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Abstract. The antiplane strain Green’s functions for an applied concentrated force and 

moment are obtained for Cosserat elastic solids with extreme anisotropy, which can be 

tailored to bring the material in a state close to an instability threshold such as failure of 

ellipticity. It is shown that the wave propagation condition (and not ellipticity) governs the 

behavior of the antiplane strain Green’s functions. These Green’s functions are used as 

perturbing agents to demonstrate in an extreme material the emergence of localized (single 

and cross) stress channelling and the emergence of antiplane localized folding (or creasing, or 

weak elastostatic shock) and faulting (or elastostatic shock) of a Cosserat continuum, 

phenomena which remain excluded for a Cauchy elastic material. During folding some 

components of the displacement gradient suffer a finite jump, whereas during faulting the 

displacement itself displays a finite discontinuity.  
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1.  Introduction 
The mechanical conditions leading to the formation of a periodic pattern of creases in 

an elastic solid under load have attracted great interest (see for instance Onuki, 1989; 
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Roccabianca et al., 2010; Hutchinson, 2013; Jin and Suo, 2015), particularly with reference to 

soft matter in biological applications, for altering wettability, and for flexible electronics. It is 

not difficult to explain periodic creasing in terms of bifurcation theory for elastic solids, but 

the formation of an isolated crease, or fold (to be distinguished from bend2), is hard to obtain 

and perhaps even impossible for a Cauchy elastic continuum. It is shown in the present article 

that folding (which induces a localized and finite discontinuity in the displacement gradient) 

and faulting (which induces a localized and finite discontinuity in the displacement itself) can 

be achieved in a Cosserat elastic material at the limit of failure of ellipticity. However, the 

discontinuities become already visible (in terms of a rapid variation of the displacement or its 

gradient instead of a jump) near this limit, when ellipticity is still preserved3. The fact that 

these discontinuities are clearly visible in the proximity (but still inside) of the border of the 

elliptic domain (and even when the strain energy function is still strictly positive), means that 

extreme materials as those analyzed in the present article can be realized in practice and 

employed to explore unchallenged mechanical behavior.  

The perturbative approach (Bigoni, 2012) employed to show the formation of 

discontinuities is based on the determination of the infinite-body Green’s function, which is 

obtained here (under antiplane deformation conditions for an anisotropic Cosserat elastic 

material specified in Part I of this study) in the two cases of applied concentrated force and 

moment (the latter being possible because the continuum involves body moments). The 

Green’s functions are obtained under the condition that (planar) waves can propagate with a 

finite speed inside the body – the (WP) condition – and not under the assumption of 

ellipticity. This implies that the Green’s function can still be used in the special case where 

ellipticity is lost, but waves can propagate (a situation possible for Cosserat elasticity, Part I). 

Folding has been found to occur in single or cross geometries (respectively at the Elliptic-

Imaginary/Parabolic or at the Elliptic-Complex/Hyperbolic borders) and is found to decay 

exponentially in both cases (with exceptions documented for non-decaying single folding). 

Finally, at these two boundaries of ellipticity failure, the application of a concentrated 

moment has revealed an unexpected feature, namely, the single or cross faulting of a Cosserat 

2 Bifurcations in solids are usually identified with the occurrence of stationary waves (Biot, 1965; Hill and 
Hutchinson, 1975; Bigoni, 2012), which, roughly speaking, correspond to bending, not folding. 
3 This situation shares analogies with the formation of shear bands in a solid, which formally occurs at the 
elliptic border (Rice, 1977), but can become already visible near this border using a perturbative approach 
(Bigoni and Capuani, 2002, 2005; Bigoni, 2012). 
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continuum. Single (or cross) faulting is the emergence of one (or two) finite size 

discontinuity surface for displacements dividing the material into two (or four) parts. The 

emergence of folding and faulting revealed by the perturbative approach is also substantiated 

with analytical solutions (possible only in special cases) demonstrating a situation of non-

decaying single folding and another situation in which a Dirac localization (possible for an 

extreme material possessing only a non-vanishing Cosserat bending stiffness) is found.  

From the findings documented in the present article (restricted for simplicity to 

antiplane strain conditions) several conclusions can be drawn from the inclusion of Cosserat 

effects as a remediation to pathological mesh dependence for a constitutive model violating a 

material instability threshold. More importantly, the fact that Cosserat extreme materials can 

be realized in practice4 opens new and unexpected applicative possibilities, such as 

localization and channelling of signals, even in complex geometries involving isolated or 

repeated single or cross folding or faulting.  

 

2.  Antiplane Green’s functions 
The Green’s functions for concentrated force and moment in an orthotropic Cosserat 

material subject to antiplane deformation are derived in this Section, by employing a Fourier 

transformation technique sharing analogies with the standard technique in classical Cauchy 

elasticity (Willis, 1971; 1973; 1991). 

