008) are
functions of the following dimensionless quantities:

xZ
m�
m
; hZ

T1 CT2

2m
and k Z

T1KT2

2m
; ð3:2Þ

where T1 and T2 are the principal components of Cauchy stress and m and m�
describe the material response to shear (m for shear parallel and m� for shear
inclined at p/4 with respect to T1), and may be arbitrary functions of the current
stress and/or strain.

For a J2-deformation theory material, the dimensionless constants (3.2)1,3 are
related to the principal stretch in the x1-direction, namely l1, through the relations

xZ
N l41K1
� �

2ðlog l1Þ l41 C1
� � and k Z

l41K1

l41C1
; ð3:3Þ

while the in-plane stress parameter h remains unprescribed.
Introducing a stream function jðzÞZjðx1CUx 2Þ with the property

v1 Z
vj

vx2
and v2 ZK

vj

vx1
ð3:4Þ

(so that the incompressibility condition is automatically satisfied), the
differential equations governing incremental equilibrium yield the values of
the roots Uj satisfying

U2
j Z

1K2xCðK1Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2K4xCk2

p
1Kk

ðj Z 1;.; 4Þ: ð3:5Þ

According to the nature assumed by rootsUj as a function of parameters x and k, the
incremental problem can be classified as elliptic (E), parabolic (P) and hyperbolic
(H) (see for instance Bigoni & Dal Corso 2008, fig. 2). In particular, defining

Uj Zaj C ibj ; ð3:6Þ

where iZ
ffiffiffiffiffiffiffi
K1

p
is the imaginary unit and ajZRe½Uj � and bjZ Im½Uj � (Re[$] and

Im[$] denote the real and imaginary part of the relevant argument), the elliptic
regime corresponds to

bjs0 ð j Z 1;.; 4Þ: ð3:7Þ

We define the elliptic imaginary (EI) regime as

k2!1 and 2xO1C
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kk2

p
; ð3:8Þ
Proc. R. Soc. A (2009)
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Figure 3. The rigid-line inclusion (of length 2l ) in an infinite material deformed under simple shear
parallel to the inclusion. The state of stress generated at a certain deformation g has principal
values inclined with respect to the x̂1–x̂2 reference system at an angle w0 taken equal to wE

(although this identification is not necessary in the calculations).

149Shear band and stiffener interactions
where there are four imaginary conjugate roots Uj, so that

a1 Za2 Z 0 and
b1

b2

)
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xK1G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2K4xCk2

p
1Kk

s
O0; ð3:9Þ

and the elliptic complex (EC) regime as

k2!1 and 1K
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kk2

p
!2x!1C

ffiffiffiffiffiffiffiffiffiffiffiffi
1Kk2

p
; ð3:10Þ

where there are four complex conjugate roots Uj, so that

bZb1 Zb2

aZKa1 Za2

�
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kk2

p
Gð2xK1Þ

2ð1KkÞ

s
O0: ð3:11Þ

Considering now a x̂1–x̂2 reference system rotated at an angle w0 with respect
to the x1–x2 axes defining the prestress directions and the orthotropy axes
(figure 3), the linear constitutive relation (3.1) becomes

t̂ Z K̂½V̂v̂T�C _pI ; ð3:12Þ

where the nominal stress increment, incremental displacement and its gradient,
and the constitutive tensor can be expressed in the x̂1–x̂2 reference system as

t̂ ZQT _tQ; V̂v̂ ZQTVvQ and K̂ijhk ZQliQmjKlmnoQnhQok ; ð3:13Þ

through the rotation Q defined as

½Q�Z
cos w0 sin w0

Ksin w0 cos w0

" #
: ð3:14Þ

In the x̂1–x̂2 reference system, the stream function employed in equation (3.4)
becomes ĵðẑÞ, where

