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Abstract

Slow, large deformations of human brain tissue—accompanying cranial vault deformation

induced by positional plagiocephaly, occurring during hydrocephalus, and in the convolutional

development—has surprisingly received scarce mechanical investigation. Since the effects of these

deformations may be important, we performed a systematic series of in vitro experiments on human

brain tissue, revealing the following features. (i) Under uniaxial (quasi-static), cyclic loading, brain

tissue exhibits a peculiar nonlinear mechanical behaviour, exhibiting hysteresis, Mullins effect and

residual strain, qualitatively similar to that observed in filled elastomers. As a consequence, the

loading and unloading uniaxial curves have been found to follow the Ogden nonlinear elastic theory

of rubber (and its variants to include Mullins effect and permanent strain). (ii) Loaded up to failure,

the ‘‘shape’’ of the stress/strain curve qualitatively changes, evidencing softening related to local

failure. (iii) Uniaxial (quasi-static) strain experiments under controlled drainage conditions

provide the first direct evidence that the tissue obeys consolidation theory involving fluid

migration, with properties similar to fine soils, but having much smaller volumetric compressibility.

(iv) Our experimental findings also support the existence of a viscous component of the solid phase

deformation.
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Brain tissue should, therefore, be modelled as a porous, fluid-saturated, nonlinear solid with very

small volumetric (drained) compressibility.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Intentional cranial deformation by manipulation or constraining apparatuses is an
archaic cultural practice adopted by various ethnic groups at different times in every
continent (Dingwall, 1931). Similar, though unintentional, creeping deformations arise in
forms of brachycephaly and plagiocephaly that may be developed by supine-sleeping
infants and corrected by helmet therapy (Hutchison et al., 2004). During these processes,
brain tissue slowly deforms following movements of the cranial vault. Large and
sometimes huge quasi-static deformations of the brain tissue may occur during
hydrocephalus (Lewin, 1980). Does the brain tissue undergo damage during these
deformations? Is the deformation influenced by the presence of interstitial fluids?
Consolidation of porous fluid-saturated material is known to involve ‘‘delayed’’ effects
taking place over a long time scale—a famous example borrowed from geotechnical
engineering is the continuous moving of the Pisa tower through eight centuries, consequent
to consolidation of fluid-saturated clayey soil in the underlying ground (Burland et al.,
2003)—so, are the effects of consolidation important for brain tissue?

The answer to these questions is related to the knowledge of mechanical properties of
brain parenchyma under quasi-static tests at large deformations and under conditions of
controlled drainage. The same mechanical properties are crucial in analysing normal and
pathological convolutional development. Therefore, tensile/compressive tests are essential
to validate mechanical based theories (Richman et al., 1975; Van Essen, 1997), which
explain folding of the brain structure without recurring to mechanical interaction with the
cranial vault [a fact consistent with findings by Kingsbury et al. (2003)].1 In these theories
interstitial fluid—although believed of fundamental relevance in different situations
involving brain deformation, for instance hydrocephalus (Hakim et al., 1976)—does not
play a role. We will see that this can be justified on the basis of the results that will be
presented.

Motivated mainly by the modelling of traumatic brain injury, which often occurs under
dynamic conditions, efforts have been made to measure the mechanical properties of brain
tissue, starting from the pioneering works by Fallenstein et al. (1969) and Galford and
McElhaney (1969), but the situation remains rather unsatisfactory, see Appendix A for a
review. In particular, it is a matter of debate whether brain tissue should be regarded as a
highly viscous gel or as a solid or as a fluid-saturated solid; if it is a compressible material
or if it is only capable of isochoric deformation; if it can be modelled using the linear or the
nonlinear theory of elasticity with or without anisotropy; if it exhibits viscoelastic
behaviour or if it exhibits permanent deformations. Mechanical simulations have been
performed by employing each of the above-mentioned model assumptions, see, for
1The tension-based theory by Van Essen has received additional support from Scannell (1997); the theory itself

stimulates the need of mechanical experiments on brain tissue for further progress.
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example, the recent review by Kyriacou et al. (2002). Moreover, the quasi-static behaviour
up to failure did not receive substantial attention and the role of interstitial fluid, although
believed to be important, has never been experimentally discriminated from other factors
possibly playing similar roles, such as viscosity.
The present article is organized as follows. Uniaxial stress, cyclic tension/compression

experiments are presented in Section 2; the main result is that the material is shown to
behave qualitatively similar to filled elastomers and is, therefore, shown to follow the
Ogden (1972) constitutive theory [and subsequent modifications in terms of the so-called
‘‘pseudo-elasticity’’ theory, to include Mullins effect (Ogden and Roxburgh, 1999) and
permanent deformations (Dorfmann and Ogden, 2004)] for rubber. However, damage
until failure is also investigated, evidencing a kind of fracture typical of fibrous material.
Uniaxial strain experiments at free drainage at the top and bottom of a sample are
presented in Section 3. These provide the first direct experimental evidence that brain tissue
follows consolidation theory for biphasic materials. Although our results clearly indicate
that consolidation is the leading mechanism under quasi-static uniaxial strain, we show
that adding a viscous term to the solid phase yields an almost complete adherence between
experimental results and the biphasic theory. Therefore, our results not only do not
exclude, but rather support a viscous behaviour of the tissue.
2. Uniaxial cyclic tension/compression experiments

In order to answer the above mentioned issues, and to lay the foundation for a
physically motivated mechanical model for slow and large deformations of brain tissues,
we have performed a systematic series of in vitro experiments on human tissue excised
during autopsy within 12 h of death (use of autopsy material from human subjects was
approved by the Ethics Committee, Medical University of Graz, Austria).
Uniaxial, quasi-static cyclic tension/compression experiments at a speed of 5mm/min

