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Abstract: A framework for thermoelastic analysis of wave propagation in multilaminated structures is given.
The elastic material is subject to an arbitrary, homogeneous deformation and to a condition of uniform temper-
ature. Small-amplitude vibrations are analyzed starting from this state, in a fully coupled thermomechanical
formulation.
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1. INTRODUCTION

Due to their excellent mechanical performances, composite materials and structures have
attracted an intense research effort in recent years. Layered elastic structures are employed
in a broad range of applications, including laminated timber structures in civil engineering,
sandwich panels in aircraft, submarine coatings, integrated circuits, thin film deposition in
semiconductor devices.

These structures are usually subject to a number of static and dynamic loading processes,
including temperature changes. Due to the fact that the layers possess different mechanical
and thermal properties, temperature changes can introduce stresses that may lead to failure.
For instance, multilayer capacitors often consist of a one hundred alternate layers of
electrodes and dielectric ceramics, sandwiched between two ceramic cover layers [1].
Consequently to the thermomechanical mismatch between constituents, these devices are
generally subject to residual stresses, so that the brittle dielectric layer may crack or the
electrode/dielectric interface may debond, leading to failure of the system.

Analysis of vibration and instability in the above-mentioned situations, where both
pre-stress and thermal effects play a role, has an obvious meaning for design purposes.
As a consequence, a number of mechanical models were formulated at different levels
of sophistication [2, 3, 4, 5]. All these models are however based on approximate plate
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theories, while our interest here is to develop a framework for the analysis of small-amplitude
waves superimposed upon an arbitrarily large and uniform deformation of a nonlinear elastic
material. This framework was thoroughly analyzed in the isothermal case for quasi-static
deformation [6, 7, 8, 9, 10, 11], while isothermal vibrations were considered mainly by Ogden
and co-Workers [12, 13, 14].

Within the framework of modified entropic theory, layered and compressible
hyperelastic, nonlinear materials are considered in this article, deformed an arbitrary amount
with deformations having principal Eulerian axes aligned parallel and orthogonal to the
layers. Temperature is assumed uniform in this configuration and equal in all layers.
Thermoelastic, plane strain, and small-amplitude waves are analyzed from this state, in a fully
coupled formulation. Within the analyzed range of parameters, it is shown that the coupling
terms, yielding complex propagation velocities, introduce a small dispersion effect. However,

temperature and pre-strain result to play an important role in determining the propagation
characteristics of the structures.

2. THERMOELASTIC CONSTITUTIVE EQUATIONS

The formulation of constitutive equations is based upon the deformation gradient F and the

absolute temperature © which are taken to be the two thermodynamic independent variables.

The Helmholtz free energy y/(F, ©) is then introduced so that the first Piola-Kirchhoff stress

tensor S and the entropy # are given by the following constitutive equations [15, 16, 17]
_y(F,0)

ay(F, )
=Ll 7/ = 1
S oF ’ 90 (1

while the specific internal energy e follows from the relationship

e=y+ 0Opy. 2)

It has been shown (see, for instance, [17]) that the free energy for a thermoelastic material
may take the form

e

v(F.0) = B —a® 52+ [ (k6 °=%e o
SN o0

where y(F) = w(F,0y) is the isothermal free energy at the reference temperature ©,,

e(F) = e(F,©,) and the heat capacity at constant strain ¢(F,©) is given by ¢ =

de(F,0)/00.

In order to study the behaviour of thermoelastic rubberlike materials a free energy
obeying a class of modified entropic theories proposed by Chadwick [17, 18] is employed,
thus allowing the internal energy e to be split into two contributions, one depending on the
deformation through the volume ratio J = det F, the other depending on the temperature,
namely e = ¢y(J) + eg(0). As a consequence ¢ = ¢(0) and (3) takes the form

~ 0y © _(6-0) -
w(F,@)zwo(F)@%—eo(J)Ggoe +/® c((a)(—é—.—)d@' (4)
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As a specific form of the isothermal free energy w, the isotropic, compressible, two-
parameters neo-Hookean elasticity is considered, defined in terms of principal stretches 44,
A 2 A 3 as [19]

