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a b s t r a c t

Flutter and divergence instabilities have been advocated to be possible in elastic

structures with Coulomb friction, but no direct experimental evidence has ever been

provided. Moreover, the same types of instability can be induced by tangential follower

forces, but these are commonly thought to be of extremely difficult, if not impossible,

practical realization. Therefore, a clear experimental basis for flutter and divergence

induced by friction or follower-loading is still lacking. This is provided for the first time

in the present article, showing how a follower force of tangential type can be realized

via Coulomb friction and how this, in full agreement with the theory, can induce a

blowing-up vibrational motion of increasing amplitude (flutter) or an exponentially

growing motion (divergence). In addition, our results show the limits of a treatment

based on the linearized equations, so that nonlinearities yield the initial blowing-up

vibration of flutter to reach eventually a steady state. The presented results give full

evidence to potential problems in the design of mechanical systems subject to friction,

open a new perspective in the realization of follower-loading systems and of innovative

structures exhibiting ‘unusual’ dynamical behaviors.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Coulomb friction at the contact between two elastic bodies is an example of a live load (since it acts in a direction
opposite to the relative velocity during sliding of the bodies) and is known to be connected to different forms of
instabilities. Two of these, the so-called ‘flutter’ and ‘divergence’ (the former associated to blowing-up oscillations and the
latter to an exponentially growing motion), are dynamical instabilities that have been theoretically shown to be possible in
elastic structural systems with Coulomb friction (Martins et al., 1999; Sim ~oes and Martins, 1998; Nguyen, 2003) and even
in plastic continua characterized by frictional behavior (Rice, 1977; Loret, 1992; Bigoni, 1995; Bigoni and Loret, 1999; Loret
et al., 2000; Piccolroaz et al., 2006). However, no clear experimental evidence of flutter and divergence instabilities related
to dry friction has ever been presented,1 so that flutter induced by friction has always been thought to be a puzzling
phenomenon, since it is rather ‘unexpected’ that a merely dissipative factor such as friction, can induce blowing-up
dynamical motions in a mechanical system that would be stable in the absence of it. Moreover, for friction-related flutter
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1 Friction-related dynamical instabilities are thought to be responsible of brake squeal and of the ‘song’ of a fingertip moved upon the rim of a glass of

water, but these phenomena involve stick and slip, a phenomenon modeled as a drop of friction coefficient with velocity (Rice and Ruina, 1983). It is

therefore not clear if the instabilities would occur in the absence of this drop and it is not possible to definitely conclude about the real nature of these,

which appear to be only weakly related to the flutter of the structures subject to follower load, so that there are many different theories to describe brake

squeal involving or not follower forces (see the reviews by Flint and Hultén (2002) and Kröger et al. (2008)).
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in structures and continua, the role played by the nonlinearities, usually neglected in the stability analyses, is simply not
known from the experimental point of view, so that these could even have a stabilizing effect, see the discussion by Bigoni
and Petryk (2002).

The primary purpose of this article is to provide a definitive and indisputable experimental evidence for flutter and
divergence instabilities in elastic systems with dry Coulomb friction. The key for this achievement is the link with a special
elastic structure exhibiting flutter and divergence: the so-called ‘Ziegler column’ (Ziegler, 1953, 1977). This is a two-degree-
of-freedom structure made up of two rigid bars, internally jointed with an elastic rotational spring, externally fixed at one
end through another elastic rotational spring, while at the other end subject to a tangential follower load, remaining coaxial
to the rod to which it is applied, Fig. 1. Since the follower load is nonconservative, the structure becomes dynamically
unstable at a certain load level (although non-trivial equilibrium configurations do not exist), so that it evidences flutter
(a blowing-up oscillating motion) and, at higher load, divergence instability (an exponentially growing motion).2

As a result of a complex fluid–structure interaction, follower loads and related instabilities may occur in aeroelasticity,
but these do not directly involve the tangential follower force postulated in the Ziegler column, which is thought to be of
such difficult practical realization3 that a clear experimental basis for flutter and divergence instabilities as induced by
tangential follower load is still lacking. These difficulties led Koiter (1996) to propose the ‘elimination of the abstraction of
follower forces as external loads from the physical and engineering literature on elastic stability’ and to conclude with the
warning: ‘beware of unrealistic follower forces’.

In the present article we show that it is possible to exploit dry friction to generate follower loads of the type postulated
by Ziegler (1953, 1977), so that flutter and divergence instabilities in structures and in mechanical systems with dry
friction are shown to be strictly connected phenomena. In particular, we will prove the following results.

� First, we definitely disclaim Koiter’s statement and the current opinion that follower forces are unrealistic, showing that
a follower load can be easily realized exploiting dry friction and that flutter and divergence instabilities can be observed
with a simple experimental setting, so simple that can even be reduced to a toy for kids.
� Second, we prove in a direct and indisputable way that flutter and divergence instabilities can be induced by dry friction.
� Third, we investigate experimentally and theoretically the role of nonlinearities on the development of the instability,

showing that in the case of flutter these induce the attainment of a steady-state motion.

The above-mentioned results have been obtained by inventing, designing and testing a two-degree-of-freedom elastic
structure with a frictional (obeying the Coulomb rule) element.

A brief explanation of our idea and results can be given as follows. Our two-degree-of-freedom system is a simple variant
to the Ziegler column (Fig. 1), where the follower load is induced by a frictional force acting on a wheel mounted at the end of
the structure and kept sliding with friction against a plane. Note the crucial role played by the wheel, which transmits the
frictional force coaxial to its axis (see the sketch in Fig. 3). The behavior of the structure is shown in Fig. 2, where photos
taken at different time instants have been superimposed. On the left of the figure we may see an example of flutter
instability, while on the right an example of divergence. The numbers provide the order in which the photos have been
taken, so that we can clearly detect the oscillatory blow-up of flutter, to be contrasted with the progressive growth of
divergence.4

Fig. 1. The Ziegler column, a two-degree-of-freedom system subject to follower load (the force P remains always applied to C and directed parallel to the

rod BC), exhibiting flutter and divergence instability. The two rods, of linear mass density r, are rigid and connected through two rotational springs of

stiffness k1 and k2. Note that there is no bifurcation for this system.

2 The history of the discovery of this instability involves, among others, Nikolai (1928), Pflüger (1950, 1955), Beck (1952), Ziegler (1953, 1956, 1977),

Bolotin (1963), Herrmann and Jong (1965), Como (1966) and is explained in detail by Elishakoff (2005), who also provides an account of the frustrating

attempts of giving experimental evidence to the theory.
3 Follower tangential forces have been realized until now through a fluid flowing from a nozzle, or through a solid motor rocket fixed at the end of

the structure (Herrmann et al., 1966; Sugiyama et al., 1995, 2000), two devices introducing complications in the modeling. In fact, the complex fluid/

structure interaction of a fluid flowing from a nozzle is only as a first approximation reduced to a follower thrust, while in the other experimental set-up

complications arise from the non-negligible mass and dimensions of the solid motor rocket and from the short duration of the thrust provided by it,

which prevents long-term analyses of the motion.
4 A movie with experiments can be downloaded at http://ssmg.ing.unitn.it/. Note in the movie the acoustic emission during the test, also evidencing

the instability.
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The article is organized as follows. A variant of the Ziegler column is presented in Section 2, in which the mass is
distributed along the two rigid beams forming the system and the follower load is provided by a frictional device obeying
Coulomb friction. The basic ideas for the design of the structure and the complication involved with the friction constraint
are detailed. The practical realization of the structure is described in Section 3, where experimental results are provided
and commented. A final discussion closes the article, Section 4.

