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Abstract

The Eshelbian (or configurational) force is the main concept of a celebrated theoretical frame-
work associated with the motion of dislocations and, more in general, defects in solids. In a
similar vein, in an elastic structure where a (smooth and bilateral) constraint can move and
release energy, a force driving the configuration is generated, which therefore is called by anal-
ogy ‘Eshelby-like’ or ‘configurational’. This force (generated by a specific movable constraint) is
derived both via variational calculus and, independently, through an asymptotic approach. Its
action on the elastic structure is counterintuitive, but is fully substantiated and experimentally
measured on a model structure that has been designed, realized and tested. These findings
open a totally new perspective in the mechanics of deformable mechanisms, with possible broad
applications, even at the nanoscale.
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1 Introduction

Configurational (or: ‘material’, ‘driving’, ‘non-Newtonian’) forces have been introduced by Eshelby
(1951; 1956; 1970; 1975) to describe the fact that massless (for instance: voids, microcracks,
vacancies, or dislocations) or heavy (for instance inclusions) defects may move within a solid body as
a result of mechanical or thermal loading. The Eshelbian force is defined as the negative gradient of
the total potential energy V of a body with respect to the parameter κ determining the configuration
of the defect, namely, −∂V(κ)/∂κ.

Examples are the crack-extension force of fracture mechanics, the Peach–Koehler force of dislo-
cations, or the material force developing on a phase boundary in a solid under loading. Nowadays

0Corresponding author: fax +390461282599; tel. +390461282507; e-mail davide.bigoni@unitn.it

1



Published in Mechanics of Materials (2015) 80: 368-374
doi: http://dx.doi.org/10.1016/j.mechmat.2013.10.009

configurational forces are the cornerstone of a well-developed theory (see for instance the mono-
graphs by Gurtin, 2000, Kienzler and Herrmann, 2000, and Maugin, 1993, 2011, and the journal
special issues by Dascalu et al., 2010, and Bigoni and Deseri, 2011).

Let us consider an elastic structure in equilibrium upon load and assume that a (frictionless
and bilateral) constraint can move –a feature which may be considered as a ‘defect’– in a way to
allow the system to reconfigure through a release of elastic energy, then a force is generated, similar
to an Eshelbian or configurational1 one.

To reveal this force in an indisputable way, and directly measure it, the simple elastic structure
sketched in Fig. 1 has been designed, which inflection length can change through sliding along a
sleeve and therefore discloses (in two different and independent ways, namely, using variational and
asymptotic approaches) the presence of an Eshelby-like force. The structure has been subsequently
realized and instrumented (see Fig. 2, reporting a series of photos demonstrating the action of the
Eshelby-like force), so that the configurational force has been measured at equilibrium and it is
shown to perfectly match the theoretical predictions.

Figure 1: Structural scheme of the elastic system employed to disclose a Eshelby-like force. The elastic rod of total
length l̄ is subject to a dead vertical load P on its right end, is constrained with a sliding sleeve inclined at an angle
α (with respect to the vertical) and has a axial dead force S applied at its left end. The presence of the Eshelby-like
force M2/(2B) influences the force S at equilibrium, which results different from P cosα.

In this example configurational forces are non-zero, but small for small deflections2 and become
progressively important when displacements grow. Their effects are counterintuitive and unex-
pected, so that for instance, the structure shown in Fig. 2, which can (wrongly!) be thought to be
unable to provide any axial action, is instead subject to an axial Eshelby-like force transmitted by
the sliding sleeve. In particular, at the end of the sliding sleeve, the axial force S at equilibrium
with a load P (inclined of α with respect to the rod’s axis) is not simply equal to −P cosα, as
when the sliding sleeve is replaced by a movable clamp, but will be determined (Section 2.3) to be

1‘Configurational force’ is not to be confused with the follower forces analyzed for instance by Bigoni and Noselli,
(2011), or with the tensile buckling analyzed by Zaccaria et al. (2011).