(corresponding to initial strain rates ranging between 5.5 and 9.3� 10�3 s�1) were
performed on 86 cylindrical and prismatic specimens taken at different orientations and
different locations within the brain (see Appendix B for details). For the first time, loading
cycles have been performed at various load levels until large strain, damage and final
failure of the specimen have been reached. Results have been found to be qualitatively
similar for all samples, with a typical nominal stress versus uniaxial stretch response such
as that shown in Fig. 1, from two tests on white matter, one involving compression and
subsequent tension (left) and another involving tension and subsequent compression
(right). Both tests were performed up to a stretch level still far from failure, but near
damage initiation. The behaviour evidences: strong nonlinearity;2 hysteresis; different
stiffnesses in tension and compression, and during loading and unloading [analogous to
the so-called ‘‘Mullins effect’’ in elastomers (Mullins, 1947)]; permanent deformations
(also observed by Hakim and co-workers, who called them ‘‘bio-plastic’’, Hakim et al.,
1976).
2The initial curvature of the curve (convex downward, so called ‘‘S-shaped’’) in the tension/compression

experiment, observed for the first time on human brain by Miller and Chinzei (2002), represents another feature

distinguishing brain parenchyma from other soft tissues (for instance biological gels, Storm et al., 2005), but

common to materials characterized by chain-like particles, including: rubber, cellulose, wool, and paint films

(Hourwink, 1958) and DNA molecules (Cluzel et al., 1996).
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below fracture but approaching the damage threshold on [14mm/9.5mm (left) and 14mm/9mm (right) initial

height/edge] prismatic specimens of white matter, harvested from the occipital lobe (left) and from the frontal lobe

(right), in the frontal direction. Nominal stress is reported versus stretch. Arrows indicate the loading direction.
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preconditioning in a (11mm/7mm initial height/edge) prismatic specimen of white matter harvested from the

parietal lobe in the frontal direction.
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Preconditioning was also observed, as indicated in Fig. 2, from a sample harvested from
the parietal lobe in the frontal direction and subject to 14 compression/tension cycles.

It is important now to mention that (as will become apparent later), due to the fact that
the volumetric drained deformability will be found to be very small, the above-described
experimental results are believed to be only marginally affected by the bi-phasic nature of
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the material (so that there is no need here to distinguish between drained and undrained
behaviour for uniaxial tension/compression tests).
Qualitatively, the stress–strain behaviour is very similar to that of filled elastomers

(Lion, 1997). It, therefore, appears natural to compare with the Ogden (1972, 1986) theory
of nonlinear, incompressible elasticity for rubberlike materials. Within this framework,
the nominal uniaxial stress t is related (due to incompressibility) to the longitudinal stretch
l through

t ¼
XN

i¼1

miðl
ai�1 � l�0:5ai�1Þ, (1)

where mi and ai are constitutive parameters.
The comparison between our experimental data and the constitutive Eq. (1) turns out to

be particularly satisfactory, except that Ogden’s theory neither accounts for any permanent
deformation, nor describes the Mullins effect. However, Eq. (1) has been found to describe
with great accuracy all loading and unloading curves taken separately, when shifted to the
origin of axes, with only two terms m1, m2 and corresponding a1, a2. In particular, the
following values of the above parameters have been found3: m1 ¼ 1.044 (mean value; range:
�10.8C23.5; standard deviation: 7.722) kPa, m2 ¼ 1.183 (mean value; range: �4.0C19.7;
standard deviation: 5.942) kPa, a1 ¼ 4.309 (mean value; range: �22.0C29.5; standard
deviation: 17.892) and a2 ¼ 7.736 (mean value; range: �18.3C50.9; standard deviation:
21.967) (Franceschini, 2006). It is important to note that the products m1a1 and m2a2 have
been always found positive in our identifications, in particular, m1a1 ¼ 1.244 (mean value;
range: 0.00026C3.240; standard deviation: 1.315) kPa and m2a2 ¼ 0.822 (mean value;
range: 0.038C2.381; standard deviation: 0.767) kPa.
Other authors (Miller and Chinzei, 1997, 2002; Prange and Margulies, 2002) have also

successfully employed elasticity models (augmented with viscosity) for describing the
loading response of the material, however, the fact that the Ogden model fits not only
the loading, but also the unloading curves separately is a clear indication that a modelling of
the brain tissue can be pursued by employing pseudo-elasticity (which essentially means
combining different ‘‘elastic’’ responses for loading and unloading, see Ogden and
Roxburgh, 1999). This approach has never previously attempted, but turns out to be
satisfactory. In particular, using the model for the Mullins effect (but not for permanent
deformation) proposed by Ogden and Roxburgh (1999), the material response can be
described in terms of a pseudo energy-function (for uniaxial stress)

W ðl; ZÞ ¼ ZW ðlÞ þ fðZÞ, (2)

where W(l) is the strain energy corresponding to the Ogden model

W ðlÞ ¼
XN

i¼1

miðl
ai þ 2l�ai=2 � 3Þ=ai, (3)
3The above parameters have been obtained imposing that model (1) predicts the same tangent at the origin and

the same initial and final points of the experimental curve, with a given value of a1. The value of a1 has been

selected by a trial-and-error procedure. Although very simple and efficient, our identification procedure does not

a-priori guarantee that the product miai (index not summed) is positive (in which case the material response would

not be a-priori stable, Ogden, 1972). An alternative (more complicated) identification technique in which

positiveness of miai is ensured was provided by Twizell and Ogden (1983).
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so that the nominal stress turns out to be that given by Eq. (1), but multiplied by Z, the
following function of the current stretch:

Z ¼ 1�
1

r
erf

1

m
ðW ðlmÞ �W ðlÞÞ

� �
, (4)

in which r and m are material parameters and lm represents the stretch at which unloading
initiates. Therefore, along the primary loading path, Z is hold constant and equal to unity,
whereas parameter Z begins decreasing starting from l ¼ lm, to account for the stress
softening during unloading. Except that permanent deformations are not captured, we
have found a good agreement of our data with the above model, as shown in Fig. 3, where
two specimens of white matter have been considered.