ẑj Z x̂1CWjx̂2; Wj Z
sin w0 CUj cos w0

cos w0KUj sin w0

ðj Z 1;.; 4Þ; ð3:15Þ
Proc. R. Soc. A (2009)
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and the property (3.4) now becomes

v̂1 Z
vĵ

vx̂2
and v̂2 ZK

vĵ

vx̂1
; ð3:16Þ

from which the incremental strain and stress fields can be obtained directly in the
x̂1–x̂2 reference system.
(b ) Incremental perturbed solution

A rigid line inclusion of length 2l is considered embedded in an elastic material,
which is subject to a uniform state of prestress produced by a simple shear
parallel to the inclusion and defined by the shear amount g. The homogeneous
state of prestress has the principal stress axes inclined by wE, equation (2.6), with
respect to the inclusion line and is taken as the reference state5 on which a
perturbation corresponding to remote uniform Mode I incremental deformation
v̂N2;2 is superimposed.

A x̂1–x̂2 reference system located at the stiffener centre, taken with the
inclusion line parallel to the x̂1-axis, is inclined at an angle w0 (taken equal to wE)
with respect to the x1–x2 system, defining the principal stress directions, as
shown in figure 3.

The kinematical boundary conditions for a stiffener express the fact that this
can only suffer an incremental rigid-body motion

v̂1ðx̂1; 0ÞZ v̂1ð0; 0Þ;
v̂2ðx̂1; 0ÞZ v̂2ð0; 0ÞCuSx̂1;

)
c jx̂1j! l; ð3:17Þ

so that v̂ 1ð0; 0Þ, v̂2ð0; 0Þ and uS represent unknown quantities to be determined
as a part of the solution, by imposing boundary conditions to ensure equilibrium
of the stiffener in terms of incremental ‘global’ axial and shear forces, and
incremental moment, respectively,

_N Z
Ð l
Kl Et̂ 21ðy; 0ÞFdy Z 0;

_T Z
Ð l
Kl Et̂ 22ðy; 0ÞFdy Z 0;

_MZ
Ð l
Kl Et̂ 22ðy; 0ÞFy dy Z 0;

9>>>=
>>>;

ð3:18Þ

where the brackets E$F denote the jump in the relevant argument, taken across
the stiffener.

Owing to central symmetry considerations (with respect to the stiffener
centre) involved in the far-field loading problem under analysis and the specific
form of solution sought in the following, the boundary conditions (3.17) and
(3.18) can be reduced to the following homogeneous incremental displacement
gradient conditions:

v̂1;1ðx̂1; 0ÞZ 0;

v̂2;1ðx̂1; 0ÞZuS;

)
c jx̂1j! l; ð3:19Þ
5 The analysis will be carried out with respect to a generic, uniform state of prestress (with
principal values inclined at w0 different from wE), not necessarily generated through a simple shear
deformation.
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151Shear band and stiffener interactions
plus the requirement that the normal stress increment t̂ 22 be continuous across
the stiffener

Et̂ 22ðx̂1; 0ÞFZ 0; cjx̂1j! l; ð3:20Þ
a condition allowing determination of uS.

Prescribing an incremental deformation v̂N2;2 at infinity and proceeding in
analogy to the crack and shear band problems analysed by Bigoni & Dal Corso
(2008), the stream function of the perturbed problem ĵ8 can be sought in
the form6

ĵ8ðx̂1; x̂2ÞZ
v̂N2;2
2

X2
jZ1

Re Dj ẑ2j Kẑj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2j Kl 2

q
C l 2 ln ẑj C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2j Kl 2

q� �h in o
; ð3:21Þ

satisfying automatically the decaying condition on the velocity, incremental
strain and stress at infinity (in the elliptic regime) and providing a stress square-
root singularity at the stiffener tips.