2
Wo(A1,Az,A3) = 70 (A1hads — 1) + % (A3 +23+43 =3 —2In(A:14243)],  (5)

where 1 and y represent the Lamé constant in an unstressed configuration at the reference
temperature ©. In addition, we employ the following relation proposed by Chadwick [17]
for the internal energy term,

eo(J)/®0:3(Xol€0h(J), (6)

where o is the linear thermal expansion coefficient, ko = Ao + 2u0/3 is the elastic bulk
modulus in the unstressed configuration at © = 0, and

h(J)=y71(J"=1), y>1 7
In the case which c is constant, the free energy (4) becomes

1 e
v o= = [,IO(J— 1)2+#0(/1f+/1§+i§~3—21nJ)] =
2 S

— Bopkey NI = 1)(© = By) +¢[0 — Oy — O1n(0/6,)]. (8)

The propagation of small-amplitude waves is studied by means of incremental equations.
The constitutive equations of incremental thermoelasticity are now formulated on the basis
of the nonlinear, finite equations (1).

Denoting with ¢ first-order incremental quantities, we get

58S = COSF + M,ys O, 9)

where

S (F,0) d*w(F,0) oS (F,0) 0%y (F,0)

(8] 9 2 I Y

Co JF oF2 90 9OIF (10)
are the isothermal elastic tensor and the stress-temperature constitutive tensor, respectively.
An updated Lagrangian formulation of the boundary-value problem will be employed. Then,

on introducing the pertinent stress 32 and deformation gradient I increments [20]

JE=6SF', T =(§F)F !, (11)
(where the superscript 7 denotes the transpose) the constitutive equation (9) becomes

¥ =C°T + Moso. (12)
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The fourth-order tensor C® is given by
JC® =(IRF)CY (IRFT), (13)

where I denotes the identity tensor and the following tensorial product between three arbitrary
second-order tensors A, B, C, has been introduced

(ARB)C = ACB’. (14)

The updated stress-temperature tensor M appearing in eqn. (11) turns out to be given by

M =J'MF" = E%L@, (15)

where
T =J'SF’ (16)

denotes the Cauchy stress tensor.

For an isotropic material the non-null components of the isothermal elastic tensor C®
are {20]

%y
JCo = Aidj———,
W 7 04:04;
oy oy

JC = P B A £,

ijij J 12 — )2
4

9
JC8 = Jgc® — 5, ¥ =y (17)

iji ijij J a,{

For the free energy (8) and a plane-strain condition, where 43 = 1, the in-plane components
of C® different from zero result to be

O 1442 e
= CS + Ao = — — 1)t 18
¢ C1111 = Ho =~ O 7 0 @oJ 3050”0(@ @0)()’ ) , (18)
C) 1+/12 o _
Cy = Caypy = o — + Ao =—J — 3agko(© — Og)(y — 1)J7 1, (19)
V¢ T J (SN
(S _
Cs = Cyy=Coyyy = ,10@0 (2J — 1) = Bagko(© — Og)yJ" 2, (20)
O 1 C) _
C4 = C19221 C2112 Ho -(_)—0 7 */106;(.]— 1) + 3aol€0(6 — @O)J}' l, (21)

O i3

C5 = C1®212 @O Jﬂ

(22)
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e 12
Co = Cqlpy = Ho g 71 (23)
In the Eulerian reference system, the Cauchy stress is diagonal with components
oy
T, =J"2; 24
e (24)
and the stress-temperature tensor M has also a diagonal form
07,
M; = —| 25
36 (25)
so that
A2-11 1
M, = — + Ao/ —1)— -3 J' 26
1= o= @0 + Ao )90 GpKo (26)
M. Ay = +Ao(J—1) ! 3agket” ! 27N
= — —1)— —3a .
2 Ho 7 @0 0 04 oko

It should be noted that in the case when the pre-strain is null, A, = 15 = A3 = 1, the
constitutive equation (12) reduces to

6T =Adivul+u (Va+Vu') — 3apk 901, (28)

where J T and u denote increments of Cauchy stress and displacement, respectively, div and
V are the divergence and gradient operators and

- (C) © 3
A= /1 3?&0/‘60(6 @0) ,U, HoT— + aoFi,()(@ @0) (29)
@0 O 2
It should be noted that 4 and u are independent of the incremental quantities, so that
the form (28) of the constitutive law represents the well-known equations of infinitesimal
thermoelasticity [15].