2. The two-degree-of-freedom system

It is well-known that flutter instability may be induced in a structure by follower loads and the typical example is the so-called
‘Ziegler column’, the two-degree-of-freedom system with heavy rigid rods (mass per unit length r) shown in Fig. 1, where two
rotational springs of stiffness k1 and k2 provide the elasticity. The generic configuration of the structure remains determined by
the two Lagrangian parameters a1 and a2. The applied load P, assumed positive when compressive, maintains the direction
parallel to the rod BC. The analysis of a system similar to this (with concentrated masses instead than diffused) can be found in
Herrmann (1971) and Ziegler (1977) and, in a simplified version, in Nguyen (1995), while the analogous problem of a clamped
column subjected to a load tangential to its axis at the free end has been solved by Beck (1952) and Pflüger (1955).

The follower force P in the structure shown in Fig. 1 has been previously realized through a fluid flowing from a nozzle
(Herrmann et al., 1966) or through an end rocket (Sugiyama et al., 1995, 2000) fixed at the end of the structure. Our idea is
to provide the follower force through a wheel of negligible mass mounted at the top of the structure and constrained to
slide against a frictional plane, see Fig. 3.

In fact, a perfect (massless and fully free of rotating) wheel sliding with pure Coulomb friction (but without rolling
friction) on a rigid plane, which is ideally touched at a point, can only transmit an axial force and we will show that these
conditions can be successfully approximated in real experiments, since the deviations from the ideal model that
necessarily arise in experiments are not sufficient to hide the instabilities.

Following the above-mentioned idea, we analyze the structure shown in Fig. 1 under the hypotheses that: (i) the wheel
is massless, free of rotating, and touches the horizontal plane at a point, (ii) the hinges (unloaded in the straight
configuration) are viscoelastic, (iii) the follower force is transmitted through Coulomb friction of coefficient md by a plane
moving at the speed �vpe1, and that (iv) there is no rolling friction, so that the analysis merely differs from results in the
above-mentioned literature in the inclusion of the friction condition at the end of the structure.

The above-mentioned assumptions (i)–(iv) are very close to our experimental setup and have been verified
both experimentally (changing the wheel’s mass and profile, the friction coefficient, the geometry of the structure and the
stiffness and viscosity of the springs, see Section 3) and theoretically (we have performed more sophisticated computations by
introducing the mass and rotational inertia of the wheel, the rolling friction and a possible deviation of the frictional load from
collinearity), so that we may point out that, though more complex models might yield a better quantitative comparison with
experiments, they cannot change the overall qualitative picture, which will be shown to be very well captured with simple
assumptions.

Fig. 2. A superposition of photos, adapted from Figs. 10 and 14 on the left, taken at different instants of time [(0, 0.48, 0.72, 1.08) s for flutter and (0, 0.20,

0.28, 0.36) s for divergence] of the two-degree-of-freedom structure (Fig. 8b) exhibiting flutter (left) and divergence (right) instability. vp is the velocity of

a plate sliding against the wheel, taken equal to 75 mm/s for flutter and 50 mm/s for divergence.
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A simple static analysis of the structure shown in Fig. 1 is sufficient to conclude that only the trivial (straight)
configuration satisfies equilibrium (in fact equilibrium of the rod BC is only possible if a1 ¼ a2, while equilibrium of the
complex ABC requires a1 ¼ 0), so that bifurcations are excluded.

Let us obtain now the equations of motion for the system. To this purpose, we start from the position vectors of the
point C and of the mass center of the rods G1 and G2

C�A¼ ðl1cosa1þ l2cosa2Þe1þðl1sina1þ l2sina2Þe2,

G1�A¼ ½ðl1=2Þcosa1�e1þ½ðl1=2Þsina1�e2,

G2�A¼ ½l1cosa1þðl2=2Þcosa2�e1þ½l1sina1þðl2=2Þsina2�e2, ð1Þ

where e1 and e2 are the two unit vectors singling out the horizontal and vertical directions, respectively, so that the follower force
P, of modulus P, can be expressed as

P¼�Pe1cosa2�Pe2sina2, ð2Þ

where, denoting with a superimposed dot the derivative with respect to time, P is given by the Coulomb friction law with stiction:

P¼ Rmð _C r

pÞ, mð _C r

pÞ ¼
md signð _C

r

pÞ, if _C
r

p ¼
_CpUera0,

½�ms,ms�, if _C
r

p ¼
_CpUer ¼ 0,

8<
: ð3Þ

where R is the vertical reaction applied at the wheel (orthogonal to the moving plane), ms and md are the static and dynamic
friction coefficients (their difference gives the ‘stiction effect’, which vanishes taking ms ¼ md) and _C

r

p is the radial component
(er ¼ cosa2e1þsina2e2) of the velocity of the wheel relative to the plate, so that we can write

_Cp ¼
_Cþvpe1, _CpUer ¼ vpcosa2�l1sinða1�a2Þ _a1: ð4Þ

For the practical realization of the experiment, the vertical reaction R will be provided by using the structure itself as a lever to
which a dead load W is applied, as sketched in Fig. 4, so that

R¼
ls

lf þ l1cosa1þ l2cosa2
W , ð5Þ

where ls is the length of one arm of the lever, while the denominator is the variable length of the other, see Fig. 4.
It is assumed that the hinges are viscoelastic of the Voigt type with constants b1, b2, k1, and k2, so that the moments

applied to the rods are k1a1þb1 _a1 and k2ða2�a1Þþb2ð _a2� _a1Þ and the principle of virtual works, denoting with ‘U’ the
scalar product, write as (see Appendix A for details)

dW ¼ PUdC�ðk1a1þb1 _a1Þda1�½k2ða2�a1Þþb2ð _a2� _a1Þ�ðda2�da1Þ

�rl1 €G1UdG1�rl2 €G2UdG2�
1

12 rl31 €a1da1�
1

12rl32 €a2da2 ¼ 0, ð6Þ

holding for every virtual rotation da1 and da2. Imposing now the condition (6) and invoking the arbitrariness of da1 and
da2 we arrive at the two nonlinear differential equations:

1
3rl21ðl1þ3l2Þ €a1þ

1
2rl1l22cosða1�a2Þ €a2þ

1
2rl1l22sinða1�a2Þ _a2

2þðk1þk2Þa1�k2a2

þðb1þb2Þ _a1�b2 _a2�l1Pð _C
r

pÞsinða1�a2Þ ¼ 0,

1
2rl1l22cosða1�a2Þ €a1þ

1
3rl32 €a2�

1
2rl1l22sinða1�a2Þ _a2

1�k2ða1�a2Þ�b2ð _a1� _a2Þ ¼ 0,

8>>><
>>>:

ð7Þ

governing the dynamics of the system. A numerical solution of the nonlinear differential system (7) faces the well-known
numerical difficulty that the friction law (3) is a multivalued, discontinuous relation (Threlfall, 1977; Oden and Martins,
1985; Martins et al., 1990). This difficulty can be overcome using a viscous smooth approximation of the law, including or
not the difference between static and dynamical friction, which in the continuous approximation becomes the so-called
‘Stribeck effect’ (Stribeck, 1902). In the following, we have numerically solved the system (7) using different

Fig. 3. The way to produce a force coaxial to a rod from friction; a freely rotating wheel of negligible mass is mounted on the top of the rod.

D. Bigoni, G. Noselli / J. Mech. Phys. Solids 59 (2011) 2208–2226 2211



Author's personal copy

approximations to the law (3), including and neglecting the Stribeck effect, and we have found that results for our
structure do not differ much and the root of the unstable behavior is not linked to a drop in the friction coefficient.
Therefore, we will refer to the simple approximation of the relation (3) employed by Oden and Martins (1985) and Martins
et al. (1990):

mð _C r

pÞ ¼ md

signð _C
r

pÞ, if _C
r

p =2 ½�e,e�,

2�
j _C

r

pj

e

 !
_C

r

p

e
, if _C

r

p 2 ½�e,e�,

8>>><
>>>:

ð8Þ

where e is a small parameter.
A purely elastic analysis (b1 ¼ b2 ¼ 0) of the structure (a linear viscoelastic analysis is deferred to Appendix A), valid for

configurations in a small neighborhood of the trivial one (a1 ¼ a2 ¼ 0) can be performed with the incrementally nonlinear
differential system obtained from Eqs. (7) through a Taylor series expansion in the form:

1
3rl21ðl1þ3l2Þ €a1þ

1
2rl1l22 €a2þðk1þk2Þa1�k2a2�l1Pð _C

r

pÞða1�a2Þ ¼ 0,

1
2rl1l22 €a1þ

1
3rl32 €a2�k2ða1�a2Þ ¼ 0,

8<
: ð9Þ

where Pð _C
r

pÞ remains the incrementally nonlinear function (3). Note that Eqs. (9) are similar (keeping aside for the moment
the complication related to the difference between ms and md) to the piecewise incremental nonlinearity of a rigid perfectly
plastic body. The complication connected to the incremental nonlinearity disappears if the plate/wheel sliding condition
_C

r

p40 is always verified, a situation which certainly holds at the instant of flutter (when a1 ¼ a2 ¼ 0) and even for a finite
interval of time from this instant, for vp sufficiently high to satisfy vp4 l1sinða1�a2Þ _a1=cosa2. In this case, we can operate
with the fully linearized version of Eqs. (7):

1
3rl21ðl1þ3l2Þ €a1þ

1
2rl1l22 €a2þðk1þk2Þa1�k2a2�l1Pða1�a2Þ ¼ 0,

1
2rl1l22 €a1þ

1
3rl32 €a2�k2ða1�a2Þ ¼ 0,

(
ð10Þ

where P is now independent of _C
r

p and given by

P¼ mdR¼ md

ls
lf þ l1þ l2

W : ð11Þ

In the flutter analyses usually performed in nonassociative elastoplasticity (see for instance Bigoni, 1995), ‘plastic loading’ is
always assumed, in other words, a fully linear system such as that described by Eqs. (10) and (11) is considered. We will soon
be in a position to test this assumption on our structure both theoretically and experimentally; for the moment, continuing
with the linearization, Eq. (11), we look for time-harmonic vibrations so that we can conclude that (see Appendix A for details):

� flutter instability occurs when Wf oWoWd, with

Wf
d
¼

k2ðlf þ l1þ l2Þ

mdlsl1
�
kþð1þlÞ38l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð3þ4lÞ

p
1þ3l=2

, ð12Þ

where l¼ l1=l2 and k¼ k1=k2,
� and divergence instability occurs when W4Wd.

In addition to the above-reported calculations, we have analyzed the case (not presented for brevity) that the follower
force slightly deviates from collinearity with the end rod. We have concluded that the model is robust with respect to this
deviation, in the sense that a small deviation from collinearity does not suppress flutter and divergence instabilities.

Fig. 4. The structure shown in Fig. 3 is used as a lever to provide the vertical reaction R from the vertical dead load W, so that the force from friction

results P¼mdR.

D. Bigoni, G. Noselli / J. Mech. Phys. Solids 59 (2011) 2208–22262212
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The linearized analysis yields the known conclusion (which cannot be reached through a quasi-static analysis) that,
while divergence instability corresponds to a motion growing exponentially in time, flutter instability corresponds to a
self-excited oscillation blowing-up in time. This statement is confirmed in Fig. 5, where results are reported as solution of
the linear differential system (10) with the initial conditions a1 ¼ a2 ¼ 0:51 (a1 ¼ a2 ¼�0:51 for divergence) and _a1 ¼ _a2 ¼ 0
and with the geometric and stiffness setting that will be employed for experiments (see Table 2).

A 0.52 (0.2) s sequence of configurations at different instants of time is reported in the figure, where each configuration
is drawn at fixed intervals of time (0.04 s). The oscillatory blow-up (exponential growth) of the solution is clearly visible in
the case of flutter (divergence).

The linearized elastic analysis has the mentioned limitations that: (i) slip at the wheel/plate contact is assumed, _C
r

p40,
(ii) geometrical nonlinearities are neglected, and (iii) viscous behavior of the hinges is set to zero. So that the question arises
whether the blowing-up motion connected to flutter (or to divergence) really develops or is strongly altered, maybe even
‘damped-down’, by nonlinearities. We can provide various answers to these questions, which are now discussed in detail.

� Assumption (i), namely, _C
r

p40: For sufficiently high velocities of the plate, vp, this condition is verified not only at the
instant of flutter, but also for a finite interval of time, say, until l1ða1�a2Þ _a1 remains sufficiently small when compared
to vp. It is therefore expected that the linearized analysis based on Eqs. (10) correctly predicts the onset and the early
development of a dynamical instability, without involving any stick–slip phenomena. This statement is verified in the
example reported in Fig. 5, where we have observed that the wheel/plate slip condition is satisfied for all reported
configurations until the instant of time 0.40 s for flutter (0.16 s for divergence). Therefore, the problem to be addressed
is not if flutter and divergences are ‘true’ instabilities, but how these instabilities develop when displacements become
sufficiently large to violate the wheel/plate slip condition (and to involve the other nonlinearities). This problem is
solved in the following both with a numerical and an experimental approach.
� Assumptions (ii): The geometrical nonlinearities play a role only when the displacement of the structure becomes large.