Imposing the stream function (3.21) to satisfy the boundary conditions along
the stiffener line (3.19) and (3.20) yields the following linear problem for the
complex constants D1 and D2:

Re½W1� KIm½W1� Re½W2� KIm½W2�
Im½W1� Re½W1� Im½W2� Re½W2�

0 1 0 1

Kc 21 c11 Kc22 c12

2
66664

3
77775

Re½D1�
Im½D1�
Re½D2�
Im½D2�

2
66664

3
77775Z

1

0

0

0

2
66664

3
77775; ð3:22Þ

where the real constants c1j and c2j ( jZ1,., 4) are defined as

2mc1j Z K̂1112KK̂1222KRe½Wj � K̂1111K2K̂1122KK̂1221CK̂2222

	
CRe½Wj � 2K̂1121K2K̂2122CRe½Wj �K̂2121

� �

C Im½Wj �2 2K̂1121K2K̂2122 C3 Re½Wj �K̂2121

� �
and

2mc 2j Z Im½Wj � K̂1111K2K̂1122KK̂1221CK̂2222

	
CRe½Wj � 4K̂1121K4K̂2122C3 Re½Wj �K̂2121

� �
KIm½Wj �2K̂2121



;

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð3:23Þ

and depend on the stiffener inclination w0 and on the prestress and orthotropy
parameters x, k and h.

We introduce the normalized stiffener rotation G as

GZ
uS

v̂N2;2
ZKRe½D1CD2�; ð3:24Þ
6The stream function (3.21) enforces continuity in displacement (or in tractions for fracture
mechanics problems) along the branch cut (jx̂1j! l, x̂2Z0), when appropriate values of the
complex constants Dj are chosen. This property remains valid independently of the regime
considered.
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F. Dal Corso and D. Bigoni152
and since analytical proof looks awkward, we have numerically checked that
(i) the solution of the present problem is independent of the in-plane stress
parameter h, (ii) the coefficients Dj ( jZ1, 2) solving system (3.22) satisfy the
following two equations:

W 2
1D1CW 2

2D2 ZW1CW2CGW1W2

and

W 3
1D1CW 3

2D2 ZW 2
1 CW1W2CW 2

2CGW1W2ðW1CW2Þ;

9>=
>; ð3:25Þ

and (iii) the normalized stiffener rotation G (3.24) satisfies the conditions

Gðk Z 0;w0ÞZGðk;w0 Z 0ÞZGðk;w0 Zp=2ÞZ 0

and

GZGðk;w0ÞZKGðKk;p=2Kw0Þ:

9>=
>; ð3:26Þ

Defined in terms of incremental velocity gradient as in Dal Corso et al. (2008),
the incremental stress intensity factor for Mode I loading is

_K ðeÞI Z 2m lim
x̂1/lC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx̂1KlÞ

p
v̂2;2ðx̂1; x̂2 Z 0ÞZ 2mv̂N2;2

ffiffiffiffiffi
pl

p
; ð3:27Þ

resulting independent of the prestress parameters x, k and h (but m may depend
on the full set of current state variables) and of the angle w0 between the stiffener
and the directions of principal stress T1.

The calculation of the incremental energy release rate and the incremental
axial force in the stiffener (deferred to appendix A) generalizes results for a
stiffener aligned parallel to the principal stress directions obtained by Bigoni
et al. (2008) and Dal Corso et al. (2008). Those results can be now recovered by
setting w0Z0 and thus obtaining

D1 ZKD2 ZK
1

2a
; GZ 0; in EC

and

D1 ZKD2 ZK
i

b1Kb2
; GZ 0; in EI;

9>>>>=
>>>>;

ð3:28Þ

showing that in the case of a stiffener aligned parallel to prestress principal
axes, there is no rigid rotation of the line due to the symmetry of the problem.
The rigid rotation is null also in another case corresponding to kZ0 (and
{w0, h}s0)

