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A nonlinear interface constitutive law is formulated for modeling the mechanical beha
of the periodontal ligament. This gives an accurate interpolation of the few avail
experimental results and provides a reasonably simple model for mechanical applica
The model is analyzed from the viewpoints of both mathematical consistency and
tiveness in numerical calculations. In order to demonstrate the latter, suitable two-
three-dimensional nonlinear interface finite elements have been implemented.
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1 Introduction
The presence, in the jaw bone-teeth system, of a very thin

terface made of soft tissue—the periodontal ligament~hereafter
abbreviated as PDL!—strongly influences the stress state of su
a system and poses significant difficulties in its mechanical m
eling. In particular, two main problems can be easily pinpoint
~i! the existence of very different length scales~that of the jaw-
teeth system and that of the PDL and its internal constituents!; ~ii !
the so far scarcely explored, very complex mechanical behavio
the PDL. Indeed, in most numerical analyses the PDL is mode
as a homogeneous, linearly elastic continuum~McGuiness et al.
@1#; Middleton et al.@2#; Rees and Jacobsen@3#; see also Moxham
and Berkovitz@4# for a qualitative analysis of the PDL behavio!
and a similar problem setting has been also assumed in the a
sis of dental implants including a soft stress absorbi
redistributing layer, somehow emulating the PDL~van Rossen
et al. @5#!.

An accurate stress analysis of the teeth-PDL-bone system
pears as a basic step in a correct understanding of its com
mechanical-biological behavior, with implications also in the d
sign of effective and reliable fixed dental implants~see Brunski
@6# for a review of this particular field!. In the present work we
attack the above-mentioned difficulties in a purely mechan
perspective, through the proposal of a mechanical model for
PDL. The latter provides the basis for an effective Finite Elem
technique, potentially useful to obtain accurate information ab
the stress and strain fields which develop, under loading, in
teeth-PDL-bone system. We start therefore from the few exp
mental results available in terms of the mechanical behavio
PDL ~Ralph @7#; Pini @8#; Pini et al. @9#!, which indicate that the
PDL can hardly be treated as linear elastic. This suggestio
indirectly confirmed by the difficulties encountered by several
thors in choosing a constant elastic modulus for the PDL;
instance, a variation of the Young modulus from 0.07 to 17
MPa is reported in@3#, a clear indication of the inadequacy of th
linear elasticity assumption.

The experiments reported in@7–9# show that the PDL exhibits
a monotonic stress-strain behavior analogous to that of many
tissues~Fung@10#!,with an early stage of extremely small stiffne
followed, in higher deformation regimes, by a marked lockin
i.e., a rapid increase of stress associated with a small increa
strain. The numerical treatment of such a nonlinear behavior
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538 Õ Vol. 124, OCTOBER 2002 Copyright ©
in-

ch
od-
d:

r of
led

aly-
g/

ap-
plex
e-

cal
the
nt

out
the
eri-

of

is
u-

for
50
e

soft
s
g,
e of
n a

continuum framework, such as attempted, for instance, in@8,11–
13#, poses significant difficulties. In the first place, a large str
formulation is required; moreover, in terms of a Finite Eleme
technique, a continuum discretization of the PDL requires ind
a fine, three-dimensional mesh, owing to the small thickness
the PDL itself. On the other hand, a ‘‘coarse’’ mesh is sufficie
for describing bone and teeth. The necessary smooth trans
between the characteristic lengths of the two meshes implies
use of an unnecessary large number of finite elements.

Here we propose an alternative approach, which allows on
avoid all the above-mentioned drawbacks. The key idea is
model the PDL as a nonlinearinterface. In this way the PDL does
not represent a third material subjected to large strains, as in
table in a continuum description, and the analysis of the jaw bo
teeth system can be performed under the small-strain assump
Modeling a thin layer of material as an interface is a we
established, successful concept in mechanics~Goland and Reiss-
ner @14#; Jones and Whittier@15#!, which has recently received
much attention~see e.g., Klarbring@16# and references cited
therein!.

Starting from the few available experimental results@7–9#, we
introduce a new interface constitutive model, able to phenome
logically reproduce the essential features of the observed exp
mental behavior. In such a way we obtain a reasonably simple
which, introduced into a finite element code, enables us to
scribe in global terms the effects of the complex, nonlinear beh
ior of the PDL on the stress and strain states in the surround
teeth and bone.

