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Abstract

The complexity and variety of geometrical changes in physical systems
at submacroscopic levels has led to various approaches to the broadening
of the classical theory of finite elasticity. One approach, the field theory
”elasticity with disarrangements”, employed the multiscale geometry of
structured deformations in order to incorporate the effects of disarrange-
ments such as slips and separations at a single submacroscopic level on the
macroscopic response of a continuous body. This article extends that field
theory by enriching the underlying geometry so as to include the effects
of disarrangements at more than one submacroscopic level. The resulting
field theory broadens the scope of this approach, sharpens the description
of the physical nature of dissipative mechanisms that can arise, and in-
creases the variety of systems of contact forces that can serve as boundary
loadings for a body that evolves via multiscale geometrical processes.

To Walter Noll,

whose writings set the foundations of continuum mechanics and whose

commitment to colleagues, friends, and family endures in our memory.

1 Introduction

In the article [2] we provided a first step in a program to employ structured de-
formations of continua [1] in order to obtain a field theory capable of describing,
in the context of dynamics and large isothermal deformations, the evolution of
bodies that undergo smooth deformations at the macroscopic level, that can
experience piecewise smooth deformations at submacroscopic levels, and that
can not only store energy but can also dissipate energy during such multilevel
geometrical changes. The field theory [2] that we formulated incorporated the
effects at the macrolevel of smooth deformations and of non-smooth deforma-
tions (disarrangements) at one submacroscopic level by providing field relations
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that govern the (time-dependent) macroscopic deformation g of the body as well
as the tensor field G of deformations without disarrangements at the submacro-
scopic level. Among the field relations in [2] that govern the structured motions
(g,G) of the body is the accommodation inequality that includes the relation
0 < detG ≤ det∇g, i.e., the volume changes caused by smooth deformations
at the submacroscopic level cannot exceed the volume changes at the macro-
scopic level. The accommodation inequality is the basis for the Approximation
Theorem: at each time there exist piecewise smooth, injective mappings fn
on the body that tend to g and whose gradients ∇fn tend to G as n tends to
∞. The passage to∞ can be interpreted as the process of ”zooming out” from
the generally non-smooth geometrical changes at the submacroscopic level to the
generally smoother geometrical fields g and G. In other words, g and G provide
at the macrolevel some (but generally not all) of the geometrical information
available at the submacroscopic level. The additional information carried in the
field G, the deformation without disarrangements, is complemented by the in-
formation carried in the field M = ∇g−G, which can be shown to capture at the
macrolevel the geometrical effects of slips and separations in the approximating
deformations fn in the limit as n tends to ∞.

The main obstacle in formulating a field theory in terms of g and G is to
provide relations between these fields in addition to the algebraically obvious
additive decomposition

∇g = G+M.

In [2] we provided additional relations among these fields by obtaining for the
stress S in the macroscopic reference configuration (the Piola-Kirchhoff stress)
both an additive decomposition det((∇g)−1G)S = S\ + Sd and a multiplica-
tive decomposition det((∇g)−1G)S = S\G

T (∇g)−T . The theory of structured
deformations permits us to identify the field S\ as the stress without disar-
rangements and the field Sd as the stress due to disarrangements, and the two
decompositions of S show that, given the structured deformation (g,G), the
two fields S\ and Sd cannot be prescribed independently. Thus, there is a
”consistency relation”

S\G
T (∇g)−T = S\ + Sd (1)

that the two refined stress fields must satisfy. This consistency relation is uni-
versal, i.e., it is valid for every body undergoing structured deformations in the
presence of a given system of contact forces that determine S, without regard
to the material comprising that body [42]. The constitutive assumptions in [2]
then allow us through the response function (G,M) 7−→ Ψ(G,M) for the free
energy density ψ to interpret the refined stress S\ already defined in terms of S
and (g,G), as a ”driving stress” corresponding to the geometrical field G and to
interpret the refined stress Sd as a ”driving stress” corresponding to the geomet-
rical field M . These constitutive relations express the dependence of both S\
and Sd upon G and M , and the consistency relation then provides the desired
further restriction on the three fields ∇g, G, and M . Moreover, the additive
decompositions both of S and of ∇g as well as our constitutive assumptions
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allow us to calculate the internal dissipation Γ through the formula

Γ = S · ∇ġ − ψ̇ = (S\ · Ṁ + Sd · Ġ)/ det((∇g)−1G)

= DGΨ · Ṁ +DMΨ · Ġ.

These formulas give us a precise physical as well as mathematical insight into
the sources of dissipation in this multilevel setting and led to a necessary depar-
ture from the standard approach [3] for assuring compatibility of constitutive
relations with the Second Law.

Our field theory [2] and its refined geometry have been applied (i) to dis-
tinguish among the geometrical phenomena of contact, of intermingling and of
mixing of elastic constituents and to identify the additional forces and moments
exerted by a mixture of elastic bodies on each constituent [4], (ii) to define and
apply a notion of submacroscopically stable equilibrium of elastic bodies that
selects among the many phases available to the body those that dissipate energy
faster than they store energy in quasistatic, purely submacroscopic processes [5],
and (iii) to define and identify a related notion of stable disarrangement phases
of elastic bodies that, in the context of aggregates of small elastic bodies, pro-
vides a setting for the emergence of no-tension materials with nonlinear response
in compression [6].

These applications indicate the variety of possibilities afforded by structured
deformations for enriching through effects at a single submacroscopic level the
purely macroscopic field theory of non-linear elasticity. Nevertheless, many (i)
natural and (ii) man-made physical systems have a rich enough geometrical
structure to permit the identification of hierarchies consisting of more than one
physically meaningful submacroscopic level. In each of the above categories
both (a) soft and (b) hard materials can be singled out.
Natural soft tissues exhibiting hierarchies include muscles, cartilage, cornea,
tendons (see, e.g., [7, 8, 9, 10]), while natural hard tissues with hierarchical
structures include bone, nacre, enamel, etc. (see, e.g., [7, 11, 12, 16, 13]). In [9]
and[13] one finds evidence that submacroscopic disarrangements in hierarchical
materials can occur at various levels of the hierarchy and can be influenced by
the organization of the hierarchy. This evidence is provided with particular
regard to muscles and enamel.

Furthermore, in [8, 16] it is suggested that toughening mechanisms, charac-
terized by distributions of submacroscopic separations at the various levels of
the hierarchies, do closely follow the internal arrangements of such materials.
For such mechanisms a statistical model based on bundles of fibers has been
extensively used in this context [17, 18, 19]. Among natural materials exhibit-
ing hierarchical structures and analogous modes of disarrangements, one finds
wood, bamboo [14, 16, 15], and plants in general, forming a span of hard-to-soft
materials.

Man-made materials with similar features are primarily bioinspired compos-
ites [16], nowadays available thanks to the evolving advancements in additive
manufacturing [20, 21].

Our goal here is to take a further step in our program by broadening the
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Figure 1: An example of three-level hierarchies: large stack (macroscale) of bundled papers

(intermediate level). The finest scale is represented by each paper sheet (reproduced with

permission of the photographer Mr. M. Schmorgan).

field theory [2] to include the effects of geometrical changes at more than one
submacroscopic level. To simplify the explanations and to provide focus, we
restrict our attention to the case of two submacroscopic levels: submacroscopic
level 2 , the finer submacroscopic level that represents in this case the most
magnified view of geometrical changes, and submacroscopic level 1, a level in-
termediate to submacroscopic level 2 and to the macroscopic level (level 0).
Thus, we provide not only the macroscopic deformation field g at each time,
but also two tensor fields G1 and G2 on the body that ultimately provide the
effects at the macrolevel of geometrical changes without disarrangements at each
of the submacrocscopic levels.

In Section 2.1 we describe the refined geometry of three-level structured de-
formations (g,G1, G2) based partly on discussions with Gianpietro Del Piero
in the late 1990′s. The three-level analogues (3) and Theorem 1 in the Ap-
pendix of the accommodation inequality and the Approximation Theorem iden-
tify G2 as a gradient followed by two limit operations that correspond to zoom-
ing out through both submacroscopic levels . As such, G2 incorporates at the
macrolevel nothing of the slips and separations at either submacroscopic level.
By contrast, G1 is identified as a limit (zooming out from submacroscopic level
2 to level 1) followed by a gradient followed by a second limit (zooming out
from submacroscopic level 1 to the macrolevel), and so incorporates the effects
both of smooth and of non-smooth changes at level 2, but only the effects of
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Figure 2: Disarrangements at different levels of hiearchy: SEM-image of an enamel specimen

a) after pre-loading, showing very little submacroscopic cracks opening, b) at a load level of

9N, displaying more opening (reproduced from [13] with permission of Prof.Dr.rer.nat. G.A.

Schneider).

Figure 3: Zoom-in across the scales: the presence of disarrangement at two different levels

is evident because of the separation between (i) bundled papers and (ii) sheets.

smooth deformations at level 1. The three-level hierarchy is completed with the
field G0 := ∇g, consisting first of two limits that span both the submacroscopic
levels, followed by the gradient operation. Consequently, G0 incorporates both
types of geometrical changes at both submacroscopic levels.

The analysis in Section 2.2 includes a discussion of the algebraically triv-
ial additive decomposition G0 = G2 + (G1 − G2) + (G0 − G1), in which each
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of the differences Gi−1 − Gi on the right-hand side represents the effect of in-
terchanging the order of a ”limit operator” with the gradient operator and,
consequently, incorporates only the effects of disarrangements at level i. Our
definition Mi = Gi−1 − Gi of the disarrangement tensor at level i recasts the
last additive decomposition in the form

∇g = G0 = G2 +M2 +M1 (2)

and so resolves the difference G0 − G2, spanning both submacroscopic levels,
separately into the effects M2 of disarrangements at level two only, added to the
effects M1 of disarrangements at level one only. This is the source of the term
”hierarchical disarrangements” and motivates the preferred choice of refined
geometrical variables G2, M2, M1 in most of our treatment. We show also in
Section 2.2 how factoring the invertible tensor field G2 from either the left of the
sum G2 +M2 +M1 or from the right yields two multiplicative decompositions of
∇g = G0 in both of which each factor has a definite interpretation supported by
limit formulas derived from the Approximation Theorem. Moreover, a notion
of composition of three-level structured deformations permits us to factor via
composition an arbitrary three-level structured deformation into a succession of
three three-level structured deformations, each of which describes geometrical
changes occuring at exactly one of the three levels under consideration.

For each three-level structured deformation and for each tensor field N (”ten-
sor flux”) on the macroscopically deformed body, we introduce in Section 2.3,
for i = 0, 1, 2, ... various refined versions Ni, Ni−1.\ and Ni−1.d of the field N
that depend upon the submacroscopic or macroscopic level i and depend upon
whether disarrangements at that level are to be incorporated. Our develop-
ment focuses on the example N = T , the Cauchy stress (stress in the deformed
configuration), in which case T0 is the (first) Piola-Kirchhoff stress (stress in the
reference configuration). However, the treatment here could also apply to other
tensor fluxes such as the momentum flux. The interpretations of the refined
versions Ni, Ni−1.\ and Ni−1.d are justified on the basis of the Approximation
Theorem, and we provide additive decompositions that parallel the decomposi-
tion of ∇g in (2) as well as multiplicative decompositions. The availability of
universal additive and of multiplicative decompositions of tensor fluxes at each
level permits us in Section 2.4 to derive a consistency relation for the tensors
Ni−1.\ and Ni−1.d at each submacroscopic level analogous to (1) for the case of
the stress and for only one submacroscopic level.