D1 ZKD2 Z
1

2
ffiffiffiffiffiffiffiffiffiffi
1Kx

p ðKcos 2w0C i
ffiffiffi
x

p
sin 2w0Þ; GZ 0: ð3:29Þ

The normalized stiffener rotation G (3.24) is reported in figure 4, for a
J2-deformation theory material, showing an antisymmetric behaviour with
respect to the shear parameter g. Note that results reported in figure 4 are
independent of the hardening parameter N, except for the fact that the curve
terminates at failure of ellipticity gEZgE(N ).
Proc. R. Soc. A (2009)
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by an incremental Mode I superimposed upon a simple shear of finite amount g.
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4. Incremental strain field near an inclined stiffener

The previously obtained solution can now be employed to analyse the incremental
strain field near the stiffener. In particular, level sets of the modulus of perturbed
incremental deviatoric strain for J2-deformation theory of plasticity are reported in
figure 5 for (a,b) low NZ0.1 and (c,d ) high NZ0.8 strain hardening.

For a J2-deformation theory material, the loss of ellipticity occurs at

gEZ0.654 for NZ0.1 and at gEZ2.452 for NZ0.8. Two values of amount of
shear g have been considered in figure 5, namely, gZ0 corresponding to a
material with null prestress7 and gx0.95gE, namely, close to the boundary of
ellipticity loss, before the Mode I perturbation is applied.

When the perturbation is applied at high prestrain, the incremental
deformation fields appear strongly focused along the near-tip directions of the
shear bands formally possible at ellipticity loss, thus confirming the results of
Bigoni et al. (2008). Moreover, the results pertaining to low strain hardening
(NZ0.1, figure 5b) show that the bands closest to the stiffener line are privileged,
so that something resembling a ‘thick’ shear band parallel to the stiffener
appears, a finding in qualitative agreement with the experimental results of
Misra & Mandal (2007).
5. Incremental solution in the parabolic and hyperbolic regimes

Accepting non-decaying of the solution and an infinite strain (and stress)
increment along certain shear band lines, the previously obtained solution can
be extended to the parabolic and hyperbolic regimes. Since beyond the elliptic
7At null prestress, the J2-deformation theory of plasticity becomes incrementally rigid (since both
m and m� tend to infinity, but their ratio x tends to N). It is expedient, therefore, to plot results
normalized through division by m, so that they tend to results pertaining to an incompressible
orthotropic material deformed in small strain. The axes of orthotropy are therefore inclined at 458
with respect to the stiffener line in figure 5.
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Figure 5. Level sets of the modulus of perturbed incremental deviatoric strain for a stiffener
(evidenced with a thin rectangle, providing the bar scale of the representation) embedded in a
J2-deformation theory material (with (a,b)NZ0.1 and (c,d )NZ0.8) subject to a finite simple shear of
amount g and a subsequent Mode I incremental uniform remote load. Null shear before the
perturbation is considered in (a,c), while a shear equal to 0.95 times the amount at ellipticity loss, gE,
is considered in (b,d ). Note that the prestress (of principal components T1 and T2) generated through
the shear deformation is inclined with respect to the stiffener line (and sketched in the figures).
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range a problem is known to be ill-posed, the analysis of the solution within the
parabolic and hyperbolic regimes is instructive to reveal features related to ill-
posedness.

To obtain a solution (which need not be unique) beyond the elliptic range, we
have to go back to the representation of the stream function (3.21), where the
indices now have to range from 1 to n, so that

ĵ8ðx̂1; x̂2ÞZ
v̂N2;2
2

Xn
jZ1

Re Dj ẑ2j Kẑj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2j Kl 2

q
C l 2 ln ẑj C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2j Kl 2

q� �h in o
; ð5:1Þ

where n indicates the number of non-conjugate roots (i.e. nZ4 (nZ3) in H (P)).
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Outside the elliptic regime, the characteristic lines defined as

ẑ j Z const:0
dx̂2
dx̂1

ZK
1

Wj

ð5:2Þ

become real and correspond to four (two) different families in the hyperbolic
(parabolic) regime and, in particular, their inclinations correspond to the
following shear band inclinations:

ŵj ZKarctan
1

Wj

� �
Zw0Karctan

1

Uj

� �
; ð5:3Þ

where jZ1,., 4 in H ( jZ1, 2 in P).
The decaying of solution (5.1) is lost along the characteristic lines emanating

from the stiffener tips, where, additionally, the increment of strain, and
consequently stress, becomes infinite (while for the other characteristic lines
cutting the stiffener the solution remains always bounded). By contrast,
incremental displacements remain continuous and finite everywhere, even
along characteristics.

