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A model for stress and plastic strain induced nonlinear,
hyperelastic anisotropy in soils
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Trento, Italy

SUMMARY

The experimental evidence that cohesive and granular soils possess an elastic range in which the elasticity is
both nonlinear and anisotropic—with stiffness and directional characteristics strongly dependent on stress
and plastic strain (the so-called ‘stress history’)—is given a formulation based on hyperelasticity. This is
accomplished within the framework of elastoplastic coupling, through a new proposal of elastic potentials
and a combined use of a plastic-strain-dependent fabric tensor and nonlinear elasticity. When used within
a simple elastoplastic framework, the proposed model is shown to yield very accurate simulations of
the evolution of elastic properties from initial directional stiffening to final isotropic degradation. Within
the proposed constitutive framework, it is shown that predictions of shear band formation and evolution
become closer to the existing experimental results, when compared to modelling in which elasticity does
not evolve. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Experimental evidence shows that deformation of cohesive and granular soils at very small strains
(less than about 0.001% for sands and 0.01% for clays) is essentially recoverable and rate insensitive
[1–7]. While in this range of strains the elastic response is very stiff, at larger strain, when
irreversible deformations become important, two concurrent phenomena occur, namely, a decrease
of tangential stiffness and a degradation of elastic moduli (an experimental evidence recently
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834 A. GAJO AND D. BIGONI

provided by Kuwano and Jardine [8], and Hoque and Tatsuoka [9]). In other words, the elastic
behaviour is highly nonlinear and plastic strain dependent. In addition, the elasticity exhibits
important directional properties evolving with both the stress and the plastic strain states. In
summary, elasticity of soils depends on (Appendix A):

• the void ratio,
• the stress state,
• the so-called ‘stress history’, which is here modelled in terms of plastic strain.

All the above dependencies regard both the elastic stiffness and the elastic anisotropy. In particular,
the anisotropy, which is usually a class of orthotropy,‡ may be inherent, thus resulting from soil
deposition, and induced by stress and/or plastic strain.

The understanding of the above-described elastic behaviour of soil—having both theoretical
importance (since it proves that soils exhibit an elastic range, the fundamental starting point for
plasticity theory) and practical relevance for design of geotechnical structures—is deemed by
Atkinson [15] as ‘one of the major achievements of geotechnical engineering research over the
past 30 years’. Accordingly, a strong research effort has been devoted to constitutive description
of the elastic properties of soils. In particular,§ the stress dependence of elastic moduli and the
stress-induced elastic cross anisotropy have been modelled by Vermeer [17], Boyce [18], Mroz
and Norris [19], Loret [20], Houlsby [21], Jardine et al. [22], Lade and Nelson [23], Molekamp
[24], Puzrin and Burland [25] and Houlsby et al. [26] for clay and sand, while the only attempt to
describe plastically induced anisotropy is due to Hueckel et al. [27], for overconsolidated clays.¶

Modelling of both stress and plastic dependency of elasticity has never been attempted.

A comprehensive model capable of describing the evolution of stress and plastically induced
(hyper-)elastic anisotropy, including the dependence of elastic stiffness on the stress, void
ratio and plastic states and the stiffness degradation occurring at large applied shear stress
is still lacking. Such a constitutive model is formulated in this article and it is shown to agree
with available experimental results.

In particular, a new nonlinear hyperelastic model is introduced (in Sections 2 and 3), which can
describe a general evolution of elastic anisotropy and the stress dependency of elastic properties.
This model is developed within the framework of elastoplastic coupling [30–33], in which the
elastic anisotropy is induced partly by the stress state and partly by the plastic strain state, through
the definition of a fabric tensor [34, 35]. Elastic orthotropy with rotating axes can be described,
together with the stress and the density dependency of elastic stiffness and its degradation at large
stress ratio, observed in recent experiments by Hoque and Tatsuoka [9]. Due to the double source

‡For orthotropy, a convenient measure of the anisotropy degree is the ratio between elastic Young’s moduli in the
horizontal and vertical directions n = Eh/Ev. In normally consolidated clays, this ratio n may range between 0.9
and 1.35 [10, 11]. In heavily overconsolidated clays, a much larger anisotropy can be observed with typical values
of n ranging between 1.35 and 2.4 [12, 13]. Finally in sands, n can vary from 0.9 to 0.64 in a triaxial compression
test performed in a subangular sand, and from 0.9 to 1.23 in a triaxial extension test [14]. For subrounded sands
subjected to triaxial compression n can be smaller than 0.35 [9].
§We do not consider here hypoelastic models, for which residual elastic strain and energy may be extracted from
closed stress and strain paths, respectively [16].
¶An alternative to phenomenological modelling of granular material is the micromechanical approach, pursued, among
others, by Walton [28] and Goddard [29]. However, the lack of a self-adjointed structure of governing equations,
as related to the presence of Coulomb friction, hampers the development of micromechanical modelling, which
remains for the moment limited to simple situations.
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HYPERELASTIC ANISOTROPY IN SOILS 835

Figure 1. Comparison between simulations (obtained for dense Hostun sand with e0 = 0.673) and
experimental results concerning: (left) the variation of small-strain shear modulus measured on sam-
ples subjected to increasing isotropic confining pressure (experimental results of Stokoe et al. [36] and Lo
Presti et al. [37]); (right) the evolution of small-strain vertical and horizontal Young’s moduli measured on
a sample subjected to increasing vertical stress at constant horizontal stress in a triaxial cell (experimental

results taken from Hoque and Tatsuoka [9]).

of elastic anisotropy, namely plastic strain and stress state, experimental results pertaining to sand
can be appropriately simulated (and we believe that incorporation of the behaviour of clay would
not be difficult).

The introduced hyperelastic model is general, so that the typical ingredients of plasticity theory
(yield surface, hardening function, and flow rule) are left unspecified. However, we incorporate (in
Section 4) the proposed model of anisotropy into a standard isotropic-hardening-based constitutive
framework. In particular, granular materials are addressed, so that the flow rule is borrowed from
the Cam Clay model, a yield surface with a smooth Mohr–Coulomb-like shape is used, in which
the angular opening is taken to be dependent on the accumulated deviatoric plastic strains (in this
way a smooth stress–strain behaviour is simulated) and on the state parameter � (describing the
dependence of strength on density and stress level). Within this simple constitutive framework,
we analyse (in Section 5) different anisotropy models at increasing levels of sophistication (and
complexity) by simulating representative triaxial and plane strain tests.

The capability of the proposed models of hyperelasticity implemented in a simple elastoplasticity
framework to simulate a wide range of experimentally observed properties is summarized in
Figure 1 on the left, where the consistency of the simulated mean-stress dependency of elastic
stiffness in a isotropic compression test is shown. The capability of simulated evolution of elastic
stiffness anisotropy and elastic stiffness degradation occurring in triaxial compression at stress
ratios larger than about �v/�h>2.5 is shown in Figure 1, on the right.