3. THE LAYERED STRUCTURE

An elastic structure made up of different isotropic thermoelastic layers is considered, obeying
constitutive laws (1) and (8) and subject to uniform (arbitrary large) deformation and
temperature. In the reference configuration, layers are rectangular strips of infinite length
in the direction 1 and 3 with material points defined by the coordinates (for the /-th layer)

— 00 < X? < +0o0 (l = 1>3)’ ll?mm< Xg < lho,max' (30)
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The layers are subject to a uniform stretch, so that the current configuration is defined by
— o < Xi < 4o (l - 173)7 lh,min < X2 < lh,max) (31)

where x; = 4;x? (i = 1,3), X2 = lyin+ A2(x3 — 10,,,,) at a given temperature ©. As a
consequence, eqns. (17) and (24) allow us to evaluate the current elastic tensor, the Cauchy
stress and stress-temperature tensor.

Starting from the above configuration, the propagation of small-amplitude mechanical
disturbances are analyzed. These must satisfy:

¢ the incremental equations of motion in the absence of body forces
divy = pu, (32)

where a dot means material time derivative, p is the mass density and u the incremental
displacement. Tensor X is specified by eqn. (12) in the form

® =C°Vu + M§, (33)

where @ = J O is the increment of temperature;
o the local conservation of energy in the absence of heat sources

¢ = —divq+ OM - Vu, (34)

where ¢ = ¢/J, q is the heat flux, that can be expressed in terms of § through the Fourier
law

q=—KV4,

where K is the thermal conductivity;
e incremental plane strain constraint in direction 3

ug =0, X3 = By = Yz = Vo = 0; (35)
¢ the mechanical boundary conditions
— at a boundary subject to dead load:

222 = 0, 212 = 0 (36)

— at an interface between two layers denoted by * and ~:

Y5 =Y, YL =35 u'=u (37)

¢ the thermal boundary conditions

— at any external boundary:

a6 _
either adiabatic Fr 0, or prescribed temperature § = 6 ; (38)
X2



THERMOELASTIC SMALL-AMPLITUDE WAVE PROPAGATION 561

— at an interface between two layers denoted by * and ~:

+ —
o =0, k2 g0
dxg

(39

6)(?2 '

Solutions to the above problem are sought in the form of small-amplitude waves
propagating in the direction 1

{ur, uz, 0} = {h1(x2), P (x2), o(xz) } e 17 (40)

where & is the wavenumber and v the velocity, both complex valued. Functions
@1(x2), P2(x2), Pg(x3) can be determined by substituting (40) into the equations of motion
(32) and the local conservation of energy (34). This gives a system of three second-order
ODESs which admits the solution

{¢1(x2)’ ¢2(x2)7 ¢9(x2)} = Z {Aj ;Bj ,Zj }e"’ fexy

+{4j13,Bj45,Z3 eV, (41)
where 4;,B;,Z; (j = 1,...,6) are unknown constants. The six complex roots s, = —s,
sy = —Ss, and 53 = —5, are the solutions of the characteristic equation [21]

{Cos® = (1+MIE) + pv?/CH(C + M3E)s* — Cs + pv*/C1}
+{(C3 + C4) + MiMyZ}?s* + i(1 — s2)QC, / (pv?) x
X {(Css® — 14 pv*/C1)(Cas® — Cs + pv?/Cy) + (C3 + C4)%%} = 0, (42)

where C; = C; /Ci, M; = M; /¢,= = ©¢/C, and Q = kvKp /(Cyc).
Note that for s = 0 waves are independent of the tranversal direction and eqn. (42) gives