Our main purpose is methodological; no attempt is made her
obtaining results valid in an absolute sense for the human
bone-PDL-teeth system. We feel that even if the results given
the proposed model cannot be judged as absolutely accurat~at
the present stage of the knowledge, it would be impossible to s
what are the ‘‘exact’’ results for this problem!, our model should
represent a starting point and, more specifically, it might ena
the analyst to obtain stress and strain states closer to ‘‘real
than those computed so far. This feeling is justified by the fact t
we have formulated and employed a model closer to the exp
mental evidence than those adopted so far; it is also confirme
the indirect verifications, in terms of both tooth mobility and loa
displacement curve for tooth extraction, that will be presented
Section 4. The availability of more accurate stress values, eve
only in a relative sense, should constitute a better starting poin
subsequent biological/physiological considerations, not addre
here.

The presentation will be limited to the instantaneous respo
-
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of a tooth under the normal masticatory loading, under monoto
loading conditions only, so that long-term loads, such as o
odontic ones, are not addressed. This assumption allows us to
both teeth and bone as simply isotropic linear elastic and to c
centrate our attention simply to the nonlinearity introduced by
presence of the PDL.

2 The Mechanical Model
Two continuous bodies are considered, defined by the reg

VA andVB in the Euclidean three-dimensional space, interact
with each other through a~sufficiently smooth! contact zone indi-
cated byJ. At each point of the contact surface two unit norma
may be defined, saynA andnB(52nA), directed away fromVA

and from VB respectively~Fig. 1!. Small strains and displace
ments are assumed in the two bodies, characterized by a g
constitutive law~assumed linear elastic in the applications! and
subjected to the usual traction and/or displacement boundary
ditions on their boundaries]VA and ]VB, except in the contact
zoneJ. In this region of the boundary a nonlinear interface co
stitutive law is prescribed in the way detailed below. Two essen
requirements completely characterize the interface:

• the stress vector remains continuous across the interface
that

sBnB52sAnA, (1)

wheres denotes the Cauchy stress tensor;
• the displacement may jump across the interface, but weas-

sumea constitutive law relating the displacement jump to t
stress vector. This may be generically written as

sBnB5g~d,nB,sB,tB!, (2)

where g(•) is a vector-valued function both ofd5uA2uB, the
jump in displacement, and of the vector triadnB, sB, andtB, with
unit vectorssB and tB defining the tangent plane to the interfac

The constitutive Eq.~2! must satisfy certain general mathematic
requisites. In particular, with reference to the specific probl
under study, we will assume:

1. isotropy of the response in the tangential plane, so that
function g in ~2! becomes a function ofd andnB only:

sBnB5g~d,nB!; (3)

2. invariance ofg under the full orthogonal group

Fig. 1 Sketch of two continuous bodies in contact through the
interface J
Journal of Biomechanical Engineering
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Qg~d,nB!5g~Qd,QnB!, (4)

for every orthogonal tensorQ, i.e., such thatQQT5QTQ5I , I
indicating the identity tensor and superscriptT the transposition
operation;

3. existence of an interface potentialc, such that

g~d,nB!5
]c

]d
, (5)

wherec is a scalar-valued function of vectorsd andnB. Condition
~4! implies thatc is an isotropic function, namely, that it satisfie
c(d,nB)5c(Qd,QnB). As a consequence, the functionc must
depend only on the scalar product ofd andnB and on the modulus
of d ~Truesdell and Noll@17#!, so that

c5c~dn ,d t!, (6)

wheredn5d"nB andd t is the modulus of the vectordt , defined as

dt5d2dnnB. (7)

In the absence of detailed experimental results, we have b
guided by simplicity in assuming isotropy~3! in the tangential
plane. Moreover, the existence of a potential~5! is consistent with
the general laws of thermodynamics~and facilitates the numerica
implementation!. Finally, requisite~4! is related to the materia
frame indifference of the model@17#.

Simple dimensional considerations show that the presence o
interface introduces a characteristic length in a mechanical p
lem @18#. Although not strictly necessary, we will identify thi
characteristic length with the thicknessw0 of the undeformed
PDL.