The residual strain upon unloading can be accounted for by employing the Dorfmann
and Ogden (2004) model for rubber materials. They introduced a pseudo strain-energy
function depending on two parameters, Z1 and Z2. The former is associated to the Mullins
effect (thus playing the role of Z in the Ogden and Roxburgh model), the latter to the
permanent strain. The nominal stress (in an uniaxial state) results

t ¼ Z1W ðlÞ þ ð1� Z2Þðn1l� n̄2l
�2
Þ, (5)

where

Z1 ¼ 1�
1

r
tanh

W ðlmÞ �W ðlÞ
mm

� �
; Z2 ¼

1

r
tanh

W ðlÞ
W ðlmÞ

� �a W ðlmÞ½ �
" #

= tanhð1Þ, (6)
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Fig. 3. Comparison between the experimental data for two compression/tension tests and Ogden and Roxburgh

(1999) model for Mullins effect. Cylindrical specimens of white matter (10mm/8mm initial height/diameter, left)

harvested from frontal lobe in the sagittal direction and prismatic specimen of white matter (14mm/9.5mm initial

height/edge, right) harvested from occipital lobe in the frontal direction have been used.
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n1 ¼ 0:4m 1�
1

3:5
tanh

lm � 1

0:1

� �� �
; n̄2 ¼ 0:4m, (7)

and

a W ðlmÞ½ � ¼ 0:3þ 0:16
W ðlmÞ

m
; m ¼

1

2

XN

i¼1

miai. (8)

The above model correctly fits the unloading response from compression or tension (see
Fig. 4, referred to the same specimens considered in Fig. 3). However, the model has been
found to be completely inadequate to describe the transition between tension and
compression (and viceversa), which has therefore omitted in Fig. 4.
Curves reported in Figs. 1 and 2 refer to situations still before failure, but all samples

were eventually loaded until fracture occurred; they failed mainly at the contact region
with the load platen. However, 13 samples failed within the gage region, thus revealing that
brain tissue should be considered as a solid, neither a fluid nor a gel, exhibiting a fracture
typical of a fibrous material (see the photo in Fig. 5). In particular, the nominal stress/
stretch behaviour is reported in Fig. 5 (left), for a prismatic specimen loaded up to failure.
It may be observed that the shape of the curve (after a path similar to that reported in
Fig. 1, right) changes qualitatively, thus revealing the typical behaviour of a damaging
material, in which the stress reaches a peak, followed by softening4 (due to the progressive
rupture of the filamentary structure of the material, see also Appendix B).
More precisely and with reference to Fig. 5, the curve can be divided into five

parts: (1) an initial stiff response, followed by a (2) sort of ‘‘hardening behaviour’’,
terminating into a (3) ‘‘locking behaviour’’ (marked in the detail of the figure) [in which the
material exhibits a hardening higher than in (2)], which continues with a (4) hardening
(marked in the detail of the figure) until a peak is reached and a (5) softening is evidenced
4With ‘‘softening’’ we denote here a negative tangent in the stress/stretch diagram.
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until separation occurs. Damage has been conventionally assumed to initiate when the
‘‘locking’’ branch of the curve in Fig. 5 degenerates into a ‘‘hardening’’ branch (see the
detail of Fig. 5).5 This has been found to occur at a stretch of 1.91 (mean value; range:
1.22C2.68; standard deviation: 0.42) and at nominal stress of 2.71 (mean value; range:
1.28C7.1; standard deviation: 1.47) kPa, while the peak of the stress/stretch curve was
reached at a stretch of 2.39 (mean value; range: 1.92C3.5; standard deviation: 0.46) and
stress of 3.43 (mean value; range: 1.55C12.8; standard deviation: 2.72) kPa. Final
separation of the sample occurred at a stretch of 2.66 (mean value; range: 2.15C3.8;
standard deviation: 0.49) and stress of 2.52 (mean value; range: 1.05C9.4; standard
deviation: 2.19) kPa.

3. Uniaxial deformation at free drainage

In the pioneering work by Hakim et al. (1976) it was pointed out that brain parenchyma
should be considered as a fluid-saturated porous material, so that a number of models have
been developed, particularly for the analysis of the hydrocephalus, within the framework
of (small or large strain) poroelasticity (Tada et al., 1994; Kaczmarek et al., 1997).
However, the state-of-the-art is certainly not satisfactory. In fact:
�

5

for

sca
two-phase modelling is currently ignored by many authors and is sometimes criticized;

�
 only few, and indirect, evidences of poroelasticity are yet available. Some experimental

evidence was given by Masserman (1934), who showed that a drainage of cerebrospinal
The curvature transition separating locking and hardening type behaviours is a common indication of damage

a broad spectrum of fibrous materials, for instance, silicon carbide composite (Ishikawa et al., 1998) and

ffolds mimicking the extracellular matrix environment (Roeder et al., 2002).
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fluid causes a reduction in ventricular size, continuing for 8 h, and by Miga et al. (2000),
who measured certain displacements on an in vivo porcine experimental system, which
were shown to agree with numerical simulations. The latter evidences are to be
considered indirect since a non-poroelastic constitutive modelling could predict similar
mechanical responses. An indisputable behaviour linked to the bi-phasic modelling is
the volumetric shrinking of the brain due to the administration of hyperosmotic drugs
such as mannitol (Bell et al., 1987) to alleviate elevated intracranial pressure or as a pre-
surgical preparation. If there was no underpinning link relating the hydrated nature of
the brain to its tissue matrix, the drug would not inhibit herniation;

�
 there is no agreement on the values of material parameters to be used. For instance, the

drained volumetric compressibility suggested by Kaczmarek et al. (1997) on the basis of
purely speculative arguments is much higher than that used by Tada et al. (1994);

�
 finally, if fundamental to explain deformation during hydrocephalus, why is interstitial

fluid neglected in morphogenesis theories?