In Section 3 the notion of a structured motion as a time-parameterized fam-
ily of three level structured deformations is introduced. In this context, one can
use the three-term additive decomposition (2) of G0 and the corresponding de-
composition of tensor fluxes N to compute a nine-term additive decomposition
of the inner product N0 · Ġ0, where Ġ0 is the time derivative of G0. When N
is taken to be the Cauchy stress field T defined on the deformed configuration
of the body at each time, then T0 · Ġ0 is the stress power per unit volume in the
reference configuration of the body. Three of the nine terms in the expression
for the stress power contain a ”matching” pair of factors, indicating that the
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location of the corresponding tractions are in proximity to the resulting geomet-
rical changes both in the sense of spatial location and in the sense of hierarchical
level. The remaining six terms of T0· Ġ0 each contains a mismatched pair of
factors: either the two hierarchical levels of the refined stress and of the rate
of deformation measure do not match or the disarrangement status ”without
disarrangements” versus ”due to disarrangements” of the two factors do not
match. This remote character of the stress and deformation rates in the mis-
match terms lead us in subsequent sections to assign a special thermodynamical
status to these six terms.

Section 4 contains the conceptual background for the specific constitutive
assumptions that we make in Section 5. This background is needed, since
it provides a procedure for assuring that constitutive assumptions are in ac-
cord with the Second Law of Thermodynamics that is less restrictive than the
now standard procedure of Coleman and Noll [3]. The key observation already
employed in [2] that we use here in Section 4 is the following: constitutive as-
sumptions identify a constitutive class, i.e., a subset C of the collection of all
dynamical processes available to a body, and the requirement that the Second
Law of Thermodynamics be satisfied also identifies a set T of dynamical pro-
cesses; compatibility of the constitutive assumptions with the Second Law is
simply the requirement that the first set be included in the second: C ⊂ T .
For a given free energy response function, our approach provides in Section 5
constitutive relations defined in terms of that response function and its partial
derivatives, including an inequality involving the fields G2, M2, M1 and their
time derivatives. These relations define a constitutive class that we denote
by Ehd, and we verify the inclusion Ehd ⊂ T . An advantage of our partic-
ular choice Ehd is the particular physical interpretation that it affords for the
internal dissipation Γ = T0 · Ġ0 − ψ̇ in dynamical processes: Γ turns out to
be the sum of the six ”mismatch” terms in the expression for the stress power
T0 · Ġ0, and internal dissipation is thereby identified with lack of proximity of
applied tractions to the sites of occurrence of the geometrical changes that they
work against. Here, ”proximity” means that the tractions and the rates of de-
formation must correspond to the same (submacroscopic or macroscopic) level
and to the same disarrangement status (”without disarrangements” or ”due to
disarrangements”).

In Section 5.1 we detail the choice of Ehd, the constitutive class mentioned
in the previous paragraph. One of our constitutive equations requires that
the free energy density at any point and time be determined through a given
response function Ψ by the values at that point and time of G2, M2, and M1.
Three additional constitutive equations relate the values of the refined stress
measures T1.\, T1.d, and T0.d at each point and time to the values of G2, M2,
and M1 by means of the partial derivatives DG2Ψ, DM2Ψ, and DM1Ψ of Ψ,
respectively. Doing so permits us to interpret each of these stress measures as a
”driving force (per unit area)” corresponding to a refined geometrical variable.
The final constitutive assumption is the requirement that the power expended
by the ”mismatch” terms in the stress power T0 · Ġ0 be non-negative. This
inequality is a restriction on dynamical processes that, together with the other
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constitutive assumptions, assures that the constitutive class Ehd is compatible
with the Second Law. In Section 5.2 we rewrite with N = T the two consistency
relations by substituting into them the constitutively assigned expressions for
the refined stress measures in terms of the derivatives of the free energy response
Ψ. We so obtain two tensorial consistency equations that directly restrict the
three fields G2, M2, and M1 and that eventually provide closure to the field
theory under consideration. We also record the ”stress relation” that gives
the Piola-Kirchhoff stress S = T0 in terms of G2, M2, and M1 as the sum of
the three partial derivatives of Ψ. The stress relation then permits one to
write the balance of linear momentum equation as a restriction on the fields g,
G1 = G2 + M2, and G2. Additional stress relations for the referential stresses
T1 and T2 at submacroscopic levels 1 and 2 also are obtained in terms of the
partial derivatives of Ψ.

We are aware that the accomodation inequality 0 < det G ≤ det F could
be treated as an internal constraint and, hence, appropriate reaction stresses
would arise. This would lead to an enrichment of the refined measures for the
stress and, ultimately, of the stress measures themselves (see [35] for details in
the context of ordinary disarrangements and of ”gradient disarrangements”).

The refined geometry of three-level structured deformations permits the de-
termination of transformation rules under change of observer for the new tensor
fields that enter into our constitutive relations, and we note in Section 5.3 that
G1, G2, M2, M1, Ti for i = 0, 1, 2, as well as Ti−1.\ and Ti−1.d for i = 1, 2
all transform in the same manner under change of observer as does G0 = ∇g.
Frame-indifference in the present context is the statement that the constitutive
class Ehd chosen in Section 5.1 be closed under change of observer, i.e., a dy-
namical process is in Ehd if and only if all the dynamical processes obtained
from it by a change of observer also are in Ehd. It is interesting that we are able
to show in Section 5.3 that frame-indifference here is equivalent to the usual
invariance property of the free energy response Ψ together with the symmetry
of the Cauchy stress T . Consequently, balance of angular momentum is guaran-
teed on dynamical processes in Ehd, once it is required that Ehd be closed under
change of observer.

In Section 5.4 we extend to elasticity with hierarchical disarrangements the
notion of ”stable disarrangement phase” already defined and studied ([5],[6],[43])
in the context of elasticity with disarrangements at only one submacroscopic
level [2]. In the present context, for a given tensor F = G0, the decomposition
F = G2+M2+M1, the consistency relations for stress at submacroscopic levels 1
and 2 and a symmetry condition arising from frame indifference, along with the
accommodation inequalities, provide four tensorial equations and three inequal-
ities that restrict the tensor variables G2, M2, and M1. A triple G2, M2, M1

that satisfies these equations and inequalities is called a disarrangement phase
corresponding to F . We pointed out in the context of elasticity with disarrange-
ments ([5],[6],[43]) that multiple disarrangement phases corresponding to a given
F are to be expected, and the same assertion applies in the present, richer con-
text. Accordingly, we follow [6] and define a stable disarrangement phase G2,
M2, M1 corresponding to F to be a disarrangement phase corresponding to
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F with the lowest free energy among all disarrangement phases corresponding
to F . Because of the constraints imposed by (i) the consistency relations and
frame indifference, (ii) the decomposition for F , and (iii) the accommodation
inequalities, a stable disarrangement phase need not be a stationary point of the
free energy and, therefore, the stress need not vanish at a stable disarrangement
phase and (as examples in the two-level case show) need not be hydrostatic.

We collect together in Section 5.5 all of the geometrical and constitutive
information from previous sections and record the system of field relations
for elasticity with hierarchical disarrangements. The field relations amount to
thirty-three scalar equations and four inequalities to be satisfied by the thirty
components of g, G2, M2, and M1. (Three of the scalar equations express the
symmetry of the Cauchy stress and can be omitted in cases where a particular
free energy response function automatically provides the required symmetry.)
We show how under particular circumstances these field relations in the context
of two submacroscopic levels reduce to those for elasticity with disarrangments,
in which only one submacroscopic level is admitted, or, under other particu-
lar circumstances reduce to the field relations of finite elasticity, in which no
submacroscopic levels are admitted.

In Section 6 the case where the response function Ψ does not depend upon
the disarrangement tensors M1 and M2 is considered. This special circumstance
bars the storage of energy in the body through non-smooth geometrical changes,
and, following terminology introduced in the two-level case [23], we call this
the case of purely dissipative disarrangements. The field relations simplify
considerably in the case of purely dissipative disarrangements, and we point
out that among the field relations, all but the accommodation inequalities are
invariant under interchange of the fields M1 and M2. Examples are provided in
Section 6 that illustrate how the accommodation inequalities serve in the case
of purely dissipative disarrangements to determine the particular level at which
given disarrangements may arise.

The refined geometry of hierarchical structured deformations provides, in
addition to the Piola-Kirchhoff stress T0 = S, the submacroscopic reference
stresses T1 and T2 introduced in Section 2.3. Each incorporates to a different
extent the disarrangements occuring at submacroscopic levels one and two. In
Section 7 we use the reference stresses T0, T1, and T2 to refine and broaden the
types of boundary conditions available for the fields g, G1, G2 that determine
structured deformations satisfying the field relations in Section 5.5.

The paper concludes with an appendix in which a complete statement and
proof of the Approximation Theorem for three-level structured deformations are
provided.
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2 Hierarchical structured deformations

2.1 Definition and Approximation Theorem

The geometrical basis for our present considerations is the multilevel geometry
of hierarchical structured deformations that we describe here for the case of
three levels: the macroscopic level along with two submacroscopic levels. The
case of a multilevel geometry with only one submacroscopic level was developed
in a series of papers on structured deformations ([1], [25], [29], [24], [31], [38],
[39]) from which followed a number of applications (e.g., [30], [26], [44], [36],
[37], [2], [4], [6], [43], [40], [41]) that include a field theory of elasticity with
(submacroscopic) disarrangements [2] and a broadened field theory that in-
cludes the effects of gradient disarrangements [35]). The case with more than
two submacroscopic levels can be inferred easily from the present treatment.
For present purposes, we may define a three-level structured deformation to be
a triple (g,G1, G2) in which the injective, piecewise continuously differentiable
point-valued mapping g : B −→ E from the body B into Euclidean space E is
called the macroscopic deformation, and the piecewise continuous tensor-valued
mappings G1 and G2 from B into LinV are called the deformation without
disarrangements at submacroscopic level one and the deformation without dis-
arrangements at submacroscopic level two, respectively. The triple (g,G1, G2)
is required to satisfy the accommodation inequalities throughout B (excepting
the points of discontinuity of ∇g, G1 and G2):

c < detG2(X) ≤ detG1(X) ≤ det∇g(X) (3)

with c a positive constant that may depend upon the given triple but not upon
the points X in B. (The notions of piecewise continuous differentiability and
piecewise continuity are made precise in [1] through the notion of ”simple defor-
mations” and ”piecewise-fit regions”; the set κ that appears in the definitions
of simple and structured deformations in [1] is here taken to be the empty
set). Here, ∇ denotes the classical derivative of a smooth mapping or of the
restriction of a piecewise smooth mapping to points of differentiability. When
the body has the regularity of a piecewise-fit region [1], the Approximation
Theorem for three-level structured deformations provides a double sequence
(n1, n2) 7−→ fn1n2

of injective, piecewise continuously differentiable mappings
from B into E satisfying

lim
n1→∞

lim
n2→∞

fn1n2
= g, (4)

so that the deformation gradient ∇g is given by

G0 := F := ∇g = ∇ lim
n1→∞

lim
n2→∞

fn1n2, (5)

as well as satisfying

G1 = lim
n1→∞

∇ lim
n2→∞

fn1n2 (6)

G2 = lim
n1→∞

lim
n2→∞

∇fn1n2 . (7)
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Here, each of the limits limn1→∞, limn2→∞ separately may be taken in the
sense of L∞-convergence on the body, i.e., in the sense of essential uniform con-
vergence, although other settings may require different choices of regularity of
the fields g, G1, and G2 and possibly weaker notions of convergence (see [29],
[30], [31], [38] for the case of two-level structured deformations). A complete
statement of the Approximation Theorem for three-level structured deforma-
tions and a proof are provided in the Appendix.