 

2.1 The analyzed Cosserat materials  

Constrained rotation Cosserat (linear elastic) materials are considered as described in 

Part I, with a particular emphasis on extreme materials for which loss of ellipticity is 

approached, but with positive definiteness (PD) of the elasticity still preserved (thus defining 

a material in which waves can propagate and the solution is unique and stable). In particular, 

under antiplane strain conditions ( ) ( )PD SE=C C , so that failure of these criteria occur 

simultaneously (and imply failure of ellipticity for a classical material), but ( )PD B

 and 

( )SE B  remain separate criteria. The material parameters will therefore be selected so that 

4 Studies by, among others, Banks and Sokolowski (1968), Lakes (1995), Ostoja-Starzewski (1999), Bigoni and 
Drugan (2007) provide techniques for the determination of the Cosserat elastic moduli in isotropic and 
anisotropic solids. 
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(PD), (SE) and also (E) fail simultaneously. In this way, the analyzed materials approach a 

material instability, but from a domain in which uniqueness and positive definiteness of strain 

energy hold, and waves can still propagate in the medium. 

 

 

 

2.2 Infinite-body Green’s functions for concentrated force and moment 

The field equation governing antiplane deformations in the case of an orthotropic 

Cosserat material (see also Section 7.1, Part I) admits two infinite-body Green’s functions: 

one for an out-of-plane concentrated force S, and one for an in-plane concentrated moment 

(with components xM  and yM ). The equilibrium equation for the out-of-plane displacement 

component ( ),w x y  assumes then the following form (Eq. (91), in Part I) 

 

1( ) ( ) ( ) ( ) ( ) ( ) 0
2 x yLw S x y M x y M x yδ δ δ δ δ δ′ ′ + − − =  , (1) 

 

where ( )δ  is the Dirac delta distribution and ( )δ ′ denotes the derivative of the Dirac delta 

with respect to the pertinent variable (Gelfand and Shilov, 1964). The fourth-order 

differential operator L is defined as 

 

( )2 2 4 2 2 4
55 44 2 0 4

1 2
4x y x x y yL c c b b b= ∂ + ∂ − ∂ + ∂ ∂ + ∂ . (2) 

 

An exact solution to Eq. (1) is obtained by employing the double exponential Fourier 

transform. The direct and inverse double Fourier transforms are defined as 

 

( ) ( ) 1 2( )
1 2, , i k x k yw k k w x y e dxdy

+∞ +∞ +

−∞ −∞
= ∫ ∫ ,  (3) 

( ) ( ) ( )1 2
1 2 1 22

1, ,
4

i k x k yw x y w k k e dk dk
π

+∞ +∞ − +

−∞ −∞
= ∫ ∫  . (4) 
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In the case of a concentrated force, the Green’s function is derived by applying the 

direct double Fourier transform (3) to the field equation (1) with 0x yM M= = , yielding the 

out-of-plane displacement 

 

( ) ( )
( )1 2

1 22
1 2

1,
4 ,

i k x k ySw x y e dk dk
D k kπ

∞ ∞
− +

−∞−∞

=
⌠ ⌠
 

⌡⌡
, (5) 

 

where 

 

( ) ( ) ( )2 2 4 2 2 4
1 2 33 1 2 55 1 44 2 2 1 0 1 2 4 2

1, , 2
4

D k k A k k c k c k b k b k k b k≡ = + + + + , (6) 

 

is the characteristic polynomial (identified with the 33A  component of the acoustic tensor, Eq. 

113, Part I) which is thus strictly positive when the wave propagation condition (WP) holds. 

Therefore, from the point of view of finding the infinite-body Green’s function the (WP) 

condition plays the major role.  

It is noted that in the classical elasticity case the characteristic polynomial and the out-

of-plane displacement reduce, respectively, to (Ting, 1996) 

 

( ) 2 2
1 2 55 1 44 2,D k k c k c k= + ,   ( ) 2 2

44

, Log
2

cl Sw x y x y
c

ε
π ε

 = − +  , (7) 

 

while the non-vanishing Cauchy shear stress components become 

 

( )2 22xz
S x
x y

εσ
π ε

= −
+

,   ( )2 22yz
S y
x y

εσ
π ε

= −
+

, (8) 

 

where 55 44c cε =  is the ratio between the two Cauchy shear moduli. 