The main objective of the next Section is the definition of
function g(d,nB) which may properly model the mechanical b
havior of the PDL. In what follows we will formulate a suitabl
nonlinear interface law for such a behavior, in which the norm
interaction will be considered as uncoupled from the shear o
This assumption is guided by simplicity, owing to the lack
suitable experimental data.

This way of describing the PDL behavior allows us to confi
all the nonlinearity into the interface, whereas the two surround
bodies are treated in a fully linear way. Note also that we w
always deal with monotonic loading of the interface and will n
consider, therefore, any irreversible phenomena.

3 The Interface Law

3.1 Normal Interface Constitutive Law. Information re-
garding the mechanical behavior of the PDL under short-te
loads can be deduced from the experimental results describe
@8#, which refer to uniaxial stress tests on bovine PDL specime

Stress-strain curves are reported in@8# using a second Piola
Kirchhoff uniaxial stressS versus uniaxial Green-Lagrange stra
h representation. The Green-Lagrange strain may be written

h5
1

2 S w2

w0
221D 5

dn~dn12w0!

2w0
2 5

b~b12!

2
, (8)

wherew0 andw are the thicknesses of the PDL in the undeform
and deformed state, respectively, anddn5w2w0 . The dimen-
sionless displacement jump parameterb5dn /w0 has been intro-
duced to simplify the notation. The minimum value forh is 20.5
in compression, corresponding todn52w0 or b521, whereas
in tensionh,dn ,bP]0,1`@ .

In terms of experimentally measurable quantities,Scan be writ-
ten as

S5
Fw0

A0w
, (9)
OCTOBER 2002, Vol. 124 Õ 539



t

-

t

ge

e

whereF is the total axial force which the specimen is subjec
to, and A0 is the area of its cross-section in the undeform
configuration.

In a (b,S) plot, typical experimental stress-strain data for b
vine PDL, re-elaborated from@8#, are reported in Fig. 2. To de
scribe such experiments, we propose a normal interface cons
tive law in the form

S5Smf n~b!, (10)

whereSm is the maximum stress reached in tension.
Our goal is to define the functionf n(b), which provides the

normal stress component once the displacement jumpdn is pre-
scribed across the interface. We propose the following func
f n(b) both to fit a typical experimental result of@8# and to satisfy
requisite~5!:

f n~b!5H b1~eb2b21!e2b3b2
, b>0,

2b4~e2b5b21!

b11
, 21,b,0,

(11)

where the non-dimensional coefficientsbi ( i 51,...,5) are obtained
by imposing the following five conditions:

Fig. 2 Experimental †8‡ and proposed „Eqs. „10… and „11……
stress-strain curves for a uniaxial traction Õcompression test
540 Õ Vol. 124, OCTOBER 2002
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f n8~01!5 f n8~02!5E/Sm , ~smoothness atb50!,

whereE is the slope of~10! at the origin;

f n~bm!51 and f n8~bm!50,

wherebm is the abscissa of the peak in tension;

f n~bc!5Sc /Sm ,

where (bc ,Sc) is a representative point of the compression ran
of ~10!. Hence, coefficientsbi are functions ofE/Sm ,bm ,bc ,
Sc /Sm . For instance,b1b25b4b55E/Sm .

By assuming Sm52.5 MPa, E/Sm50.1, bm50.45, bc
520.225, Sc /Sm520.04, we obtain from the above fiv
conditions

b150.0041, b2524.4395, b3527.1555,

b450.03694, b552.7071, (12)

which define the solid curve of Fig. 2.
As desired, the functionf n(b) admits a potentialcn(dn) such

that

f n~b![ f nS dn

w0
D5

dcn

ddn
, (13)

where

Fig. 3 Experimental †9‡ and proposed „Eqs. „17… and „18……
stress-strain curves for a shear test
cn~dn!55 2w0

b1Ap

2Ab3
FErfSAb3

dn

w0
D1eb2

2/4b3ErfS b222b3dn /w0

2Ab3
D G , dn>0,

w0b4F2eb5EiS 2b5S 11
dn

w0
D D1 lnS 11

Dn

w0
D G , 2w0,dn,0,

(14)
re-
the

m
been
In Eq. ~14!