It is clear from (5) - (7) that G0, G1, and G2 capture the effects of apply-
ing the gradient operator ∇ following, between, or prior to applying the limit
operations limn1→∞ and limn2→∞, and we explore now in more depth the sig-
nificance of these relations. We interpret each injective mapping fn1n2

in (4) -
(7) to be a description of the geometrical changes occurring at the finest level
(highest magnification), i.e., at the submacroscopic level 2. The non-smooth
changes (disarrangements) may consist of slips and separations of small pieces
of the body that, individually, deform smoothly. The classical gradient ∇fn1n2

then reflects only the smooth changes occurring at level 2 in each of the pieces.
The limits limn2→∞ fn1n2

and limn2→∞∇fn1n2
reflect the process of ”zooming

out” from submacroscopic level 2 to submacroscopic level 1: limn2→∞ fn1n2

reflects the effects at level 1 of both disarrangements occuring at level 2 and of
smooth changes occurring at level 2; on the contrary, limn2→∞∇fn1n2

reflects
the effects at level 1 only of deformations without disarrangements occurring at
level 2. The process limn1→∞ of zooming out from level 1 to the macrolevel,
level 0, along with the relation (7), then justifies the terminology already in-
troduced: ”deformation without disarrangements at level 2” for the tensor field
G2. In the same spirit, for each n1 the field ∇ limn2→∞ fn1n2

only reflects the
smooth part of the deformations limn2→∞ fn1n2

at level 1, so that the iterated
limit limn1→∞∇ limn2→∞ fn1n2

reflects the effects at the macrolevel only of the
smooth part of the deformations limn2→∞ fn1n2

at level 1. The relation (6)
then justifies the terminology already introduced: ”deformation without disar-
rangements at level 1” for the tensor field G1.

As an example we consider the three-level shear, an adaptation to the present
context of the two-level shear for two-level structured deformations [1], [26]. Let
u, v be orthogonal unit vectors, let µ0, µ1, µ2 be scalars, and define for each X
in B

g(X) = X + µ0 (v · (X − o))u (8)

G1(X) = I + µ1u⊗ v, G2(X) = I + µ2u⊗ v (9)

with o a preassigned point in B, the unit cube with one vertex at o and two
edges parallel to u and v. The macroscopic deformation g is a simple shear
of amount µ0 in the direction u whose shearing plane has normal v, while the
angle of shearing is tan−1 µ0. Because G0(X) = ∇g(X) = I + µ0 u ⊗ v, we
have detGi = 1 for i = 0, 1, 2, so that the accommodation inequalities (3) are
satisfied with c = 1/2 and with equality in the last two.

An approximating sequence (n1, n2) 7−→ fn1n2
for the three-level shear that

satisfies (4) - (7) in the Approximation Theorem is described geometrically as
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follows. The mapping fn1n2 first slices B into n1 pieces (”cards”) by means
of n1 − 1 parallel planes with normal the unit vector v that are separated by
amount 1/n1. It leaves the bottom card fixed and translates each higher card
in the deck, relative to the one below it, by the amount (µ0 − µ1)/n1 in the
direction u, and successively shears the ith translated card via a simple shear of
amount µ1, again in the direction u with normal orientation v. The resulting
deck of n1 translated and sheared cards approximates the range g(B) of the
original mapping g, and this sequence of injective, piecewise smooth approxi-
mations indexed on n1 would converge to g uniformly, while its gradients would
converge uniformly to G1, if we at this point would let n1 tend to infinity. In
fact, the description up to this point is precisely that of a two-level shear and
its approximates at submacroscopic level 1 [1]. The further action of fn1n2

involves slicing each of the n1 translated and sheared level 1 cards into n2 level
2 cards by means of n2 − 1 planes all with normal v as before. Within the
ith level 1 card, the jth level 2 card is translated relative to the card below it
by amount (µ1 − µ2)/n2 in the direction u and sheared via a simple shear of
amount µ2 with direction u and normal orientation v. The resulting sequence
of multilevel shears fn1n2 is easily shown to satisfy (4) - (7) for the specific
three-level structured deformation defined in (8) and (9).

It is worth pointing out in the example of three-level shears that the differ-
ences

G0 −G1 = (µ0 − µ1)u⊗ v and G1 −G2 = (µ1 − µ2)u⊗ v

involve the differences µ0 − µ1 and µ1 − µ2 that appear in the numerators of
the expressions for the tangential discontinuities (µ0 − µ1)/n1 and of (µ1 −
µ2)/n2 caused by the approximating sequence of piecewise smooth, injective
deformations fn1n2 . This suggests that G0 − G1 captures the deformation
due to disarrangements at submacroscopic level 1, while G1 −G2 captures the
deformation due to disarrangements at submacroscopic level 2. An analysis
analogous to that given in [25] for general two-level structured deformations
shows that for arbitrary three-level structured deformations this interpretation
of the differences Gi−1−Gi for i = 1, 2 is justified. In fact, for each three-level
structured deformation (g,G1, G2) and for each sequence fn1n2 satisfying (4) -
(7) in the Approximation Theorem, we have for every point X and r > 0:∫
Br(X)

(G1−G2)(y)dVy = lim
n1→∞

lim
n2→∞

∫
J(fn1n2

)∩Br(X)

[fn1n2
](y)⊗νy dAy (10)

and∫
Br(X)

(G0−G1)(y)dVy = lim
n1→∞

∫
J(limn2→∞ fn1n2

)∩Br(X)

[ lim
n2→∞

fn1n2 ](y)⊗νy dAy.

(11)
In these relations, Br(X) denotes the ball of radius r centered at the point X
in B, while J(h) denotes the jump set of a function h, νy the normal to J(h) at
the point y, and [h](y) its jump at y. While (6) and (7) show that G1 and G2

13



capture the effects at the macrolevel of smooth submacroscopic deformations at
levels 1 and 2, respectively, the relations (10) and (11) show that the tensor

M1 := G0 −G1 (12)

captures the effects at the macrolevel of disarrangements (discontinuous defor-
mations) at submacroscopic level 1 and that

M2 := G1 −G2 (13)

captures the effects at the macrolevel of disarrangements at submacroscopic level
2. We call M1 and M2 the disarrangement tensors for the three-level structured
deformation (g,G1, G2). Their role from (10) and (11) in capturing separately
the non-smooth deformations that occur at different levels motivates the term
”hierarchical disarrangements” in the title of this paper. It is of mathematical
interest to note from (5) - (7), (12) and (13) that each of the disarrangement
tensors M1 and M2 captures quantitatively the effect of interchanging once the
operation ”∇”, the classical gradient operator, and the operation ”lim” that
here describes zooming out one level.

2.2 Additive decompositions, multiplicative decompositions,
and factorizations

We record using (5), (10), and (11) the algebraically simple but geometrically
significant relation

∇g = G0 = G2 +M2 +M1 (14)

that provides an additive decomposition of the macroscopic deformation gradi-
ent as a sum of the disarrangement tensors M1 and M2 at levels one and two,
respectively, and of the tensor without disarrangements at level two G2. Thus,
all of the local geometrical changes captured by G0 = ∇g are described in a
simple way in terms of the deformation without disarrangements G2 at level
two and the deformations due to disarrangements M1 and M2 at levels one and
two. Similarly, we may write for i = 1, 2:

Gi−1 = Gi +Mi (15)

to obtain additive decompositions for G0 and for G1 into a part without disar-
rangements and a part due to disarrangements. While each of these decompo-
sitions is algebraically trivial, the identification relations (6), (7), (10), and (11)
fully justify the interpretation and the terminology that we provide for each
term in the sums on the right-hand sides of (14) and (15).

We emphasize that the additive decompositions (14) and (15) are valid what-
ever the size of the underying deformations. The additive decomposition (14)
for ∇g provides immediately two multiplicative decompositions:

∇g = G2(G−12 M1 +G−12 M2 + I) =: G2Mr (16)

∇g = (M1G
−1
2 +M2G

−1
2 + I)G2 =: MlG2. (17)
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In many theories of inelastic behavior of materials, particularly in theories of
plasticity, analogous decompositions are introduced either as constitutive as-
sumptions or as geometrical assumptions that rest on the existence of interme-
diate configurations that are not attainable in general by a three-dimensional
body. Here, the multiplicative decompositions are derived from additive de-
compositions, and the factors in each multiplicative decomposition have definite
interpretations obtained from the identification relations (6), (7), (10), and (11).
Moreover, each of the multiplicative factors Mr and Ml itself has an additive
decomposition whose terms reflect the presence of disarrangements at two sub-
macroscopic levels:

Mr = G−12 M1 +G−12 M2 + I (18)

Ml = M1G
−1
2 +M2G

−1
2 + I. (19)

(See [1], [32] for detailed discussions of the corresponding additive and multi-
plicative decompositions in the case of two-level structured deformations.)

In spite of the usefulness of multiplicative decompositions of the form (16)
and (17), these decompositions do not reflect factorizations of the deformations
of the body as a whole. We record here a definition of composition of three-level
structured deformations (see [1] for the two-level counterpart) that does reflect
geometrical changes of the body as a whole:

(g,G1, G2) ◦ (g̃, G̃1, G̃2) = (g ◦ g̃, (G1 ◦ g̃)G̃1, (G2 ◦ g̃)G̃2). (20)

In this definition we use the same symbol ”◦” on the left to denote ”composition
of structured deformations” as we do on the right for ”composition of tensor
fields and point mappings”, but no confusion should arise from this practice.
This definition leads immediately to the following factorization of an arbitrary
three-level structured deformation:

(g,G1, G2) = (g,G0, G0) ◦ (ι, G−10 G1, G
−1
0 G1) ◦ (ι, I,G−11 G2) (21)

where ι denotes the identity mapping X 7−→ ι(X) = X, and where I is the
constant tensor field whose only value is the identity tensor u 7−→ Iu = u. The
factorization is easily verified by evaluating the (associative) operation ◦ twice
on the right-hand side of this relation, and we show below (22) that each factor
on the right-hand side is, itself, a three-level structured deformation.

The following table records, for each of the three factors on the right-hand
side of (21), the deformation without disarrangements at level two, ”G2”, as
well as the disarrangement tensors ”M1” and ”M2” at levels one and two:

factor in (21) ”G2” ”M1” ”M2”
(g,G0, G0) G0 0 0

(ι, G
−1
0 G1, G

−1
0 G1) G−10 G1 I −G−10 G1 0

(ι, I,G
−1
1 G2) G−11 G2 0 I −G−11 G2.

The table shows that the first factor (g,G0, G0) causes no disarrangements
at either submacroscopic level, and we call (g,G0, G0) a classical deformation
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or a purely macroscopic deformation, since in classical treatments of geomet-
rical changes no disarrangements are included and only deformations at the
macrolevel are considered. The second factor (ι, G

−1
0 G1, G

−1
0 G1) produces no

geometrical changes at the macrolevel, since i(X) = X for all X ∈ B, and causes

no disarrangements at submacroscopic level 2. The third factor (ι, I,G
−1
1 G2)

produces no geometrical changes at either the macrolevel or at the submacro-
scopic level 1, since ι(X) = X for all X ∈ B and since Iu = u for all u ∈ V, and

(i, I, G
−1
1 G2) causes no disarrangements at submacroscopic level 1.

It is convenient to use the notation Ki = G−1i−1Gi for i = 1, 2 and to write
the factorization (21) in the form

(g,G1, G2) = (g,G0, G0) ◦ (ι,K1,K1) ◦ (ι, I,K2). (22)

The accommodation inequalities (3) for the three-level structured deformation
(g,G1, G2) tells us that at each point X both detK1(X) and detK2(X) lie in the
interval (0, 1], and we refer to detKi as the volume fraction associated with the
purely level-i factor, for i = 1, 2. Moreover, it is clear that each of the factors on
the right-hand side of (22) is, itself, a three-level structured deformation, because
each has the required regularity and satisfies the accommodation inequalities (3)
in one of the following forms:

0 < c0<detG0(X) = detG0(X) = det∇g(X) for (g,G0, G0)

0 < c1<detK1(X) = detK1(X) ≤ 1 = det∇ι(X) for (ι,K1,K1)

0 < c2<detK2(X) ≤ 1 = det I = det∇ι(X) for (ι, I,K2).