These effects need to be included for a correct modeling of the experiments, since we have observed large (and very
fast) movements to occur, so large in the case of divergence instability that we have had to limit the maximum stroke of
the structure with a constraint, to avoid failure of the equipment.
� Assumptions (iii): We have experimentally detected (in a way independent of the instability tests that will be explained

later) a viscous behavior of the hinges, the consideration of which in the modeling has yield a better comparison to

Fig. 5. A sequence (0.52 s for flutter and to 0.2 s for divergence) of deformed shapes at consecutive times intervals of 0.04 s of the structure sketched in

Fig. 1 and exhibiting flutter (upper part) and divergence (lower part) instabilities. Results have been obtained through a linearized analysis [Eqs. (10)]

with initial conditions a1 ¼ a2 ¼ 0:51 (a1 ¼ a2 ¼�0:51 for divergence) and _a1 ¼ _a2 ¼ 0, at the flutter load ðWf þWdÞ=2 (upper part) and at the divergence

load 1:75Wd (lower part), Eq. (12). The values employed for the analysis are reported in Table 2.

D. Bigoni, G. Noselli / J. Mech. Phys. Solids 59 (2011) 2208–2226 2213



Author's personal copy

experiments. In any case, the instability is not associated to the viscosity, so that we have observed it to occur under
various conditions of lubrication at the hinges.

To check the limits of the above assumptions and to be able to model our experiments, we have provided fully nonlinear
analyses of the differential system (7), employing the regularization (8) with e¼ 10�5 m=s. One of these analyses (performed
numerically using the function ‘NDSolve’ of Mathematica 6.0) is shown in Fig. 6, where configurations at different instants of
time have been reported as in Fig. 5, but introducing now also the damping coefficients b1 and b2, with the values that best
fit our experiments (that will be introduced in the next Section, see Tables 1 and 2). We highlight that for all the deformed
configurations reported in Fig. 6 for flutter, the regularization law (8) is not ‘activated’, so that _C

r

p4e, while in the case of the
divergence, the regularization is activated starting from the configuration at the instant of time 0.20 s. This means that in the
conditions relevant for our experiments, the early development of flutter and divergence fully occurs without involving
transitions from the dynamic to static friction coefficients, with the possibility of stick–slip instabilities.

We can conclude from Fig. 6 that an initial oscillation of increasing amplitude is observed, as would be predicted by a
linearized analysis, but that the oscillation becomes steady at large deformations (see the electronic supplementary
material available online at doi:10.1016/j.jmps.2011.05.007 and also http://ssmg.ing.unitn.it/), so large which could yield
the failure of a real structure (in fact we have broken our first two prototypes of the structure during early tests, so that
eventually we have designed the third prototype to resist large displacements). A plot of the movement of the tip of the
structure recorded on the moving plate, as calculated from solution of the nonlinear Eqs. (7) is reported in Fig. 7,
contrasted with an experimental result, namely, a scratch left on the plate by the wheel during a test (evidenced with red

Fig. 6. A sequence (1.08 s for flutter and to 0.36 s for divergence) of deformed shapes at consecutive times intervals of 0.04 s of the structure sketched in

Fig. 1 and exhibiting flutter (upper part) and divergence (lower part) instability. Results have been obtained through a numerical analysis of Eqs. (7) with

initial conditions a1 ¼ a2 ¼ 0:51, at the flutter load ðWf þWdÞ=2 (upper part) and at the divergence load 1:75Wd (lower part), Eq. (12). The values employed

for the analysis are reported in Table 2.

Table 1

Measured values of the viscosity parameters b1 and b2 as a function of the applied dead load W characterizing the structure shown in Fig. 8.

Wi 19.5 N 24.5 N 29.5 N 34.5 N 39.5 N

bi 0.0036 N m s 0.0041 N m s 0.0052 N m s 0.0074 N m s 0.0095 N m s

Mean and standard deviation of the parameters b1 and b2 ¼ f0:006; 0:0025g N m s

Table 2
Measured valued of the parameters characterizing the structure shown in Fig. 8 and used in the numerical simulations.

Lengths of the rods Hinges charact. General data

l1 100 mm k1 0.189 N m r 1.84 g/mm

l2 100 mm k2 0.189 N m ms 0.6170.06

lf 50 mm b1 0.006 N m s md 0.4770.05

ls 125 mm b2 0.006 N m s d 25 mm

D. Bigoni, G. Noselli / J. Mech. Phys. Solids 59 (2011) 2208–22262214
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spots). Note that the initial velocity has been taken equal to _a1 ¼ _a2 ¼ 0:5 rad=s, since in the experiment we have observed
first a slight deviation from rectilinearity and then a movement to reach the straight configuration before the initiation of
flutter. We can observe that cusps form in the predicted behavior when the steady motion is reached, a feature which is
present also in the experiment and which is related with the decrease to zero of _C

r

p. We have found that the slip velocity _C
r

p

never became negative in all nonlinear simulations that we have performed.
We have observed some of the scratches left by the wheel on the aluminum plate during the experiments, using an

optical microscope (with a Nikon SMZ800 stereo-zoom microscope equipped with Nikon Plan Apo 0.5� objective and a
Nikon DD-FI1 high definition color camera head), without finding traces of detachments.

3. Experimental results

We have performed experiments with three different prototypes of the two-degree-of-freedom structure sketched in
Figs. 3 and 4, always finding flutter and divergence instabilities for appropriate loads. In the first prototype the elastic
hinges were realized with thin steel strips working under flexure, while for the other structures these have been realized
as true hinges without (in the case of the second prototype) and with (in the case of the third prototype) ball bearings. In
this way the viscous behavior of the hinges in the three prototypes was markedly different. We have tried a series of
different wheel/plate friction conditions, first using an aluminum wheel sliding on paper, then sliding on P2000-sand
paper, later, using a steel wheel sliding on a sandblasted-steel plate and, finally, we have used a steel wheel sliding against
an aluminum plate. Since the rotational inertia of the wheel introduces a force transversal to the axis of the structure,
we have checked the influence of this effect in the three prototypes by employing five different wheels, one in aluminum
(V-shaped cross section, external diameter 15 mm, thickness 5 mm and weight 3 gr) and four in steel (one with V-shaped
cross section, external diameter 25 mm, thickness 6 mm and weight 17 gr; three cylindrical with external diameter
25 mm, thicknesses 5, 6 and 10 mm and weights 18, 22 and 36 gr), so that we have proved that, within the dimension
range of our prototypes, the mass of the wheel and the real dimensions of the contact area (which reduces to a point only
in ideal conditions) do not affect much the instability.