(Cs — pv*) [(Cr — pv?) (kK — iev) — ivM1O] = 0,

yielding the propagation conditions of shear and longitudinal body waves.
Substitution of (40)—(41) into (32) yields two relations which allow us to express the
constants B;, Z;, (j =1,...,6) interms of 4, (j = 1, ...,6), namely

By = f(s;)4;, Biyz = ~f(s;)405 (j=1,2,3), (43)
Zi = g(s)A4;, Ziys =g(s ) 445 (j=1,2,3), (44)
where

I.Mz(CE,SJ? —}-pVQ/Cl — 1) -+ iMI(C;g + 64)

Sls;) == M, (Cos? +pv2/Cy — Co) — Mas2(Cs + Cy)

(45)
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and

(C3 + C4) + (CsSZ +pv2/C1 — 1)(CQS2 +pv2/C1 — CG)

( ) ZQ M](CQS +pv2/C1 ) MgS (C3 + C4)

(46)

In conclusion, the displacement and the temperature fields associated with the travelling wave
are expressible in the form

3
{uy, ug, 6 Z {1 S(s1),8(s;)}4; €5+

{1, (5;), 805, ) YAz e 52 J ek 47)

Once the form of solution (47) is substituted into the boundary conditions (36)(39), an
eigenvalue problem for the complex propagation velocity v is obtained, which can be solved
numerically. Finally, for each propagation velocity, the same eigenvalue problem provides

the propagation amplitudes 4; (j = 1, ...,6) unless an arbitrary constant, and finally B; and
Z; from eqns. (43)~(44).

4. RESULTS

Results relative to simple geometries are presented in the following. Uniaxial tensile and
compressive stress states have been analyzed for simplicity, in globally adiabatic conditions,
eqn. (38):. In particular, a longitudinal stretch 4, and a constant temperature © have been
imposed uniformly for the whole multilaminated structure. The stretch in the transversal
direction 4, has been calculated by imposing the vanishing of the transversal stress

T2=—12—=0, (48)

thus obtaining a relationship determining 4,

O [ 1 e) )
:uf)(_) (/Ij 1/12> +AO@ ( 1/12—1)_3(10&0(9“@0)(/11/12)}) 1 = 0. (49)

Note that eqn. (49) yields two solutions for 1, of different sign, so that the negative one must
be always disregarded. Moreover, we note that A, depends both on 4; and ©. Employing
now eqn. (24), the longitudinal stress can be obtained in the form

,Uo@

T, =
T e,

(A1 =43), (50)
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Figure 1. Dispersion diagrams for a single layer at different temperatures and for two values of Poisson
ratio. Pre-strain is null, Ay = 1, and only results pertaining to the first mode of propagation are
shown. Part (b) is a detail of part (a), in which additional values of temperature have been considered,
O = {193, 243, 293, 343, 393} K.

representing the pre-stress state. It is immediate to observe from (50) that the pre-stress
is positive (negative) when A; > A, (<). Therefore, the sign of the pre-stress depends
through A, on temperature and longitudinal stretch. In all the examples presented below the
temperature sets the sign of the pre-stress when A; = 1, whereas when 4; = 1.3 (= 0.8) the
pre-stress remains tensile (compressive) for the whole range of temperature analyzed.

In the examples we systematically explore the condition of assigned wavenumber £,
which is consequently taken to be real. Obviously, the frequency w = kv turns out to be
complex. This is related to the well-known fact that waves in thermoelastic materials are
always dispersive, even in the cases of propagation of body and Rayleigh disturbances [22].