In these relations, cj for j = 0, 1, 2, can be chosen using the fact that detGj
has a strictly positive lower bound and a finite upper bound on the closure of
the body.

2.3 Decomposition of tensor fluxes

For a given three-level structured deformation (g,G1, G2) and for a smooth
tensor field N : g(B) −→ LinV, we call N a tensor flux on the deformed config-
uration, and we define for i = 0, 1, 2 the reference flux at level i to be the tensor
field Ni : B −→ LinV given by

Ni = (N ◦ g)G∗i , (23)

where, for each invertible tensor A, A∗ = (detA)A−T . We also refer to N0

as the macroscopic reference flux. For example, when N = T is the Cauchy
stress field on g (B), then T0 = (T ◦ g)G∗0 = (T ◦ g)(∇g)∗ is the Piola-Kirchhoff
stress, usually denoted by S. The macroscopic reference stress T0 as well as the
submacroscopic reference stresses Ti = (T ◦ g)G∗i for i = 1, 2 can be rewritten
using (4), (6), and (7) as

S = T0 = (T ◦ g) (∇ lim
n1→∞

lim
n2→∞

fn1n2))
∗

T1 = (T ◦ g) lim
n1→∞

(∇ lim
n2→∞

fn1n2
)∗

T2 = (T ◦ g) lim
n1→∞

lim
n2→∞

(∇fn1n2
)∗. (24)
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This is the primary example of tensor flux that we shall use here, and the reader
may without loss read all of the following with N replaced by T . Later in this
section we justify calling the submacroscopic reference stress T1 the part of the
macroscopic reference stress T0 = S without level one disarrangements, and
we justify calling the submacroscopic reference stress T2 the part of the sub-
macroscopic reference stress T1 without level two disarrangements (see relations
(29)).

For a general flux N , the reference fluxes N1 and N2 at the submacroscopic
levels one and two are intended to capture the idea that the geometry of three-
level structured deformations allows us to identify refined measures of fluxes
defined on the body B arising from the given flux N on the deformed body
g(B). In order to develop further this idea, we use the tensor fields Ki defined
above (22) to write for i = 1, 2 the following product rule

detKi divNi−1 = div((detKi)Ni−1)−Ni−1∇ detKi

for the divergence of the product (detKi)Ni−1. By adding and subtracting on
the right-hand side the field div(Ni−1K

∗
i ), where K∗i = (detKi)K

−T
i , we obtain

for i = 1, 2

detKi divNi−1 = div(Ni−1K
∗
i )+div((detKi)Ni−1−Ni−1K∗i )−Ni−1∇detKi.

(25)
Arguments given in [2] in the context of two-level structured deformations and
summarized in [6] show, by applying the Approximation Theorem to the purely
level-i factor in the factorization (22), (i,K1,K1) for i = 1 or (i, I,K2) for i = 2,
that the left-hand side detKi divNi−1 can be interpreted as a volume density
of the flux of Ni−1 taking into account both the sites of disarrangements and
the preassigned surfaces across which the flux of Ni−1 is measured. Moreover,
the term div(Ni−1K

∗
i ) on the right-hand side can be interpreted as a volume

density of the flux of Ni−1, taking into account only preassigned surfaces. Con-
sequently, the remaining terms div((detKi)Ni−1−Ni−1K∗i )−Ni−1∇ detKi can
be interpreted as the volume density of the flux of Ni−1, taking into account only
the sites of disarrangements at level i, and we may call (25) the decomposition
at level i of the volume density of the flux of Ni−1. It is shown further in [2]
that the tensor field Ni−1K

∗
i accounts for all of the volume density of the flux

without level i disarrangements, while the tensor field (detKi)Ni−1 −Ni−1K∗i
accounts for only the flux due to level i disarrangements.

The trivial algebraic identity for i = 1, 2

(detKi)Ni−1 = Ni−1K
∗
i + ((detKi)Ni−1 −Ni−1K∗i ) (26)

and the identification just above of each term on the right-hand side of (25)
motivates the following terminology: Ni−1K

∗
i is the part of Ni−1 without level

i disarrangements, and (detKi)Ni−1 −Ni−1K∗i is the part of Ni−1 due to level
i disarrangements. For conciseness, we use the following notation for the two
parts of Ni−1:

Ni−1.\ := Ni−1K
∗
i and Ni−1.d := (detKi)Ni−1 −Ni−1K∗i , (27)
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In the expression Ni−1K
∗
i the subscript i− 1 on N indicates the level at which

the reference flux is measured, while the subscript i on Ki and K∗i indicates the
level at which disarrangements are being considered.

We rewrite (26) in the shorter form for i = 1, 2:

(detKi)Ni−1 = Ni−1.\ +Ni−1.d. (28)

The appearance of detKi multiplying Ni−1 on the left-hand sides of (26) and
(28) is natural, in light of the fact that the adjugate K∗i of Ki also containes
that factor. (One could divide the decomposition (26) through by detKi and so
obtain a decomposition of Ni−1, itself, but maintaining the presence of detKi

has advantages that are apparent in what follows.) One may view the role
of detKi in front of Ni−1 in (28) as adjusting for the possible reduction in
volume due to the ”purely level-i factor” in the factorization (22). One also may
regard the decomposition (28) as the counterpart for fluxes of the geometrical
decomposition Gi−1 = Gi + Mi that results from the definition of Mi as the
difference Gi−1 −Gi.

We have argued for i = 1, 2 that Ni−1.\ = Ni−1K
∗
i represents the part of

the reference flux Ni−1 without disarrangements at level i, and it is interesting
that this part of the reference flux Ni−1 at level i − 1 actually recovers all of
the reference flux Ni at the next level, level i, i.e., we have at each of the two
submacroscopic levels:

Ni = Ni−1.\ for i = 1, 2. (29)

For example, the reference stress T1 represents the part of the Piola-Kirchhoff
stress T0 = S without disarrangements at level 1, while T2 represents the part
of T1 without disarrangements at level 2. To establish (29) we note that Gi =
Gi−1Ki, so that G∗i = G∗i−1K

∗
i and therefore we have

Ni = (N ◦ g)G∗i = (N ◦ g)G∗i−1K
∗
i = Ni−1K

∗
i = Ni−1.\.

Inasmuch as the additive decomposition (28) is the counterpart for fluxes of
the geometrical decomposition Gi−1 = Gi +Mi, it is natural to seek a counter-
part for fluxes of the full geometrical decomposition (14): G0 = G2 +M2 +M1.
In fact, it is not difficult to arrive at the corresponding full decomposition of
fluxes in the following form:

(detK1)(detK2)N0 = N1.\ +N1.d + (detK2)N0.d . (30)

Indeed, the decomposition (28) of fluxes at level i with i = 2, the definition
(27)2 with i = 1, and the identification (29) of Ni with i = 1 permit us to write

N1.\ +N1.d + (detK2)N0.d

= (detK2)N1 + (detK2)((detK1)N0 −N0.\)

= (detK2)N1 + (detK2)((detK1)N0 −N1)

and this verifies (30). We refer to the decompositions (14) of G0 and (30) of
N0 as parallel decompositions, because corresponding terms on the right-hand
sides refer to the same disarrangement status and to the same level at which
disarrangements occur.
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2.4 Universal consistency relations for tensor fluxes at
submacroscopic levels

For i = 1, 2 the definition (27)1 of Ni−1.\ is a multiplicative relation, while the
decomposition (28) is an additive relation. Together these two relations yield:

Ni−1.\ +Ni−1.d = (detKi)Ni−1 = Ni−1.\K
T
i

Multiplying on the right the left-most and the right-most members by K−Ti =
(G−1i Gi−1)−T = GTi G

−T
i−1 we find that

Ni−1.\(G
T
i G
−T
i−1 − I) +Ni−1.dG

T
i G
−T
i−1 = 0.

Multiplying both sides on the right by GTi−1 and using the definition Mi =
Gi −Gi−1 we obtain the consistency relation at submacroscopic level i :

Ni−1.\M
T
i +Ni−1.dG

T
i−1 = 0 for i = 1, 2. (31)

The consistency relations (31) show that, for a given three-level structured de-
formation and a given tensor field N on g(B), the parts of Ni−1 with and
without disarrangments at each submacroscopic level i cannot be assigned in-
dependently. In the context of two-level structured deformations and when N
is taken to be the Cauchy stress tensor T , the consistency relation for i = 1 can
be rewritten in terms of S = T0 and reads

S\M
T
1 + Sd(∇g)T = 0.

It was derived in [2] and provides an essential relation among the field relations
that govern elastic bodies undergoing disarrangements at one submacroscopic
level.

It is important to keep in mind that the consistency relations (31) are uni-
versal, in the sense that that apply to every body, whatever its material com-
position, undergoing a structured deformation (g,G1, G2) in the presence of a
given tensor flux N . The universality property as well as a uniqueness property
of the associated decompositons (27) and (28) were studied in the context of
two-level structured deformations in [42].

It is helpful to rewrite the two consistency relations (31) in terms of the
three tensor fluxes N1.\, N1.d, and N0.d that appear in the full decomposition
(30) of the reference flux N0 at the macroscopic level. Putting i = 1 in (31) and
multiplying both sides by detK2 we have

0 = (detK2)N0.\M
T
1 + (detK2)N0.dG

T
0

= (detK2)N1M
T
1 + (detK2)N0.dG

T
0

= (N1.\ +N1.d)M
T
1 + (detK2)N0.dG

T
0

where we have used (29) and (28) in the second and third relations. This
relation together with (31) for i = 2 and the relation G1 = G2 + M2 yield the
desired form of the consistency relations:

N1.\M
T
1 +N1.dM

T
1 + (detK2)N0.dG

T
0 = 0 (32)
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N1.\M
T
2 +N1.dM

T
2 +N1.dG

T
2 = 0. (33)

3 Motions and a decomposition of the stress-
power

We follow some earlier treatments of motions in the context of two-level struc-
tured deformations ([2], [32], [33]) by requiring that, at each time t in a given in-
terval, there is specified a three-level structured deformation (g(·, t), G1(·, t), G2(·, t))
of the body. We require for every X in B that the field t 7−→ g(X, t) is twice
continuously differentiable, while t 7−→ Gi(X, t) for i = 0, 1, 2 is continuously
differentiable. Thus, structured motions here may be regarded as smoothly
time-parameterized families of three-level structured deformations. ( See [33]
for an alternative approach in the context of two-level structured deformations
in which time-like disarrangements are admitted.) It is convenient in what fol-
lows to denote derivatives with respect to t via Newtonian notation (superposed
dots) and, without risk of ambiguity, to omit frequently the explicit writing of
the variable t.