Finally, the effects of the new constitutive formulation on the initiation and development of
shear bands are presented in Section 6, where it is shown that the nonlinear elastic anisotropy
model gives results that are almost coincident with those obtained with a linear elastic anisotropy
model. Moreover, important differences of response are obtained when elastic stiffness degradation
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836 A. GAJO AND D. BIGONI

is taken into account, together with the very high initial stiffness typically observed in soils at
very small strains. However, the experimental results that are currently available in the regime
of substantial strain in triaxial and biaxial tests do not permit a proper model calibration, so that
our work will hopefully stimulate further experimental investigation, concerning in particular the
phenomenon of elastic degradation.

2. THE CONCEPT OF ELASTOPLASTIC COUPLING

The evolution of elastic anisotropy and the elastic stiffness degradation with the accumulation
of plastic strain (namely, the permanent deformation obtained after complete unloading) can be
described within the framework of elastic–plastic coupling [30–33, 38].

We begin postulating that the effective stress r (or the elastic strain, ee) is a prescribed function
of the plastic deformation ep, and the elastic strain (or the effective stress, r), namely

r= r̂(ep, ee), ee = êe(ep, r) (1)

where the elastic and plastic strains are defined only upon total unloading, so that they obey the
additive strain decomposition

e= ee + ep (2)

Taking the rate of Equations (1) and using the rate form of Equation (2) we obtain

ṙ= �r̂
�ee

[ė] −
(

�r̂
�ee

− �r̂
�ep

)
[ėp], ė= �êe

�r
[ṙ] +

(
�êe
�ep

+ S

)
[ėp] (3)

where S is the symmetrizing fourth-order tensor, which singles out the symmetric part of every
second-order tensor X

S[X] = 1
2 (X + XT) (4)

Before continuing, two observations are necessary.

• First, note that a substitution of Equation (1)1 in Equation (1)2 yields the condition

ee = êe(ep, r̂(ep, ee)) (5)

which, differentiated with respect to ee and ep, and using the chain rule, gives

�êe
�r̂

�r̂
�ee

= S,
�êe
�ep

=−�êe
�r̂

�r̂
�ep

(6)

showing that two expressions (3)1 and (3)2 are equivalent.
• Second, let us consider a small stress cycle of loading and unloading from a state defined
by {r, ep}, in which the stress is first incremented and subsequently decremented by �r
(Figure 2), thus producing an increment �ep in the plastic deformation. Expanding
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Figure 2. Elastoplastic coupling with a nonlinear elastic law.

Equation (1)2 for loading and unloading we get, respectively:

�eload =�êe
�r

∣∣∣∣{r,ep} [�r] +
(

�êe
�ep

∣∣∣∣{r,ep} + S

)
[�ep] + O

(
�r2, �e2p

)

�eunload =�êe
�r

∣∣∣∣{r+�r,ep+�ep}
[−�r] + O(�r2)

=�êe
�r

∣∣∣∣{r,ep} [−�r] + O(�r2, �e2p) (7)

showing that for an infinitesimal loading/unloading cycle, the irreversible strain rate ėi differs
from the plastic strain rate ėp and follows the rule:

ėi = G[ėp] (8)

where

G = S − D−1 �r̂
�ep

= S + �êe
�ep

(9)

in which tensor D is defined as [keeping into account Equation (6)]

D = �r̂
�ee

=
(

�êe
�r

)−1

(10)
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838 A. GAJO AND D. BIGONI

Going back now to Equations (3) and following Hill and Rice [38] and Bigoni [39], we can
introduce the flow rule, defining the rate of irreversible strain as

ėi = �̇P (11)

where P defines the ‘direction’ of the irreversible strain rate and �̇�0 its modulus, so that �̇ = 0
for unloading.

Assuming now the existence of a yield function (discriminating between elastic and inelastic
states)

f (r,K)�0 (12)

where K represents a generic set of hidden variables, Prager’s consistency yields

Q · ṙ= H �̇ (13)

where

Q= � f

�r
(14)

is the yield function gradient and

H �̇ =− � f

�K
· K̇ (15)

in which H is the plastic modulus, positive (negative) for strain hardening (softening) and null for
perfectly plastic behaviour.

Using now Equations (11) and (13) with (3)1, we obtain

�̇ = 〈Q · ṙ〉
H

(16)

valid for H>0 and

�̇ = 〈Q · D[ė]〉
H + Q · D[P] (17)

valid for H + Q · D[P]>0, where the Macaulay bracket operator is defined for every � ∈ � as
〈�〉= (� + |�|)/2.

The rate equations are obtained in the form

ė= D−1[ṙ] + 〈Q · ṙ〉
H

P (18)

ṙ= D[ė] − 〈Q · D[ė]〉
H + Q · D[P]D[P] (19)

Equations (18) and (19) describe elastoplastic coupling with nonlinear elasticity and have been
introduced in full generality. The formulation is so general that even the existence of a free-energy
density is, strictly speaking, not needed. Since the importance of introducing a hyperelastic law is
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HYPERELASTIC ANISOTROPY IN SOILS 839

well known, it is expedient to operate now with a free-energy density �(ep, ee) or a complementary
free-energy density �(ep, r), so that Equations (1) are obtained as

r= ��
(
ep, ee

)
�ee

, ee = ��
(
ep, r

)
�r

(20)

At this point, to obtain a model describing the small-strain mechanical behaviour of soils we
need to prescribe:

• a form for the free-energy density � (or the complementary free-energy density �), incorpo-
rating:

◦ a nonlinear dependence on elastic strain (or stress in a representation based on comple-
mentary free-energy) reproducing: (i) the mean-stress dependence of the elastic tangent
stiffness (Equation (40)) and (ii) the stress-induced elastic anisotropy,

◦ a second-order fabric tensor depending on deviatoric plastic strain reproducing the fraction
of plastically induced elastic anisotropy,

◦ a scalar dependence on plastic strain describing the elastic degradation and void-ratio
dependency [9].

• a plastic constitutive framework, incorporating:

◦ a yield function (either reproducing the mean stress and density dependence of shear
strength for granular materials, or the effects of stress history for clays),

◦ a flow rule (reproducing the observed irreversible dilatancy),
◦ a hardening rule (reproducing the progressive decrease of stiffness typical of soils).

A free-energy density satisfying the above-mentioned requisites is provided in the Section 3
(and a generalization of it, plus an alternative version of complementary free-energy density is
given in Appendix B), while the plastic framework is briefly presented in Section 4.

3. THE PLASTIC STRAIN-DEPENDENT, NONLINEAR FREE-ENERGY DENSITY

The free-energy density function � is proposed in the form

�(ee, ep) = �d(−tr(Bee))n + �d(tr(Bee)2)l (21)

where B is a symmetric, second-order, positive-definite fabric tensor, subject to the constraint

trB2 = 3 (22)

describing fabric anisotropy and depending on the plastic strain ep [34, 35, 40], �, �, l, and n are
material parameters and d = d(ep) is a function of the plastic strain introduced to describe the
elastic stiffness degradation and void-ratio dependency (that will be specified later).