The two initial prototypes have both broken during experiments to detect divergence instability, so that we have
limited in the third prototype the stroke of the model. Precise measurements have been carried out only using the third
prototype, specially designed with this purpose. While we will limit the presentation to the third prototype in the
following, we stress now the point that since flutter was always observed at sufficiently high loading, the phenomenon has
been found to occur: (i) with the different viscosities related to the different mechanical realizations of the hinges, (ii) with
different mass and shape of the wheel (iii) with different contact and friction conditions at the wheel/plate contact
(aluminum/paper, aluminum/P2000-sand paper, steel/sandblasted-steel, steel/aluminum) and (iv) with different geome-
tries and stiffnesses. In all cases, we have verified agreement with the theoretical modeling.

3.1. Experimental setting

The two-degree-of-freedom system sketched in Figs. 3 and 4 has been realized as shown in Fig. 8 with two 100 mm long
stainless steel AISI 304 rods with a rectangular cross section of external dimensions equal to 30 mm�10 mm. The rods are

Fig. 7. The scratch left by the wheel on the plate compared with the nonlinear solution of Eqs. (7) with W ¼ ðWf þWdÞ=2, vp ¼ 100 mm/s and initial

conditions a1 ¼ a2 ¼ 01 and _a1 ¼ _a2 ¼ 0:5 rad=s. The red spots along the scratches are positions of the wheel corresponding to photos taken with the high

speed camera; the scratch left during the experiment is clearly visible in the initial part of the test, not evidencing detachments. The whole sequence

corresponds to 2.04 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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connected through hinges realized using ball bearings (SKF, model 628/5-2Z), with a torsional spring obtained from a (1 mm
diameter) music wire ASTM A228. The wheel, of diameter d¼25 mm, mounted (with two ball bearings SKF, model 618/5) on
the top of the final rod is made of stainless steel AISI 304 and the structure is hinged (with two ball bearings SKF, model
61800) to the loading frame through a load cell (Gefran S.p.A., model OC-K5U-C3), to measure the axial force (along e1).

The plate sliding against the structure is a 500 mm�1000 mm�5 mm aluminum alloy 6082 plate moved through a
linear drive unit (Damo S.r.l., model AMV120LB), equipped with an ABB servo motor (model BSM0400CN00) and controlled
with and ABB servo drive (model BSD0400), both purchased from ABB Sace S.p.A. The plate has been polished with
sandpaper P100. An IEPE accelerometer (PCB Piezotronics Inc., model 333B50) has been attached at the top of the final piece
of the structure. Photos of the system have been taken with a high-speed camera (Genie HM1400 from DALSA Corporation),
equipped with AF Nikkor (18–35 mm 1:3.5–4.5 D) lens (Nikon Corporation) and a movie has been recorded during the whole
test with a Sony handycam (model HDR-XR550VE). The axial force, the transversal acceleration (along ey) and the position of
the plate have been acquired with a sample rate of 5 kS/s through a NI PXI-6221 data acquisition system, interfaced with
Labview 8.5.1 (National Instruments).

The viscosity of the hinges has been measured in the following way. The central hinge of the system has been blocked,
so that the structure has been reduced to a one-degree-of-freedom elastic pendulum (a1 ¼ a2), which has been left free of
oscillating starting from an initial configuration at a1 ¼ 451, for different values of load W, with the plate advancing at a
constant speed of 50 mm/s. The deformations of the structure have been recorded with the high-speed camera at 25
frames per second and the parameter b1 has been estimated through comparison with the solution of the free damped
vibrations of a pendulum. The results are reported in Table 1.

Although we have found that the viscosity of the hinges depends on W, an effect related to the fact that an increase in the
applied weight yields an increase of the dissipation within the bearings, a good approximation (intended as the best
‘compromise’ with the factors that we have neglected) to the viscosity of the hinges (b1 and b2, taken to be equal), has been
found that reported in Table 2, where all parameters characterizing the geometry and the mechanical behavior of the structure
shown in Fig. 8 have been reported, to be used for numerical simulations. The friction coefficients (between steel and
aluminum) in the table have been evaluated from the mean values of the axial forces measured during all the tests. The values
of the friction coefficients have been found to be independent of the applied load W and to fit the values available in the
literature (Minshall, 1992). Using the values listed in the table, we can estimate the critical loads for flutter and divergence from
Eqs. (12). These, in the absence of viscosity (b1 ¼ b2 ¼ 0), result to be Wf ¼ 20:5 N and Wd ¼ 37:5 N, which become 14.4 N and
55.9 N when the viscosity of the hinges is kept into account. Note that all the values listed in Table 2 have been determined
independently from flutter and divergence experiments and will be found to nicely fit these experiments.

3.2. The evidence of flutter and divergence instabilities induced by friction

Since the interval of load W corresponding to flutter and divergence is known, we can test these instabilities on the
structure shown in Fig. 8(b) by increasing the load W from a stable situation. The result is shown in Fig. 9, where an

Fig. 8. The practical realization of the concept exemplified in Figs. 3 and 4. (a) A global view of the experimental setting; (b) a detail of the whole

structure suffering instability; (c) detail of the structure: the wheel (a 25 mm diameter steel cylinder, 6 mm thick) and the accelerometer; (d) detail of the

structure: an elastic hinge.
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experimental investigation of the critical loads for flutter and divergence instabilities is reported. We have not found any
dependence of the critical loads on the plate velocity vp, which has been imposed equal to 50 mm/s to measure the values
reported in Fig. 9.

Fig. 9. Experimental investigation on flutter and divergence instabilities at increasing load W at vp¼50 mm/s. The elastic model predicts flutter

instability to occur at Wf and divergence at Wd; these values are corrected to 0:70Wf and 1:49Wd when viscosity at the hinges is included.

Fig. 10. A sequence of photos (taken with a high-speed camera at 25 frames per second) of the structure sketched in the lower part of Fig. 8 and

exhibiting flutter instability. Note the blurred photos, denoting increasing velocity of the motion. The whole sequence of photos has been recorded in

1.08 s and the time interval between two photos was 0.04 s. The experiment refers to W ¼ ðWf þWdÞ=2 and vp ¼ 75 mm/s. The plate is advancing

vertically from the top to the bottom. This sequence of photos can directly be compared with the sequence of configurations shown in Fig. 6, upper part.
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Note that the elastic model predicts flutter at Wf and divergence at Wd and this interval is ‘broadened’ (note the arrows
in the figure) to 0.7Wf and 1.49Wd, when viscosity of the hinges is kept into account (see Appendix A). This broadening of
the flutter range is consistent with our experimental results shown in Fig. 9. The discrimination between stability and
flutter instability has been performed through visual inspection and documented with the photographic record. This
discrimination has been found easy, while some difficulties have been encountered in distinguishing between flutter and
divergence instabilities in the transition zone between the two phenomena.

A sequence of photos taken with the high-speed camera (with the Sony handycam) at 25 shots per second is shown in
Fig. 10 (in Fig. 11) documenting a case of flutter instability at a load W ¼ ðWf þWdÞ=2¼ 29 N and a speed of 75 mm/s of the
aluminum plate.