We have referred in all examples to the following values of parameters

N k=02,

=25, ap=10"*K! =293K, ¢=18-10° ,
y Ao , O 3 c 0 K X

and we have employed the Poisson ratio v, defined in the unstressed configuration and

at © = Oy, which is related to the elastic constants 1, and u, through the well-known
relationships

Ao 2vq po

= lp=—.
Yo 2(10 +/10)’ 0 1-— 2V0

4.1. Single layer

Results for a single layer are reported in Figs. 1-2, where the phase velocity Re(v) —
nondimensionalized through multiplication by /p /1 — is plotted versus the nondimensonal
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Figure 2. Dispersion diagrams for a single layer at different temperatures. Results pertaining to the first
and second propagation mode are shown. Two values of longitudinal stretch are investigated, A, = 0.8
corresponding to uniaxial compression, part (a), and A; = 1.3 corresponding to uniaxial tension, part (b).

wave number kh /2, where / is the thickness of the layer. Three different values of temperature
O = {193, 293, 393} K are considered for three values of 1, equal to 1 in Fig. 1,t0 0.8
in Fig. 2(a), and to 1.3 in Fig. 2(b). The velocity corresponding to first and second mode of
propagation are reported in Fig. 2, whereas only the slower propagation speeds are reported
in all other figures.

Fig. 1 is relative to a null pre-strain, 1; = 1, so that the pre-stress is dictated by
the temperature. Two extreme values of the Poisson ratio v are investigated in Fig. 1(a),
namely, vo = 0 and vy = 0.49. It can be observed that the difference in v, influences
only quantitatively the results, but not qualitatively. Therefore, all subsequent results
are restricted to the nearly incompressible case, vo = 0.49. A detail of Fig. 1(a) is
reported in Fig. 1(b), where additional curves referring to five values of temperature,
© = {193, 243, 293, 343, 393} K, have been added to highlight an interesting feature. In
particular, while the phase velocity decreases with temperature at very low wave numbers,
an opposite situation occurs for high wave numbers. A peculiar feature is that all curves
intersect in a well definite point, within the numerical approximation. An effect of a tensile
pre-stress is that it makes this point disappear from the graph, so that the wave speed always
decrease with increasing temperature, see Fig. 2(b). The point of intersection of the curves
in Fig. 1 corresponds to a frequency and velocity of propagation which is independent of the
temperature.

Points in the graphs corresponding to a null velocity represent bifurcation conditions in
a beam-like buckling mode. It is clear for A; = 1, i.e. from Fig. 1(a), that an increase
in temperature, which induces a compressive pre-stress, promotes bifurcation, whereas the
occurrence of buckling may be eliminated by a decrease in temperature. This behaviour is
also obviously influenced by the value of current stretch, which strongly modifies the state
of pre-stress, see Fig. 2.
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Figure 3. Dispersion diagrams for a two-layer structure, with \; = 0.8, corresponding to a compressive
pre-stress. The thickness of both layers is equal to h. Different values of stiffness ratios are investigated
in part (a), whereas different temperatures are analyzed in part (b).

It should be finally noticed that results not reported for conciseness show that for
sufficiently high values of the wavenumber £, the velocities become approximately equal
to the values corresponding to Rayleigh waves.

4.2. Some simple layered geometries

Two layers of equal current thickness 4 are considered in Figs. 3-5. The layers differ only
for the elastic stiffness ug, while all other parameters have been kept uniform, included the
Poisson ratio, vy = 0.49, the thermal expansion coefficient, the conductivity and the heat
capacity. The two layers have been labelled with superscripts — and +, so that the two
stiffnesses are denoted by ; and . In all figures, the phase velocity Re(v) is multiplied
by \/p/uo and plotted versus the nondimensional wave number k# /2.