When elastic stiffness degradation and void-ratio dependency are neglected (i.e. d is constant)
and, moreover, n = 2 and l = 1, the linear elastic anisotropy inspired by Valanis [34] and Bigoni
and Loret [35] is recovered, so that when B= I, linear isotropic elasticity is eventually recovered.
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840 A. GAJO AND D. BIGONI

From the elastic potential (21), the stress r can be immediately derived

r= ��

�ee
=−�dn(−tr(Bee))n−1B + 2�dl(tr(Bee)2)l−1BeeB (23)

Equivalently, the stress increment ṙ can be obtained by taking the rates of Equation (23)

ṙ= D[ėe] + �2�
�ee�B

[Ḃ] + �2�
�ee�d

(
�d
�ep

· ėp
)

(24)

where

Ḃ= �B
�ep

[ėp] (25)

The tangent elastic stiffness D tensors appearing in Equation (24) is

D = k1B⊗B + k2BeeB⊗BeeB + k3B ⊗ B (26)

where two tensorial products have been employed, which can be defined as

(A⊗B)[C]= (B ·C)A, (A⊗B)[C]= 1
2 (ACB

T + ACTBT) (27)

for every second-order tensor A, B, and C (see also Appendix C for an alternative matrix-form
representation).

The fourth-order tensor describing the effects related to Ḃ in Equation (24) is

�2�
�ee�B

= ∼
k 1B⊗ ee + ∼

k 2I⊗I + ∼
k 3BeeB⊗ eeBee + ∼

k 4(Bee⊗I + I⊗Bee) (28)

and finally the second-order tensor describing the effects induced by a rate in d in Equation (24)
is

�2�
�ee�d

= k̄1B + k̄2BeeB (29)

In Equations (26) and (29), the coefficients ki ,
∼
k i , and k̄i are functions of tr(Bee), and tr(Bee)2,

reported for conciseness in Appendix D.
We finally remark that the positive definiteness of the tangent stiffness D tensor is important in

view of the implications on material stability and is addressed in Appendix E. Sufficient conditions
(these become also necessary when coefficients ki , i = 1, .., 3 are constants) for positive definiteness
of the fourth-order tensor D for every value of elastic deformation ee are

k1 + 1
3k3>0, k2>0, k3>0 (30)

The coupling fourth-order tensor G turns out to be

G = S − D−1 �2�
�ee�B

�B
�ep

− D−1 �2�
�ee�d

⊗ �d
�ep

(31)

and it must be positive definite (for reasons detailed in Gajo et al. [41]), a condition that can be
checked along the given stress path.
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HYPERELASTIC ANISOTROPY IN SOILS 841

3.1. A sensitive choice of elastic evolution laws

The elastic degradation and the void-ratio dependency are described by employing functions
d1(�

p
oct) and d2(tr ep), respectively, which enter the formulation through their product

d(ep) = d1(�
p
oct)d2(ep) =

[
1 − r

(
1 − t

t + �poct

)][
(3.17 − v0(1 + tr ep))2

v0(1 + tr ep)

]
(32)

where r and t are two constitutive parameters, v0 = 1 + e0 is the initial specific volume and �poct
is the accumulated octahedral plastic strain, namely,

�poct =
∫
deformation path

√
1

3
dev ėp · dev ėp (33)

Note that for null deviatoric plastic strain the elastic degradation is null, namely d1(0)= 1, whereas
at large deviatoric plastic strains d1(∞) = 1 − r , so that 1 − r represents the asymptotic value of
degradation. The parameter t governs the elastic stiffness degradation rate in terms of �poct.

The evolution law of tensor B has been selected and calibrated by Gajo et al. [41] from
experimental results; that law is now generalized to account for inherent anisotropy as follows:

B= devB∗ +
√
3 − devB∗ · devB∗

3
I (34)

where

B∗ =B0 − �ep (35)

and B0 is the initial value of the fabric tensor due to soil deposition (i.e. the inherent anisotropy
at null plastic strains), the function �= �(J2 (�p), 	(�p)) depends on the plastic strain, through the
second invariant

J2 (�p) = 1
2dev ep · dev ep (36)

and the Lode angle invariant

	(�p) = 1

3
cos−1

⎛
⎝3

√
3

2

J3 (�p)

J 3/22 (�p)

⎞
⎠ (37)

of the plastic strain, according to

�(J2 (�p), 	(�p)) = A�g(	(�p))

B�g(	(�p)) +√
2J2 (�p)

(38)

with

g(	(�p)) = 2m�

1 + m� + (1 − m�) cos 3	(�p)
(39)
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842 A. GAJO AND D. BIGONI

and A�, B�, and m� are non-negative constitutive parameters. In Equation (38) a hyperbolic
relationship is introduced between the deviatoric component of B and the deviatoric component
of ep. At zero deviatoric plastic strain, the plastically induced anisotropy is zero and the fabric
tensor is related only to inherent anisotropy through B=B0 (usually not much different from
the identity tensor), whereas at very large deviatoric plastic strains, the fabric tensor B reaches
a saturation condition. Elastic isotropy is recovered when A� = 0 (in this case the elasto-plastic
coupling disappears) and B=B0 = I.

Note that Equation (39) is tailored to capture the behaviour of sands, since the stiffness increases
in the direction of major principal compressive plastic strain. Different from sand and due to the
specific shape of the particles, the elastic anisotropy decreases for clays in the direction of major
principal compressive plastic strain [42]. This behaviour could be modelled by replacing for
instance B with B−1 in Equation (34).

Due to our isotropic hardening assumption, Equations (32) and (34) are appropriate only for
describing elastic stiffness degradation and evolution in a monotonic loading test (since d and
B remain ‘frozen’ upon unloading). The experimental fact that elastic anisotropy also changes
along unloading paths [8] requires introduction of kinematic hardening and is not pursued here
for simplicity.

3.2. Calibration of elasticity parameters

The elastic behaviour is described by providing the evolution of the fabric tensor B, Equation (34),
and the elastic stiffness, Equation (32). The calibration of the fabric tensor has been detailed in Gajo
et al. [41]. The inherent anisotropy, represented by the second-order tensor B0, is calibrated from
the experimental data given by Hoque and Tatsuoka [9]. The parameters used in the simulations
are presented in Table I.

In order to calibrate parameters �, �, n, and l, we refer to the following general law to describe
the evolution of elastic stiffness of sands in terms of specific volume (v0 = 1 + e0) and mean
effective pressure (p):


0 = g1 pr
(g2 − v0)

2

v0

(
p

pr

)0.5

(40)

Table I. Values of soil parameters for describing the evolution of the fabric tensor of
Hostun sand RF, valid for all our models, except the values marked with (*) which refer

to the NLEA-D model (see Equation (43)).