2The fact that these forces are small for small displacement does not mean that they are always negligible, since
their action is in a particular direction, which may be ‘unexpected’. For instance, in the case of null axial dead load,
S = 0, and sliding sleeve orthogonal to the vertical dead load P , α = π/2 (Fig. 1), the Eshelby-like force is the only
axial action, so that equilibrium becomes impossible.
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Figure 2: The practical realization of the elastic structure shown in Fig. 1 reveals an axial Eshelby-like force, so
that, while at low vertical force (2 N) the elastic rod tends, as expected, to slip inside the sliding sleeve (upper photo),
at 6 N the equilibrium is surprisingly possible (note that the tangent at the loaded end of the elastic rod is horizontal,
see the photo in the centre) and at 10 N the elastic rod is expelled from the sliding sleeve (lower photo), even if the
system is inclined at 15◦ with respect to the horizontal (α = 75◦).

a function of the rotation of the rod at its end, θl̄, as

S = −P cos (α+ θl̄) = −P cosα+ 2P

(

sin2
θl̄ + α

2
− sin2

α

2

)

︸ ︷︷ ︸

Eshelby−like force

, (1.1)
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which for for small deflections (sin θl̄ ≈ θl̄) becomes

S = −P cosα+ P
3 vl̄

2(l̄ − lin)
sinα

︸ ︷︷ ︸

Eshelby−like force

, (1.2)

where vl̄ is the transversal displacement at the loaded end of the rod of length l̄ − lin (external to
the sliding sleeve). Eqs (1.1) and (1.2) show that there is an ‘unexpected’ term (null if the elastic
rod is constrained by a movable clamp instead of a sliding sleeve), defined as the ‘Eshelby-like
force’. Although there is a little abuse of notation3, this definition is motivated by the fact that
the Eshelby-like force is null, would the total potential energy of the system be independent of a
configurational parameter.

The findings presented in this article demonstrate that movable constraints applied to elastic
structures can generate configurational forces and that these become dominant when deformations
are sufficiently large. Configurational forces can be employed in the design of new deformable
systems with challenging characteristics, which may find applications even at the micro- and nano-
scale, for instance, to control growth of a structural element.

2 Eshelby-like force produced by a sliding sleeve

An inextensible elastic rod (straight in its unloaded configuration, with bending stiffness B and
total length l̄) has one end constrained with a sliding sleeve, is subject to an edge axial (dead) force
S, and has the other end subject to a dead transversal load P (inclined at an angle α, see Fig. 1).
Introducing the curvilinear coordinate s ∈ [0, l̄], the length lin of the segment of the rod internal
to a (frictionless, perfectly smooth and bilateral) sliding sleeve, and the rotation θ(s) of the rod’s
axis, it follows that θ(s) = 0 for s ∈ [0, lin]. Denoting by a prime the derivative with respect to s,
the bending moment along the elastic rod is M(s) = Bθ′(s), so that at the loaded edge of the rod,
we have the zero-moment boundary condition θ′(l̄) = 0.

The total potential energy of the system is

V(θ(s), lin) = B

l̄∫

lin

[

θ
′

(s)
]2

2
ds−P




l̄ cosα− cosα

l̄∫

lin

cos θ(s)ds+ sinα

l̄∫

lin

sin θ(s)ds




−S lin, (2.3)

which at equilibrium becomes

V(θeq(s, leq), leq) = B

l̄∫

leq

[

θ
′

eq (s, leq)
]2

2
ds− P




l̄ cosα− cosα

l̄∫

leq

cos θeq(s, leq)ds

+sinα

l̄∫

leq

sin θeq(s, leq)ds




− S leq,

(2.4)

3The introduction of the nomenclature ‘Eshelby-like force’ allows to distinguish terms generated by the possibility
of configurational changes of the system, while ‘Eshelby forces’ must always vanish at equilibrium.
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where leq is the length of the elastic rod inside the sliding sleeve and θeq the rotation of the rod’s
axis at the equilibrium configuration.

The Eshelbian force related to the sliding in the sleeve can be calculated by taking the derivative
with respect to leq of the total potential energy at equilibrium, eqn (2.4). In particular, keeping
into account integration by parts

θ′eq
∂θ′eq
∂leq

=

(

θ′eq
∂θeq
∂leq

)
′

− θ′′eq
∂θeq
∂leq

, (2.5)

the equilibrium of the elastica

Bθ′′eq(s) + P [cosα sin θeq(s) + sinα cos θeq(s)] = 0, s ∈ [leq, l̄] (2.6)

and the boundary condition θ′eq(l̄) = 0, we arrive at the following expression for the Eshelby force

−
∂V(leq)

∂leq
= B

[θ′eq(leq)]
2

2
+Bθ′eq(leq)

∂θeq
∂leq

∣
∣
∣
∣
s=leq

+ P cosα+ S. (2.7)

The fact that θeq is a function of s− leq and of the angle of rotation of the beam at the loaded end
θl̄ (function itself of leq), but is always zero at s = leq for all θl̄, yields

∂θeq
∂leq

∣
∣
∣
∣
s=leq

= −θ′eq(leq), (2.8)

so that the vanishing of the derivative with respect to leq of the total potential energy, eqn (2.7),
represents the axial equilibrium

M2

2B
︸︷︷︸

Eshelby−like force

= S + P cosα, (2.9)

where M = Bθ′eq(leq) is the reaction moment, equal to Pe, where e is the load eccentricity (to the
sliding sleeve).

