Chapter 3
Band-Gap Properties of Prestressed Structures

M. Gei, D. Bigoni, A.B. Movchan, and M. Bacca

Abstract The design of periodic and quasiperiodic structures possessing innova-
tive filtering properties for elastic waves opens the way to the realization of elastic
metamaterials. In these structures prestress has a strong influence, ‘shifting” in fre-
quency, but also ‘annihilating’ or ‘nucleating’ band gaps. The effects of prestress
are demonstrated with examples involving flexural waves in periodic and quasiperi-
odic beams and periodic plates. Results highlight that prestress can be employed
as a ‘tuning parameter’ for continuously changing vibrational properties of elastic
metamaterials.

3.1 Introduction

By analogy with their electromagnetic counterpart, ‘elastic metamaterials’ are de-
signed to become innovative filters for mechanical waves. The design is focussed
on vibrational properties connected with the periodicity of a structure, which can be
engineered to provide special effects, such as: band gaps (frequency ranges where
the waves are evanescent [17, 22, 36, 39]), localized or defect modes (an exponen-
tially localized waveform located near a periodicity-breaking element [2, 30]), neg-
ative refraction (refraction occurring on the same side of the normal to the interface
where the incoming wave is incident [15, 32, 34, 40, 41]), and effective negative
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mass effects (corresponding to an exponential decay of vibrational modes, rather
than sinusoidal propagation [24, 29, 35]).

Wave propagation within elastic structures is strongly influenced by the pre-
existing state of stress, the so-called ‘prestress’. This effect is well-known in struc-
tural engineering [7, 23, 26-28], in two-dimensional boundary-value problems of
prestressed solids [3, 4, 9, 11, 13, 14, 31, 37] and finds simple experimental demon-
strations, so that for instance prestress plays a chief role in the vibrational behaviour
of stringed musical instruments: in the absence of the strong compression induced
by ribs a piano soundboard would not vibrate properly. It is therefore not surprising
that prestress can have a determinant influence on dynamical properties of periodic
structure, as demonstrated in [5, 12, 33].

Our purpose is to review results by Gei et al. [12] and Gei [10] relative to vi-
brating periodic and quasiperiodic beams and extending these to vibrating periodic
plates. We will show that prestress can: (i.) change the dispersion properties of
Floquet-Bloch elastic waves, (ii.) shift the frequency range of band gaps towards
high (low) frequency, when tensile (compressive) prestress is applied (iii.) ‘annihi-
late’ or (iv.) ‘nucleate’ band gaps.

For periodic prestressed structures, we will use the Floquet-Bloch technique di-
rectly (analytically in the case of beams and numerically in the case of plates), while
for the quasiperiodic case the transmission matrix of the elementary cell is obtained,
so that applying the Floquet-Bloch conditions a set of eigenvalue problems for the
circular frequency is derived. In the case of quasiperiodic beams (generated em-
ploying the Fibonacci sequence), flexural waves are considered and the following
aspects are analyzed: (i.) the number of stop/pass bands and (ii.) the self-similarity
of dispersion diagrams as functions of the generation index i of the elementary cell;
(iii.) the role of an invariant function which governs the scaling of stop/pass band
structure; and (iv.) the possibility of shifting and broadening the stop/pass bands.

3.2 Band Gaps for Periodic Beams on a Spring Foundation

Floquet-Bloch propagation of flexural waves is investigated within prestressed peri-
odic beams on an elastic ‘spring’ foundation (so-called “Winkler type’) which mod-
els a typical design problem of Microelectromechanical systems (MEMS) technol-
ogy, namely, vibrations of a relatively stiff elastic layer bonded to a thick elastic
layer. The geometry of the problem under consideration is shown in Fig. 3.1, where
the period is equal to & and N denotes the constant longitudinal prestress applied at
infinity.

We will also consider a perturbation to the periodicity by addition of a mass
into the central cell of the structure, as shown in Fig. 3.1(b). This perturbation does
not affect the physical characteristics of the other cells and we will show that an
exponentially localized wave form will become possible, within a certain frequency
range.