Parameter Description Values

A� Parameter controlling the asymptotic value of the 1.35
fabric tensor in uniaxial compression

B� Parameter controlling the hyperbolic evolution of 0.02, 0.40(*)
the fabric tensor with plastic strain

m� Parameter controlling the asymptotic value of the 0.45
fabric tensor in uniaxial extension

(B0)11 Inherent anisotropy in the vertical direction 1.044183
(B0)22 = (B0)33 Inherent anisotropy in the horizontal direction 0.977159
(B0)i j , i �= j Inherent anisotropy in transverse direction 0.000000

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2008; 32:833–861
DOI: 10.1002/nag
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(where pr = 1 kPa is a reference pressure) and we use two sets of parameters g1 and g2,
namely,

• g1 = 3230 and g2 = 3.97, as suggested by Hardin and Richart [43] and representing a rea-
sonably simple estimate in the absence of ad hoc experiments (used by Gajo and Muir Wood
[44, 45] and Gajo et al. [41])

• g1 = 7730 and g2 = 3.17, which were calibrated by Hoque and Tatsuoka [9] on the experi-
mental results (on Toyura sand) that will be used later to test the validity of our constitutive
modelling.‖

The calibration of the elasticity parameters �, �, n, and l has been obtained by observing
that with null fabric anisotropy (i.e. B= I) and isotropic stress state (i.e. r=−pI), the tangent
elastic stiffness tensor, Equation (26), reduces to an isotropic (nonlinear) elastic law. Therefore,
the coefficients have been calibrated by imposing that under such conditions the tangent stiffness
strictly obeys Equation (40), thus reproducing the observed proportionality of the tangent stiffness
to the square root of mean stress.

In the following, three particularizations of the proposed elasticity models are considered:

• The linear elastic anisotropy model adopted by Gajo et al. [41], labelled ‘LEA’, defined by:

◦ Constant tangent elastic stiffness (n = 2 and l = 1) with evolving fabric tensor B. The
elastic stiffness is defined by the elastic shear modulus and Poisson’s ratio, �. The latter
is taken equal to 0.1, while the former remains defined in terms of

� = 2�

(1 − 2�)
�

� =
(
3230pr

(3.97 − v̄)2

v̄

)(
p̄

pr

)0.5 (41)

where p̄ and v̄ are the (constant) mean effective pressure and specific volume, selected as
mean values referred to the considered experiments.

◦ Null elastic stiffness degradation (r = 0.80 and t = 0, thus d1(�
p
oct) = 0.20).

◦ Null specific volume dependency of elastic stiffness (d2(ep) = 1).

• A nonlinear elastic anisotropy model, labelled ‘NLEA’, defined as ‘LEA’ except that:

◦ A stress-dependent tangent elastic stiffness is introduced (n = 3 and l = 1.5), with evolving
fabric tensor B. Constants � and � become

� = 5� − 1

6
√
3(1 − 2�)

�

� = 2(1 + �)

3
√
3(1 − 2�)

(
3230pr

(3.97 − v̄)2

v̄

)2 (42)

with � = 0.1.

‖For dense sand (e= 0.60), the two sets of parameters in Equation (40) produce a difference in terms of 
0 of about
5%, whereas for loose sand (e= 0.90) the difference is about 10%.
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844 A. GAJO AND D. BIGONI

Figure 3. Evolution of the apparent secant shear stiffness ratio 
/
0 measured in torsional shear tests on
Ticino sand (experimental results from Lancellotta and Calavera [48]) and simulated as a simple shear
test at the mean initial pressure of p0 = 100 kPa on dense Hostun sand (e0 = 0.673). The corresponding

evolution of elastic anisotropy is given in Figure 7.

• A nonlinear elastic anisotropy model with elastic stiffness degradation and void-ratio depen-
dency of elastic stiffness, labelled ‘NLEA-D’, defined as ‘NLEA’ except that:

◦ Constants � and � calibrated on experimental results by Kuwano and Jardine [8] and
Hoque and Tatsuoka [9] on Toyura sand

� = 5� − 1

6
√
3(1 − 2�)

�

� = 2(1 + �)

3
√
3(1 − 2�)

(7730pr)
2

(43)

with � = 0.1.
◦ Elastic stiffness degradation (r = 0.80 and t = 0.0001).
◦ Specific volume dependency of elastic stiffness, Equation (32).

As a simple particularization of the LEA model, we will refer sometimes in the following to the
linear isotropic elasticity, labelled ‘LEI’ (obtained by setting A� = 0 and B0 = I, so that B= I).

It is important to emphasize that elastic anisotropy is entirely induced by plastic strains in the
LEA model, through the evolution of the fabric tensor B, while elastic anisotropy is induced partly
by plastic strain and partly by stress in the NLEA and NLEA-D models. Under isotropic stress
conditions, with null fabric anisotropy (i.e. B= I), both NLEA and NLEA-D models reproduce
the observed proportionality of the tangent elastic stiffness on the square root of the mean pressure
(Figure 1, left).

Note that the elastic stiffness in LEA and the initial elastic stiffness in NLEA are equal to 1
5 of

the small-strain stiffness 
0 evaluated from empirical correlations (as assumed also by Gajo et al.
[41]), as can be seen also in Figure 3. In NLEA-D model, in which elastic stiffness degradation is
included, the initial elastic stiffness coincides with the initial small-strain stiffness 
0, which has
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been calibrated from the small-strain measurements by Kuwano and Jardine [8] and Hoque and
Tatsuoka [9] on Toyura sand.

Finally for the NLEA and NLEA-D models, the sufficient conditions (30)2 and (30)3 for positive
definiteness of D are always satisfied, whereas the condition (30)1 is always satisfied for ��2/7 (a
condition that is verified in our simulations), otherwise it is satisfied only under certain restrictions
on tr(Bee).

4. A SIMPLE ELASTOPLASTIC CONSTITUTIVE FRAMEWORK INCORPORATING
THE ANISOTROPIC EVOLUTION LAWS

A constitutive framework for stress and plastic strain-dependent elasticity for soils has been
presented in Section 2. The formulation is very general and different choices of constitutive
parameters are to be defined. The validity of our approach is tested in this section for granular
materials, by introducing elastic evolutions laws at different degrees of sophistication within
a simple elastoplastic model, capable of describing the behaviour of non-cohesive soils under
monotonic loading. It will be shown that the performances of our elastic evolution laws is excellent.