The system of linear equations

Xn
jZ1

Re½Wj �Re½Dj �KIm½Wj �Im½Dj �Z 1;

Xn
jZ1

sign½Im½Uj ��fIm½Wj �Re½Dj �CRe½Wj �Im½Dj �gZ 0;

Xn
jZ1

sign½Im½Uj ��Im½Dj �Z 0;

Xn
jZ1

sign½Im½Uj ��fKc 2jRe½Dj �Cc1jIm½Dj �gZ 0;

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð5:4Þ

replaces system (3.22) to determine the n complex constants Dj, providing the
solution. Note that the determination of these 2n real constants depend on four
equations, so that N2nK4 solutions are possible.

Focusing attention to the hyperbolic regime, where nZ4 and the roots Wj are
real, the system (5.4) simplifies to

X4
jZ1

Wj Re½Dj �Z 1;

X4
jZ1

Wj Im½Dj �Z 0;

X4
jZ1

Im½Dj �Z 0;

X4
jZ1

W 2
j ½2ðK̂2221KK̂2111ÞKWjK̂2121�Im½Dj �Z 0;

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

ð5:5Þ
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so that the general solution of linear system (5.5) can be written as

D1

D2

D3

D4

2
66664

3
77775Z z1

1

0

0

0

2
66664

3
77775Cz2

0

1

0

0

2
66664

3
77775Cz3

0

0

1

0

2
66664

3
77775C

1K z1W1K z2W2K z3W3

W4

0

0

0

1

2
66664

3
77775

C ic

ðc14K c13ÞW2Cðc12K c14ÞW3 Cðc13K c12ÞW4

ðc13K c14ÞW1Cðc14K c11ÞW3 Cðc11K c13ÞW4

ðc14K c12ÞW1Cðc11K c14ÞW2 Cðc12K c11ÞW4

ðc12K c13ÞW1Cðc13K c11ÞW2 Cðc11K c12ÞW3

2
66664

3
77775; ð5:6Þ

where z1, z2, z3 and c are arbitrary real constants.
Since system (5.5) admits N4 solutions, we have chosen to represent in figure 6

the deformed shape of an area near the stiffener, for the four solutions
corresponding (from left to right and from the upper to the lower part) to index h
ranging between 1 and 4 so that8

Dh Z
1

Wh

; Dj Z 0; jsh; j 2 ½1; 4�: ð5:7Þ

We can note from figure 6 that for given uniform Mode I remote loading of a
stiffener embedded in a medium uniformly prestrained beyond the elliptic range:

(i) an infinite number of solutions is possible,
(ii) these solutions do not decay at infinity,
(iii) they correspond to infinite incremental strain and stress along shear

bands, and
(iv) these shear bands emanate from the tips of the stiffener.

The above conclusion, based on an analytical solution, explains the difficulties
typically encountered in the numerical analyses of ill-posed boundary-
value problems.
6. Conclusions