The structure is made up of two phases, m = 1 and m = 2, so that the time-
harmonic flexural displacement w,,(z) satisfies the following differential equation
(a prime denotes differentiation with respect to the longitudinal coordinate z)
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Fig.3.1 Periodic and quasiperiodic beam systems. (a) Piecewise homogeneous beam on an elastic
‘spring’ foundation; (b) same as (a), but with an additional mass M placed at z = v to investigate
‘band-gap localized modes’; (¢) quasiperiodic multisupported beam with the elementary cell gen-
erated by the Fibonacci sequence F3. N represents the longitudinal prestress. (a), (b) are reprinted
from [12] with permission [Copyright (2010) American Institute of Physics]. (¢) is reprinted from
[10] with permission from Elsevier. Copyright (2010) American Institute of Physics

By w;:,” = Nw::; =t (S = meﬂz)wm =0 (m=12), (3.1)

where p,, is the piecewise-constant mass density, B(z) = I(z)E(z) the bending
stiffness [with the second-order moment /(z) and the Young modulus E(z)] and
the stiffness of the elastic foundation is denoted by S (see [38] for details).

Note that the bending stiffness B(z) could be easily made dependent on the lon-
gitudinal prestress N acting on the beam, a dependency neglected in the following
for simplicity.

The solution for flexural displacements is sought in the form

Wm =E&m exp(ik™z) (m=1,2), (3.2)

so that a substitution of (3.2) into (3.1) yields the following equation for the circular
frequency @

(K™ rn)* + N (k1) + 5 = P =0 (m=1,2), (3.3)
where the following dimensionless parameters have been introduced

_ N'Z _ S-’I-
=B, Femtm e (3.4)

& A
Bﬂi' BHI
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in which r,, are the radii of inertia of the beam cross-section, while

4
_ Pl

19”! Bm.

(m=1,2) (3.5)

have the dimension of a squared time. The parameters r,, are related to the second-
order moments I, and the cross-sectional areas A,, of the two phases of the beam by

Fm = Im/An (m=1,2). (3.6)

Equation (3.3) admits eight solutions

1 N, N2 =
kg’.nZ).BA sk | & _4?3 + Ppw? — Sn (m=1,2), (3.7)

Fm 2

so that the transverse displacements w;, w, become a linear combination of the
following four terms

4 4
wi@ =) & exp(ikz), wa)=) &lexp(ikPz),  (3.8)

p=1 p=I1

where the eight constants & and &) (p = 1,...,4) can be obtained by imposing
the interface conditions at the internal interface of the elementary block; these are:
continuity of displacement, rotation, bending moment and shear force. Therefore,
for the block j = 0 the interface is located at z = 0 and the corresponding interface
conditions for the functions w;, wy and their derivatives are

w1 (0) = w2(0), w} (0) = w)(0), 59
Biw{(0) = Byw}(0),  Biw{'(0) = Bywy'(0), '

while the remaining four equations follow from the imposition of the Floquet-Bloch
conditions, linking fields at the boundaries of the elementary block

wa(ly) = wi (=) exp(iKd),  wy(ly)=wi(~})expiKd),  (3.10)

Bowy(ly) = Biw{ (=) exp(iKd),  Bow}'(I7) = Biw("(—I}) exp(i 1{(;1)1,1)

where K is the Bloch parameter.

The vanishing of the determinant of the matrix associated with (3.9)—(3.11)
yields the dispersion equation of the beam system. Note that if @ is taken to be
zero in (3.1) and (3.7), the system (3.9)—(3.11) provides the buckling load of the
structure [8].
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Fig. 3.2 Dispersion diagrams [circular frequency +/Pje versus Bloch parameter Re(K)d] and
band gap/pass band distribution for a beam on an elastic foundation with piecewise constant mass
density [Fig. 3.1(a)] and homogeneous flexural stiffness, B) = By (P2/P; = 0.1, §=0.0001,
r/d =0.015, I} = |, = d/2). Dispersion diagrams: (a) tensile prestress: N = 0.1; (b) null pre-
stress: N = 0; (c) near-buckling (Npyuer = —0.02) compressive prestress: N = —0.019. BG de-
notes a band gap. Note that the compressive stress in part (c) induces the annihilation of the second
band gap (between branches AB and CD). Band gap/pass distribution (d) in terms of prestress N
(P2/ P =0.1); (e) in terms of the contrast parameter P2/ P (logarithmic scale) (ﬁ: 0.05). The
band-gap annihilation induced by a compressive force is highlighted. Reprinted from [12] with
permission. Copyright (2010) American Institute of Physics

3.2.1 Dispersion Diagrams and Band-Gap Shift

The dispersion equation is solved in Fig. 3.2 for the beam sketched in Fig. 3.1(a)
(without defects) and with piecewise constant mass density (p; # p2), but uni-
form bending stiffness (B; = Bs, yielding N; = N> = N). The case P»/P; = 0.1,
S =0.0001, r/d =0.015, [} =1, =d/2, is considered for three different levels of
prestress N [tensile, null and compressive, in parts (a), (b) and (c), respectively]. For
the beam under consideration, the buckling force corresponds to Npuert = —0.02,
while the cutoff frequency of the homogeneous counterpart (which can be recov-
ered if P = P2)is \/F]w() =0.01.