The vibrational motion of increasing amplitude is evident from both Figs. 10 and 11. The same test is also documented in a
movie provided in the electronic supplementary material (see also http://ssmg.ing.unitn.it/). Note that the sequence of photos
corresponds to the sequence of configurations reported in Fig. 6 (upper part), so that the direct comparison results to be excellent.

Supplementary material related to this article can be found online at doi:10.1016/j.jmps.2011.05.007 and presenting
numerical simulations and movies of experiments.

The measured acceleration versus time during a flutter test at a load W ¼ ðWf þWdÞ=2¼ 29 N are reported in Fig. 12, for
a plate velocity of 75 mm/s (a detail of the curve on the left is shown on the right). Results of the numerical nonlinear

Fig. 11. A sequence of photos (taken from a movie recorded with a Sony handycam at 25 frames per second) of the structure sketched in the lower part of

Fig. 8 and exhibiting flutter instability. The whole sequence of photos has been recorded in 1.08 s and the time interval between two photos was 0.04 s.

The experiment refers to W ¼ ðWf þWdÞ=2 and vp ¼ 75 mm/s.
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(linear viscoelastic) simulation are also reported in red (in blue) for the initial 6 s (1.5 s), with initial conditions
a1 ¼ a2 ¼ 0:51 and _a1 ¼ _a2 ¼ 0. Note from Fig. 12 the initial increase in the amplitude of the acceleration, denoting flutter,
and the following stabilization, when a steady situation is reached. The attainment of a steady dynamics at large
displacement is an important conclusion of our study.

It is important to point out that, although the onset of flutter and the transition between flutter and divergence have
been found independent of the plate velocity, we have found a dependence on this velocity of the maximum amplitude of
displacement reached during steady motion in flutter conditions. This dependence is connected with the attainment of the
stick/slip condition _C

r

pre, in the sense that the smaller is the velocity, the earlier the stick condition is attained and the
oscillation inverted. This behavior is consistent with the fact that the velocity of the plate is essential to satisfy the sliding
condition and ensures the validity of the linearized analysis to capture the onset of the instability. It is clear that the effects
of the instability become more ‘intense’ when the velocity of the plate is increased. These observations are fully confirmed
by the numerical simulations of the nonlinear equations (7), so that a comparison between theoretical predictions and
measured values is reported in Fig. 13.

Two sequences of photos taken with the high-speed camera and with the Sony handycam, both at 25 shots per second, are
shown in Fig. 14, documenting a case of divergence instability at a load 1.75Wd and a speed of 50 mm/s of the aluminum plate.
In the experimental setting a lateral rubber constraint has been added to prevent possible failure of the equipment. In fact the
motion caused by divergence instability has been found to be particularly violent. The exponential growth of displacement
connected to the divergence instability is clearly visible in the figure. Note that the sequence of photos can be directly
compared with the sequence of configurations shown in Fig. 6, lower part, and shows an excellent agreement.

Finally, a case of stability is documented with a 5 s long sequence of photos, taken (with a Sony handycam) at a time
intervals of 1 s, and is reported in Fig. 15 at a load W¼5 N, and at a speed of the aluminum plate of 50 mm/s.

During our experiments we have also recorded the noise generated during sliding and we have carefully observed the
rotational motion of the wheel. The emitted noise highlights the vibrational character of flutter instability and the
rotational motion of the wheel shows that there is no inversion of the rotation before the end of an oscillation is reached,
in agreement with our model.
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Fig. 13. Maximum lateral displacement of the end point C of the structure as a function of the plate velocity vp when the steady state motion is reached.

The dashed curve is obtained through the numerical solution of Eqs. (7), for different plate velocities and an applied dead load W ¼ ðWf þWdÞ=2; the red

spots are the experimental data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Measured acceleration versus time (6 s are reported) during the flutter test reported in Figs. 10 and 11, at a load W ¼ ðWf þWdÞ=2 and for a plate

velocity of 75 mm/s. The part on the right is a detail of the part on the left, referred to the initial 1.5 s. Results of the numerical nonlinear (linear with

viscosity) simulation at the same load and with initial conditions a1 ¼ a2 ¼ 0:51 are reported in red (in blue). The solution of the linear equations (blue

curve) has been interrupted at 1.5 s since the blow-up was too high. Note the initial increase in the amplitude of the acceleration denoting flutter (well

captured even by the linearized viscoelastic analysis), and the following stabilization (captured by the nonlinear analysis), due to the effect of the

nonlinearities. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In closure, we note that all instabilities are suppressed in our system if the central hinge (Fig. 8d) is blocked, since the
follower load induced by friction does not work. Moreover, divergence instability and buckling occur, but not flutter, if the
wheel is prevented from rotating. These two behaviors have been both studied and checked experimentally, see Appendix B.

4. A final discussion

Flutter and divergence instabilities have been experimentally demonstrated to occur in a two-degree-of-freedom
elastic structure, as related to dry friction, in full agreement with theoretical predictions. In particular, all the following
phenomena, documented in various experiments with different settings, are all quantitatively predicted by the theoretical
modeling and fully interpretable as friction-induced flutter or divergence instabilities.

� Experiments performed on three different realizations of the structure sketched in Figs. 3 and 4 have all shown at
increasing load: nearly null vibrations (interpreted as stable behavior, Fig. 15), blowing-up oscillations becoming large
and steady after 1–2 s (interpreted as flutter, Figs. 10 and 11) and, finally, exponentially growing motion (interpreted as
divergence instability, Fig. 14).
� Since the three structures had different geometries, stiffnesses, types of elastic hinges and wheel/plate friction

coefficients, the instabilities are quantitatively but not qualitatively affected by all these parameters and, in particular,
by the viscosity at articulations and by the value of the friction coefficient at the wheel/plate contact.

Fig. 14. Two sequences of photos (taken with a high-speed camera, on the left, and with a Sony handycam, on the right, at 25 frames per second) of the

structure sketched in the lower part of Fig. 8 and exhibiting divergence instability. Note the blurred photos, denoting increasing velocity of the motion.

The whole sequence of photos has been recorded in 0.36 s and the time interval between two photos was 0.04 s. The experiment refers to W ¼ 1:75Wd

and vp ¼ 50 mm/s. The sequence of photos on the left can be directly compared with the sequence of configurations shown in Fig. 6, lower part.