Although the Eshelby force must vanish at equilibrium, the contribution M2/(2B) is a ‘coun-
terintuitive term’ which depends on the configurational parameter leq (and would be absent if the
elastic rod would be constrained with a movable clamp instead than a sliding sleeve) and is for this
reason indicated as the ‘Eshelby-like force’.

This term has wrongly been neglected by a number of authors who have considered sliding
sleeve constraints, while a term M2/(2B) correctly enters in calculations referred in a different
context, namely, adhesion mechanics, in which it is equated to an ‘adhesion energy’ (Majidi, 2007;
Majidi et al. 2012).

Since equilibrium is only possible when eqn (2.9) is satisfied, the presence of the Eshelby-like
force (parallel to the direction of sliding) explains the reason why the equilibrium is possible for the
configuration shown in the central photo in Fig. 2 and why the rod is ‘expelled’ from the sliding
sleeve in the lower photo.

In the next sections the existence of the Eshelby-like force (2.9) will be demonstrated via two
different and independent approaches (an asymptotic method and a variational technique).
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2.1 Asymptotic approach

The Eshelbian force (2.9) can be obtained via an asymptotic approach. This has been found in
a forgotten article published in Russian by Balabukh et al. (1970). The main idea is to consider
an imperfect sliding sleeve (Fig. 3) having a small gap ∆ (the distance between the two rigid,
frictionless and parallel surfaces realizing the sliding device), so that the perfect sliding sleeve case
is recovered when the gap is null, ∆ = 0. Within this space, the elastic rod is deflected, so that
ϑ(∆) denotes the angle at its right contact point, where the forces H, V ,M are applied. The length
of the rod detached from the two surfaces representing the imperfect sliding sleeve is denoted with
a(∆). The frictionless contact generates the reaction forces R and Q, in equilibrium with the axial
dead force S at the other end. For small ∆, the equilibrium is given by

Q =
M

a(∆)
, R = V +

M

a(∆)
, S =

(

V +
M

a(∆)

)

ϑ(∆)−H. (2.10)

On application of the virtual work for a linear elastic inextensible rod yields the geometric quantities
a(∆) and ϑ(∆)

a(∆) =

√

6B∆

M
, ϑ(∆) =

1

2

√

6M∆

B
, (2.11)

so that forces Q, R and S can be written as

Q =M

√

M

6B∆
, R = V +M

√

M

6B∆
, S =

M2

2B
+
V

2

√

6M∆

B
−H. (2.12)

In the limit of perfect (zero-thickness) sliding sleeve, ∆ → 0, the horizontal component of the
reaction R does not vanish, but becomes the Eshelbian force (2.9)

lim
∆→0

R(∆)ϑ(∆) =
M2

2B
. (2.13)

Figure 3: Deformed configuration of an elastic rod within an imperfect sliding sleeve made up of two smooth, rigid
and frictionless planes placed at a distance ∆. Applied and reaction forces provide in the limit ∆ → 0 the Eshelby-like
force.
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2.2 Variational approach

The total potential energy (2.3) has a movable boundary lin, so that it is expedient (Courant and
Hilbert, 1953, see also Majidi et al. 2012) to introduce a small parameter ǫ and take variations
(subscript ‘var’) of an equilibrium configuration (subscript ‘eq’) in the form

θ(s, ǫ) = θeq(s) + ǫθvar(s), lin(ǫ) = leq + ǫlvar , (2.14)

with the boundary conditions

θeq(leq) = 0, θ(leq + ǫlvar) = 0, θ
′

eq(l̄) = 0. (2.15)

A Taylor series expansion of θ(lin) for small ǫ yields

θ(leq + ǫlvar, ǫ) = θeq(leq) + ǫ
(

θvar(leq) + θ
′

eq(leq)lvar

)

+
ǫ2

2
lvar

(

2θ
′

var(leq) + θ
′′

eq(leq)lvar

)

+O
(
ǫ3
)
,

(2.16)
so that the boundary conditions (2.15) lead to the following compatibility equations