Erf~z!5
2

Ap
E

0

z

e2x2
dx, Ei~z!52E

2z

` e2x

x
dx (15)
are the error function and the exponential integral function,
spectively. As can be easily deduced from the curve of Fig. 2,
potentialcn is not convex.

3.2 Tangential Interface Constitutive Law. Recently pub-
lished work@9# provides two experimental curves obtained fro
shear tests on bovine PDL specimens. These curves have
Transactions of the ASME
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interrupted much before the failure of the PDL~whereas the ten-
sion curves of@8# were given also for a post-peak regime!; the
adopted shear straing is

g5
d t

w0
, (16)

always non-negative. The experimental points that we have c
sidered are shown in Fig. 3. In order to give a full stress-str
law, similar to that introduced for the normal behavior, we need
estimatethe coordinates of the peak that would be present in F
3, if the test were continued. This can be done—in an appr
mated way—on the basis of the previous results for uniaxial t
sion, as follows.

With reference to the valueSm52.5 MPa, the maximum
uniaxial Cauchy stress issm5lm

2 Sm55.25 MPa~having assumed
an isochoric deformation, and using, for the stretchl5w/w0 , the
value at peaklm51.45). Adopting now the von Mises criterion o
failure, the mean shear stress at failure in the uniaxial stress te
tm5sm /A3, so thattm53.03 MPa. Moreover, considering a
infinitesimal cube rotated ofp/4 with respect to the direction o
stress, the shear strain at the peak isgm'0.58. As a consequence
we estimate the peak in the shear stress/strain curve asgm
50.58,tm53 MPa.

With the above interpretation of the available experimen
data, we proposed a shear stress-strain law of the form

t5Smf t~g!, (17)

where the shape functionf t(g) is taken to be

f t~g!5c1~ec2g21!e2c3g2
, g>0. (18)

Three conditions determine the non-dimensional coefficientsci
( i 51,2,3):

f t8~0!5G/Sm , f t~gm!5tm /Sm , f t8~gm!50,

whereG is the slope of~17! at the origin. Thus, the coefficientsci
may be expressed in terms ofG/Sm , gm , and tm /Sm . The ex-
perimental results reported in Fig. 3 yieldG/Sm50.03. The above
three conditions define therefore the coefficientsci as:

c150.00127, c2523.624, c3520.366, (19)

so that the analytical expression for the tangential constitutive
follows ~represented by the solid curve in Fig. 3!.

Again, as desired, the functionf t(g) admits a potentialc t(d t)
such that

f t~g![ f tS d t

w0
D5

dc t

dd t
, (20)

where

c t~d t!52w0

d1Ap

2Ad3
FErfSAd3

d t

w0
D

1ed2
2/4d3ErfS d222d3d t /w0

2Ad3
D G . (21)

3.3 The Interface Constitutive Law. The general interface
law ~3! is now specified on the basis of the results obtained in
previous Subsections.

In terms of normal and tangential directions, Eq.~3! can be
recast in the following form

sBnB5gn~dn ,d t!n
B1gt~dn ,d t!t

B, (22)

where tB5dt /d t and the functionsgn(dn ,d t) and gt(dn ,d t)
specify the interface behavior~i.e., the vector functiong of Eq. ~3!
has componentsgn andgt) and derive~see Eq.~5!! from a poten-
tial c(dn ,d t), so that
Journal of Biomechanical Engineering
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gn~dn ,d t!5
]c

]dn
, gt~dn ,d t!5

]c

]d t
. (23)

As already stated, we consider the normal and the shear be
iors of the PDL as uncoupled, assuming

c~dn ,d t!5Sm@cn~dn!1c t~d t!#, (24)

wherecn is given by Eq.~14! and c t by Eq. ~21!. As a conse-
quence of Eqs.~23! and ~24! we have

gn~dn!5Smf n~b!, gt~d t!5Smf t~g!, (25)

where functionsf n(b) and f t(g) are given by Eqs.~11! and~18!,
respectively.

3.4 Uniqueness. Owing to the presence of non-conve
terms in the potential functionscn(dn) andc t(d t), the solution of
a boundary-value problem involving the interface law govern
by Eq. ~24! may be non-unique. This is a crucial point for th
subsequent numerical investigations; its treatment is facilitated
the existence of a potential governing the adopted constitu
model. Here we give only the main results; the analytical det
are reported, for the sake of completeness, in the Appendix.