To clarify the situation, a uniaxial strain device has been designed and fabricated to test
cylindrical specimens of brain tissue (5–8mm/30mm initial height/diameter) under free
drainage at the top and bottom faces of the specimens (see Appendix C.1 for details). The
device is in essence a miniaturised version of a so-called ‘‘oedometer’’ or ‘‘consolidometer’’,
employed in geotechnical engineering (Taylor, 1948). This approach to testing has been
employed for articular cartilage and heart muscle (Oloyede and Broom, 1991; Djerad et al.,
1992), but never until now for brain tissues or other types of soft biological tissues. It
provides the first direct evidence of poroelastic behaviour of brain parenchyma.

3.1. A comparison with the Terzaghi theory

As far as consolidation theory is concerned, the Terzaghi approach represents a
particular case of the Biot general formulation (Biot, 1941) and is based on simplifying
hypotheses, so that results depend only on one coefficient, the consolidation coefficient
(Taylor, 1948, see Appendix C.2). By employing the Casagrande method (Holtz and
Kovacs, 1981), we found this coefficient to be 0.37 (mean value; range: 0.01C2.1; standard
deviation: 0.51)mm2/min. A representative result of one of 12 tests is reported in Fig. 6,
and compared with the predictions of Terzaghi consolidation theory for a consolidation
coefficient cv ¼ 0.45mm2/min. In the figure, the average consolidation ratio (current value
of the specimen’s shortening divided by the final shortening at the end of the consolidation)
is reported after an initial step of 6N load in a semi-logarithmic scale as a function of time
(expressed in minutes) measured from the instant of the loading.
It should be noted that, although the consolidation coefficient is a material constant, a

strong size effect is involved in the consolidation theory, so that the time needed to reach a
certain level of consolidation in a problem scales with the square of the ratio between the
drainage lengths involved in the problem under consideration and in the sample. For
instance, if final consolidation was reached, say, in 100min for the sample considered
in Fig. 6 (in which the maximum drainage length is one half of the initial height, i.e.
6.9/2mm) the same consolidation would be reached in 15 days for a drainage length of
5 cm, which can be involved in brain tissue deformation. This may shed some light on the
time evolution of effects involved when brain parenchyma is deformed, with several
possible implications [delayed effects may be important in hydrocephalus or, possibly, to
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clarify the somewhat complex physiological alterations occurring during normal pressure
hydrocephalus, where consolidation theory has been already advocated by Momjian et al.
(2004)].
3.2. Is viscosity present in the solid phase?

A qualitative agreement with the Terzaghi consolidation theory can be deduced from
Fig. 6 and from other results, reported in Appendix C.2. However, note that results may be
more or less adherent to the theory. Deviations from the theoretical predictions may arise
from different sources. First, homogeneities and geometrical tolerances of soft biological
tissue samples are far from those inherent to engineering materials (e.g., soil samples).
Second, results may be affected by post-mortem biochemical reactions which may slowly
take place on the material. These factors may affect the results, seem to be inherent to the
testing protocol, and appear difficult to quantify. Third, other deviations from the
Terzaghi theory may come from:
�
 nonlinear behaviour of the material involved;

�
 nonlinear variation of porosity during the test;

�
 viscosity of the behaviour of the solid material.
As far as the first two are concerned, note that the strains which take place during the tests
are small (mean value: 2.8%; range: 0.98%C5.53%; standard deviation: 1.26%). Hence,
we think the first two points are not really important in our case, although under large
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strains, which, for example, may occur during a cerebral edema or hydrocephalus, these
nonlinearities could play a significant role.
In order to better understand the influence of the viscous deformation of the solid phase

on the total deformation, we assume a viscoelastic behaviour instead of a purely elastic
deformability of the solid phase, as advocated in the Terzaghi theory. Following Gibson
and Lo (1961) (see also Christie, 1964), two constitutive parameters cv and a appear in this
model, which are described in more detail in Appendix C.3. The parameter cv plays a
similar role as that of the non-viscous case. By optimizing these two parameters through
nonlinear least square fitting, we found an almost perfect agreement with the experimental
data, see the dashed curve in Fig. 7 (cv ¼ 2.74mm2/min and a ¼ 0.155), where the same
experimental data and the results for the Terzaghi model as in Fig. 6 are also reported.
The fitting of the experimental data with the Gibson and Lo theory gives cv ¼ 2.07

(mean value; range: 0.14C6.18; standard deviation: 1.81)mm2/min and a ¼ 0.1 (mean
value; range: 0.03C0.35; standard deviation: 0.07).
In conclusion, we would like to mention that our results, although do not exclude (and

even support) a viscous behaviour of the solid phase, clearly show that the leading

mechanism for delayed volumetric deformation is consolidation.

3.3. A note on the consolidation theory and slow brain tissue deformation

Curves such as that reported in Fig. 6 are typical consolidation curves also exhibited by
soft and fine soils. However, in contrast to these materials, the initial stiffness modulus
under uniaxial deformation (so-called ‘‘drained, oedometric’’ in geotechnical engineering)
is much higher than the initial unconfined modulus (with the term ‘‘initial’’, we denote the
tangent stiffness modulus at zero stress) measured during tensile/compressive tests (Fig. 1).
In particular, the measured mean values of these two quantities have been found to be 260
(mean value; range: 65C555; standard deviation: 130) kPa and 6.54 (mean value; range:
1.3C15.64; standard deviation: 4.69) kPa, respectively. Hence, the related ratio is 39.76, a
value which supports the observation that brain tissue has a low volumetric compressibility
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even in drained conditions, which is again consistent with polymeric materials considered
as nearly incompressible. Interpreted in terms of the linear theory of isotropic elasticity, the
ratio corresponds to a value of initial, drained Poisson’s ratio equal to6 0.496.