Fig. 15. A sequence of photos (taken with a Sony handycam) of the structure sketched in the lower part of Fig. 8 within the region of stability. The whole

sequence of photos has been recorded in 5 s and the time interval between two photos was 1 s. The experiment refers to W¼5 N and vp ¼ 50 mm/s.
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� While the amplitude of the vibrations during steady motion has been found to depend on the sliding velocity of the
plate, the onset of flutter has been found independent of this.
� The accelerations measured at the tip of the structure and the noise recorded during the tests show initially an oscillatory

blow-up, which finally reaches a steady state, during flutter instability (Fig. 12).
� No evidences of detachment at the wheel/plate contact have been found at a microscope investigation of the scratches

on the plate.
� The wheel rotates during instability and does not invert rotation before the end of an oscillation.
� When the wheel is prevented from rotating, three behaviors are found at increasing load: nearly null vibrations

(interpreted as stable behavior), growing motion with low acceleration and without vibrations (interpreted as
divergence instability, Fig. 17 upper part) and, finally, stick of the wheel with flexure of the structure (interpreted as
buckling, Fig. 17 lower part).
� When the central hinge of the structure is blocked, the structure is found to have nearly null vibrations at every load

level (stable behavior, Fig. 18).

Neither any evidence against the model of flutter or divergence instabilities, nor possibilities of describing these
phenomena with different models, have been found. Our experiments show that a follower load of tangential type can be
easily obtained by exploiting a constraint with Coulomb friction. Moreover, the fully nonlinear dynamics which develops
in flutter conditions shows that the system reaches a steady state, in which the maximum amplitude of the motion
depends on the initial relative velocity at the friction contact.
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Appendix A. Details of the analysis for the two d.o.f. system shown in Fig. 1

We provide details of the stability analysis of the structure shown in Fig. 1, which have been omitted in Section 2.
Denoting the time derivative by a superimposed dot, the velocities of points C, G1 and G2 can be obtained from Eqs. (1) as

_C ¼�ðl1 _a1sina1þ l2 _a2sina2Þe1þðl1 _a1cosa1þ l2 _a2cosa2Þe2,

_G1 ¼�½ðl1=2Þ _a1sina1�e1þ½ðl1=2Þ _a1cosa1�e2,

_G2 ¼�½l1 _a1sina1þðl2=2Þ _a2sina2�e1þ½l1 _a1cosa1þðl2=2Þ _a2cosa2�e2, ðA:1Þ

so that the accelerations of the mass center of the two rigid bars are

€G1 ¼�½ðl1=2Þð €a1sina1þ _a2
1cosa1Þ�e1þ½ðl1=2Þð €a1cosa1� _a2

1sina1Þ�e2,

€G2 ¼�½l1ð €a1sina1þ _a2
1cosa1Þþðl2=2Þð €a2sina2þ _a2

2cosa2Þ�e1þ½l1ð €a1cosa1� _a2
1sina1Þþðl2=2Þð €a2cosa2� _a2

2sina2Þ�e2:

ðA:2Þ

The expressions (A.1) and (A.2) are employed to write down the principle of virtual works (6), from which the
differential equations governing the dynamics of the structure, Eqs. (7), follow.

A.1. Linearized analysis of the elastic structure

For a flutter analysis in the absence of viscosity, solutions of the linearized equations of motion (10) are sought in the
time-harmonic form:

aj ¼ Aje
�iOt , j¼ 1,2, ðA:3Þ

where Aj are (complex) amplitudes, O is the circular frequency, and i is the imaginary unit (i¼
ffiffiffiffiffiffiffi
�1
p

), so that a substitution
of Eq. (A.3) into Eqs. (10) yields

ð1þl=3Þo2þg�k�1 o2=ð2lÞ�gþ1

o2=ð2lÞþ1 o2=ð3l2
Þ�1

" #
A1

A2

( )
¼

0

0

� �
, ðA:4Þ

where

g¼ Pl1
k2

, o2 ¼
l21l2r

k2
O2: ðA:5Þ

D. Bigoni, G. Noselli / J. Mech. Phys. Solids 59 (2011) 2208–2226 2221



Author's personal copy

Non-trivial solution of system (A.4) is possible if the determinant of the matrix vanishes, a condition which immediately
provides the solutions

o2 ¼
bðgÞ7

ffiffiffiffiffiffiffiffiffiffi
DðgÞ

p
1þð4=3Þl

, ðA:6Þ

where

DðgÞ ¼ b2ðgÞ�4kl2
ð3þ4lÞ and bðgÞ ¼�gð2þ3lÞþ2ð1þlÞ3þ2k, ðA:7Þ

so that

O¼
1

l1

ffiffiffiffiffiffiffi
k2

l2r

s
o: ðA:8Þ

We note that k40, l40, DðgÞob2ðgÞ and that

bðgÞ403go kþð1þlÞ3

1þð3=2Þl
,

DðgÞo030o
kþð1þlÞ3�l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð3þ4lÞ

p
1þð3=2Þl

ogo kþð1þlÞ3þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð3þ4lÞ

p
1þð3=2Þl

, ðA:9Þ

so that following three possibilities only arise:

� two real and positive values for o2, corresponding to bðgÞ40 and DðgÞ40. There are four O, two positive and two
negative and vibrations are sinusoidal, a situation which corresponds to stability;
� two complex-conjugate values for o2, corresponding to DðgÞo0. There are two complex-conjugate pairs of O, so that

there are four exponential solutions, two blowing-up and the other two decaying with time, a situation corresponding
to flutter instability;
� two real and negative values for o2, corresponding to bðgÞo0 and DðgÞ40. There are two purely imaginary complex-

conjugate pairs of O, so that vibrations are exponential with time (one amplifying and the other decaying), a situation
corresponding to divergence instability.

As a conclusion

� flutter instability occurs when gf ogogd, where

gf
d
¼

kþð1þlÞ38l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð3þ4lÞ

p
1þð3=2Þl

, ðA:10Þ

which is identical (though written in a different notation) to Eq. (12),
� and divergence instability occurs when g4gd.

A.2. Linearized analysis of the viscoelastic structure

A linear viscoelastic analysis can be performed through a linearization of Eqs. (7) near the trivial solution (a1 ¼ a2 ¼ 0),
yielding

1
3rl21ðl1þ3l2Þ €a1þ

1
2rl1l22 €a2þðb1þb2Þ _a1�b2 _a2þðk1þk2Þa1

�k2a2�l1Pða1�a2Þ ¼ 0,
1
2rl1l22 €a1þ

1
3rl32 €a2�b2ð _a1� _a2Þ�k2ða1�a2Þ ¼ 0:

8><
>: ðA:11Þ

Looking for time-harmonic vibrations near the equilibrium configuration, we seek solutions of Eqs. (A.11) in the form
(A.3), so that a substitution into Eqs. (A.11) yields

ð1þl=3Þo2þZðbþ1Þo�gþkþ1 o2=ð2lÞ�oZþg�1

o2=ð2lÞ�oZ�1 o2=ð3l2
ÞþoZþ1

" #
A1

A2

( )
¼

0

0

� �
, ðA:12Þ

where

b¼
b1

b2

, o¼�il1

ffiffiffiffiffiffiffi
l2r
k2

s
O, Z¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2

l21l2k2r

s
: ðA:13Þ

Non-trivial solution of system (A.12) is possible if the determinant of the matrix vanishes, a condition which
immediately provides the characteristic equation

p0o4þp1o3þp2o2þp3oþp4 ¼ 0, ðA:14Þ
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where the coefficients are

p0 ¼ 1=4þl=340,

p1 ¼ Z½bþð1þlÞ3�40,

p2 ¼ l3
þ3l2

ð1þbZ2Þþ3lþk�gð1�3l=2Þþ1,

p3 ¼ 3l2
ðkþbÞZ40,

p4 ¼ 3l2k40: ðA:15Þ

In this context, we have the following possibilities for a solution Oi:

� Im[Oi] o 0 stability,
� Im[Oi] 4 0 and Re[Oi]a 0 flutter,
� Im[Oi] 4 0 and Re[Oi]¼0 divergence.