We may now use the parallel decompositions (14) of G0 = ∇g and the full
decomposition of fluxes (30) with N equal to T , the Cauchy stress, to compute
(detK1)(detK2)T0 · Ġ0, the stress-power P in a given motion (measured per
unit volume at submacroscopic level two):

P : = (detK1)(detK2)T0 · Ġ0

=
{
T1.\ + T1.d + (detK2)T0.d

}
·
{
Ġ2 + Ṁ2 + Ṁ1

}
= T1.\ · Ġ2 + T1.d · Ṁ2 + (detK2)T0.d · Ṁ1 + Pmix. (34)

The stress-power P is an inner product of two factors, each with three terms,
and so can be written as a sum of nine terms. Here, each of the first three terms
displayed explicitly in the last expression in (34) contains a stress measure and a
measure of rate of deformation that match both in terms of submacrosopic levels
and in terms of whether or not the effects of disarrangements are captured. For
example, in the inner product T1.\ · Ġ2, the factor T1.\ is the part of T1 without

level 2 disarrangements and Ġ2 is the rate of change of deformation without level
2 disarrangements. The sum of the remaining six terms is designated in (34) by
Pmix. These six terms include, for example, the terms T1.\ · Ṁ2 and T1.d · Ṁ1,
and each such term has the property that there is at least one ”mismatch”
between its factors with regard to submacroscopic level or with regard to the
inclusion or not of effects of disarrangement. Thus, in the term T1.\ · Ṁ2 in the

sum Pmix, T1.\ is the part of T1 without level two disarrangements, while Ṁ2

is the rate of deformation due to level two disarrangements. Consequently, we
follow the terminology introduced in [2] in the context of two-level structured
motions and call Pmix the mixed power in the given motion (again measured per
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unit volume at submacroscopic level two). The refined geometry of hierarchical
structured deformations here permits us to distinguish the mixed power Pmix
from the total stress power P, and this distinction will allow us to identify
explicitly, in both physical and mathematical terms, the sources of dissipation
that arise through the constitutive prescriptions that we make in Subsection
5.1.

4 Dynamical processes, constitutive classes, and
the dissipation inequality

We adapt the discussion in [2] to specify here a dynamical process by giving
the fields g, G1, and G2 associated with a structured motion as well as the
Cauchy stress field T ◦ g, the volume density ψ of the Helmholtz free energy
in the macroscopic reference configuration, and the mass density ρ0 in that
configuration. The fields g, G1, G2 , T ◦ g, and ψ are defined on pairs (X, t)
with X ∈ B and t in a time interval that can depend upon g, while ρ0 is defined
on points X ∈ B. Henceforth, we consider the density ρ0 as fixed and omit it
when listing the quantities associated with dynamical processes. The formulas
from above (22) for Ki = G−1i−1Gi with i = 1, 2, accompanied by the relations
(23) and (27) with N = T , show that the stresses Ti−1.\ and Ti−1.d with and
without level i disarrangements are also specified once a dynamical process is
specified. The same is true for the stress power P and the mixed power Pmix
(see the formula (34)), as well as the time derivative ψ̇ of the free energy density.

A constitutive class for the body [34] is simply a collection C of dynamical
processes of the body, and a particular choice of constitutive class then limits
the dynamical processes that are to be considered. In practice, a constitutive
class is specified by giving a list of response functions and requiring that the
fields g, G1, G2 , T ◦ g, and ψ in each dynamical process be related through
equations and/or inequalities involving the response functions in the given list.

Another limitation on the collection of dynamical processes in the present
isothermal setting is thermodynamical in nature and here takes the form of a
dissipation inequality:

ψ̇(X, t) ≤ T0(X, t) · Ġ0(X, t) (35)

asserting that the rate of change of free energy density cannot exceed the stress
power in the macroscopic reference configuration. We denote by T the col-
lection of dynamical processes that satisfy the dissipation inequality, and we
impose the requirement C ⊂ T on possible choices of constitutive classes C.
This requirement suffices to assure that our constitutive relations are compati-
ble with the Second Law. The standard, Coleman-Noll procedure for assuring
compatibility of constitutive relations with the Second Law here proves to be
too restrictive in that it rules out non-zero internal dissipation in smooth pro-
cesses. (For a discussion of this shortcoming of the Coleman-Noll procedure in
the context of elastic bodies undergoing two-level structured deformations, see
Sections 6 and 7 of the article [2].)
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5 Elasticity with hierarchical disarrangements

5.1 Constitutive assumptions

The constitutive assumptions that we make here in the context of three-level
structured deformations are adaptations of those made for the field theory elas-
ticity with disarrangements [2] in the context of two-level structured deforma-
tions. It is important to keep in mind that, other than the free energy density
ψ itself, all of the fields that enter into our constitutive relations have been iden-
tified through the multilevel geometry of structured deformations and through
the decompositions of deformations and of fluxes that this geometry provides.
Consequently, we can avoid the pitfall of confusing, say, a constitutive equation
containing a particular stress field with a relation that defines that field.

We first assume that the density ψ of free energy per unit volume in the
macroscopic reference configuration is determined at each time t and point X
in B by the values of the fields G2, M2, and M1:

ψ(X, t) = Ψ(G2(X, t),M2(X, t),M1(X, t)) (36)

where Ψ is a smooth function of its three tensor arguments. Next, we consider
the decomposition (30) again with N = T , and we make constitutive assump-
tions on the stresses T1.\, T1.d, and Td.1 appearing in that decomposition:

T1.\(X, t) = (detK1)(detK2) |(X,t) DG2
Ψ(G2(X, t),M2(X, t),M1(X, t)), (37)

T1.d(X, t) = (detK1)(detK2) |(X,t) DM2Ψ(G2(X, t),M2(X, t),M1(X, t)),
(38)

T0.d(X, t) = (detK1) |(X,t) DM1
Ψ(G2(X, t),M2(X, t),M1(X, t)). (39)

These three constitutive assumptions reflect the refined geometry of three-level
structured deformations by linking the submacroscopic level and the disarrange-
ment status of a given stress field on the left-hand side with the variable with
respect to which the free energy is differentiated on the right-hand side. This
feature of the constitutive relations (37) - (39) tell us in language found in the
physics literature that the previously defined stress fields T1.\, T1.d, and T0.d
now play the role of ”driving forces” corresponding to the geometrical fields G2,
M2, and M1. (As we remarked at the beginning of this section, the stresses
T1.\, T1.d, and T0.d were not defined to be driving forces.)

The factors (detK1)(detK2) and (detK1) involving determinants of K1 and
K2 in (37) - (39) adjust for the fact that Ψ measures free energy per unit
volume in the macroscopic reference configuration, while the stresses T1.\, T1.d
refer to level two disarrangements and T0.d refers to level one disarrangements.
Moreover, the factors detK1 and detK2 in the three constitutive relations (37)
- (39) facilitate the following computation:

(detK1)(detK2)ψ̇

= (detK1)(detK2)DG2
Ψ(G2,M2,M1) · Ġ2 +
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(detK1)(detK2)DM2Ψ(G2,M2,M1) · Ṁ2 +

(detK1)(detK2)DM1Ψ(G2,M2,M1) · Ṁ1

= T1.\ · Ġ2 + T1.d · Ṁ2 + detK2T0.d · Ṁ1

= P − Pmix, (40)

where P and Pmix are the stress-power and the mixed stress-power defined
in the previous section. Because P = (detK1)(detK2)T0 · Ġ0, we conclude that
the relation (40) is equivalent to

T0 · Ġ0 − ψ̇ =
Pmix

(detK1)(detK2)
. (41)

Thus, our constitutive assumptions (37) - (39) imply that the rate of internal
dissipation per unit volume in the macroscopic reference configuration

Γ := T0 · Ġ0 − ψ̇ =
Pmix

(detK1)(detK2)
(42)

is given, to within the positive factor (detK1)(detK2), by the six ”mismatch”
terms that comprise the mixed power Pmix:

(detK1)(detK2)Γ = T1.\ · Ṁ2 + T1.\ · Ṁ1 +

T1.d · Ġ2 + T1.d · Ṁ1 +

(detK2)T0.d · Ġ2 + (detK2)T0.d · Ṁ2. (43)

The first two mismatch terms T1.\ ·Ṁ2 +T1.\ ·Ṁ1 represent the power expended
by stresses T1.\ without level two disarrangement against rates of change of

deformation Ṁ2 and Ṁ1 due to level 2 and to level 1 disarrangements, respec-
tively. The third and fourth terms T1.d · Ġ2 + T1.d · Ṁ1 represent the power
expended by stresses T1.d due to level two disarrangements against a rate of
change of deformation without (level one or level two) disarrangements Ġ2 or
against a rate of deformation Ṁ1 due to level one disarrangements. Finally, the
fifth and sixth mismatch terms (detK2)T0.d · Ġ2 + (detK2)T0.d · Ṁ2 represent
stresses T0.d due to level one disarrangments expending power against rates of
deformation Ġ2 and Ṁ2 at level 2. Thus, our constitutive assumptions tell us
that internal dissipation arises only when the contact forces and the geometrical
changes against which they do work are mismatched in terms of submacroscopic
level or in terms of whether or not disarrangements are tracked.

We note from the formula (43) and from the three constitutive relations (37)
- (39) that we may write the rate of internal dissipation Γ in the following form:

Γ = DG2Ψ · Ṁ2 +DG2Ψ · Ṁ1 +

DM2Ψ · Ġ2 +DM2Ψ · Ṁ1 +

DM1Ψ · Ġ2 +DM1Ψ · Ṁ2, (44)

and this formula renders transparent the mismatches described above. In view
of (44) our final constitutive assumption takes the form of a restriction on the
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fields G2, M2, M1, and on their time derivatives Ġ2, Ṁ2, Ṁ1:

0 ≤ Γ(X, t) (45)

for every X ∈ B and for every time t. Of course, the dissipation inequality (45)
just imposed is a sufficient condition on the dynamical processes available to
the body for satisfaction of the second law of thermodynamics in the present,
isothermal context.

Our constitutive assumptions (36), (37) - (39), and (45) thus specify a col-
lection Ehd of dynamical processes (namely those that satisfy (36), (37) - (39),
and (45)) and, thereby, specify an elastic body undergoing disarrangements
at two submacroscopic levels. The notation Ehd and the term elasticity with
hierarchical disarrangements are used to distinguish the present choice of the
constitutive class from our choice Ed made when only one submacroscopic level
was considered [2]. As we pointed out in the previous paragraph, our consti-
tutive assumptions guarantee that all of the (isothermal) dynamical processes
available to such a body also are compatible with the second law of thermody-
namics, so that our constitutive class is included in the collection of dynamical
processes satisfying the second law, i.e., Ehd ⊂ T , as required in the previous
section.

The decomposition (30) with N = T along with the constitutive equations
(37) - (39) imply

(detK1)(detK2)T0 = T1.\ + T1.d + (detK2)T0.d

= (detK1)(detK2)DG2
Ψ + (detK1)(detK2)DM2

Ψ

+(detK2)(detK1)DM1
Ψ

and thereby yield the stress relation for the Piola-Kirchhoff stress S = T0:

T0 = DG2Ψ +DM2Ψ +DM1Ψ. (46)

An analogous stress relation

T1 = (detK1)(DG2
Ψ +DM2

Ψ) (47)

for the reference stress T1 at level 1 follows from the relations :

(detK2)T1 = T1.\ + T1.d

= (detK1)(detK2)DG2Ψ + (detK1)(detK2)DM2Ψ.