4.1. Yield function

The (isotropic) yield function is assumed to depend on the set of internal variables �poct (Equa-
tion (33)) and tr ep and stress r as

f (r, �poct, tr ep) =√J2 (�) − (1 − k�)g(	(�))Ms(�poct)p (44)

where k is a positive constitutive parameter and the dependence on tr ep is implicit in the state
parameter �, proposed by Been and Jefferies [46] as

�= v − v� + � ln p (45)

representing a ‘volumetric’ measure of the distance of the current state from the critical state line,
corresponding to �= 0. The function g(	(�)) describing the deviatoric section of the yield surface
is assumed in the form proposed by Argyris et al. [47] (where m>0 is a constitutive parameter)

g(	(�)) = 2m

1 + m + (1 − m) cos 3	(�)

(46)

which is believed to provide a good match to experimental results. Finally, the function s(�poct) is
used to describe the smooth decrease of stiffness with progressive deformation, typical of granular
material, through the following hyperbolic relationship, which is inspired by an equivalent function
defined by Gajo and Muir Wood [44, 45]

s(�poct) =
[
1 − B

B/(1 − R1/�) + (�poct)

]�

(47)

where R<1, B and � are constitutive parameters, the former of which represents a measure of
the initial size of the yield surface with respect to the size of the yield surface when the material
reaches the peak strength, whereas B and � define the stiffness of the plastic response. Note that
s(0)= R when �poct = 0, whereas s(∞) = 1 when �poct =∞. Comparing Equation (47) with the
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analogous Equation (14) of Gajo et al. [41], we note the presence of the new parameter �, which
has been introduced for improving model simulations when elastic stiffness degradation is taken
into account.

4.2. Flow rule

For simplicity we use deviatoric associativity and, following Gajo and Muir Wood [44], we assume

trP
‖devP‖ =−√

3A

[
(1 + kd�) M −

√
J2 (�p)

g(	(�p))p

]
(48)

where A and kd are constitutive parameters. Due to deviatoric associativity, Equation (48) com-
pletely defines the tensor P.

4.3. Hardening rule

On the basis of the assumed yield function, the following hardening rule is selected:

H =−v0
� f

��
I · G−1[P] − 1√

3

� f

��poct
‖devG−1[P]‖ (49)

where H is the plastic modulus, depending on the current state through r and ep.

4.4. Calibration of the parameters describing the irreversible behaviour

Eight constitutive parameters have been introduced by Gajo et al. [41] to describe inelastic
behaviour of sands. Now these parameters become nine, since the additional parameter � in
Equation (47) has been added for defining the hardening rule. The calibration of the eight param-
eters for Hostun sand RF is discussed in detail elsewhere [41, 44, 45] and will not be repeated
here (see Table II for a summary). As far as the calibration of the parameter � is concerned,

Table II. Values of soil parameters for describing the irreversible behaviour of Hostun sand RF,
valid for all our models, except the values marked with (*) which refer to the NLEA-D model.

Parameter Description

v� Intercept for critical-state line in v–ln p plane 1.969
at p= 1 kPa

� Slope of critical-state line in v–ln p plane 0.030
�cv Critical-state angle of friction 32◦
m Parameter controlling the deviatoric section of 0.8

the yield surface
k Link between changes in state parameter and current 2.5

size of the yield surface
A Multiplier in flow rule 0.6
kd State parameter contribution in flow rule 2.2
B Parameter controlling hyperbolic stiffness relationship 0.004, 0.008(*)
� Exponent controlling hyperbolic stiffness relationship 1, 0.4(*)
R Initial size of the yield surface 0.1, 0.01(*)
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reference is made to the strong decrease of the apparent secant stiffness ratio 
/
0 with shear strain,
which is well documented from an experimental viewpoint (e.g. Seed et al. [2]). In particular,
the comparison between experimental results and simulations obtained with NLEA and NLEA-D
models is shown in Figure 3. Here, the NLEA-D model shows its superiority with respect to the
NLEA model (and equivalently also to the LEA model). In fact, only with the NLEA-D model the
larger initial stiffness and the smooth decrease of apparent secant stiffness can be fairly accurately
reproduced, Figure 3, through the appropriate calibration of parameters B, �, and R (denoted with
an asterisk in Table II).∗∗

Simulations of typical laboratory tests performed until substantial deformation occurred show
a good agreement with available experimental data and are deferred to Appendix F.

5. RESULTS ON EVOLUTION OF ELASTIC PROPERTIES OF SAND

The evolution of directional elastic stiffness predicted by our model at different degrees of sophis-
tication (i.e. using models LEA, NLEA, and NLEA-D) are compared with available experimental
results.

The proposed nonlinear models have both a stress and a plastic strain induced elastic anisotropy.
In order to evaluate the relative importance of the two contributions, simulations of a drained biaxial
compression test on dense Hostun sand (e0 = 0.673) at 400 kPa are considered in Figure 4.
In particular, the evolution of the vertical stiffness Ev is reported on the left in Figure 4 em-
ploying the NLEA model with a varying and a fixed (B=B0) fabric tensor. The ratio between
vertical and horizontal in-plane elastic stiffnesses Ev/Eh,ip is reported on the right in Figure 4.
It can be observed that the total increase of vertical stiffness induced by both the stress and
the plastic strain is very large. Moreover, it can be observed from Figure 4 (right) that the
main portion of elastic anisotropy is plastic strain induced, through the evolution of the fabric
tensor B.

The complete evolution of the simulated elastic stiffness anisotropy in a drained biaxial test on
dense Hostun sand (e0 = 0.673) under 400 kPa of confining pressure is shown in Figure 5. The
corresponding stress–strain curves are shown in Figure F2 (Appendix F).

It becomes evident from Figure 5 that the model incorporating elastic degradation (NLEA-D)
has the capability of describing the very stiff initial response experimentally observed by many
authors (e.g. Seed et al. [2]). Note, however, that there are no available experimental data on
the amount of both elastic stiffness degradation and elastic anisotropy at large strains, because
available measurements are limited to relatively small stress ratios (1/3.5��v/�h�3.5 in Hoque and
Tatsuoka [9]). Therefore, further experimental evaluations are needed for an appropriate calibration
of the model.

The NLEA-D model simulations have been compared in Figure 6 (a part of which has been
reported in Figure 1) with experimental results obtained by Hoque and Tatsuoka [9] and Kuwano
and Jardine [8]. The former authors have measured local strains in drained triaxial compression
and extension tests on dense Toyura sand (e= 0.64 − 0.70, at an initial confining pressure of
100 kPa), while the latter have used both local strain transducers and bender elements on triaxial

∗∗The strong variation of the apparent secant stiffness has been found in our simulations to be only marginally
affected by elastic degradation and to be mainly driven by plastic deformation.
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Figure 4. Comparison between different simulations of a drained biaxial compression test at the initial
pressure p0 = 400 kPa of dense Hostun sand RF (e0 = 0.673). Vertical elastic stiffness Ev versus axial strain

(left), Ev/Eh,ip ratio versus axial strain (right).

compression samples of dense Ham River sand (e= 0.66, with �h/�v = 0.45 at an initial mean
pressure ranging between 50 and 200 kPa).††

Note that the simulations and results reported in Figure 6 have been normalized through division
by f (e)= (2.17 − e)2/(1 + e) in order to account for void-ratio variations. In the simulations,
the value of Poisson’s ratio was calibrated to obtain results consistent with the values of Ev and
Eh measured by Hoque and Tatsuoka [9] and of Ghh and Gvh measured by Kuwano and Jardine
[8]. It is clear from Figure 6 that NLEA-D simulations compare very well with measurements. In
particular:

• For a compression test in which �h is kept constant and in the range where elastic degradation
does not play an important role (i.e. for stress ratios smaller than about 2.5), Ev increases
with �v/�h while Eh remains roughly constant (Figure 6, left).