θvar(leq) + θ
′

eq(leq)lvar = 0, 2θ
′

var(leq) + θ
′′

eq(leq)lvar = 0. (2.17)

Taking into account the Leibniz rule of differentiation and the boundary (2.15) and compatibility
(2.17) conditions, through integration by parts, the first variation of the functional V is

δǫV = −

l̄∫

leq

[

Bθ
′′

eq(s) + P (cosα sin θeq(s) + sinα cos θeq(s))
]

θvar(s)ds

+

[

B
θ
′

eq(leq)
2

2
− P cosα− S

]

lvar,

(2.18)

so that the equilibrium equations (2.6) and (2.9) are obtained, the latter of which, representing the
so-called ‘transversality condition’ of Courant and Hilbert (1953), provides the Eshelby-like force.

2.3 The Eshelby-like force expressed as a function of the transversal load

The equilibrium configuration of the elastic rod satisfies the elastica equation (2.6) (see Love, 1927,
and Bigoni, 2012) and, through a change of variables, the rotation field (for the first mode of
deformation) can be obtained as

θeq(s) = 2 arcsin

[

η sn

(

(s− leq)

√

P

B
+K(m, η), η

)]

− α, (2.19)

where sn is the Jacobi sine amplitude function, K (m, η) the incomplete elliptic integral of the first
kind and

η = sin
θl̄ + α

2
, m = arcsin

[
sin(α/2)

η

]

, (2.20)
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with θl̄ = θeq(l̄) representing the rotation measured at the free end of the rod, related to the applied
vertical load through

P =
B

(l̄ − leq)2
[K (η)−K (m, η)]2 . (2.21)

The Eshelby-like force (2.9) can be expressed as

M2

2B
= 2P

(

η2 − sin2
α

2

)

, (2.22)

so that the axial force S at the end of the sliding sleeve, which will be measured through a load
cell in the experiments, is given by eqn (1.1). It can be noted from eqn. (1.1) that the measured
load S is (in modulus) bounded by P and that S tends to P only in the ‘membrane limit’, when
B tends to zero and θl̄ + α to π.

The following three different cases may arise, explaining the experiments shown in Fig. 2.

• the elastic rod within the sliding sleeve is in compression, or ‘pushed in’, if θl̄ + α < π/2;

• the elastic rod within the sliding sleeve is unloaded if θl̄ + α = π/2;

• the elastic rod within the sliding sleeve is in tension, or ‘pulled out’, if θl̄ + α > π/2.

The case of null axial force, S = 0, occurs when M2/(2B) is equal to the axial component of
the dead load, P cosα, and corresponds to deformed configurations which have the tangent at the
free end orthogonal to the direction of the dead load P , as in Fig. 2 (center).

Finally, it can be noted that the Eshelby-like force M2/(2B) is greater than the applied load P
when

cosα− 2 cos2
(
θl̄ + α

2

)

> 0. (2.23)

Regions in the θl̄ − α plane where the axial force S is positive/negative and where M2/(2B) > P
are shown in Fig. (4). From the figure it can be concluded that M2/(2B) > P is possible only for
positive axial load, S > 0, and high deflections of the rod (at least for rotation at the free end θl̄
greater than π/3 and depending on α).

3 The experimental evidence of configurational force

The structure shown in Fig. 1 has been realized using for the elastic rod two C62 carbon-steel
strips (25 mm × 2 mm cross section), one 585 mm in length and the other 800 mm. For these rods
the bending stiffness B has been determined with flexure experiments to be equal to 2.70 Nm2.

The sliding sleeve is 296 mm in length and has been realized with 27 pairs of rollers (made up
of 10 mm diameter and 15 mm length teflon cylinders, each containing two roller bearings). The
tolerance between the metal strip and the rollers is calibrated with four micrometrical screws.

The axial force S has been measured using a MT1041 load cell (R.C. 300N), while dead loading,
measured through a Leane XFTC301 (R.C. 500N) loading cell, has been provided with a simple
hydraulic device in which water is poured at constant rate of 10 gr/s into a container. Data have
been acquired with a NI CompactDAQ system, interfaced with Labview 8.5.1 (National Instru-
ments). The whole apparatus has been mounted on an optical table (1HT-NM from Standa) to

8



Published in Mechanics of Materials (2015) 80: 368-374
doi: http://dx.doi.org/10.1016/j.mechmat.2013.10.009

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Figure 4: Regions in the plane θl̄ − α where S > 0, S < 0 and M2/(2B) > P .

prevent spurious vibrations, which have been checked to remain negligible (accelerations have been
found inferior to 2× 10−3 g) with four IEPE accelerometer (PCB Piezotronics Inc., model 333B50)
attached at different positions. The tests have been performed in a controlled temperature (20±0.2
◦C) and humidity (48±0.5%) room. The testing set-up is shown in Fig. 5. Additional material can
be found in the electronic supporting material and at http://ssmg.unitn.it/.