For the evaluation of the inversion integral in Eq. (5), the integrand is factored by 

finding the roots of the characteristic quartic polynomial (6). The four roots can be written in 

the following concise way 
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( )2 1 1k ip k= ±  ,    ( )2 2 1k ip k= ±  , (9) 

 

where 

 

( )
2

0 1 44
1,2 1,2 1

4

2b k c
p p k

b
+ ± ∆

≡ =    and   ( ) ( )22 2 2
0 1 44 4 1 2 1 552 4b k c b k b k c∆ = + − + . (10) 

 

Assuming that the (WP) condition holds, and depending on the values of the transformed 

variable 1k ( 1k ∈ ), the four roots of the characteristic polynomial in Eq. (9) can be either 

purely imaginary or complex conjugates, with ( )1,2Re 0p > . Accordingly, the characteristic 

polynomial can be written as 

 

( ) ( )( )2 2 2 24
1 2 2 1 2 2,

4
bD k k k p k p= + + , (11) 

 

so that the integrand is now decomposed into four rational parts. For each part, the residue 

theorem is employed in conjunction with Jordan’s lemma to evaluate the integral with respect 

to the complex variable 2k . The original integration path running along the real axis in the 2k

-plane is replaced then by a closed contour C , which for 0y >  is taken in the lower 2k -plane 

with ( )2Im 0k < , so that the integrand is decaying as 2k → ∞ . Similarly, when 0y < , the 

closed contour C  is taken in the upper 2k -plane, so that the following result can be derived 

 

( )
( )2 1

2 1 2
2

1 2 1 2

2

,

p y p yik y

C

p e p ee dk
D k k p p

p − −
− −

=
D

⌠

⌡


, (12) 

 

which is valid for all y . Further, by noticing that ( )1 1p k  and ( )2 1p k  are even functions of 

their argument and by taking also into account Eq. (12), the integral in Eq. (5) becomes 
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( ) ( ) ( )1 1 10
, , cosS

Sw x y Q k y k x dk
π

∞
= ∫ , (13) 

 

where 

 

( )
( )2 1

1 2
1

1 2

,
p y p y

S

p e p e
Q k y

p p

− −−
=

∆
. (14) 

 

The inversion integral in Eq. (13) is divergent since ( ) ( )1
1 1,SQ k y O k −=  as 1 0k → , 

and, thus, has to be interpreted in the finite part sense (a situation analogous to the classical 

elasticity case). To this purpose, it is expedient to decompose the out-of-plane displacement 

into three integrals, in the following way 

 

( ) ( ) ( ) ( )
1 2

, , , ,cl cs csw x y I x y I x y I x y= + + , (15) 

 

where 

 

( ) ( )1
1 1

0 144 55

1, F.P. cos
2

y k
cl

SI x y e k x dk
kc c

e

π

∞
−= ⌠


⌡

,  (16) 

( ) ( )
2 2

1

1

1

1 12 2
44 55 10

, cos
2 1

y k

cs
S eI x y k x dk
c c k

e

π

∞
− +

= −
+

⌠


⌡









,  (17) 

( ) ( ) ( )
2 1 1 10

ˆ, , coscs S
SI x y Q k y k x dk
π

∞
= ∫ , (18) 

 

in which 

 

( ) ( )
2 2

11
1

1 1 2 2
144 1

1ˆ , ,
2 1

y ky k

S S
e eQ k y Q k y

kc k

e
e

e

− +− 
 = − − + 
 









, (19) 
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with   being a characteristic material length, defined through the relation 2
4 444b c= 

, which 

is related with the bending stiffness in the x-direction. The integrals in Eqs. (16) and (17) can 

be evaluated analytically (Gradshteyn and Ryzhik, 1980). In particular, the divergent integral 

in Eq. (16) corresponds to the classical elasticity solution given by Eq. (7)2 and is evaluated 

in the finite part sense (F.P.). On the other hand, the integral in Eq. (18) is uniformly 

convergent and can be evaluated numerically taking into account its oscillatory character. 

Accordingly, the out-of-plane displacement becomes 

 

( ) [ ] [ ] ( )
20

44 55 44 55

, Log ,
2 2 cs

S Sw x y z z I x y
c c c cπ π

= − − Κ +  ,  (20) 

 

where 1 2 2z x yε−= + , and [ ]0Κ  is the modified Bessel function of the second-kind and 

zero order. By noting that [ ] ( )0 Log[ ]z O zΚ = −  as 0z →  and that the function ( )
2

,csI x y  is 

regular at the point of application of the concentrated force, it can immediately be inferred 

that the classical logarithmic singularity is eliminated by the Cosserat effect. It is worth 

noting that in the isotropic case the inversion of the integral in Eq. (5) can be performed 

analytically (as suggested by e.g. Nowacki, 1984) yielding  

 

( ) [ ] [ ]( )0, K Log
2

Sw x y r r
πµ

′ ′= − +  , (21) 

 

where 2 2r x y= +  is the distance from the origin, and η µ′ =  is the pertinent 

characteristic length for an isotropic couple-stress material (Mindlin, 1963).  