The finite problem governed by the potential function defin
by Eqs.~14, 21, 24! does not necessarily admit a unique solutio
owing to the lack of convexity of the governing potential. How
ever, in the numerical treatment of a quasi-static deformation p
involving nonlinear effects, such as that introduced by our int
face law~22!, it is often necessary to refer to the so-calledincre-
mental problem. In such a problem, a generic equilibrium config
ration of the system is supposed to be reached and the respon
a small perturbation of the boundary data has to be found.
governing equations are thus expanded in a series of a time
parameter controlling the deformation path, and, in the linear
proximation, the first order terms are retained.

With the particular functionsf n(b) and f t(g) adopted here, a
sufficient condition for the uniqueness of the solution of thein-
crementalproblem is that both the incremental normald fn /ddn
and tangentiald ft /dd t stiffnesses of the interface are positiv
With reference to Figs. 2 and 3, this corresponds todn,0.45w0
andd t,0.58w0 .

4 Numerical Results
The interface constitutive model described in the previous S

tions has been implemented into a 6-node, 3 Gauss point inter

Fig. 4 Numerical model for the three-dimensional simula-
tions. The model has 10092 nodes and 41996 elements, of
which 37789 tetrahedral 4-noded elements and 4207 interface
elements.
OCTOBER 2002, Vol. 124 Õ 541
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finite element, defined by two 3-noded triangles, each to be c
nected to a face of two adjacent 4-noded tetrahedral solid
ments. To this purpose, we have exploited theUEL user subrou-
tine, available in the Finite Element general–purpose c
ABAQUS @19#. A suitable preprocessor has been coded to au
matically insert interface elements, such as those implemen
into a pre-defined ABAQUS model.

Figure 4 illustrates the geometrical model considered for
Finite Element analyses, which allows one to distinguish betw
cortical and trabecular bone, and permits to account for the in
action between some adjacent teeth. The geometry has been
structed starting from an X-ray cross-section of a human j
extruded along a curved line roughly representing the middle
of the mental portion of the jaw. This model has no special p
tence to be exact from the anatomical viewpoint, but should a
way furnish reasonably accurate results in terms of mechan
quantities~see@20# for a discussion of the relevance of this type
Finite Element models in terms of stress analysis!.

It is worth noting that we have also performed several tw
dimensional stress analyses, not reported here for lack of spac
the tooth-PDL-bone system. In particular, we have implemente
standard 2-D version~plane stress/strain and axisymmetric! of the
interface element, of the Goodman type@21#. Although on one
hand we did obtain results showing the importance of tak
into account the nonlinearity of the PDL, as found also adopt
3-D models, we found no quantitative agreement between the
and the three-dimensional results. We feel that this discrepa
should be emphasized, in view of the significant number of 2
analyses of this problem found in the literature; this result c

Table 1 Material properties used in the finite element analyses

Material Young modulusE @MPa# Poisson coefficientn

Cortical bone 13700 0.3
Trabecular bone 1370 0.3
Dentine 20000 0.25
Enamel 80000 0.3
542 Õ Vol. 124, OCTOBER 2002
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firms the findings by Corradi and Genna@20# and Meijer et al.
@22#, the latter with reference to the elastic analysis of fixed den
implants.

Coming back to the three-dimensional model of Fig. 4, fu
fixed boundary conditions have been prescribed for simplicity
the lateral sides of the considered portion of the jaw; despite
further approximation, it is expected that the model provides
sults not sensibly different, in terms of stresses in the proximity
the tooth, from the situation relative to a full description of th
jaw. Here we are only interested in the comparison between
ferent assumptions, and for this purpose the geometry of Fi
appears to be adequate@20#.

The material data adopted for the linear elastic parts of
system are taken from@22# and sumamrized in Table 1.

We have investigated the effect of a purely axial load of 300
and of a purely transverse load of 20 N included in the sagi
plane and directed from the lingual to the labial side; these l
values are among those suggested in the literature@6,23#.