An incremental solution has been given for uniform Mode I perturbation of a
rigid, thin inclusion in an infinite (incompressible) elastic material, subject to
uniform prestress with principal axes inclined with respect to the inclusion line.
8 The values in (5.7) are achievable for cZ0,

zh Z
1

Wh

; zk Z 0; ksh; if h Z 1; 2; 3

and

z1 Z z2 Z z3 Z 0; if hZ 4:
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Figure 6. Deformed configurations (the grey square represents the undeformed, prestressed
material) for a stiffener (evidenced with a thin rectangle, providing the bar scale of the
representation) embedded in a J2-deformation theory material (with NZ0.1, subject to a finite
shear of amount gZ1.2gE) and a subsequent Mode I incremental uniform remote load. Four
solutions are reported among the N4 possible within the hyperbolic range, where characteristics are
inclined at {(a) 62.9848, (b) K5.8748, (c) 5.4348, (d ) 74.2928}, with respect to the x̂1-axis.
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The obtained results conclude an investigation initially limited to coaxiality
between the prestress principal axes and the inclusion line (Bigoni et al. 2008;
Dal Corso et al. 2008). It is shown, in particular, that the initial state of uniform
prestress can be obtained through a finite simple shear parallel to the inclusion
line and that the amount of shear may be sufficient to bring the state of stress as
close as possible the elliptic boundary and even beyond it, namely, within the
hyperbolic or parabolic regimes. The obtained results therefore allow analytical
investigations of the interactions between a rigid inclusion and shear bands
and reveal a tendency towards a focusing of the shear bands parallely to the
Proc. R. Soc. A (2009)
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stiffener line. Finally, extending the solution beyond the elliptic regime, it has
been shown that the fields do not decay, carry an infinite strain rate within
the shear bands and that there exist N4 (N2) solutions in the hyperbolic
(parabolic) regime. These results analytically highlight the well-known
numerical difficulties encountered in the analysis of boundary-value problems
beyond the elliptic range.

Financial support of MIUR-Prin 2007 (prot. 2007YZ3B24_002) is gratefully acknowledged.
Appendix A. Incremental energy release rate for stiffener growth and
axial force along the stiffener

Analogously to Bigoni et al. (2008, §3), we analyse the possibility of incremental
stiffener growth and its related incremental energy release rate. Briefly, the
incremental energy release rate for a rectilinear growth can be expressed as

_GI ZK lim
Dl/0

1

2Dl

ðDl
0
Et̂ 2iðDlKr;pÞFv̂ iðr ; 0Þdr; ðA 1Þ

where (the repeated index is summed and) the asymptotic fields are expressed in
the polar coordinate system (r, w) centred at the stiffener tip (x̂1Z l, x̂2Z0), so
that r denotes the radial distance from the stiffener tip and w indicates values of
the polar coordinate (anticlockwise) angle singling out r from the x̂1-axis (so that
wZ0 corresponds to points ahead of the stiffener tip). The asymptotic fields
result in (constant terms have been neglected)

Et̂ 21ðDlKr ;pÞFZKv̂N2;2

ffiffiffiffi
2l

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DlKr

p K̂2121 Im W 2
1D1 CW 2

2D2

	 

;

Et̂ 22ðDlKr ;pÞFZKv̂N2;2

ffiffiffiffi
2l

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DlKr

p 2ðK̂2221KK̂2111ÞIm W 2
1D1 CW 2

2D2

	 


KK̂2121 Im W 3

1D1 CW 3
2D2

	 
�
;

v̂1ðr ; 0ÞZKv̂N2;2
ffiffiffiffiffiffi
2lr

p

and

v̂2ðr ; 0ÞZKGv̂N2;2
ffiffiffiffiffiffi
2lr

p
;

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðA 2Þ

from which the incremental energy release rate for stiffener growth can be
calculated in the form

_GI ZK
_K
2
ðeÞI

8m2
½K̂2121C2GðK̂2221KK̂2111Þ�Im W 2

1D1 CW 2
2D2

	 


KGK̂2121 Im W 3

1D1 CW 3
2D2

	 
�
: ðA 3Þ

We have numerically checked that _GI is (i) independent of h and (ii) always
negative in the elliptic regime, so that stiffener reduction is predicted.