In general, at a given dimensionless circular frequency +/Pjw, four complex val-
ues of the Bloch parameter K can be found from the dispersion equation. In partic-
ular, a propagating mode [like those displayed in Figs. 3.2(a), (b), (c)] corresponds
to a pure real K, while a monotonic decaying mode is found when K is purely
imaginary; for complex conjugate Bloch parameters, the mode also does not propa-
gate and decays, with a sinusoidal decaying. Diagrams displayed in Figs. 3.2(a), (b),
(c) are symmetric with respect to the vertical axis K = 0, so that only the positive
ranges have been plotted. The band gap (‘BG’) frequency ranges are marked with
black segments.
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The band-gap distribution is reported as a function of the prestress for fixed con-
trast parameter P>/ P; = 0.1 in Fig. 3.2(d), while a fixed, small and tensile prestress
is assumed in Fig. 3.2(e), for varying P>/ P;. The latter figure makes evident that the
cutoff region is not strongly influenced by the contrast parameter P,/ P, and that
the range where the increase in the size of the BG zones is more pronounced occurs
for 0.0464 < P»/ Py < 0.464.

Let us consider now the two lower frequency band gaps in Figs. 3.2(a), (b), (c),
one of which is present also in a homogeneous beam on an elastic foundation. The
prestress strongly modifies the band gap intervals (shifting these toward higher fre-
quencies for tensile loading) and, when this becomes compressive, the higher fre-
quency band gap (between branches AB and CD in Fig. 3.2) is reduced in size and
annihilated already before the buckling load is attained.

3.3 Band-Gap Localized Defect Modes

A ‘band-gap localized defect mode’ is a vibration mode associated with a single
mass placed along the beam at a frequency within a band gap in the dispersion
diagram. The influence of prestress N on those modes is demonstrated for an in-
finite piecewise uniform beam on an elastic foundation, making use of a Green’s
function formulation. While for a homogeneous beam on an elastic foundation lo-
calized modes available below the cut-off frequency can be computed analytically
(see [12]), for a piecewise homogeneous beam the Green’s function is not immedi-
ately available (although—in principle—it can be obtained analytically), so that we
prefer pursuing an approximate calculation, where a ‘sufficiently long’, but finite,
beam (seven elementary cells of length d in our examples) is solved, with a unit
force applied at the central cell (the fourth cell in our examples).

The properties of localized modes are very interesting for a piecewise beam as:
(i) the dispersion diagrams exhibit several band gaps (not only one as in the uniform
case); (ii) the concentrated mass can be placed at different positions within the cell,
thus providing different responses; (iii) the vibration modes of the mass can be made
more or less localized in the vicinity of the defect depending of the frequency (an
effect shown in [30]).

Results pertinent to the seven-cell structure are reported in Fig. 3.3. Here the
ranges of frequencies where localized modes associated with the concentrated mass
are possible are reported as functions of the position y (normalized through division
by d) of the mass in the central cell, for two levels of prestress, namely, N =0.025
in Fig. 3.3(a) and N = 0 in Fig. 3.3(b).

In both parts (a) and (b) of Fig. 3.3 the first three band gaps have been inves-
tigated, placing masses at discrete distances multiple of d/20. Results depend on
the dimensionless frequencies +/Pjw, to generate localized modes associated with
M=1 (denoted with black dots) and 10 (denoted with black squares), where the
dimensionless concentrated mass M is defined now with respect to the mass density
and radius of inertia of part 1, namely,
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Fig. 3.3 Dimensionless frequency +/P e at which a localized mode connected to a concentrated
point mass located at y [Fig. 3.1(b)] exists for M = 1 (black dots in the figure) and M = 10
(open circles) (the following values of constants have been taken: Py/P) = 0.1,y =l =d/2,
r/d =0.015,§ =0.0001). (a) Tensile prestress: N = 0.025; (b) null prestress: N = 0. BG denotes
a band gap, PB a pass band (see Fig. 3.2). A black vertical segment in the band-gap zone indicates
a frequency range where localized modes are not possible. Reprinted from [12] with permission.
Copyright (2010) American Institute of Physics

M
2p1r1

M= (3.12)

The black vertical segments crossing the band gaps indicate frequency ranges
where localized modes (and effective negative mass effects) cannot be generated
Jjust by inserting a single concentrated mass, being the displacement of the point of
application of the unit force out of phase with respect to the force itself. We note that
at certain locations y /d within the second and third band gap these vertical segments
cross the entire range (for instance at y = 0.254, within the second band gap, and
at y =0.2d, 0.84, within the third band gap), so that in these cases localized modes
cannot be obtained for an applied finite and positive concentrated mass.