• For an extension test in which �v is kept constant and in the range where elastic degradation
does not play an important role (i.e. for stress ratios smaller than about 2.5), Eh increases
with �h/�v, while Ev remains roughly constant (Figure 6, right).

• During elastic degradation, both elastic moduli decrease with the increase of the stress ratio.
Therefore, the assumed isotropic degradation law seems to be sufficiently accurate.

††The comparison with experimental results on Toyura and Ham River sands is motivated by the fact that to the
best of authors’ knowledge a similar complete set of small-strain measurements on Hostun sand is not available.
Moreover, the Toyura and Ham River sands are pretty similar to Hostun sand. In fact, they are all subangular sands,
with the following characteristics: D50 = 0.380mm, Uc = 2, emax = 1.000, emin = 0.656, for the Hostun sand
D50 = 0.162mm, Uc = 1.46, emax = 0.973, and emin = 0.612, for the Toyura sand, and D50 = 0.27mm, Uc = 1.67,
emax = 0.849, emin = 0.547, for the Ham River sand.
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Figure 5. Evolution of the simulated elastic stiffness anisotropy in drained biaxial compression test of
dense Hostun sand RF (e0 = 0.673) at the initial pressure, p0 = 400 kPa.

The above reported simulations do not involve rotation of the principal stress axes. It seems now
crucial to investigate the effects on the evolution of elastic properties related to such a rotation.
Therefore, NLEA and NLEA-D simulations are compared in Figure 7 with experimental results
obtained by HongNam and Koseki [49] on a hollow cylinder apparatus (on dense Toyura sand
with initial void ratio between 0.70 and 0.74, under an initial confining pressure ranging between
30 and 400 kPa).
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Figure 6. Comparison between measured and simulated elastic moduli in drained triaxial compression
and extension tests at the initial pressure, p0 = 100 kPa of dense Toyura sand and Ham River sand
(simulated as dense Hostun sand with e0 = 0.673). Compression test, where �h is kept constant
(left); extension test, where �v is kept constant (right), experimental data taken from Hoque and

Tatsuoka [9] and Kuwano and Jardine [8].

The comparison with NLEA and NLEA-D simulations is given in Figure 7 in terms of current
elastic compliances (normalized through division by initial compliances, denoted by the index [0]
in Figure 7) defined as

M11 = �̇zz
�̇zz

, M44 = 2
�̇	z
�̇	z

, M14 = �̇zz
�̇	z

, M34 = �̇		

�̇	z
(50)

(where z, r , and 	 denote polar coordinates) measured along small unload/reload cycles under
torsional shear.‡‡ It can be concluded from Figure 7 that model simulations are again very consistent
with the experimental evidence and that, when elastic degradation is considered (in NLEA-D
model), the elastic compliance undergoes, as expected, an abrupt increase at fairly small applied
shear stress.

6. CRITICAL AND POSTCRITICAL SHEAR BAND ANALYSIS

Gajo et al. [41, 50] have shown that elastic stiffness properties of soil play a key role on shear band
nucleation and growth.§§ They have shown that multiple shear bands may occur and that these

‡‡It may be interesting to note that experimental evaluations provided by HongNam and Koseki [48] refer to the
elastic compliance, not to the tangent compliance. A strange aspect of these experiments is that they evidence a
slightly non-symmetric elastic compliance tensor since M41 and M14 have been found to be slightly different.

§§The fact that elastic behaviour is important in shear banding may be easily understood when one considers that
the major part of the sample is undergoing elastic unloading after strain localization.
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Figure 7. Comparison between measured and simulated elastic compliances in torsional shear tests
performed in hollow cylinder at the mean initial pressure of p0 = 100 kPa on dense Toyura sand (simulated

as dense Hostun sand with e0 = 0.673). Experimental data taken from [49].

may be persistent or not, depending also on the elastic properties of the material. Therefore, it is
important now to investigate the effects on strain localization of the proposed constitutive model
for elastic evolution (including elastic stiffening, degradation, and anisotropy reorientation).

The simulation of a drained biaxial compression test including shear band formation and growth
is shown in Figure 8 for a dense Hostun sand sample (e= 0.673) at 400 kPa initial confining
pressure. The left part of the figure refers to the models LEA, NLEA, and NLEA-D, while the
effect of membrane confinement and penetration is included in the simulations on the right part
obtained with the NLEA and NLEA-D models (as a reference, the curves reported in the part
a are also included dashed). All the simulations have been performed employing the techniques
explained in detail by Gajo et al. [41] for ideal boundary conditions (Figure 8, upper part) and by
Gajo et al. [50] when out-of-plane compliance due to membrane penetration is included (Figure 8,
lower part).

The following observations can be drawn from Figure 8.

• Results obtained with the LEA model coincide with those already reported by Gajo et al.
([41], their Figure 2, and [50], their Figure 8). For the values considered of density and
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Figure 8. Simulated drained biaxial compression tests of medium dense Hostun sand
(e0 = 0.673) at the initial pressure of p0 = 400 kPa. LEA, NLEA, and NLEA-D model simu-
lations with perfect boundary conditions (upper part); NLEA and NLEA-D model simulations
including the effects of membrane compliance (lower part); the curves on the upper part are

also reported dashed on the lower part as a reference.
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confining pressure, a single shear band (inclined at 34.5◦ with respect to the vertical axis)
forms and grows, inducing a strong softening. These results are a reference since they have
been shown to be close to the available experimental results and that the agreement increases
when the effects of membrane penetration are taken into account.

• Results obtained with the NLEA model are almost coincident with those obtained with the
LEA model (the predicted band inclination with the former model is 34.8◦).

• The simulations obtained with the NLEA-D model show that a single shear band forms,
accompanied by a near-peak stress oscillation. The global behaviour is far from the simulations
obtained with the other two models, a fact that is mitigated by the inclusion of membrane
penetration in the analysis (Figure 8, lower part). We believe that the difference in the
behaviour predicted by the NLEA-D model is due to the poor calibration of elastic degradation
in the regime of substantial strain, where experimental results are currently not available (in
biaxial test).

We can conclude that the NLEA model performs correctly not only in simulating homogeneous
sample response, but also in predicting shear band formation and growth. On the other hand,
the NLEA-D model, which does not perform correctly in the description of strain localization,
deserves a more accurate calibration, based on experimental data, to be obtained from a biaxial
test at substantial strain.