Our main purpose is to compare results obtained in the pres
of the PDL modeled as an interface, treated either as illustrate
this paper or as a perfect interface~not allowing for displacement
jumps, thus simulating the absence of the PDL!, keeping fixed all
the other model features and loading conditions. To this end,
map of the equivalent von Mises stress~a scalar measure of th
global stress level defined asA3s"s/2, s being the deviatoric part
of the Cauchy stress tensors!1 is reported in Figs. 5 to 8. In
particular, Figs. 5 and 6 refer to the case of axial loading, wher
results obtained for the transverse loading are reported in Fig
and 8; Figs. 5 and 7 pertain to the analyses in which the interf
is perfect, whereas the results of analyses performed with
nonlinear PDL interface model are reported in Figs. 6 and 8.
the stress contours are in MPa units.

The comparison of the various results shows, in the first pla
that the inclusion of a nonlinear interface into the model affe

1Our choice of reporting only the von Mises stress is dictated by simplicity a
conciseness. Obviously, our analyses give as a result all the mechanical quan
the task of understanding which one of these interacts with the various biolog
functions in our problem falls beyond the scope of the present article.
Fig. 5 von Mises equivalent stress: axial loading, PDL treated as a perfect interface
Transactions of the ASME
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Fig. 6 von Mises equivalent stress: axial loading, PDL simulated by means of the proposed nonlinear inter-
face element
a
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qualitativelythe stress state in the surrounding bone. In both lo
ing cases the presence of the nonlinear PDL interface ca
higher peak stresses than those existing in the perfect case;
interestingly, specially in the transverse loading case, the stre
much more diffused by the presence of the nonlinear PDL in
of Biomechanical Engineering
d-
ses
ore

s is
er-

face, and the loading of a single tooth strongly influences
stress state around the surrounding teeth, which is not the cas
the perfect interface.

The behavior computed in the case of a perfect PDL interfac
also similar to that obtained treating the PDL as a linear interfa
Fig. 7 von Mises equivalent stress: transverse loading, PDL treated as a perfect interface
OCTOBER 2002, Vol. 124 Õ 543
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Fig. 8 von Mises equivalent stress: transverse loading, PDL simulated by means of the proposed nonlinear
interface element
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In such a case there is an obvious difficulty in identifying t
stiffness of the interface, which, in reality, varies much, both
space and in time, as a function of the applied load and of
local stress distribution. We have used, as limiting cases, the
tial and the maximum stiffnesses in tension given by our nonlin
interface model, i.e.,KL,min51.25 MPa/mm,KT,min50.375 MPa/
mm; KL,max555.9 MPa/mm,KT,max558.1 MPa/mm,KL andKT
denoting longitudinal and tangential stiffnesses respectiv
which relate tractions to displacement jumps. These values
also reasonable averages of those found experimentally in
@8#; note that in our calculations we have adopted the valuew0
50.2 mm for the interface thickness at rest.

There is no space here to fully report all the relevant res
~some are shown in Fig. 9!; it suffices to note that the use o
constant values of the stiffnesses~constant both in space and i
time! causes a significantly different stress distribution with
spect to the nonlinear case, even if the peak stress values, fo
high stiffness cases, are similar to the results of the nonlin
analyses~this could be expected, since the high load valu
adopted bring the nonlinear interface model to a regime of h
stiffnesses!. In particular, the strong stress redistribution predict
under transverse loading, by the use of the nonlinear PDL mo
is almost absent in the linear analyses, using both sets of va
for the stiffnesses. It must also be added that while the nonlin
model takes into account implicitly the effect of contact in co
pression, the linear one, in the absence of explicitly defined c
tact surfaces, does not; therefore, when using low stiffnesses
the high load values considered, compenetration occurs quite
~at about 16 N for the vertical load and 6 N for the transverse
load!.

These results suggest that both the models of linear and pe
interfaces are not capable to predict important effects which
caught by the nonlinear ones. Even if it is impossible to direc
conclude that these latter yield the ‘‘correct’’ results, owing to t
impossibility of knowing the corresponding ‘‘exact’’ solutions i
terms of local stresses, such a conclusion can be reached
rectly, by computing tooth mobility curves.
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This can be done both in compression, a case in which exp
mental results are available, and in tension, to simulate the ext
tion process. Our results are compared in Fig. 9 with some exp
mental curves for tooth mobility in compression@6,7#. Two
numerical results are included as obtained by the use of the lin
interface as described above, whereas the third one, represe

Fig. 9 Tooth mobility curves in compression: the symbols re-
fer to experimental results for a molar †6‡ and an upper incisor
†7‡, the lines to our simulations. The solid thick line has been
obtained by using the proposed nonlinear interface model; the
others by using linear interfaces as indicated.
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by the solid line, is given by the proposed nonlinear PDL mod
Here the importance of taking into account the PDL nonlinear
becomes apparent.