3.4 Periodic Plates Under Tensile Prestress

Wave propagation in two-dimensional structures becomes more complicated, but
more interesting, than propagation in beam elements. We address transversal vibra-
tion of infinite and periodic Kirchhoff plates, prestressed with tensile forces, and we
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Fig.3.4 Anelement of a
prestressed elastic Kirchhoff
plate, subject to a transversal
dead load p and displacement
w. The prestress has normal
components fj and f> and
shearing component f,

will show that the prestress can induce anisotropy effects that, ‘added’ to effects as-
sociated with the periodicity, can create privileged propagation directions as related
to the presence of ‘directional” band gaps. Note that a two-dimensional plate model
provides an accurate approximation only for the lower-frequency modes, while cor-
rect computations at high-frequency would require a model of Mindlin plate, or a
fully three-dimensional analysis.

With reference to Fig. 3.4, the differential equations governing dynamics of an
elastic Kirchhoff plate of thickness /1, prestressed through two normal f; and f> and
shearing f1, tractions, are

3w 92w 2w .
BV'w ~ fi—— — fa—s —2fia =—phis+p, (313
axl 8).‘2 3X13XQ

where w is the transversal displacement, p is the mass density per unit volume,
p the transversal dead load, a superimposed dot means time-derivative, and B is
the flexural rigidity, which can be related to the elastic modulus E, the Poisson’s
coefficient v of the material, and the thickness of the plate 4 as

ER?

Assuming that the shearing component of the prestress is null, fj» = 0, the time-
harmonic free oscillations are ruled by the equation

32 9?
BV*w — pho’w — N —U; = fg—lg =0, (3.15)
dxy dx;
where w is the circular frequency. Equation (3.15) holds at every point of the domain

£2 defining the plate. A weak formulation of dynamics of a plate can be obtained
transforming (3.15) into

2 2
f (x-Cx)d.Q*-,othf wzdﬂ*—f [f](ﬁ‘i) +f2(a—“’) ]dﬂ*:O,
o2F * 2% Bxl 31‘2
(3.16)
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holding for every subdomain £2* of §2, in which

1 v 0
82 32 32 T
X:(a_lga_lgﬁ) c=B|lv1 o | @1
X10X
o Sy TR 00 (1-v)/2

A finite element discretization of the domain £2 is now introduced through the
shape functions (collected into the row vector @), so that the transversal displace-
ment and the rotation can be expressed as

w=4¢ . .u’, (3.18)

where u® is the vector collecting the nodal displacements and rotations of the eth
element.

Using (3.18) in (3.17);, we obtain

Du ow 9D ow 9P
X = » . =

=—u’, — = _—u°, 3.19
0xq axlu 0x2 axgu ( )

three equations holding in the domain of the eth element, in which

82¢T 82¢T aZ@T T
D:( ) ; (3.20)

B.xlz ’ ax% T 9x19x0

If we substitute (3.19) into (3.16) and identify £2* with the domain of the eth
element £2¢, we obtain the eigenvalue problem governing time-harmonic vibration
of a finite element

u (Ko + K pe — 0’ M, )u® =0, (3.21)
where, for the eth elements, M, is the mass matrix, K, is the stiffness matrix, while
K ¢, keeps into account the effect of the prestress. Their expressions are

Mezf ph®®! d52°,
Ql‘

K.=| DTCDds, (3.22)
QB

ngzf Dp-CyDypd2°,
Qﬂ

where

r 00T 90T\7 r 9
Di=|9® o o ) Ce=|0 £ 0]. (3.23)
X1 X7 00 f
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Fig. 3.5 The periodic plate
analyzed in the examples.
Inclusions are marked black
and will be identified with an
elastic material less stiff, but
heavier, than the matrix
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Applying (3.21) to the whole domain §2 of the plate and assembling the matrix of
the finite elements, we obtain the mass matrix and the stiffness matrix of the whole
cell,

M:ZMe, K :ZKL,, K_,»:ZKJ:P, (3.24)
e e e

where M., K, and K s, are the expanded matrices of the element, so that we fi-
nally arrive at the eigenvalue problem governing time-harmonic vibrations of the
discretized plate

u-(K+Kjyp—wMu=0, (3.25)

where u is the vector collecting the nodal displacements and rotations of the whole
cell.