1 Optical table

2 Accelerometer

3 Load cell

4 Sliding sleeve 6 Water container

5 Elastic rod

6

3

2

23 2

2
4

1

44

5

Figure 5: The test setup for the measure of the axial Eshelby-like force transmitted by a sliding sleeve, a realization
of the scheme reported in Fig. 1.
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3.1 Eshelbian force provided by a roller device

Rollers have been employed in the practical realization of the sliding sleeve, so that the question
may arise how this set-up is tight to our idealization and can effectively measure the Eshelby-like
force. To quantify the effects introduced by the rollers, an asymptotic approach similar to that
presented in Section 2.1 is developed here by considering the statically determined system given by
two rollers with finite radius r and which centers are distant ∆H +2r and ∆V +2r in the axial and
transversal directions, so that the model of a perfect sliding sleeve is achieved in the limit of null
value for these three parameters (r, ∆H and ∆V ), Fig. 6.

Figure 6: The scheme of the sliding sleeve constraint realized through two pairs of rollers.

In the limit ∆V /∆H → 0, the roller reactions X and Y are obtained from rotational and
translational (in the transversal direction) equilibrium as

X =
M

cos ξ [∆H + r (2 + sinψ + sin ξ)]
, Y =

1

cosψ

[

V +
M

∆H + r (2 + sinψ + sin ξ)

]

, (3.24)

where ξ and ψ are the rotations of the rod at the contact points with the rollers, so that the
translational (in the axial direction) equilibrium leads to

S = V tanψ −
M (tan ξ − tanψ)

∆H + r (2 + sinψ + sin ξ)
−H. (3.25)

Restricting attention to small deflections between the rollers, the angles ξ and ψ can be obtained
through integration of the elastica as

ξ = −
M(∆H + 2r)2 (2B +Mr) + 6B (−2B +Mr)∆V

2B(∆H + 2r) (6B +Mr)
,

ψ =
M(∆H + 2r)2 (4B +Mr) + 6B (2B +Mr)∆V

2B(∆H + 2r) (6B +Mr)
.

(3.26)

In the limit of ∆V /r → 0, eqn (3.26) simplifies to

ξ = −
M(∆H + 2r)(Mr + 4B)

2B(Mr + 6B)
, ψ = −ξ, (3.27)
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and the translational equilibrium, eqn. (3.25), reads

M

6B +Mr

[
6M(3B +Mr)

6B +Mr
+
V (∆H + 2r)(4B +Mr)

2B

]

︸ ︷︷ ︸

Eshelby−like force

= S +H, (3.28)

an equation which introduces the concept of Eshelby-like force provided by a roller device, and
reducing in the limits r → 0 and ∆H → 0 to the value of the Eshelby-like force (2.9) arising from
a sliding sleeve.

It can be noted that the lowest value of the configurational force realized by the roller device
occurs in the limit of the sliding sleeve.

3.2 Experiments

Results of experiments are reported in Fig. 7 and compared with the theoretical predictions ob-
tained with the ‘perfect model’ of sliding sleeve, eqn (2.9), and with the ‘roller-version’ of it, eqn
(3.28), the latter used with parameters tailored on the experimental set up (r = 5 mm, ∆H = 1
mm).

Figure 7: Comparison between experimental results (red curve) and the theoretical predictions. These have been
reported for a perfect sliding sleeve (dashed curve) and for a sliding sleeve realized with rollers mimicking the
experimental conditions (solid curve). Two rods have been used of external lengths 261 mm (left) and 424 mm
(right) for different inclinations (90◦, 60◦ and 30◦).

First of all, we can note that the theoretical values are close to each other, which is a proof that
the rollers have a negligible effect on the determination of the Eshelby-like force. Moreover, we
see that there is an excellent agreement between the theoretical predictions and the experimental
results, which is an indisputable proof that Eshelby-like forces acting on elastic structures are a
reality.
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4 Conclusions

Eshelbian forces are related to the change in configuration of a mechanical system. We have shown
that simple elastic structures can be designed to give evidence to these forces, that can both be
calculated and experimentally detected. Therefore, the findings presented in the present article
open a new perspective in the design of compliant systems.
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