Due to the above-mentioned small drained volumetric compressibility, we point out that
the uniaxial stress experiments (involving large deviatoric strains and described in the
previous section) are not substantially influenced by the bi-phasic nature of brain
parenchyma, so that drained and undrained behaviours do not differ much. To give more
evidence to this important point, let us consider the initial values of the elastic parameters
found for brain parenchyma. The initial undrained Poisson’s ratio is 0.5 (corresponding to
completely incompressible behaviour) and the drained value has been found equal to 0.496.
Since volumetric deformability is not involved under shear, the ratio between the initial
undrained and drained shear moduli is equal to unity. Therefore, the ratio of the initial
undrained and drained elastic moduli results equal to ð1þ 0:5Þ=ð1þ 0:496Þ ¼ 1:00267, so
that the two moduli are practically identical and uniaxial stress test becomes rather
insensitive to the drainage conditions.

The above finding is important since it reconciles different approaches to mechanical
modelling of brain parenchyma: due to the fact that volumetric drained compressibility is small
when compared with the unconfined deformability, consolidation theory becomes dominant in
problems that involve high values of mean stresses applied for a considerable time (as, for
instance, during hydrocephalus or deformations accompanying slow cranial movements), while
it plays the role of, say, a ‘‘correction’’ to a single phase nonlinear theory, when large deviatoric
deformations occur (as, for instance, during convolutional development).

4. Conclusions

Brain tissues have been found to present distinctive mechanical properties, making them
qualitatively similar to filled elastomers under cyclic uniaxial stress and to fine soils obeying
consolidation theory under oedometric conditions. However, unlike soils and again similarly
to elastomers, the ratio between initial oedometric modulus and initial elastic modulus is large.
Our results suggest that mechanical modelling of brain tissue should involve a porosity model
to account for the intrinsic porosity of the brain matter, at least in situations where substantial
volumetric deformations are involved (during for instance hydrocephalus). Moreover, the
drained behaviour of brain parenchyma should be treated as a nearly incompressible,
nonlinear material, capable of permanent deformations and qualitatively similar to rubber-like
materials. Although in the present paper we did not attempt to develop a constitutive model
for the description of the mechanical behaviour of brain tissue under arbitrary deformations,
we have shown that this model should reduce to the Terzaghi theory, when small deformations
occur due to consolidation, and to a theory describing nearly incompressible rubber-like
materials, when large deviatoric deformations are involved.
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Appendix A. The research on brain tissue

A.1. A state-of-the-art on mechanical testing of brain tissue

Mechanical testing on human (and Rhesus monkey) brain tissues was initiated by
Fallenstein et al. (1969) and Galford and McElhaney (1969, 1970). Cyclic shear tests have
been performed by the former authors, while creep and relaxation experiments have been
conducted under tension by the latter. Both these works refer to a small deformation range
and are aimed to the understanding of dynamic properties, as related to traumatic brain
injury [see the reviews by Hardy et al. (1994) and Goldsmith (2001)]. These pioneering
works stimulated a continued research in which the brain parenchyma is assumed to be
single-phase, incompressible and viscoelastic. In particular, oscillatory tests on porcine,
bovine and rat brain specimens at small strain were performed by: Shuck and Advani
(1972), proposing a failure criterion for brain tissue, Bilston et al. (1997) and Darvish and
Crandall (2001), finding nonlinear effects already at, respectively, 0.1% and 1% strain,
Arbogast and Margulies (1998), analyzing high frequency response, Thibault and
Margulies (1998) and Gefen et al. (2003), determining some age-dependent changes in
mechanical properties.
Large deformations, involving in particular uniaxial compression, were initiated by

Estes and McElhaney (1970), who found the characteristic stress/strain curves concave
upward for human and Rhesus monkey brain tissues. These experiments were followed by
other investigations, mainly performed on porcine or bovine specimens and involving large
strains, in particular, by Miller and Chinzei (1997), performing compressive stress/
relaxation experiments and showing a strong dependence on strain rate, Donnelly and
Medige (1997), presenting results which support nonlinear viscoelasticity, obtained with a
single-pulse, high-strain-rate shear test on fresh human cadaver brain specimens, Bilston
et al. (2001), reporting failure strains under large shear deformation, Prange and Margulies
(2002), presenting results of shear and compression tests with stretches ranging between 0.5
and 1.6.
Miller et al. (2000) and Gefen and Margulies (2004) have compared in vivo and in vitro

responses to mechanical tests on porcine brain tissue. The former authors have found (as
already suggested by Metz et al., 1970) that in vivo and in vitro mechanical properties
remain within the same order of magnitude, while the latter authors have reached an
opposite conclusion.
A.2. Slow deformation of brain tissue calls for experimental investigation

It is crucial to observe from the above state-of-the-art that: (i) a linear (or sometime
nonlinear) viscoelastic behaviour is always assumed to govern mechanical deformation
of the brain tissue; (ii) a systematic investigation of large-strain, quasi-static, cyclic
behaviour including damage and fracture of human brain tissue still does not exist; (iii) the
effect of interstitial fluid has never been directly investigated and (iv) never discriminated
from viscosity.
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Hakim and co-workers present a series of data supporting a two-phase theory for brain
parenchyma and emphasise the role of interstitial fluids on the mechanics of brain tissue
during hydrocephalus (Hakim and Adams, 1965; Hakim and Burton, 1974; Hakim et al.,
1976, 2001; Hakim and Hakim, 1984). We believe that there are many physiological
instances pointing to biphasic representation. For instance, the effects of perfusion
exhibited by Guillaume et al. (1997), the volumetric shrinking of the brain tissue following
hyperosmotic drugs administration (such as mannitol, Bell et al., 1987; Schrot and
Muizelaar, 2002), and the nature of cerebral edema itself show that the hydrated nature of
brain parenchyma cannot be ignored. Surprisingly, no direct experimental evidence has
been attempted to give evidence to the two-phasic nature of brain parenchyma.