Finally, the stress relation

T2 = (detK1)(detK2)DG2
Ψ (48)

follows from the constitutive assumption (37) and from (29) with i = 2 and with
N = T .
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We note also from the relations (23), (29) with i = 2, and from (37) that
the Cauchy stress field is given by

T ◦ g = (detG2)−1T2G
T
2 = (detG2)−1T1.\G

T
2

= (detK1 detK2)(detG2)−1DG2
ΨGT2

= (detG0)−1DG2
ΨGT2 . (49)

Similarly, we have

T ◦ g = (detG1)−1T1G
T
1 = (detG1)−1(detK1)(DG2Ψ +DM2Ψ)(G2 +M2)T

= (detG0)−1(DG2Ψ +DM2Ψ)(G2 +M2)T (50)

and

T ◦ g = (detG0)−1T0G
T
0

= (detG0)−1(DG2
Ψ +DM2

Ψ +DM1
Ψ)(G2 +M2 +M1)T . (51)

5.2 Universal consistency relations for stresses revisited

As a consequence of the constitutive equations (37) - (39), the consistency re-
lations (32) and (33) with N = T now take the form

(DG2
Ψ +DM2

Ψ) |(G2,M2,M1)
MT

1 +DM1
Ψ |(G2,M2,M1)

GT0 = 0, (52)

DG2
Ψ |(G2,M2,M1)

MT
2 +DM2

Ψ |(G2,M2,M1)
GT1 = 0. (53)

These relations are two tensorial equations that, in view of the decompositions
G1 = G2 + M2 and G0 = G1 + M1 = G2 + M2 + M1, restrict the tensors
of deformation G2, M2, and M1 at each point X in the body and at each
time t. Alternatively, the tensors of deformation G2, M2, and M1 can be
expressed in terms of the original tensors G2, G1, and G0 = ∇g associated
with the three-level structured deformation (g,G1, G2), so that the consistency
relations (52) and (53) provide two tensorial relations that relate the fields G1

and G2, associated with the two submacroscopic levels, to the gradient ∇g of
the macroscopic deformation field g.

We note that an alternative derivation of the consistency relations for stresses
(52), (53) is provided by using the three different equations (49) - (51) for T ◦ g
in terms of the partial derivatives of Ψ. In fact, subtracting (49) from (50)
yields the consistency relation (53), while subtracting (50) from (51) recovers
(52). This alternative derivation should provide the simplest derivation of the
consistency relations applicable when more than two submacroscopic levels are
to be considered.
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5.3 Material frame indifference

At this point, we have shown that the response of an elastic body undergoing
hierarchical disarrangements is completely determined by the smooth response
function (G2,M2,M1) 7−→ Ψ(G2,M2,M1) whose values provide the free energy
per unit volume in the macroscopic reference configuration at each pair (X, t) :

ψ(X, t) = Ψ(G2(X, t),M2(X, t),M1(X, t)).

In order to guarantee that the response of such a body is frame-indifferent, we
first must consider how three-level structured motions may transform under a
change of observer g −→ gobs, where the motions g and gobs are related by

gobs(X, t) = x(t) +Q(t)(g(X, t)−X0) (54)

with t 7−→ x(t) a smooth point-valued mapping and t 7−→ Q(t) a smooth,
orthogonal tensor-valued mapping. The definition of change of observer (54)
and the chain rule tell us that the macroscopic deformation gradient G0 = ∇g
satisfies the transformation rule G0 → QG0 under change of observer. The
identification relations (6) and (7) for G1 and G2 tell us that these quantities
have the same transformation property as G0, and the definitions of M1 and
M2 as differences formed from G0, G1, and G2 yield the transformation rules:

Gi → QGi for i = 0, 1, 2 (55)

Mi → QMi for i = 1, 2. (56)

Thus, the deformations with and without disarrangements at all levels transform
in the same manner under change of observer. Consequently, we say that the
three-level structured motion (gobs, Gobs1 , Gco2 ) is obtained from (g,G1, G2) by
means of a change of observer if gobs is given by (54) and

Gobsi (X, t) = Q(t)Gi(X, t) for all pairs (X, t) and for i = 1, 2. (57)

We use the notation (g,G1, G2)→ (gobs, Gobs1 , Gobs2 ) to indicate that the three-
level structured motion (gobs, Gobs1 , Gobs2 ) is obtained from (g,G1, G2) by means
of a change of observer.

It is standard in continuum physics to require that the free energy density
ψ(X, t) be unchanged and that the Cauchy stress T (g(X, t), t) be replaced by
Q(t)T (gobs(X, t), t)Q(t)T under a change of observer. We adopt these trans-
formation rules here and so arrive at the transformation rule for dynamical
processes under change of observer:

(g,G1, G2, ψ, T ◦ g)→ (gobs, Gobs1 , Gobs2 , ψobs, T obs ◦ gobs) (58)

where for allX and t: ψobs(X, t) = ψ(X, t), (T obs◦gobs)(X, t) = Q(t)T (g(X, t), t)Q(t)T ,
and where (g,G1, G2) → (gobs, Gobs1 , Gobs2 ). We recall the definition Γ :=
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T0 · Ġ0 − ψ̇ of the rate of internal dissipation in a dynamical process, and we
may now determine the transformation rule for Γ under a change of observer:

Γco = T obs0 · (Gobs0 )· − (ψobs)·

= (T obs ◦ gobs)(Gobs0 )∗ · (Gobs0 )· − ψ̇
= Q(T ◦ g)QT (QG0)∗ · (QG0)· − ψ̇
= Q(T ◦ g)QT (QG∗0) · (Q̇G0 +QĠ0)− ψ̇
= T0 · Ġ0 − ψ̇ + T0G

T
0 ·QT Q̇ = Γ + T0G

T
0 ·QT Q̇.

Thus we have: Γ→ Γ + T0G
T
0 ·QT Q̇ under a change of observer, and, because

QT Q̇ is skew-valued, we may also write

Γ→ Γ + sk(T0G
T
0 ) ·QT Q̇ (59)

where sk(A) := (1/2)(A − AT ) is the skew part of a tensor A. When N is
taken to be the Cauchy stress T , the following additional transformation rules
of the type (55) and (56) follow from the definitions and relations established
in Section 2.3 on tensor fluxes :

(Ti)
obs = QTi for i = 0, 1, 2

(Ti−1.\)
obs = QTi−1.\ for i = 1, 2

(Ti−1.d)
obs = QTi−1.d for i = 1, 2. (60)

We say that the response of an elastic body undergoing hierarchical disar-
rangements is frame-indifferent if the constitutive class Ehd is ”closed under a
change of observer”, i.e., if for every change of observer there holds

(g,G1, G2, ψ, T ◦ g) ∈ Ehd =⇒ (gobs, Gobs1 , Gobs2 , ψobs, T obs ◦ gobs) ∈ Ehd (61)

In other words, modification of a dynamical process in Ehd by a change of
observer cannot produce a dynamical process lying outside of Ehd. To obtain
the consequences of frame-indifference (61) we first note that the constitutive
relation (45) tells us that for every dynamical process in Ehd, both Γ and Γobs

must be non-negative. Because the orthogonal-valued mapping t 7−→ Q(t) is
arbitrary and QT (t)Q̇(t) is skew, the formula (59) is equivalent to the symmetry
of the tensor field T0G

T
0 = (detG0)(T ◦ g), i.e., the Cauchy stress T (X, t) is

symmetric for every X and t in every dynamical process in Ehd. According
to the relation (49), the preservation of the dissipation inequality (45) under
change of observer is equivalent to the symmetry condition

(DG2
Ψ(G2,M2,M1)GT2 )T = DG2

Ψ(G2,M2,M1)GT2 (62)

for all three-level structured motions. Similarly, the constitutive relation (36)
and the transformation rules (55), (56) tell us that the invariance of the free
energy under change of observer is equivalent to the condition:

Ψ(QG2, QM2, QM1) = Ψ(G2,M2,M1) (63)
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for all three-level structured motions and for all orthogonal-valued mappings
t 7−→ Q(t). If we restrict this condition to the case of fields that are constant in
space and time, then Q becomes an arbitrary orthogonal tensor, and G2, M2,
and M1 are tensors satisfying

0 < detG2 ≤ det(G2 +M2) ≤ det(G2 +M2 +M1). (64)

If we restrict attention to tensors G2, M2, and M1 for which all the inequalities
in (64) are strict and assume that Ψ is smooth, then we may differentiate both
sides of (63) in turn with respect to G2, M2, and M1 to find that

DAΨ(QG2, QM2, QM1) = QDAΨ(G2,M2,M1) (65)

for A = G2,M2,M1. Continuity of the derivatives of Ψ then permits us to ex-
tend (65) to tensors satisfying (64), including the equalities. Therefore, we have
obtained transformation rules for the partial derivatives of Ψ under change of
observer, and they agree with the rules (60) for the stresses T1.\, T1.d, and T0.d.

Because the tensors Ki = G−1i−1Gi are unchanged under a change of observer,
it follows that each of the three remaining consitutive relations (37) - (39) is
satisfied on a dynamical process if and only if it is satisfied on every dynamical
process obtained from it by means of a change of observer. These considera-
tions establish the following characterization of frame-indifference in the present
context: the constitutive class Ehd is closed under changes of observer if and
only if the response function Ψ satisfies (62) and (63) for all tensors G2, M2,
and M1 satisfying (64) and for all orthogonal tensors Q. In view of the formula
(49) , the condition (62) is equivalent to the symmetry of the Cauchy stress and,
hence, implies the balance of angular momentum in local form.

5.4 Stable disarrangement phases

Among the geometrical and constitutive requirements that we have imposed
on a given elastic body with free energy response function Ψ, we focus in this
subsection on the accommodation inequalities (3), on the consistency relations
(52) and (53), and on the frame-indifference condition (62). The relation (3)
is a system of inequalities restricting the determinants of the geometrical fields
G0, G1, and G2, while (52), (53), and (62) are tensor equations in terms of
the response function Ψ that restrict G0, G1, and G2. For a point X in
the body and a time t, we denote by F the macroscopic deformation gradient
G0(X, t) = ∇g(X, t) which we consider for the moment as fixed. By virtue of
(3), (14), (52), (53), and (62) we then seek tensors G2, M2 and M1 satisfying
the relations

G2 +M2 +M1 = F. (66)

0 < detG2 ≤ det(G2 +M2) ≤ detF (67)

DG2Ψ(G2,M2,M1)MT
1 +DM2Ψ(G2,M2,M1)MT

1 +DM1Ψ(G2,M2,M1)FT = 0
(68)
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DG2Ψ(G2,M2,M1)MT
2 +DM2Ψ(G2,M2,M1)MT

2 +DM2Ψ(G2,M2,M1)GT2 = 0.
(69)

(DG2
Ψ(G2,M2,M1)GT2 )T = DG2

Ψ(G2,M2,M1)GT2 . (70)

For a given macroscopic deformation gradient tensor F , these four tensor equa-
tions and three inequalities are the requirements that our notion of elastic body
imposes on the deformation without disarrangements G2 at level 2 and on the
deformations due to disarrangements M2 and M1 at levels 2 and 1. (Of course,
the equation (66) can be used to eliminate say G2 from the remaining relations
leaving only the disarrangement tensors M1 and M2 to be determined in terms
of F , but we prefer to retain the full system (66) - (70) for present considera-
tions.)

Given a macroscopic deformation gradient F , a triple (G2,M2,M1) that
satisfies the system (66) - (70) is called a (three-level) disarrangement phase
corresponding to F . In the context of three-level structured deformations, only
the three-level geometry and the free energy response function Ψ are employed
in determining the system (66) - (70). It is clear from the consistency relations
(68) and (69) and from the symmetry condition (70) that the disarrangement
phases for F include all triples (G2,M2,M1) that satisfy the geometrical con-
ditions (66), (67) and also that are stationary points of Ψ, i.e., all three partial
derivatives of Ψ vanish at (G2,M2,M1).

We call a disarrangement phase (G2,M2,M1) corresponding to F stable if

Ψ(G2,M2,M1) ≤ Ψ(G
′

2,M
′

2,M
′

1)

for all disarrangement phases (G
′

2,M
′

2,M
′

1) corresponding to F . The prob-
lem of determining stable disarrangement phases then becomes the problem
of minimizing the free energy subject to the constraints (66) - (70) imposed
by the additive decomposition of F , the accommodation inequalities, and the
consistency relations. It is important to note that, because of the constraints
included in (66) - (70), a stable disarrangement phase need not be a stationary
point of the free energy and, therefore, the stress need not vanish at a stable
disarrangement phase and (as examples in the two-level case show) need not be
hydrostatic.