As a final test, we have simulated the process of the extrac
of a tooth, again using the mesh of Fig. 4 and applying a ten
axial load to the tooth to be extracted~no simulation of the real
luxation process has been attempted!. The relevant load displace
ment curve is shown in Fig. 10; special care must be exerte
obtain such a result numerically, since, after the peak load,
solution becomes unstable and is no more unique. In terms
validation of our model, we can first observe once more that
global aspect of the initial portion of the load-displacement cu
is fully coherent with the known aspect of the mobility curves
compression, and note, further, that the peak load value, foun
about 564 N, maybe high for a healthy human incisor, is definit
acceptable if we recall that we are using strength data, for
PDL, taken from tests on bovine teeth. Such a value is within
suggested range of forces necessary for the extraction of a t
~100 to 800 N!, and also the global aspect of the post-peak cu
appears reasonable. The ability of obtaining such a result~impos-
sible to find using a linear model! in a relatively simple way
confirms the possibilities offered by the use of the proposed in
face element within a three-dimensional context.

The cost of the reported analyses, even in the presence of m
than 4000 nonlinear interface elements, remains comparabl
that of a simple linear elastic one, a fact confirming the effectiv
ness of the proposed approach. On the other hand, we expec
a nonlinear analysis, performed on a 3-D mesh in which the P
is described in terms of continuum, solid elements, such as d
~on a much smaller model that includes a single tooth only! by
Natali et al.@13#, would have required a computational cost abo
one order of magnitude greater than that required by the ana
with the interface elements.

5 Discussion and Conclusions
A phenomenological approach to the analysis of the tooth/b

system has been proposed, making use of a nonlinear inter
model of the PDL. The interface approach precludes thedirect
possibility of obtaining details of the stress and strain stateswithin
the PDL itself, but provides a reasonably simple and effect
description of theglobal behavior of the system. On the othe

Fig. 10 Tensile axial load—axial displacement curve obtained
from the numerical simualtion of the extraction of the frontal
incisor, mesh of Fig. 4
Journal of Biomechanical Engineering
el.
ity

tion
sile

to
the
of

the
ve
in
d at
ely
the
the
ooth
ve

ter-

ore
e to
e-

t that
DL
one

ut
ysis

ne
face

ive
r

hand, a stress analysis inside the PDL would be possible by m
of a postprocessingof the results obtained with our model, whe
a micromechanical model of the PDL were available. The la
should take into account the complexity of the geometric
mechanical properties of the internal structure of the PDL. Anis
ropy due to fiber orientation, fluid-solid interaction, irreversibilit
and time dependent response are all features clearly emer
from the experiments reported in@8#; unfortunately, such experi-
ments are insufficient, both quantitatively and qualitatively, to
low us to formulate a reasonably accurate micromechanical m
for the PDL. The coupling of the global analysis proposed in t
article with a local micromechanical approach would avoid t
complexity of a single, multiple-scale computation, so that
problem would be split into two simpler sub-tasks, without loss
accuracy.

Two main conclusions can be drawn from the present study

• the description of the nonlinear behavior of the PDL produc
extremely important effects on the computed mechan
quantities in a numerical model of the tooth-bone system

• there is a clear theoretical and computational advantag
employing an interface model in the numerical analys
rather than a continuum, three-dimensional one.

As stressed at the beginning of Section 4~not fully illustrated for
the sake of brevity!, and as already pointed out by one of th
Authors elsewhere@20#, the use of a three-dimensional geomet
is mandatory; plane models result definitely inadequate
should never be used to simulate the tooth/bone system u
load.