7. CONCLUSIONS

A new hyperelastic description of elastic stiffness and elastic anisotropy evolution in soils has been
proposed (at different degrees of sophistication) within the framework of elastoplastic coupling,
incorporating a law of stress-dependent, nonlinear elasticity. This represents the first attempt to
describe the dependency of elastic properties of soils on both the current stress and plastic states.
Equipped with a simple elastoplastic formulation, the proposed law is shown to provide an excellent
description of available experimental results. The shear band formation and development analysis
reveal that the proposed models provide results not far from those obtained by Gajo et al. [41]
neglecting evolutional stiffness and stress dependency of anisotropy in the elastic description
of behaviour of sand. However, differences in the results concerning localization when elastic
degradation is taken into account calls for further experimental investigation.

APPENDIX A: THE EXPERIMENTAL EVIDENCE OF SMALL-STRAIN ELASTIC
ANISOTROPY IN SOILS

Experimental evidence of inherent anisotropy is not firmly established for granular materials; for
instance, while Stokoe et al. [51] and Bellotti et al. [52] show that the elastic Young modulus
in the horizontal direction (Eh) is larger than in the vertical (Ev) for air-pluviated samples, an
opposite conclusion is reached by Hoque and Tatsuoka [14] and Kuwano and Jardine [8]. In the
present paper, inherent anisotropy is taken into account by introducing an initial fabric tensor B0
(Equation (35)), calibrated from experimental results by Hoque and Tatsuoka [9].

Concerning the induced elastic anisotropy of sands, it is generally accepted that the Young
modulus in the direction of the principal stress axes is a function of the effective normal stress in
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that direction [4, 37, 53, 54] and a power law dependency is usually proposed for the vertical and
horizontal directions

Ev =Cv f (v)

(
�v
pr

)av
, Eh =Ch f (v)

(
�h
pr

)ah
(A1)

where Cv and Ch are two constants, the function

f (v)= (3.17 − v)/v (A2)

takes into account the specific volume dependency (as suggested by Hardin and Richart [43]), and
the exponents av and ah are close to 0.5 for subangular sand [8, 9], and to 0.4 for subrounded
sand. Kuwano and Jardine [8] concluded that for sands the overconsolidation and recent stress
history do not affect the moduli, although these factors strongly influence the extent of the linear
response. Hoque and Tatsuoka [9] observe that in triaxial compression and extension tests, at
stress ratios �v/�h>2.5 and �v/�h<1/2.5, respectively, an important degradation of the elastic
stiffness, occurs. This is consistent with results by Connoly and Kuwano [55] and Kuwano and
Jardine [8], who address this ‘catastrophic fall’ of elastic stiffness to the disruption of the system
of particle contacts and force chain assembly due to dilation. This elastic degradation has never
been previously modelled.

Experimental evaluations of the anisotropy of elastic shear stiffness are usually obtained by mea-
suring shear wave velocities through bender elements [8],¶¶ thus obtaining a power law dependency
on stress state, similar to that used for Young moduli, namely

Gvh =Cvh f (v)

(
�v
pr

)avh (�h
pr

)bvh
, Ghv =Chv f (v)

(
�v
pr

)ahv (�h
pr

)bhv
(A3)

where avh = 0.32, bvh = 0.20, ahv = − 0.04, bhv = 0.53, for Ham River sand [8].
More recently, Hong Nam and Koseki [49] measured the evolution of elastic stiffness in torsional

loading tests performed in a hollow cylinder apparatus, involving a rotation of principal stress axes.
Even in this case, a power law dependency of the elastic properties in the direction of principal stress
axes versus principal stresses has been proposed to interpolate the experimental measurements.

APPENDIX B: GENERAL, PLASTIC-DEPENDENT, NONLINEAR FREE-ENERGY
AND COMPLEMENTARY FREE-ENERGY DENSITY FUNCTIONS

A more general expression of the elastic free-energy density than (21) is suggested to be

�(ee, ep) = �d(−tr(Bee))n + �d (−tr(Bee))m (tr(Bee)2)l (B1)

which reduces to (21) when m = 0.
This elastic free energy with n = 3, m = 1, and l = 1 gives simulations that are nearly coincident

with those reported in this work.

¶¶ It is curious that these authors observed that the velocities of propagation Vvh and Vhv are different when the sample
is subject to compression, tangent elastic stiffness tensor loses the major symmetry, and proposed an explanation
based on the distribution of grain contacts. This finding has also been substantiated by HongNam & Koseki [49].
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Alternatively, a different formulation in terms of complementary free-energy density may be
given in the following form:

�(r, ep) = a

d

(
− tr(B−1r)

pr

)N

+ b

d

(
− tr(B−1r)

pr

)M (
tr(B−1r)2

p2r

)L

(B2)

where a, b, L , M , and N are material parameters, pr = 1 kPa is a reference pressure, and d
governs degradation and void-ratio dependency. Note that the two formulations (B1) and (B2)
are not identical, but provide close results for N = 1.5, M = 0, and L = 0.75 and for N = 1.5,
M = − 0.5, and L = 1.

APPENDIX C: AN ALGEBRAIC FORM FOR TENSORIAL PRODUCTS (27)

Taking into account the relationship existing between symmetric second-order tensors, fourth-order
tensors having minor symmetries and vectors of dimension 6, and 6× 6 matrices, respectively, the
following vectorial representation can be given to every second-order symmetric tensor C:

[C11, C22, C33,
√
2C12,

√
2C13,

√
2C23]T

so that the fourth-order tensor A⊗B can be represented as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11B11 A11B22 A11B33
√
2A11B12

√
2A11B13

√
2A11B23

A22B11 A22B22 A22B33
√
2A22B12

√
2A22B13

√
2A22B23

A33B11 A33B22 A33B33
√
2A33B12

√
2A33B13

√
2A33B23√

2A12B11
√
2A12B22

√
2A12B33 2A12B12 2A12B13 2A12B23√

2A13B11
√
2A13B22

√
2A13B33 2A13B12 2A13B13 2A13B23√

2A23B11
√
2A23B22

√
2A23B33 2A23B12 2A23B13 2A23B23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

the fourth-order tensor B⊗B as (only the upper half of the symmetric 6 × 6 matrix is given)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B2
11 B2

12 B2
13

√
2B11B12

√
2B11B13

√
2B12B13

B2
22 B2

23

√
2B22B12

√
2B12B23

√
2B22B23

B2
33

√
2B13B23

√
2B33B13

√
2B33B23

(B11B22 + B2
12) (B11B23 + B12B13) (B12B23 + B22B13)

(B11B33 + B2
13) (B12B33 + B13B23)

(B22B33 + B2
23)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and the fourth-order tensor B⊗I + I⊗B as (only the upper half of the symmetric 6× 6 matrix is
given) ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2B11 0 0
√
2B12

√
2B13 0

2B22 0 0 0
√
2B23

2B33 0
√
2B31

√
2B32

(B11 + B22) B23 B13

(B11 + B33) B12

(B22 + B33)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

APPENDIX D: COEFFICIENTS ki , k̃i AND k̄i

The complete expressions for the coefficients ki , k̃i , and k̄i appearing in Equations (26)–(29) are
listed below.