The behaviour of the incremental energy release rate for a stiffener embedded
in a J2-deformation theory material is reported in figure 7 as a function of the
Proc. R. Soc. A (2009)
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Figure 7. Mode I incremental energy release rate for a stiffener embedded in a J2-deformation
theory material subjected to a finite shear parallel to the stiffener line and defined by the shear
amount parameter g. Different hardening parameters N are considered.
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amount of shear g, for different values of the hardening parameter N. It should be
noted from the figure that the maximum of the curves always occurs at null shear
gZ0 for every N, and that at ellipticity loss the incremental energy release rate
vanishes, so that stiffener reduction is inhibited.

Note that m is a function of g and, in particular, m tends to infinity when g

tends to zero. We have selected to normalize the plot through multiplication by
m= _K

2
ðeÞI to recover linear elasticity results in the special case of the absence of

prestress (where the J2-deformation theory of plasticity loses meaning and our
plot refers to an elastic orthotropic material with orthotropy axes inclined at 458
with respect to the stiffener line).

The incremental axial force in the stiffener can be calculated from equation
(3.18)1 where the jump of the perturbed shear nominal traction increment can be
evaluated to be

Et̂ 21ðx̂1; 0ÞFZK2v̂N2;2K̂2121 Im W 2
1D1 CW 2

2D2

	 
 x̂1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2Kx̂21

p ; cjx̂1j! l; ðA 4Þ

so that, using the identity (3.25) (which has only been numerically checked to
hold), the incremental axial force in the stiffener related to a Mode I loading is

_Nðx̂1ÞZK2v̂N2;2K̂2121 Im½W1 CW2 CGW1W2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2Kx̂21

q
; cjx̂1j! l; ðA 5Þ

resulting again independent of the in-plane mean stress, parameter h.
Note that the maximum of the axial force always occurs at the stiffener centre

and we have numerically verified that the incremental maximum axial force is
related to the incremental energy release rate as

_GI Z
pv̂N2;2
4

_Nmax; ðA 6Þ

which is always negative in the elliptic regime, so that the stiffener is subject to
compression for positive v̂N2;2.
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Appendix B. Solution for a prescribed rigid rotation of a stiffener in a
prestressed medium

We consider the problem of a stiffener subject to a prescribed incremental
rotation uS and embedded in a homogeneously prestressed material. This
problem may, for instance, find application to the interpretation of the so-called
‘vane test’ used in geotechnical engineering. Imposing the satisfaction of the
kinematical boundary conditions along the stiffener line (3.19), where now uS is
prescribed, we represent the stream function as

ĵ8ðx̂1; x̂2ÞZ
uS

2

X2
jZ1

Re E II
j ẑ2j Kẑ j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2j Kl 2

q
C l 2 ln ẑj C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2j Kl 2

q� �h in o
; ðB 1Þ

which yields the following linear problem for the complex constants E II
1 and E II

2 :

Re½W1� KIm½W1� Re½W2� KIm½W2�

Im½W1� Re½W1� Im½W2� Re½W2�

1 0 1 0

0 1 0 1

2
666664

3
777775

Re E II
1

	 

Im E II

1

	 

Re E II

2

	 

Im E II

2

	 


2
666664

3
777775Z

0

0

K1

0

2
666664

3
777775: ðB 2Þ

The solution of the present problem does not depend on the in-plane stress
parameter h, similar to the solution (3.22), and satisfies

W 2
1E

II
1 CW 2

2E
II
2 ZW1W2 and W 3

1E
II
1 CW 3

2E
II
2 ZW1W2ðW1CW2Þ: ðB 3Þ

In the particular case of w0Z0, the solution becomes

E II
1 ZK

1

2a
ðaCibÞ; E II

2 ZK
1

2a
ðaK ibÞ0Im W 2

1E
II
1 CW 2

2E
II
2

	 

Z0; inEC

and

E II
1 Z

b2

b1Kb2
; E II

2 ZK
b1

b1Kb2
0Im W 2

1E
II
1 CW 2

2E
II
2

	 

Z0; inEI:

9>>>>>>>=
>>>>>>>;

ðB 4Þ

We now define the incremental stress intensity factor as

_K ðeÞII Z 2m lim
x̂1/lC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx̂1KlÞ

p
v̂ 2;1ðx̂1; x̂2 Z 0ÞZK2muS

ffiffiffiffiffi
pl

p
ðB 5Þ

and the incremental energy release rate as

_GII ZK lim
Dl/0

1

2Dl

ðDl
0
Et̂ 2iðDlKr ;pÞFv̂ iðr ; 0Þdr; ðB 6Þ

where the asymptotic fields in the polar coordinate system (r, w) centred at the
stiffener tip (x̂1Z l, x̂2Z0) are (constant terms have been neglected)

Et̂ 21ðDlKr;pÞFZKuS

ffiffiffiffi
2l

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DlKr

p K̂2121 Im W 2
1E

II
1 CW 2

2E
II
2

	 

;

Et̂ 22ðDlKr;pÞFZKuS

ffiffiffiffi
2l

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DlKr

p 2ðK̂2221KK̂2111ÞIm W 2
1E

II
1 CW 2

2E
II
2

	 


KK̂2121Im W 3

1E
II
1 CW 3

2E
II
2

	 
�
;

v̂ 1ðr ; 0ÞZ 0 and v̂2ðr ; 0ÞZKuS

ffiffiffiffiffiffi
2lr

p
:

9>>>>>>>>>=
>>>>>>>>>;

ðB 7Þ
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Figure 8. Incremental moment _M for an incremental rotation uS of the stiffener as a function of the
simple shear amplitude g, for a J2-deformation theory material at different values of strain
hardening coefficient N.

161Shear band and stiffener interactions
Using the identity (B 3), the incremental energy release rate for stiffener growth
(B 6) can be calculated in the form

_GII ZK
_K
2
ðeÞII

8m2
2ðK̂2221KK̂2111ÞIm½W1W2�KK̂2121Im½W1W2ðW1 CW2Þ�


 �
; ðB 8Þ

which has been numerically checked to be always negative in the elliptic regime.
The incremental global axial and shear forces can be computed and are null
by equilibrium, while the incremental moment applied to the inclusion (taken
positive when anticlockwise) is given by

_MZK

ðl
Kl

Et̂ 22ðy; 0ÞFy dy

Zpl 2uSf2ðK̂2221KK̂2111ÞIm½W1W2�KK̂2121 Im½W1W2ðW1 CW2Þ�g; ðB 9Þ

which corresponds, when prestress is absent, to the value 2mpl2uS calculated by
Muskhelishvili (1953, §83a). Note that the following interesting relation holds
true in the elliptic regime:

_GII ZK
_MuS

2l
; ðB 10Þ

from which, due to the negativity of _GII, we note that _M has always the same
sign of uS.

The incremental moment and level sets of incremental deviatoric strain are
reported as functions of the simple shear amplitude g in figures 8 and 9, for a
J2-deformation theory material at different values of strain hardening coefficient
N. In particular, we note that the maximum incremental moment divided by m
occurs at null prestress, while at the ellipticity loss, the incremental moment
vanishes and the shear bands near the direction orthogonal to the stiffener
are privileged.
Proc. R. Soc. A (2009)



T1

(a) (b)

(c) (d )

Figure 9. Level sets of the modulus of perturbed incremental deviatoric strain for a stiffener
(evidenced with a thin rectangle, providing the bar scale of the representation) embedded in a
J2-deformation theory material (with (a,b) NZ0.1 and (c,d ) NZ0.8) subject to a finite shear of
amount g and a subsequent imposed incremental rigid rotation uS. Null shear before the
perturbation is considered in (a,c), while a shear equal to 0.95 times the amount at ellipticity loss,
gE, is considered in (b,d ). Note that the prestress (of principal components T1 and T2) generated
through the simple shear deformation is inclined with respect to the stiffener line.
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