Large and slow brain deformations are believed to play a crucial role during
hydrocephalus, cerebral edema, convolutional development, and possibly in many other
circumstances that may include robotic surgery and implantation. In geotechnical
engineering, the understanding of the mechanical role of interstitial fluid in soils, which
essentially follow the theories by Biot (1941) and Terzaghi (1943), generated a real
scientific revolution (de Boer, 1999). Accordingly, the experimental investigation of the
behaviour of brain tissue subject to slow and large deformations, with consideration of
interstitial fluid, deserves appropriate attention.

Appendix B. Cyclic uniaxial loading tests

Uniaxial quasi-static cyclic tension/compression (or compression/tension) tests of
prismatic or cylindrical specimens were performed on a computer-controlled, screw-
driven high-precision tensile compressive testing machine (Messphysik, m-Strain Instru-
ment ME 30-1, Furstenfeld, Austria). The specimens were investigated in a perspex
container filled with 0.9% physiological saline solution maintained at 3770.1 1C by a
heater-circulation unit (type Ecoline E 200, Lauda; Lauda-Konigshofen, Germany) and
the tensile compressive force was measured with a 25N class 1 strain gage-load cell (model
F1/25N, AEP converter). For more details on the testing machine adapted for small
biological specimens, see Holzapfel et al. (2004).

The upper and lower crossheads of the testing machine are moved in opposite directions
so that the gage region of the samples is always in the same field of view. A crosshead
stroke resolution of 0.04 mm and a minimum load resolution of 1mN of the 25N load cell
is specified by the manufacturer. Digital control of the electric drive of the machine as well
as data acquisition of the crosshead position and applied load were performed by an
external digital controller (EDC 5/90W, DOLI; Munich, Germany) especially designed for
screw-driven tensile testing machines. Gage length and width were measured optically
using a PC-based (CPU 586) videoextensometer (model ME 46-350, Messphysik) utilizing
a full-image charge-coupled device (CCD) camera, that allows automatic gage mark and
edge recognition (Holzapfel et al., 2004). The corresponding deformation data were
averaged with respect to the measuring zone and sent to the data-processing unit in real
time.

Experiments were conducted at a speed of 5mm/min, corresponding to initial strain
rates ranging between 5.5 and 9.3� 10�3 s�1, on 86 prismatic and cylindrical samples.
Dimension range of the specimens was 9–15mmC5–11mm initial height/diameter (or
edge, for prismatic specimens), with aspect ratios lying in the interval 0.9–2.5
(Franceschini, 2006).
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The specimens have been attached to the plexiglas loading platens of the testing machine
using a commercial instant adhesive (Loctites) and providing a small compression
(corresponding to 1mm relative displacement of the plates) for 20 s. Samples were taken at
different locations and two different directions, along frontal and sagittal plane, as
sketched in Fig. B.1.
Loading cycles have been performed up to various load levels, until large strain, damage

and final failure of the specimen have been reached. In particular, initially cycles were
imposed up to a maximum load of 0.03N and, subsequently, the maximum loads to be
reached were calibrated on the basis of the initial response. Typically, loading cycles were
given at increments of 0.02N, up to 0.12N. At this loading level, the sample was
monotonically loaded until failure.
Several results of cyclic behaviour before damage initiation are shown in the

Figs. B.2–B.4 (additional data can be found in Franceschini, 2006), reported in terms of
nominal stress (force divided by the initial cross-section area of the specimen), versus
stretch (current specimen length divided by the initial length). Note that in all
Figs. B.2–B.4 the first cycle is shown left (a) for the smallest loading step. Loading steps
up to higher loads are considered in Figs. B.2 and B.3(b) and (c), and the complete cycles
(evidencing pre-conditioning effects) relative to the loading step shown in (c) are reported
in (d). Loading steps are reported in Fig. B.4(b) and (d), while the complete cycles
(evidencing pre-conditioning effects) relative to the intermediate step (b) are reported in
(c). These experimental results confirm the general trend shown in Figs. 1 and 2 and make
evident the features previously commented, including the existence of permanent
deformations.
The samples mainly failed at the contact region with the Plexiglas loading platens, but 13

failed within the gage region. These tests give evidence of the damage process and
subsequent failure; results of three samples are presented in Fig. B.5 (additional data can
be found in Franceschini, 2006).
Fig. B.1. Specimen harvest locations.
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Fig. B.2. Cyclic behaviour of brain tissue to a stretch well below fracture, but approaching the damage threshold;

nominal stress is reported versus stretch on a (13mm/8.4mm initial height/edge) prismatic specimen of white

matter, harvested from the frontal lobe in the frontal direction. In (a)–(c), the first cycles of different loading steps

(0.05N, 0.08N and 0.12N) are reported, where arrows indicate the loading direction. Effect of preconditioning

[for the load step (c) at 0.12N of maximum load] becomes evident in (d), where 10 cycles have been performed.
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Appendix C. Uniaxial deformation tests at free drainage and Terzaghi theory

C.1. The oedometric test

The recourse to a uniaxial strain apparatus with free drainage (so-called ‘‘oedometer’’ or
‘‘consolidometer’’ in geotechnical engineering, Taylor, 1948) is crucial to discriminate
viscous behaviour from consolidation. This is indeed possible since the basic constituents
of a brain specimen can be considered themselves incompressible (at least at the level of
loading at which our experiments have been performed), therefore, if consolidation would
not occur, the oedometric deformation would simply be zero.