The results obtained in the present paper suggest that the m
eling of the PDL by means of interface elements, together wit
detailed geometrical description of the jaw, should provide str
values accurate enough to be useful both to investigate rel
phenomena—such as bone remodeling, an analysis requiri
description of several complex phenomena, not addressed he
and as a starting point for the design of ‘‘optimal’’ implants, cau
ing in the surrounding bone, upon loading, stress and strain s
closely resembling those occurring around a healthy tooth.
reported results, however, should be considered only as a first
towards a precise mechanical characterization of the tooth-P
bone system. Indeed, several difficulties still need to be overco
These are related to:

• the irreversibility of the PDL behavior, dominated by th
presence and motion of the fluid phase, governed by its s
ration index;

• the fiber contents of PDL, as well as the position, orientati
geometry, and stiffness of the fibers.

Work is currently in progress both to obtain better experimen
results~on pig PDL, expected to be more similar to the human o
than the bovine PDL tested in@8#!, and to develop a suitable
micromechanical model of the PDL@24#, taking into account both
the presence of the fibers and that of a fluid phase.

Finally, we remark that the proposed formulation of the int
face constitutive law could also be applied to a version of
Boundary Element technique, allowing for ‘‘zones’’ of differen
elastic materials, connected by nonlinear interfaces. This appro
is under current investigation~preliminary results to be found in
Salvadori@25#!.
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Appendix—Uniqueness of the Finite and the Incremen-
tal Problems

With reference to the tooth-PDL-bone system, let the bod
VA andVB represent the tooth and bone, respectively.

Suppose now that two solutions of the equilibrium problem
the system exist, such that the compatibility requirements on
displacements, and equilibrium for the forces, are satisfied. Le
denote these two solutions with@u1,«1,s1,p1,d1# and
@u2,«2,s2,p2,d2#, where« is the infinitesimal strain tensor andp
is the traction exerted by the interface on the bone, i.e.p
5sBnB in JP]VB. In particular, under the assumption~25!

p5Sm@ f n~b!nB1 f t~g!tB#. (26)

If we denote the difference between the two solutions byD(•)
5(•)12(•)2, the application of the principle of virtual work
yields

E
VAøVB

Ds•D«dV1E
J

Dd•DpdA50. (27)

For linear elastic materials, such as, by assumption, those defi
regionsVA and VB, governed by the constitutive fourth-orde
tensorsEA andEB respectively, the quantities

Ds•D«5D«•EAD«, in VA, Ds•D«5D«•EBD«, in VB,
(28)

are positive, and null if and only ifD«50. For this reason, the firs
integral in ~27! is positive, and null only whenD«50. The terms
appearing in the integrand of the second integral in~27! can be
expanded as

Dd5DdnnB1Ddt ,

Dp5SmH f nS dn
1

w0
D 2 f nS dn

2

w0
D J nB1SmH f tS d t

1

w0
D t1

B2 f tS d t
2

w0
D t2

BJ ,

(29)

so that

Dd•Dp5SmH f nS dn
1

w0
D 2 f nS dn

2

w0
D J Ddn1SmH f tS d t

1

w0
D t1

B

2 f tS d t
2

w0
D t2

BJ •Ddt . (30)

Each of the two terms on the right-hand side of~30! can be nega-
tive, owing to the decreasing part of functionsf n and f t after the
maximum. Therefore, Eq.~27! may be satisfied and the solution o
the problem may be non-unique.

Uniqueness of solution of the incremental problem involves
incremental form of the principle of virtual work~27!, namely

E
VAøVB

Dṡ•D«̇dV1E
J

Dḋ•DṗdA50, (31)

where a superimposed dot indicates rate~incremental! quantities.
Taking now the rates of~29!, we obtain

Dḋ5DḋnnB1Dḋ tt
B1d tD ṫB,

(32)

Dṗ5SmS d fn

ddn
DḋnDnB1SmS d ft

dd t
Dḋ tD tB1Smf tD ṫB ,

so that the rate analogous of~30! is
546 Õ Vol. 124, OCTOBER 2002
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Dḋ•Dṗ5Sm

d fn

ddn
~Dḋn!21Sm

d ft

dd t
~Dḋ t!

21Smd t f tuD ṫBu2,

(33)

where we have used the orthogonality conditiontB
•D ṫB50, fol-

lowing from the fact thattB is a unit vector. From~33!, observing
thatSmd t f tuD ṫBu2 is always non-negative, we may conclude tha
solution of the incremental problem is necessarily unique wh
both incremental stiffnessesd fn /ddn and d ft /dd t are strictly
positive.
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