k1 = �dn(n − 1)(−tr(Bee))n−2 (D1)

k2 = 2�dl(l − 1)(tr(Bee)2)l−2 (D2)

k3 = 2�dl(tr(Bee)2)l−1 (D3)

k̃1 = �dn(n − 1)(−tr(Bee))n−2 (D4)

k̃2 = −�dn(−tr(Bee))n−1 (D5)

k̃3 = 4�dl(l − 1)(tr(Bee)2)l−2 (D6)

k̃4 = 2�dl(tr(Bee)2)l−1 (D7)

k̄1 = −�n(−tr(Bee))n−1 (D8)

k̄2 = 2�l(tr(Bee)2)l−1 (D9)

APPENDIX E: SUFFICIENT CONDITIONS FOR POSITIVE DEFINITENESS
OF THE TANGENT STIFFNESS TENSOR D, EQUATIONS (30)

The condition of positive definiteness of fourth-order tensor D given by Equation (26) can be
written as

X · D[X]= k1(B ·X)2 + k3X ·BXB + k2(BeeB ·X)2>0 ∀X, ee ∈Sym (E1)

Employing now the expedient introduced by Bigoni and Loret [33] of defining
X̃=B1/2XB1/2, ẽe =B1/2eeB1/2 (E2)
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where B1/2 is the square root of tensor B, defined in such a way that B1/2B1/2 =B, condition (E1)
becomes

X · D[X]= k1(tr X̃)2 + k3X̃ · X̃ + k2(ẽe · X̃)2>0 ∀X̃, ẽe ∈Sym (E3)

Note that the tensors X̃ and ẽe are completely generic, since X and ee are arbitrary.
Now, the proof that conditions (30) are sufficient for positive definiteness of D for every elastic

deformation ee is obtained from the following.

• For every purely deviatoric tensors X̃ (i.e. tr X̃= 0), condition (E3) becomes

X · D[X] = k3X̃ · X̃ + k2(ẽe · X̃)2>0 (E4)

which is satisfied for every ẽe if and only if conditions (30)2 and (30)3 are satisfied.
• For a generic tensor X̃, using the Cauchy–Schwarz inequality

(tr X̃)2�3(X̃ · X̃) (E5)

we obtain

X · D[X]�
(
k1 + 1

3
k3

)
(tr X̃)2 + k2(ẽe · X̃)2 ∀X̃, ẽe ∈Sym (E6)

revealing that, excluding purely deviatoric tensors X̃ (i.e. for tr X̃ �= 0), conditions (30)1 and
(30)3 are sufficient for positive definiteness of D (for every ẽe).

It is not difficult to prove that conditions (30) become also necessary for positive definiteness
of D (for every ẽe) when coefficients ki , i = 1, . . . , 3 are constant.

APPENDIX F: SIMULATION OF TYPICAL LABORATORY TESTS
AT SUBSTANTIAL STRAIN

In order to highlight the characteristics of the different nonlinear elasticity models, simulations
of some typical laboratory tests are given in the following. In particular, drained triaxial tests,
drained biaxial tests, and undrained triaxial tests are considered, to analyse tests in which an
increasing constraint in some components of the total strain is involved. Figure F1 shows the
comparison of simulated and measured drained triaxial compression tests performed at the same
confining pressure on samples broadly ranging in density, e0 = {0.574, 0.945}. Since the LEA
model gives results practically coincident with the NLEAmodel, only the latter is shown. Moreover,
the simulations obtained with the linear, isotropic LEI model are also included for comparison.
Although the increase in the initial stiffness passing from the LEI to the NLEA-D is evident, it
may be concluded that in the simulations of drained triaxial tests the effects of elastic stiffness are
fairly small, particularly at large strain.

The constitutive parameters describing the irreversible behaviour (Table II) have been kept
almost constant, in order to highlight the effects induced by the elasticity model. Consequently,
some details of the simulations, e.g. the volumetric response of NLEA-D model, might be improved
by adjusting the constitutive parameters of Table II.
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Figure F1. Comparison between simulations and experiments: effects of the initial density on drained,
conventional triaxial compression tests, with the same initial pressure, p0 = 300 kPa, for Hostun sand RF.

Deviatoric stress versus axial strain (left), volumetric versus axial strain (right).

Figure F2. Simulation of drained, biaxial compression tests, with the same initial pressure,
p0 = 400 kPa, for dense Hostun sand RF (e0 = 0.673). Vertical stress versus axial strain

(left), volumetric versus axial strain (right).

The simulated drained biaxial compression tests performed at a confining pressure of 400 kPa on
a dense Hostun sand sample (e0 = 0.673) is shown in Figure F2. In this case, the constraint of null
out-of-plane strain makes the effects of the elasticity models slightly more important, particularly
in the volumetric response.

Finally, the effects of the elasticity model on the simulations of undrained triaxial compression
tests on loose Hostun sand are shown in Figure F3, together with experimental results. Since the
simulations of the LEA model are very similar to those of the NLEA model, only results obtained
with the latter model have been reported in Figure F3. Due to the constraint of null total volumetric
strain, the effects of the elasticity are important. In particular, it appears from the comparison of
NLEA and NLEA-D models that the value of elastic stiffness and its degradation properties play
a key role. Note in addition that a very high elastic stiffness makes the simulations very sensitive
to experimental imperfections (membrane penetration in undrained tests and grain penetration into
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Figure F3. Comparison between simulations and experiments: effects of the elasticity model on undrained,
conventional triaxial compression tests, at initial pressure, p0 = 200 kPa, for loose Hostun sand RF

(e0 = 94). Deviatoric stress q versus axial strain (left), effective stress path in q–p plane (right).

the membrane in the out-of-plane direction of biaxial tests), which have not been considered in
the results shown in Figure F3.
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18. Boyce HR. A non-linear model for the elastic behaviour of granular materials under repeated loading. In

Proceedings of the International Symposium on Soils under Cyclic and Transient Loading, Swansea, U.K., 1980;
285–294.

19. Mroz Z, Norris VA. Elastoplastic and viscoplastic constitutive models for soils. Soil Mechanics—Transient and
Cyclic Loading. Wiley: New York, 1982.

20. Loret B. On the choice of elastic parameters for sand. International Journal for Numerical and Analytical
Methods in Geomechanics 1985; 9:285–292.

21. Houlsby GT. The use of a variable shear modulus in elastic–plastic models for clays. Computers and Geotechnics
1985; 1:3–13.

22. Jardine RJ, Potts DM, Fourie AB, Burland JB. Studies of the influence of non-linear stress–strain characteristics
in soil–structure interaction. Géotechnique 1986; 36:377–396.
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development in sand. Géotechnique 2007; 57:449–461.
51. Stokoe II KH, Lee JNK, Lee SHH. Characterization of soil in calibration chambers with seismic waves.

Proceedings of ISOCCTI, Clekson, NY, vol. 2, 1991; 363–376.
52. Bellotti R, Jamiolkowski M, Lo Presti DCF, O’Neill DA. Anisotropy of small strain stiffness in Ticino sand.
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