The Floguet-Bloch condition for a cell of a periodic system made up of square
cells of edge d (Fig. 3.5) can be wrilten in terms of transverse displacement w as

w(x) +md, x2 +nd) = w(x;, xp)e' Krmd+tkand) (3.26)

where m and n are integers indexing a node of the cell lattice and k = (ky, k2) is
the Bloch vector. Note that (3.26) imposes also periodicity restrictions on rotations
(and consequently on bending moments and shearing forces).

Using the finite element technique, only one cell is analyzed, so that condition
(3.26) has to be imposed on its boundary, where it becomes

u(d, x) =u(0, x2)e*14, 0<xs<d
) (3.27)
u(x,d) =u(x;, 0, 0<x <d

expressed in terms of generalized displacements (displacements and rotations).

Condition (3.27) imposes a linear dependence between some components of the
generalized displacement vector u, so that we assume that the linearly independent
components & of displacement along the boundary of the periodicity cell can be
written as

u="Tki, (3.28)



3 Band-Gap Properties of Prestressed Structures 71
and therefore the eigenvalue problem (3.25) takes the final form
(K+Kj;—o*M)a=0, (3.29)
where
K=Tw)"KT®k), K;=TWk)TK;Tk), M=Tk MT k). (3.30)

The eigenvalue problem (3.29) can be numerically solved (we have used Mat-
lab R2007b®). In a dimensionless form, (3.29) becomes

(K*+ EK% — & M*)it =0, (3.31)
where K’} depends on the dimensionless ratio f3/f;, while

- _ hd ~_d* [p

Examples of dispersion diagrams, calculated through solution of the eigenvalue
problem (3.31), are reported in Figs. 3.6 and 3.7, where the inclusions have been
taken of square shape (as sketched in Fig. 3.5), with an area equal to 0.36 d2, a
stiffness and density contrast respectively equal to Earriv/ Einciusion = 100 and to

pma!ri.\'/pinr!usion = ]/100
The dimensionless frequency @/(2m) is plotted

e for Fig. 3.6, which refers to the case of isotropic prestress f1 = f> = f, along the
right-handed triangle I"M X, with vertices at I = (0,0), M = (7,0) and X =
(7, ), see the inset in the figure;

e for Fig. 3.7, which refers to the case of uniaxial prestress f> = 0, along the right-
handed square "M X N, with vertices at I' = (0,0), M = (,0), X = (7, m), and
N = (0, ), see the inset in the figure.

Note that there are, say, ‘complete’ and ‘partial” band gaps, so that the former corre-
spond to grey rectangles crossing completely Figs. 3.6 and 3.7, while the latter only
extend to an edge of the triangle I" M X or of the square I" M X N. A partial band gap
means that there is only a limited angular range of wave propagation direction, while
other directions are forbidden within a certain range of frequencies. The presence
of a partial band gap can exploited to design special vibrational characteristics. Our
results presented in Figs. 3.6 and 3.7 indicate that the global and partial band gaps
are strongly influenced by the prestress, so that they can be (i.) shifted in frequency
(towards high frequency for tensile prestress), (ii.) reduced or enlarged in size, (iii.)
annihilated or (iv.) nucleated.

We can note the different role played by prestress in Fig. 3.6 (where the prestress
state is isotropic) and in Fig. 3.7 (where the prestress state is anisotropic), so that
for anisotropic (isotropic) prestress there is a progressive reduction (increase) in
the number of band gaps, related to the increase in the tensile prestress, so that
one complete band gap is nucleated in Fig. 3.6 and one is annihilated in Fig. 3.7.
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Fig. 3.6 A prestressed plate with an isotropic tensile prestress in the xj—x2 plane, so that
f1 = fa = f. (a) the First Irreducible Brillouin Zone; (b) the prestressed plate. Dispersion curves
of the periodic plate at different values of the prestress f: (¢) null prestress, f = 0; (d) moderate
prestress, f = Eh3/d?; and (e) high prestress, f = 10> Eh?/d?. The grey zones identify the band
gaps; note the difference between ‘complete’ (extending along I M X') and‘partial’ band gaps

Moreover, we see from Fig. 3.7 that there are a number of partial band gaps along the
I' M (the N I") direction that are annihilated (are nucleated) at increasing prestress.