An oedometer has been designed and fabricated (at the University of Trento, with the
kind help of Mr. Marco Bragagna) for testing cylindrical specimens (30mm/5–8mm initial
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diameter/height) of brain parenchyma under free drainage at the top and bottom surfaces.
A sketch of the device is reported in Fig. C.1 (see also Franceschini, 2006). It essentially
consists of a metallic mould (all parts in contact with the samples are made of Inox AISI
304 steel) where the specimen is accommodated by hand and subsequently loaded
through a cylindrical piston (made of polytetrafluoroethylens ‘‘PTFE’’, a material
selected for its low weight, low friction coefficient, and chemical neutrality), subject to
dead loading (through a loading frame made of Anticorodal aluminum). The contacts at
the sample bottom and top are with a filter paper (Schleicher and Schuel no. 595, 110mm
diameter) against a porous metal [a commercial porous brass obtained through
cold pressing and employed in geotechnical oedometers (from Controls S.r.l., Italy)],
permitting free drainage of interstitial fluid. The tests have been performed under
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physiological saline solution at room temperature (filling a cylindrical plastic container
enclosing the device and thus preventing sample dehydration). Vertical displacement of the
top of the sample was recorded employing an LVDT connected to an electronic acquisition
system.

The dimensions of the device were dictated by the consideration of problems related to
friction at the piston/die contact. Therefore, 12 samples have been harvested from the
middle of the brain hemispheres, in the parietal lobe, a region selected in order to provide
homogeneous specimens of the required dimensions. The specimens were excised using a
trephine (see also Franceschini, 2006). The relatively large dimensions of our specimens
precluded the investigation of possible anisotropy of fluid diffusion, which has been
observed during acute cerebral ischemia by Green et al. (2002).
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sample

Fig. C.1. The uniaxial strain device permitting free drainage at the top and bottom of the sample.
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The testing apparatus essentially permits the following two determinations:
(a)
 consolidation curve due to pore-pressure dissipation following a given load step;

(b)
 uniaxial strain (oedometric) compressibility obtained from a loading (or unloading)

step sequence.
In the former test, vertical displacements are recorded versus time starting from the instant
of a step loading application, until these ‘‘practically die out’’ (as will be explained later,
graphs are generated with this test such as those shown in Figs. 3 and C.2–C.5). In the
latter test, the strains at the end of consolidation occurring after various loading-steps are
plotted versus the corresponding total applied stress, thus producing a ‘‘drained’’ uniaxial
strain compressibility curve (examples of which are plotted in Fig. C.6).

One to four loading steps of 3 and 6N were imposed in our tests (an intermediate step of
2N has also been employed in one test). The loads were selected to be of the same order
of magnitude as the pressures measured by Hakim et al. (1976) on two patients. One hour
of time was expected after the set up of the test, before to assign the first loading. This time
was checked to be sufficient to observe die out of displacements induced by apparatus self-
load (the weight of the piston and loading frame is 1.3N) and sample manipulation.
Disturbances related to friction at the piston-die contact were considered unacceptable at
loads smaller than 3N for our apparatus.

Since the metallic mold is practically undeformable (at the prescribed load levels), the
knowledge of the vertical displacement is directly linked to the measure of the uniaxial sample
deformation, defined as the variation of the sample length divided by the initial length.

C.2. The Terzaghi theory

The average consolidation ratio U is defined as the ratio between the current value of the
specimen’s shortening and the final specimen’s shortening at the end of consolidation, so
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Fig. C.2. Comparison between experimental data, Terzaghi theory and Gibson and Lo theory for several uniaxial

tests on cylindrical specimens under free drainage at the upper and lower faces. The Terzaghi consolidation

coefficient cv has been evaluated to be: 0.2mm2/min in (a); 0.09mm2/min in (b); 0.13mm2/min in (c); 0.65mm2/

min in (d); 0.33mm2/min in (e) and 2.1mm2/min in (f). Results (a)–(e) were obtained at the first loading step of

3N, while results (f) are obtained at the first loading step of 6N.
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that U ranges between 0 and 1. Test (a) permits plotting the evolution of the consolidation
ratio versus time. This can be compared to the prediction of the Biot consolidation theory
or its simpler version proposed by Terzaghi. We follow the Terzaghi theory—since we
believe that evidence of consolidation should be sought with reference to the simplest
possible theory—which is based on small-strain, linearly elastic behaviour of the porous
material skeleton and the Darcy law of filtration. In the oedometric conditions the
governing equation becomes

cv
q2pw

qz2
¼

qpw

qt
, (C.1)
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where z and t are the space and time variables, respectively, pw is the pore fluid pressure, cv
is the coefficient of consolidation defined as

cv ¼
kM

gw
, (C.2)

in which k is the permeability, M is the elastic oedometric coefficient and gw is the specific
weight of the saturating fluid.

The solution of Eq. (C.1), complemented with the initial and boundary conditions,
respectively,

pwðt ¼ 0Þ ¼ pw0; pwðz ¼ 0; z ¼ 2HÞ ¼ 0, (C.3)
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Fig. C.4. As in Fig. C.2, but the Terzaghi consolidation coefficient cv has been evaluated to be: 0.23mm2/min in

(a); 0.08mm2/min in (b); 0.23mm2/min in (c); 0.01mm2/min in (d); 0.19mm2/min in (e) and in 0.1mm2/min (f).

Results (a)–(c) and (e) were obtained at the second loading step of 6N, while results (d) at the second loading step

of 3N and (f) at the third loading step of 3N.
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corresponding to the oedometric test condition, is

pw ¼
X1
m¼0

4pw0

pð2mþ 1Þ
sin

pð2mþ 1Þ

2H
exp½�ð0:5pð2mþ 1ÞÞ2T �, (C.4)

where H is the maximum drainage length (equal to 1/2 of the sample height in the
oedometric test), pw0 is the initial (constant) value of pressure and

T ¼
cvt

H2
. (C.5)
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Fig. C.5. As in Fig. C.2, but the Terzaghi consolidation coefficient, cv, has been evaluated to be: 0.16mm2/min in

(a); 0.032mm2/min in (b); 0.09mm2/min in (c) and 0.012mm2/min in (d). Results (a)–(b) were obtained at the

third loading step of 6N, results (c) at the third loading step of 3N and results (d) at the fourth loading step of

2N.
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Employing a linear constitutive relation for the elastic porous material and introducing
the following definition of the consolidation ratio