We note that ”disarrangement phase” and ”stable disarrangement phase”
are constitutively based concepts that do not refer to balance laws. Such
notions of material stability were introduced and studied for two-level structured
deformations in the context of elasticity with disarrangements ([5], [6], [43]) with
a view toward applications to granular media and, more generally, to ”elastic
aggregates”, i.e., continuous bodies that submacroscopically are composed of a
large number of elastic bodies. In the present context of three-level structured
deformations, the notions of disarrangement phase and stable disarrangement
phase permit the description of the loss of material stability during the course
of a dynamical process as well as the identification of the submacroscopic level
at which destabilizing disarrangements arise.
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5.5 Field relations

We collect together and record now the full system of field relations that gov-
ern motions (X, t) 7−→ (g(X, t), G1(X, t), G2(X, t)) of an elastic body under-
going disarrangements at two submacroscopic levels with free energy response
(G2,M2,M1) 7−→ Ψ(G2,M2,M1) that is invariant under change of observer:

ρ0g̈ = div(DG2Ψ +DM2Ψ +DM1Ψ) + b (71)

DG2
ΨMT

1 +DM2
ΨMT

1 +DM1
Ψ (∇g)T = 0 (72)

DG2
ΨMT

2 +DM2
ΨMT

2 +DM2
ΨGT2 = 0 (73)

(DG2ΨGT2 )T = DG2ΨGT2 . (74)

0 < detG2 ≤ det(G2 +M2) ≤ det(G2 +M2 +M1) (75)

∇g = G2 +M2 +M1 (76)

0 ≤ DG2
Ψ · Ṁ2 +DG2

Ψ · Ṁ1 +

DM2
Ψ · Ġ2 +DM2

Ψ · Ṁ1 +

DM1
Ψ · Ġ2 +DM1

Ψ · Ṁ2 (77)

Here, ρ0 denotes the density of the body in the macroscopic reference configu-
ration (level 0), (71) is the balance of linear momentum in that configuration,
(72) and (73) are the consistency relations for stresses at submacroscopic levels
1 and 2, (74) expresses the invariance of the internal dissipation under change of
observer or, equivalently, the symmetry of the Cauchy stress T which, in turn,
guarantees that the balance of angular momentum is satisfied, (75) contains the
accommodation inequalities, (76) is the additive decomposition of ∇g, and (77)
is the dissipation inequality. Of course, the field G1 needed to specify the three
level structured deformation (g,G1, G2) can be recovered from the fields G2 and
M2 from the relation G1 = G2 +M2.

The system of field relations (71) - (77) amounts to thirty-three scalar equa-
tions and two sets of inequalities that are to be satisfied by the thirty scalar
components of g, G2, M2, and M1. When Ψ does not depend upon M1 and M2

and when one sets M1 = M2 = 0, then G1 = G2 = ∇g, so that only classical
deformations are admitted, and the field relations (71) - (77) then reduce to
those of finite elasticity:

ρ0g̈ = div(DΨ(∇g)) + b (78)

(DΨ(∇g)(∇g)T )T = DΨ(∇g)(∇g)T (79)

where the remaining relations are satisfied identically. In particular, the in-
equalities are satisfied with equality throughout, while the assumed invariance
of Ψ under change of observer in the special setting of finite elasticity implies
that (79) is satisfied. If we require DM2

Ψ is identically zero and consider
motions in which M2 = 0, but in which M1 need not vanish, then the field
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relations (71) - (77) for the three-level case reduce to those of elasticity with
disarrangements in the context of two-level structured deformations [2]. Con-
sequently, it would be appropriate in studies of the field relations (71) - (77) to
consider counterparts of the notions of submacroscopically stable equilibria [6]
and of moving phase boundaries [23] already investigated for the two-level case.

6 The case of purely dissipative disarrangements

In general, disarrangements such as slips and separations at submacroscopic lev-
els 1 and 2 can contribute to the free energy through dependence of Ψ upon M1

and M2. For example, the disarrangements at both submacroscopic levels in
the three-level shear introduced in Section 2 can be captured via approximating
sequences in terms of the slips between parallel faces of small pieces of the body
(”cards”). In single crystals, such slips can arise across crystallographic planes
and may produce a dependence of energy stored on amount of slip that is peri-
odic [30]. A significantly different dependence of energy upon disarrangements
arises in the case of elastic aggregates, i.e., continua that are comprised of many
small elastic bodies, where we can consider interactions between different pieces
of the aggregate as they move relative to one another, while maintaining the
same level of deformation in the individual pieces. Such interactions correspond
to short-range forces across boundaries of the pieces and may or may not result
in additional changes in free energy of the aggregate. In the absence of a crys-
talline structure of the pieces or other sources of cohesive forces between pieces
of the aggregate, one expects that disarrangements will not alter the free energy
of the aggregate, and it is appropriate now to adapt a notion of ”purely dissipa-
tive disarrangements” (introduced earlier for two-level structured deformations
of elastic bodies ([6], [23]) to the present three-level setting.

A physical context in which purely dissipative, hierarchical disarrangements
might arise would be an aggregate consisting of tiny bundles, each of which
is an aggregate of thin, rectangular elastic sheets held loosely together by an
inextensible string (see Figure 1). Assuming then that the only mechanism for
storage of energy is the deformation of the elastic sheets, the collection of tiny
bundles would conform to the notion of a body undergoing purely dissipative
disarrangements at two submacroscopic levels, because the relative motion of
the elastic sheets within a bundle and the relative motion of different bundles
would, themselves, not store energy. Thus we are led to consider the case in
which the constitutive relation (36) takes the special form

ψ(X, t) = Ψ(G2(X, t)), (80)

while we continue to allow the disarrangement fields M1 and M2 to be non-zero.
In this case, we have DM2Ψ = DM1Ψ = 0 and DG2Ψ = DΨ, so that the field
relations (71) - (74) simplify as follows:

ρ0g̈ = div(DΨ(G2)) + b (81)

DΨ(G2)MT
1 = 0 (82)
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DΨ (G2)MT
2 = 0 (83)

0 < detG2 ≤ det(G2 +M2) ≤ det(G2 +M2 +M1) (84)

∇g = G2 +M2 +M1 (85)

0 ≤ DΨ (G2) · (Ṁ1 + Ṁ2) (86)

We note that the last relation (74) in (71) - (74) automatically is satisfied in
the present case in view of (80) and in view of the assumed invariance (63) of
free energy under change of observer. In the present case of purely dissipative
disarrangements, the field relations amount to thirty scalar equations and two
sets of inequalities for thirty unknown components of the fields g, G2, M2, M1.
In this context the Piola-Kirchhoff stress S = T0 in the stress relation (46) is
given by

S = DΨ(G2) = DΨ(∇g −M1 −M2). (87)

An interesting aspect of the special field relations (81) - (86) is the fol-
lowing: the equations (81), (82), (83), (85), as well as the stress relation (87)
and the dissipation inequality (86) are unchanged under interchange of M1 and
M2, while only the system of inequalities (84) changes under that interchange.
Consequently, if for given g and G2, the unchanged relations are satisfied for
the pair of disarrangement fields (M1,M2), then they are satisfied by the pair
(M2,M1), and the level at which the disarrangements associated with M1 and
M2 can occur is controlled soley by which, if any, of the following two systems
of inequalities may be satisfied:

detG2 ≤ det(G2 +M2) ≤ det(∇g) = det(G2 +M2 +M1) (88)

detG2 ≤ det(G2 +M1) ≤ det(∇g) = det(G2 +M1 +M2). (89)

If only the first system of inequalities (88) is satisfied, then the disarrangements
corresponding to the field M2 can occur at submacroscopic level two but not
at level one, and the field relations all are satisfied by the structured motion
(g,G2 + M2, G2). Similarly, if only the second system (89) is satisfied, then
the disarrangements associated with the field M1 can occur at level two but
not at level one, and the field relations are satisfied by the structured motion
(g,G2 +M1, G2). If both systems of inequalities are satisfied then either set of
disarrangements may occur at either level, and the field relations are satisfied
by both of the motions (g,G2 +M2, G2) and (g,G2 +M1, G2).

For an example of the last type in which either disarrangement field may
correspond to either hierarchical level, we put G2 = I and assume also that the
the derivative DΨ(I) of the free energy response at the identity has non-trivial
nullspace. We choose a unit vector v in the nullspace of DΨ(I) and a unit
vector u perpendicular to v, we put M1 = −u⊗ v, M2 = u⊗ v, and we choose
g to be a homogeneous deformation with ∇g = I +M1 +M2 = I to obtain, as
is easily verified, a time-independent solution of the field relations (81) - (86).
The two systems of inequalities (88) and (89) become

1 ≤ det(I + u⊗ v) ≤ det(I − u⊗ v + u⊗ v) = 1, (90)
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and
1 ≤ det(I − u⊗ v) ≤ det(I − u⊗ v + u⊗ v) = 1. (91)

Thus, both systems are satisfied (with equality), and we may assign either
the submacroscopic level one to the disarrangements associated with u ⊗ v
or the submacroscopic level two to the disarrangements associated with u ⊗ v.
If say we assign level one to u ⊗ v, then the resulting solution of the field
equations corresponds to the three-level shear (g,G1, G2) defined in (8), (9)
with µ0 = µ2 = 0 and µ1 = 1, so that G1 = I+ u⊗ v, G2 = I. The alternative
assignment of level two to the disarrangements associated with u⊗ v results in
the three-level shear (g,G1, G2) in (8), (9) with µ0 = µ2 = 0 and µ1 = −1,
where now we simply replace u by −u in all of the formulas for the previous
choice.

In order to provide an example in which only one of the two systems of
inequalities (88) and (89) is satisfied, we assume now that DΨ (I) has nullspace
of dimension at least two, and we choose perpendicular unit vectors u and v in
the nullspace. We let ε with 0 < ε < 1/2 be given, we put G2 = I, and define

M1 : = −εu⊗ u− (1− ε)v ⊗ u
M2 : = u⊗ v. (92)

As above, we choose g to be a time-independent homogeneous deformation with
gradient G2 + M2 + M1. Again, the equations (81), (82), (83), (85) and the
dissipation inequality (86) - - all invariant under interchange of M1 and M2 - -
are satisfied for the time-independent three-level structured motion (g,G1, G2).
The two systems of inequalities (88) and (89) now read

det I ≤ det(I + u⊗ v) ≤
det(I +−εu⊗ u− (1− ε)v ⊗ u− εu⊗ u− (1− ε)v ⊗ u)

and

det I ≤ det(I − εu⊗ u− (1− ε)v ⊗ u) ≤
det(I + u⊗ v − εu⊗ u− (1− ε)v ⊗ u).