An anisotropy effect related to the prestress is visible in Fig. 3.7, where only the
band gaps in the direction of the prestress are annihilated. This effect is important,
since we can exploit it to create a waveguide operating in a specific frequency range
and controlling the vibration direction, as sketched in Fig. 3.8, where the vibration
of a point-source is channelled along a certain direction, tuned by prestress.

3.5 Band Gaps and Self-Similarity in Quasiperiodic Beams

We consider now flexural vibrations of a quasiperiodic multisupported infinite
beam. Structures analyzed in this section are formed by a set of—typically two—
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Fig. 3.7 A prestressed plate under a tensile prestress aligned parallel to the xj-axis. (a) The
First Irreducible Brillouin Zone; (b) the prestressed plate. Dispersion curves of the periodic plate
at different values of uniaxial prestress fi: (¢) null prestress, fi = 0; (d) moderate prestress,
fi = Eh®/d?; and (e) high prestress, fi = 10?Eh*®/d*. The grey zones identify the band gaps;
note the difference between ‘complete’ (extending along I"M X N') andpartial” band gaps

Fig. 3.8 Sketch of a wave
guide effect created by
prestress and periodicity.
Vibrations induced by a
pulsating force within a given
frequency range are
‘channelled’ along a
privileged direction, set by
the prestress
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Fig. 3.9 Plots of the invariant J(w), (3.46), for different prestress values N (for s = 11./2). Fre-
quency ranges set by null points of J(e) are highlighted. Reprinted from [10] with permission
from Elsevier

homogeneous parts combined to create a one-dimensional quasicrystalline pattern
such as the Fibonacci sequence (other generation rules do exist, see e.g. the Thue-
Morse sequence [25]) and subjected to an axial prestress. The goal is to extend
to the domain of structural systems the features of phononic quasiperiodic crystals
(see, e.g., [1, 6, 16, 18]). We refer to [10] for more details on the problem.

The elementary cell (Fig. 3.1(c)) of the structure is generated placing the sup-
ports at relative distances such that they follow a Fibonacci sequence. Introducing
the notation Fo = (S), Fy = (L), where S (‘short’) and L (‘long’) identify two seg-
ments, the Fibonacci sequence obeys the recursive rule F; = (F_; Fi_n) (i =2),
where i is the generation index, so that F> = (LS), F3 = (LSL) and so on. The
number of elements of F; is equal to n; =n;_; +nj_y (i =2, ng=n| = 1), with
lim; oo 1;41/n; = ¢, where ¢ represents the golden ratio [¢p = (/5 + 1)/2].

The beam is homogeneous, with bending stiffness denoted by B and subjected
to a constant prestress NV, so that the equation governing transverse displacements
w(z) in the harmonic problem is

Buw"" — Nw" — pe*w = 0. (3.33)

The solution can be sought in the form w(z) = C exp(ikz), yielding the characteris-
tic equation

(krY* + N(kr)? = Po? =0, (3.34)

where r is the radius of inertia of the cross section and, as in the previous problem,

—  Nr?
N=?r, p=B (3.35)
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Equation (3.34) provides four solutions k, namely

| N [ N2 1 N | N2
kia=%— | ——=+,/ — + Po?, ksa=24— |—— — | — + Pw?,
b r 2 4 ® i r 2 4 -

(3.36)
which allow to build the general integral of (3.33) and where the first index is asso-
ciated with sign ‘+.

The dispersion diagram will be obtained through the concept of transmission
matrix M; of the elementary cell (relative to the sequence F;), which relates the
characteristic kinematical quantities of the cell evaluated on the two boundaries. In
our case, we note that the configuration of the beam is defined once the rotation ¢(z)
and its derivative ¢’'(z) at each constrained point are known (see Fig. 3.1(c)). Then,
we can write formally

V., =M,;V,, (3.37)

where V; = [p; (p}]T and subscripts » and / denote the right-hand and left-hand
boundary of the elementary cell, respectively. The matrix M; can be assembled
multiplicating the matrices of receptances (MX, X € {L, §}) associated with all
spans within the elementary cell, [10], namely

nj

M;=]]m*. (3.38)
p=l
where M¥ is given by
% TJ/’X et w}ﬁ)wfﬁl
X Y be Vo
M= 1 df(ﬁ: (339)
ey 2