Fig. 3 pertains to a compressive uniaxial pre-stress (for all investigated values of
temperature), with a longitudinal stretch 4, = 0.8, whereas the pre-stress is tensile in Fig. 5,
with 4; = 1.3. The pre-strain is null in Fig. 4, 1, = 1, so that the pre-stress only depends
on temperature. Three different values of ratios between elastic moduli of the two layers,
ud /g = {1, 5, 10}, are considered in parts (a) for © = 393 K, whereas ] /u; = 10
in parts (b), where temperature is varied, © = {193, 293, 393} K. Obviously, when the
ratio between stiffnesses equals unity, u /1y = 1, the two layers behave as a single layer of
thickness 24, so that the curve is reported only for comparison. It appears clearly from Figs.
3--5 that temperature has a quantitative effect on the graphs, but not qualitative, whereas
changing the stiffness ratio of the structure yields a strong, qualitative effect. An interesting
feature of the results is that when the stiffness ratio increases, the curves evidence a peak so
that propagation velocities initially increase at increasing wavenumber, but then a maximum
is reached and speeds become decreasing functions of wavenumber.
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Figure 4. Dispersion diagrams for a two-layer structure, with \; = 1, so that the pre-stress depends
only on temperature. The thickness of both layers is equal to k. Different values of stifiness ratios are
investigated in part (a), whereas different temperatures are analyzed in part (b).
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Figure 5. Dispersion diagrams for a two-layer structure, with A; = 1.3, corresponding to a tensile

pre-stress. The thickness of both layers is equal to h. Different values of stiffness ratios are investigated
in part (a), whereas different temperatures are analyzed in part (b).

As a final example, we show in Fig. 6 results relative to a sandwich structure made up
of three layers: two stiff and thin external coatings (denoted by superscript —) bonding a
soft and thick internal core (denoted by superscript +). In particular, the current value of the
thickness of the internal layer is five times greater than the thickness — denoted by / — of the
two, identical, external layers. A state of compressive pre-stress has been considered, with
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Figure 6. Dispersion diagrams for a three-layer structure, with \; = 0.8, corresponding to a compressive
pre-stress. The thicknesses of the external layers (labelled —) and core (labelled +) are h and 5h,
respectively. Different values of stiffness ratios are investigated in part (a), whereas different temperatures
are analyzed in part (b).

A1 = 0.8 and two stiffness ratios xJ /iy = {0.1, 0.5} have been investigated, whereas all
other parameters have been taken uniform.

Values pertaining to © = 393 K are presented in Fig. 6(a), where ud /u; =
{0.1, 0.5, 1}. Results relative to ug /u; = 1, represent a homogeneous single layer of
thickness 74 and are reported for comparison (dashed curve). The effect of temperature is
considered in Fig. 6(b), where © = {193, 293, 393} K.

It may be noted from Fig. 6(a) that the curve relative to ug /ug = 0.1 can be divided in
two portions. In the initial portion, a small change in wavenumber is associated with a strong
variation of the phase velocity, while, beyond the value kk/2 ~ 1.35, the phase velocity
becomes almost independent of the wavenumber, revealing that the propagation mode is
essentially a surface mode. The curve relative to ug /u, = 0.5 displays also two portions
similar to those just mentioned, however these are separated by a transition zone where the
change in velocity becomes almost proportional to the variation of the wavenumber.

It may be important to note that the bifurcation (corresponding to a null propagation
velocity) is particularly enhanced by the soft core. In particluar, for the cosidered value of
pre-strain ; = 0.8 and for the stiffness ratio i} /u; = 0.1, a bifurcation occurs (when
kh/2 < 1.07) in amode which does not correspond to a beam-like, but to a surface instability.
Fig. 6(b) shows that this effect results to be almost independent of the temperature.

5. CONCLUDING REMARKS

A general scheme has been given to analyze thermoelastic, small-amplitude waves
superimposed upon a given homogeneous state of temperature and deformation in a
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multilaminated structure. In particular, elastic layers perfectly bonded to each other and
deformed in plane strain have been considered, in a fully coupled theory of thermoelasticity.
Results pertaining to a certain set of parameters show that the coupling, which makes the
waves always dispersive, introduces only a weak effect, in the sense that the imaginary part
of the propagation velocity turns out to be small, when compared to the real part. However, the
temperature plays a strong quantitative role and may compensate effects related to pre-strain
or different layer stiffness. Within a range of parameters, including the case of null pre-strain,
results demonstrate that a particular value of frequency exists such that the propagation speed
becomes independent of the temperature. This feature results to be strongly conditioned by
the presence of pre-stress.
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