Uz ¼ 1�
pw

pw0

, (C.6)

which represents the current value of the specimen’s shortening at coordinate z divided by
the final shortening at the end of the consolidation, Eq. (C.4) becomes

Uz ¼ 1�
X1
m¼0

4

pð2mþ 1Þ
sin

pð2mþ 1Þ

2H
exp½�ð0:5pð2mþ 1ÞÞ2T �. (C.7)

Note that the consolidation ratio (C.7) is a function of the space and time variables z and
t, of the consolidation coefficient cv and sample height 2H. Accordingly to the definition
previously given, the average consolidation ratio results as the average of Uz over the
height of the sample, namely

U ¼ 1�
X1
m¼0

8

p2ð2mþ 1Þ2
exp½�ð0:5pð2mþ 1ÞÞ2T �, (C.8)

therefore, the Terzaghi theory predicts, for a given drainage length H, that the average
consolidation ratio U is a function of time and of the coefficient of consolidation cv.
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Fig. C.6. Engineering strain e (in percent) versus stress s, evidencing the drained oedometric compressibility of

brain parenchyma. Only loading steps have been imposed in (a), (b), (l), (m) and (n) in particular, one loading step

in (m) and (n), two loading steps in (a) and (b) and four in (l). One unloading step has been imposed in (d), (f), (h)

and (g), and two in (c), (e) and (i).
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It follows that a test of the type (a) may be used to evaluate cv. This evaluation is, however,
not immediate; it is in fact well-known in geotechnical engineering that when a load step is
applied to an oedometer, an immediate displacement occurs, which cannot be related to
the Terzaghi theory. This is believed to be only minimal due to the instantaneous
deformation of the sample, but mainly related to ‘‘spurious effects’’, such as closure of
possible gaps at the sample/piston contact and movements of the measurement system.
Therefore, two methods are accepted in geotechnical engineering to eliminate this
displacement from the results: the Taylor and the Casagrande methods (Holtz and Kovacs,
1981). We have followed the latter and our results are shown in Figs. 6 and C.2–C.5, in
terms of the average consolidation ratio U, Eq. (C.8), versus time (additional data can be
found in Franceschini, 2006). In the figures, also predictions of Gibson and Lo’s theory
(to be introduced later) are included (dashed).

Note that the initial oedometric modulus M appearing in Eq. (C.2) has been calculated
from our data to be 260 (mean value; range: 65C555; standard deviation: 130) kPa. This
value yields through Eq. (C.2) a mean initial permeability k equal to 2.42� 10�10 (mean
value; range: 6.15� 10�12C1.58� 10�9; standard deviation: 3.47� 10�10)m/s.

It should be noted that the consolidation curves reported in Figs. 6 and C.2–C.5 have
been obtained in correspondence of the loading steps, reported in terms of drained
compressibility curves (stress versus strain at the end of consolidation for different loading/
unloading steps) in Fig. C.6. The correspondence between the loading steps reported in
Figs. C.6 and Figs. 6 and C.2–C.5 is indicated in Table 1.
Table 1

Correspondence between consolidation curves reported in Figs. 6 and C.2–C.5 and drained oedometric

compressibility curves reported in Fig. C.6

Loading step in Fig. C.6 Correspondence in Figs. 6 and C.2–C.5 Loading step (N)

1(a) C.2(a) 3

2(a) C.3(f) 3

1(b) C.2(b) 3

1(c) C.2(c) 3

3(c) C.4(a) 6

1(d) C.2(d) 3

2(d) C.4(b) 6

3(d) C.4(f) 3

1(e) C.2(e) 3

3(e) C.5(a) 6

1(f) 6 6

1(g) C.2(f) 6

2(g) C.4(c) 6

1(h) C.3(a) 6

2(h) C.4(d) 3

1(i) C.3(b) 6

3(i) C.5(b) 12

1(l) C.3(c) 6

2(l) C.4(e) 6

3(l) C.5(c) 3

4(l) C.5(d) 2

1(m) C.3(d) 6

1(n) C.3(e) 6
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C.3. A viscous correction to the Terzaghi theory

Gibson and Lo (1961) accepted the general assumptions of the Terzaghi theory, but
introduced a rheological model consisting of a Hookean spring in series with a Kelvin
body. The total strain e due to an effective stress increment p(t) at time t can be written as
the sum of two contributions:

� ¼ pðtÞ=E1 þ �2, (C.9)

where E1 is the elastic modulus of the Hookean spring and e2 is the strain of the Kelvin
body, characterized by the elastic modulus E2 and the viscosity Z, so that

pðtÞ ¼ E2�2 þ Z_�2. (C.10)

By solving expression (C.10) for e2, substituting into Eq. (C.9), and inserting the result into
the basic equation of consolidation, we get an equation that can be solved for pw.
Therefore, the general solution with the boundary and initial conditions (C.3) in terms of
the average consolidation ratio becomes

U ¼ 1þ
8

p2
X1
n¼0

1

ðnþ 1Þ2
ðnþ 1Þ2p2=E�Þ � x1

x1 � x2

� �
e�x2T=4

�
�
ðnþ 1Þ2p2=E�Þ � x2

x1 � x2

� �
e�x1T=4

�
,

(C.11)

where

x1 ¼ 0:5 4E�aþ ðnþ 1Þ2p2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4E�aþ ðnþ 1Þ2p2Þ2 � 16aðnþ 1Þ2p2

q� �
, (C.12)

x2 ¼ 0:5 4E�aþ ðnþ 1Þ2p2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4E�aþ ðnþ 1Þ2p2Þ2 � 16aðnþ 1Þ2p2

q� �
, (C.13)

E� ¼
E1 þ E2

E2
; a ¼

E2H
2

Zcv
; T ¼

cvt

H2
; cv ¼

kE1

gw
.

Results reported in Figs. 7 and C.2–C.5 with the dashed curves have been obtained by
optmizing cv and the viscous parameter a through a nonlinear least squares method
(function FindFit, available in Mathematicas 5.0.1).
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