The entries of the matrix can be calculated from

X _ ky cot(kilx) — k3 cot(ksly) X ki cot(kyly) — k3 cot(ksly)
'»"’aa - k% _ k{z 3 bb — klz _ k?z’ ’
(3.40)
x _ kicosec(kilx) — kzcosec(kaly) x  kicosec(kily) — kzcosec(ksly)
Vb = k12 — k_% d Via = k% = k;lz '
(3.41)

that depend on circular frequency and prestress N through k; and k3 [see (3.36)].
Transmission matrices M; have some important properties that can be exploited
in the analysis of quasiperiodic structures:
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e they follow the recursion rule M; 1 = M;_1M;, with My = MS and M, = ML;
e they are unimodular, i.e. det M; = 1, so that writing down the trace of the equation

My + M,-__lz =M;1M;+ Mf—lel,
we obtain that the half trace y; = trM; /2 follows the recursive rule [19]
Yi+l = 2¥iyi-1 — Yi-2, (3.42)

with initial conditions yo =trM5/2, y; =trML /2, y, =tr(MS M%) /2.

The Bloch-Floquet condition requires that V, = exp(i K)Vy, so that, combining
this with (3.37), the dispersion equation takes the form

M; —exp(iK)I| =0, (3.43)

or

K= arccos(m;" " ) (3.44)

that is a real quantity if [trM; /2| < 1.

3.5.1 Dispersion Diagrams and Distribution of Pass Bands
and Band Gaps

Dispersion diagrams and stop/pass band distributions are now illustrated in terms of
dimensionless quantities for [g = [;, /2. An invariant function similar to that intro-
duced by Kohmoto et al. [19] (used to analyze certain solutions of the Schrdinger
equation in the presence of quasiperiodic potentials), and employed in [21] to inves-
tigate the transmission properties of photonic crystals, can help in the understanding
of their properties. Since the recursion rule (3.42) is satisfied, it can be shown [19]
that the following quantity is independent of the index i

J@) =y} +y7 + ¥ = 2yipyivio1 — 1. (3.45)
The explicit expression for J (w) turns out to be

k3k3
[k3 sin(kly) — ki sin(ksly )12 [k3 sin(kils) — ki sin(ksls)]?
x {sin(ki /1) sin(kslp)[1 — cos(kils) cos(kals)]

J(@) =

+ sin(kyls) sin(kals)[cos(kilL) cos(ksi ) — 1] }2, (3.46)

which is a modulated periodic function, sketched in Fig. 3.9 for four different values
of the dimensionless prestress . The function J(w) is identically null for /; = [,
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which corresponds to the case of a beam resting on equidistant supports. In Fig. 3.9
we have also reported the ranges of frequencies comprised between two null points
of the function for different prestresses N. In particular, the second range will be
considered later on.

Single dispersion diagrams for different generation sequences are displayed in
Figs. 3.10(a) and 3.10(b) which display cut-off frequencies associated with the
discrete distribution of supports. Ranges set by null values of the invariant J(w)
(Fig. 3.9) are reported to facilitate the analysis of the different cases. Assuming an
elementary cell built according to the sequence F;, in the first range (0 < v/ Pow <
0.03553 for N = 0) the number of stop and pass bands equals n;, while in all other
intervals it corresponds to n;41. In Fig. 3.10(c), the global dispersion diagram com-
bining solutions relative to problems where the elementary cell is generated by se-
quences Fp to F7 is reported. It is interesting to note that the various branches of
single diagrams localize within certain ranges of frequencies and stop bands com-
mon to all F;’s emerge. The position of these common stop bands is therefore a
characteristic of the Fibonacci sequence and can be controlled by changing the ratio
Is/11 and the space between supports.

The distribution of pass bands follows a self-similar law when the index i of
the generation sequence F; increases. This property can be recognized looking at
the rectangular boxes in Fig. 3.11. Here the second frequency range (for which
0.03553 < v/Pw < 0.14212) is investigated in detail. All rectangles enclose a num-
ber of pass bands that, starting from the top, follows the Fibonacci recursion rule: 1,
1,2, 3,.... However, differently from the axial-wave problem addressed in [10], the
relative positions of pass bands with respect to those of the preceding row strongly
change, depending on their position on the spectrum.

The function J(w) controls also the scaling of pass-band widths changing the
sequence F;. In quantum mechanics, Kohmoto and Oono [20] established that the
ratio between the widths of two pass bands (F; and Fj3, Vi) centered at the same
frequency is given by the factor f(w), which depends on J(w) through the relation-

ship
f@ =y14+4[J @) + 1] +2[1 + J@)]. (3.47)

Compared to the case investigated by Kohmoto and Oono, where J(w) was a con-
stant, here f depends on w, however its role in setting the scaling remains essentially
the same. The function f(w) is sketched in Fig. 3.12(a) for four values of N. De-
noting by g (F;) the width of the pass band for F; at a frequency corresponding
to the index k, f describes exactly their scaling, namely the ratio qx (F;)/qr (Fi+3),
only when the generation index i is relatively high, as shown in Fig. 3.12(b) for two
cases (for «fﬁw =0.060, k =1, and 0.0956, k = 2).