The first system reduces to 1 ≤ 1 ≤ 2(1 − ε), which validates the choice u ⊗ v
for the level 2 disarrangement tensor because 0 < ε < 1/2. The second reads
1 ≤ 1 − ε ≤ 2(1 − ε) which eliminates the choice −εu ⊗ u − (1 − ε)v ⊗ u for
the level 2 disarrangement tensor, since the first inequality is false. The elim-
ination of the second choice shows that the choice −εu ⊗ u − (1 − ε)v ⊗ u for
the level 2 disarrangement tensor to construct the triple (g,G1, G2) eliminates
the possibility of approximating that triple by injective, piecewise smooth map-
pings in the sense of the Approximation Theorem. In more geometrical terms,
the possibility of zooming out from level two to level one by means of the com-
bination of shrinkage and shearing associated with the disarrangement tensor
−εu⊗u− (1−ε)v⊗u is eliminated by the accommodation inequalities, whereas
the same combination may occur in zooming out from level 1 to level 0 if the
tensor u ⊗ v accounts for the disarrangements in zooming out from level 2 to
level 1.
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7 Boundary conditions

We have obtained a detailed system of field relations (71) - (77) for the fields g,
G1, and G2 that determine a structured motion in an elastic body undergoing
hierarchical disarrangements at two submacroscopic levels. These relations are
formulated in terms of the fields g, G2, M2, and M1, because these fields provide
the refined decomposition ∇g = G2 +M2+ M1 of the macroscopic deformation
gradient as well as the parallel decomposition

S = T0 = DG2
Ψ +DM2

Ψ +DM1
Ψ

= (detK1 detK2)−1(T1.\ + T1.d + (detK2)T0.d)

of the Piola-Kirchhoff stress (see Section 5.1).
The formulation of boundary conditions of place for (71) - (77) appears to be

straightforward, because, even in the refined geometry of three-level structured
deformations, the only field available for the computation of position is the
macroscopic deformation field g. The refined decomposition ∇g = G2 + M2+
M1 does not provide a decomposition of g, itself, and therefore does not provide
refined versions of boundary conditions of place. Thus, we single out a portion
∂Bp of the boundary of the body and require for all times t and X ∈ ∂Bp:

g(X, t) = gp(X, t) (93)

where gp is a given field on ∂Bp.
Formulation of boundary conditions of traction is more interesting, and the

starting point for our discussion is the well-known fact that the contact force∫
g(S,t) T (x, t)n(x)dAx on an oriented surface g(S, t) in the deformed configura-

tion is given by∫
S
T0(X, t)N(X)dAX =

∫
S
T (g(X, t), t)G∗0(X, t)N(X)dAX (94)

where N(X)dAX is the vector element of area at the point X in the surface
S in B (and n(x)dAx is the corresponding vector element of area for g(S, t) at
the point g(X, t) in g(S, t)). In other words, the reference stress T0 carries the
same information about contact forces supported by the smooth surface S in
B as does the Cauchy stress T for the smooth surface g(S, t) in the deformed
configuration g(B, t). This observation simply restates the equivalence of the
two stress measures T0 and T of contact forces in continuum theories.

In the present context of three-level structured motions (g,G1, G2), there
are two additional measures of stress obtained when i = 1, 2 from the definition
(23) with N = T : T1 = (T ◦g)G∗1 and T2 = (T ◦g)G∗2. Like T0, both are defined
at each time t on B and both allow us to compute for each smooth surface S in
B the surface integrals:∫

S
Ti(X, t)N(X)dAX =

∫
S
T (g(X, t), t)G∗i (X, t)N(X)dAX for i = 1, 2.

(95)
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The integrals on the right-hand sides of (94) and (95) differ only by the oriented
element of area G∗i (X, t)N(X)dAX in the integrand. The continuity of the
adjugate operation ∗ and the formulas (6) and (7) here yield for every double
sequence (n1, n2) 7−→ fn1n2

as in the Approximation Theorem:

G∗1(X, t)N(X) = (( lim
n1→∞

∇ lim
n2→∞

fn1n2
)(X, t))∗N(X) (96)

G∗2(X, t)N(X) = (( lim
n1→∞

lim
n2→∞

∇fn1n2
)(X, t))∗N(X) (97)

while (5) yields

G∗0(X, t)N(X) = (∇ lim
n1→∞

lim
n2→∞

fn1n2)∗N(X). (98)

Based on our discussion of (6) - (5) in Section 2, we may assert that the choice
of index i then influences the measure of contact force

∫
S Ti(X, t)N(X)dAX =∫

S T (g(X, t), t)G∗i (X, t)N(X)dAX by adjusting the element of area on S to ac-
count for no disarrangements whatsoever at sites on the given surface (i = 2),
disarrangements only at submacroscopic level 2 (i = 1), or disarrangements at
both submacroscopic levels 1 and 2 (i = 0). We conclude that the reference
stresses T1 and T2 at the submacroscopic levels each carries different information
about contact forces supported by the smooth surface S in B than does T0, and
the difference is accounted for by whether or not the effect of disarrangements
at the submacroscopic levels is included in the element of area on S.

We observe that prescription of the traction vector τ(X, t) at each point
on a portion ∂Bτ leads, for example, to the following three traction boundary
conditions: choose i ∈ {0, 1, 2} and require

Ti(X, t)N(X) = τ(X, t) for every X ∈ ∂Bτ and for every t. (99)

Here, N(X) denotes the unit outward normal to ∂Bτ at X, and we call (99) the
level i traction boundary condition. The equivalence of T0 and T as measures
of contact forces assures us that the level 0 traction boundary condition is
equivalent to specifying a traction boundary condition on a portion of g(B, t)
using the Cauchy stress field. Moreover, the stress relation (46) permits us to
rewrite the level 0 traction boundary condition in terms of the response function
Ψ: for every X ∈ ∂Bτ and for every t

(DG2
Ψ +DM2

Ψ +DM1
Ψ) |(X,t) N(X) = τ(X, t). (100)

Similarly, (47) permits us to rewrite the level 1 traction condition as: for every
X ∈ ∂Bτ and for every t

(detK1)(DG2
Ψ +DM2

Ψ) |(X,t) N(X) = τ(X, t) (101)

while (48) yields for the level 2 traction condition: for every X ∈ ∂Bτ and for
every t

(detK1)(detK2)DG2
Ψ |(X,t) N(X) = τ(X, t). (102)
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We recall from Section 2, Ki := G−1i−1Gi for i = 1, 2. Relation (102) shows that
satisfaction of the level 2 traction boundary condition amounts to the statement
that only the driving traction associated with G2 is activated in balancing the
applied traction τ , while (100) tells us that the the driving tractions correspond-
ing to G2, M2 and M1 add together in balancing τ . For the intermediate, level
1 boundary condition (101), the two driving tractions corresponding to G2 and
M2 combine to balance τ .

Up to this point, we have not provided any guidance as to which of the trac-
tion conditions (100) - (102) should be employed to impose traction boundary
conditions. The formulation of our field theory in terms of a free energy response
that depends upon G2, M2, and M1 or, equivalently, in terms of Gi for i = 0, 1, 2
presupposes knowledge for the given body about the number of submacroscopic
levels available to the body and the manner in which the body stores energy
in response to geometrical changes with and without disarrangements at these
levels. It is consistent with this presupposition to suppose available some in-
formation about the device that provides the tractions τ to the body on the
surface ∂Bτ .

For example, if the body is an aggregate composed of small elastic grains,
then it is natural to identify the submacroscopic level 2 with a collection of such
grains large enough to justify calculating the gradients∇fn1,n2

that approximate
G2 by averaging deformations of individual grains in such a collection. We
presume then that it is known whether or not the tractions τ provided by a
given loading device can vary appreciably over a surface of area comparable to
the cross section of such a collection. If so, it is natural to impose the level
2 traction condition (102). On the other hand, if τ varies appreciably only
over surfaces of area comparable to the cross section of larger submacroscopic
features such as shear bands or such as load-supporting, geometrically irregular
chains of grains, then it is natural to impose the level 1 traction condition
(101). Finally, if the imposed traction τ varies only over surfaces of area large
compared to the cross sections of the larger submacroscopic features, then it
is natural to impose the level 0 traction condition (100). We conclude that
the choices of traction boundary condition available in this multilevel approach
allow us to match the choice of level of the traction condition to characteristics
of the loading device, and this matching capability provides flexibility beyond
that afforded by a single level approach.

While there is no qualitiative theory yet available for the field equations of
our field theory, we indicate here initial conditions that appear natural in view
of the form of the field equations. Consequently, for a given initial time tI we
suggest that specification of the fields g(·, tI), ġ(·, tI), G1(·, tI), and G2(·, tI) on
the body B provides appropriate initial conditions to supplement the boundary
conditions considered above in order to determine the evolution of the body in
the form of a three-level structured motion.
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8 Appendix: Proof of the Approximation The-
orem for three-level structured deformations

In this appendix we use the terms ”simple deformation” and ”piecewise-fit re-
gion” in the sense of [1]. Roughly speaking, a simple deformation is a piecewise
smooth, injective mapping, and a piecewise-fit region is a finite union of regions
without unopened cracks and with finite surface area.

Theorem 1 For each three-level structured deformation (g,G1, G2) from a piecewise-
fit region B there exists a double sequence (n1, n2) 7−→ fn1,n2 of simple defor-
mations from B for which

lim
n1→∞

lim
n2→∞

fn1,n2
= g

lim
n1→∞

∇ lim
n2→∞

fn1,n2 = G1

lim
n1→∞

lim
n2→∞

∇fn1,n2
= G2

where each of the iterated limits limn1→∞ and limn2→∞ is taken in the sense of
L∞-convergence.

Proof. Let a three-level stuctured deformation (g,G1, G2) and a positive in-
teger n1 be given. The three-level accommodation inequality (3) implies that
the pair (g,G1) is a (two-level) structured deformation. By the Approximation
Theorem for two-level structured deformations and properties of the determi-
nant mapping, we may choose a constant C̄ > 0 (that depends only upon the
field G1) and a simple deformation fn1

such that

‖g − fn1
‖∞ <

1

n1
, ‖G1 −∇fn1

‖∞ <
C̄

n1
, and ‖detG1 − det∇fn1

‖∞ <
1

n1
,

(103)
where ‖·‖∞ denotes the L∞ norm. By the three-level accommodation inequality
(3) and (103) we conclude that

det∇fn1
> detG1 −

1

n1
≥ detG2 −

1

n1
> c− 1

n1
, (104)

and we take from this point on n1 > c−1. (The inequality (104) can be written
in terms of fields because the accommodation inequality holds at almost every
point in B for one and the same positive number c.) We define

ϕ(n1) := 2(1− (1− 1

n1c
)

1
3 ) > 0 (105)
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and note that
lim

n1→∞
ϕ(n1) = 0 , (106)

as well as ϕ(n1) > 1− (1− 1
n1c

)
1
3 , so that

1− 1

n1c
> (1− ϕ(n1))3. (107)

We infer from (104), (105), and (107) that

det∇fn1 > (1− 1

n1 detG2
) detG2

> (1− 1

n1c
) detG2 > (1− ϕ(n1))3 detG2

= det((1− ϕ(n1))G2). (108)

By (106) and the inequality detG2 > c, we may choose N1 > c−1 such that

(1− ϕ(n1))3 >
1

2
for all n1 > N1.

The estimate (108) then implies

det∇fn1
> det((1− ϕ(n1))G2) >

c

2
for all n1 > N1,

and we conclude that the pair (fn1,(1−ϕ(n1))G2) satisfies the accommodation
inequality for (two-level) structured deformation for all n1 > N1. Thus, for
each n1 > N1 and positive integer n2, the Approximation Theorem for (two-
level) structured deformations permits us to choose a simple deformation fn1,n2

such that

‖fn1,n2
− fn1

‖∞ <
1

n2
, and ‖∇fn1,n2

− (1− ϕ(n1))G2‖∞ <
1

n2
.

Therefore, for each n1 > N1 we may let n2 tend to∞ in the last two inequalities
to obtain

lim
n2→∞

fn1,n2
= fn1

and lim
n2→∞

∇fn1,n2
= (1− ϕ(n1))G2,

and, in view of (106), we may then let n1 tend to ∞ in each of the last two
relations to conclude from (103)

lim
n1→∞

lim
n2→∞

fn1,n2 = lim
n1→∞

fn1 = g

lim
n1→∞

∇ lim
n2→∞

fn1,n2
= lim

n1→∞
∇fn1

= G1

lim
n1→∞

lim
n2→∞

∇fn1,n2
= lim

n1→∞
((1− ϕ(n1))G2) = G2.

In all of these relations, the limits are taken in the sense of L∞.
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