The numerical determination of the solutions of Eq. (A.14), assuming l¼ k¼ b¼ 1 and Z¼ 0:32, the values
corresponding to the structure tested in our experiments (Table 2), reveals that flutter occurs within the interval
0:70Wf oWo1:49Wd, while for Wo0:70Wf the system is stable and, finally, divergence occurs for W41:49Wd. The
situation is sketched in Fig. 16, where the real and imaginary parts of the solutions Oil1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2r=k2

p
are reported as a function

of the loading parameter g. In the figure, the values gf and gd correspond to flutter and divergence instabilities in the
absence of viscosity, so that we may see that the introduction of the viscosity broadens the interval of flutter.

Appendix B. Wheel prevented from rotating and one-degree-of-freedom system

To complete our study, we analyze the case in which the wheel in the structure shown in Fig. 8(c) is blocked and the
case in which the structure is reduced to a one-degree-of-freedom system by blocking the central hinge (but leaving free
the wheel). In the former case there is no flutter, but divergence and buckling occur, whereas in the latter case the behavior
is always stable. Our experiments confirm these theoretical findings.

B.1. Wheel prevented from rotating

If the wheel is replaced with a fixed contact (we have blocked the wheel with a screw), the system becomes subjected
to a frictional force, which assuming sliding can be written as

P¼�P
_Cp

j _C pj
, P¼ md

ls
lf þ l1cosa1þ l2cosa2

W : ðB:1Þ

Eq. (B.1), can be linearized near the configuration a1 ¼ a2 ¼ 0 assuming vpb l1 _a1þ l2 _a2, so that it becomes

P¼�Pe1�½Pðl1 _a1þ l2 _a2Þ=vp�e2, P¼ md

ls
lf þ l1þ l2

W , ðB:2Þ
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Fig. 16. Real and imaginary parts of the solutions Oi l1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2r=k2

p
as a function of the loading parameter g and obtained solving the characteristic equation

(A.14). Note the broadening of the flutter region due to damping.
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and Eqs. (10) become

1
3rl21ðl1þ3l2Þ €a1þ

1
2rl1l22 €a2þðk1þk2Þa1�k2a2�l1Pa1þ l1P l1 _a1þ l2 _a2

vp
¼ 0,

1
2rl1l22 €a1þ

1
3rl32 €a2�k2a1þk2a2�l2Pa2þ l2P l1 _a1þ l2 _a2

vp
¼ 0:

8<
: ðB:3Þ

We look now for time-harmonic vibrations near the equilibrium configuration, so that the Lagrangian parameters are
now assumed to be harmonic functions of time, Eq. (A.3), so that a substitution into Eqs. (B.3) yields

ð1þl=3Þo2þgno�gþkþ1 o2=ð2lÞþogn=l�1

o2=ð2lÞþogn=l�1 o2=ð3l2
Þþogn=l2

�g=lþ1

" #
A1

A2

( )
¼

0

0

� �
, ðB:4Þ

where

o¼�il1

ffiffiffiffiffiffiffi
l2r
k2

s
O, n¼ 1

vp

ffiffiffiffiffiffiffi
k2

l2r

s
: ðB:5Þ

Non-trivial solution of system (B.4) is possible if the determinant of the matrix vanishes, a condition which provides the
characteristic equation

p0o4þp1o3þp2o2þp3oþp4 ¼ 0, ðB:6Þ

where the coefficients are

p0 ¼ 1=4þl=3,

p1 ¼ gð1þlÞn,

p2 ¼ kþð1þlÞ3�g½1þlð3þlÞ�,

p3 ¼ 3g½kþð1�gþlÞð1þlÞ�n,

p4 ¼ 3l½g2þkl�gð1þkþlÞ�: ðB:7Þ

The stability of the system can be analyzed using the Routh–Hurwitz criterion (Ziegler, 1977), which ensures that all
the oi have negative real part; the criterion for stability requires that

p140,

p1p2�p0p340,

ðp1p2�p0p3Þp3�p2
1p440,

p440: ðB:8Þ

Conditions (B.8) are equivalent to

gogcr ¼
1þkþl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þkÞ2þlð2�2kþlÞ

q
2

, ðB:9Þ

corresponding to the buckling load of the two-degree-of-freedom structure, when subjected to a compressive dead load
�Pe1. For g4gcr the structure is unstable and in fact divergence has been experimentally detected, as shown by the
example reported in Fig. 17, upper part, referred to a load W¼6.5 N.

Regarding this instability, we note that its onset is difficult to be detected, since the instability has an extremely mild
character and may manifest itself only after a long plate sliding. Therefore, although the Routh–Hurwitz criterion provides
a stability limit of 3.1 N, since the stroke of our plate is only 1 m, we have been able to detect the instability only from a
load of 6 N.

Another, more evident, instability has been observed in our experiments (see Fig. 17, lower part) at an applied load W

higher than that predicted by the Routh–Hurwitz criterion. In this instability, the wheel already sticks before the plate
begins to move, so that a progressive buckling occurs without involving any relative movement at the wheel/plate contact.
In this case, the system is reduced to a single degree-of-freedom structure (lower part of Fig. 17) and the critical load can
be easily calculated to be (we recall that g¼ Pl1=k2)

gb
cr ¼

k

1þl
þlþ1, ðB:10Þ

which, assuming a value for static friction, corresponds to a force W that can be easily calculated. We have found a good
agreement of the experiment shown in Fig. 17, lower part, which refers to an applied load equal to 16.5 N, with the
calculated gb

cr , corresponding to a load W equal to 15.5 N.
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Note that gb
cr Zgcr , so that if the structure would be kept fixed and so ‘forced’ to reach the slip condition, the divergence

dynamical instability would occur instead of the buckling, possibly involving stick and slip.

B.2. System reduced to one-degree-of-freedom by blocking the central hinge

When the central hinge in the structure shown in Fig. 8 (d) is fixed and the wheel is left free of rotating, stability is
always verified, since the follower force does not work. We have confirmed this behavior with a series of experiments in
which the central hinge has been fixed. In these experiments we have raised the vertical load W until 50 N (well inside the
region of divergence for the two d.o.f. structure), without finding sensible oscillations. A sequence of photos taken during
one of these experiments is reported in Fig. 18, where we observe that the structure remains straight.
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