The self-similarity properties show that periodic structures built with a quasiperi-
odic elementary cell can display very narrow stop and pass bands and therefore can
be exploited, in principle, to conceive very sensitive filters.
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Fig. 3.10 Dispersion diagrams for flexural waves for beams generated by elementary cells given
by sequences (a) Fp and Fy, (b) F> and F3; (c) global dispersion diagram for beams generated
by elements F; (i =0,..., 7) and stop bands common to all elements of the Fibonacci sequence
(frequency intervals where waves cannot propagate in any structure generated by a generic F; with
£ ="0j s o0), to all elements F; withi =1,..., 00, and to all elements F; withi =2,...,00;
long-dashed line: solutions for Fy; short-dashed line: solutions for Fy; solid lines: cumulated di-
agram for cases Fa to Fy. Inall plots [g =1, /2 and N = 0. Reprinted from [10] with permission
from Elsevier
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Fig. 3.11 Stop-band structure in the second frequency range (0.03553 < v/ Pw < 0.14212, sce
Fig. 3.10) for beams generated by sequences Fy to Fg, for Is ={; /2 and N = 0. Indices k's
identify the values of the dimensionless frequency VPw=0.06 (k=1) and 0.0956 (k = 2) (see
Fig. 3.12). All rectangles contain the same self similar, recursive band structure. Reprinted from
[10] with permission from Elsevier
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Fig. 3.12 Function f(w) (3.47) describing the scaling factor of pass-band widths between F;
and Fj43 for the flexural problem. In part (b), the plot of f(w) for N =0 is reported (solid
line) and the scaling is verified for pass bands at /P = 0.060 (k = 1, see Fig, 3.11) and at
V' Pw=0.0956 (k =2). In both cases the relevant value of f describes the pass-band width scal-
ing qx (Fi)/qr(F;43) at high index /. Reprinted from [10] with permission from Elsevier

3.5.2 Effect of the Prestress

We want to explore now how the prestress affects the positions of stop and pass
bands in the dispersion diagram for flexural waves of a quasiperiodic, multisup-
ported beam. We note that under compression the structure can buckle at a load that
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supported quasiperiodic beam generated by sequence Fj; (b) influence of N on pass-band widths
(represented by quantities ¢ /qo1, g2/qo2) and on stop-band widths (represented by quantities
q1/do1, §2/Goz). Subscript ‘0’ denotes values for N = 0. Reprinted from [10] with permission
from Elsevier

can be leasily obtained imposing @ = 0 in (3.33) and treating N as the eigenvalue of
(3.43).

In Fig. 3.13(a), the stop/pass band distribution of a beam generated by sequence
Fy as functions of the axial load N (for v/Pw < 0.1421) is reported. Six values
of N are investigated: N = —0.012, a value slightly lower in absolute value than
the buckling load, that corresponds to Np,q = —0.01304 (see footnote 1), N =
0, 0.025, 0.05,0.075, and 0.1. It is clear that a tensile stress shifts toward higher
frequencies the bands, almost in a linear fashion, while in compression they move
to lower frequencies, similarly to the problem analyzed in the previous section. Here
it has been verified that no band-gap annihilation occurs.

The axial load has also an influence on the width of stop/pass bands. In
Fig. 3.13(b), the stop/pass bands that in part (a) lie within the range 0.08 < v/Pw <

! In terms of generation sequence F; dimensionless buckling loads are Nperi(Fo) = —0.03553,
Neueri(F1) = _00088& Nbuck.'(FZ_) = —0.01579, Npueki(F3) = —0.01233, Npucrt(Fy) =
—0.01305, Npucri(Fs) = —0.01269, Npyeui(Fg) = —0.01276.
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0.11 for N = 0 (see the inset in Fig. 3.13(a)) are investigated. In particular, the ratios
between their widths at different N and that at N = 0 are reported in the plot. We
note that stop-band widths (see the behaviour of ratios g, /Goa, g»/gos) are weakly
influenced by the prestress, while pass bands reduce (increase) considerably their
lengths when a tensile (compressive) stress is applied (see g4 /qoas gn/qon)-
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