In light of the above, it can be concluded that the couple-stress solution predicts a 

bounded and continuous displacement at the point of application of the load and, therefore, 

‘corrects’ (in a boundary-layer sense) the classical elasticity solution, which predicts a 

logarithmically singular behavior at the source point for an orthotropic material, Eq. (7). This 

finding is also in contrast with the respective result of the standard micropolar elasticity 

theory where the out-of-plane displacement remains logarithmically singular at the origin 

(Dyszlewicz, 2012). Note that under plane strain conditions the displacements at the 
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application point of a concentrated force would also logarithmically diverge in the context of 

constrained Cosserat elasticity, but the investigation of this problem falls outside the scope of 

this study and will be addressed elsewhere. Furthermore, it is remarked that as r → ∞ , the 

couple-stress solution becomes logarithmically unbounded as in the classical theory, since 

away from the origin the couple-stress effects decay and the classical elasticity solution 

dominates. Such a pathological behavior is known in 2D elastostatic problems involving 

concentrated loads in the context of classical elasticity (Turteltaub and Sternberg, 1968) but 

also in the context of higher-order gradient elasticity theories (Georgiadis and Anagnostou, 

2008). 

Finally, note that the (asymmetric) shear stresses for the concentrated force case can be 

derived by direct substitution of the displacement solution (13) into Eqs. (87) and (88) in Part 

I. The explicit formulas are provided in Appendix A. 

In the case of a concentrated moment, a procedure analogous to that presented before 

can be employed to derive the Green’s function, assuming that 0S = . The displacement field 

produced by the concentrated moment can be written as 

 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 10 0
, , cos , sin

2 2x y

yx
M M

MMw x y Q k y k x dk Q k y k x dk
π π

∞ ∞
= +∫ ∫ , (22) 

 

where 

 

( ) ( )( )2 1 1
1, sgn

x

p y p y
MQ k y y e e− − −= − ∆ ,   ( ) ( )1 1 1, ,

yM SQ k y k Q k y= − . (23) 

 

Note that since the functions ( )1,xMQ k y  and ( )1,yMQ k y  are bounded in [ )1 0,k ∈ ∞ , the 

integrals in Eq. (22) are convergent and can be directly evaluated numerically taking into 

account their oscillatory character. 

In the following, the Green’s functions will be utilized as perturbing agents in several 

cases. Note that the employed Cosserat orthotropic material is characterized effectively by 

three dimensionless parameters, namely, the ratio between the shear moduli 55 44c cε = , the 

ratio between the bending moduli 2 4b bb = , and the ratio 0 4b bγ = , with 0 1 3b b b= − . In 
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what follows, unless otherwise stated, it will be assumed that 4 0b > . Finally, it is recalled 

that in the case of isotropy: 1ε = , 1β = , and 1γ = .  

 

3.  ‘Non-extreme’ behavior 
Some illustrative results − relative to ‘non-extreme’ materials with mechanical behavior 

still far from instabilities − are now presented regarding the behavior of the out-of-plane 

displacement for the cases of a concentrated force and a concentrated moment, acting in an 

infinite orthotropic couple-stress medium under antiplane strain conditions.  

Fig. 1 depicts the dimensionless out-of-plane displacement 44wc , plotted with respect to 

the dimensionless distances x   and y  , for an orthotropic Cosserat material far from 

instability boundaries (with 1 4ε = , 1 5β = , and 1 4γ = ) as produced by a concentrated 

antiplane unit force (acting at the origin of the axes). It is observed that the couple-stress 

solution predicts a bounded displacement at the point of application of the load. This is more 

clearly depicted in Fig. 2, where the couple stress solution is compared (along the line 0y = ) 

with the classical solution, which exhibits a logarithmically unbounded behavior at the origin. 

It is shown that in the range 2r <   the couple-stress effects play a significant role in the 

material response, while, outside this region, the couple-stress solution approaches the 

classical one (Fig. 2).  

To examine the effects of the Cosserat anisotropy, a qualitative comparison of the out-

of-plane displacement contours is presented in Fig. 3, between two materials which are both 

isotropic in the classical sense, 44 55c c=  ( 1ε = ), but possess different types of intrinsic 

Cosserat microstructure: isotropic in one case ( 1β = , 1γ = ), and orthotropic in the other (

1 5β = , 1 4γ = ). As it is shown in Fig. 3, the Cosserat orthotropy (microstructural 

anisotropy) affects significantly the displacement in the vicinity of the concentrated force 

through a distortion of the circular contours typical of isotropy, which become concentric 

ellipses for orthotropy. 
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Fig. 1: Dimensionless out-of-plane displacement due to an antiplane concentrated unit force in an orthotropic 
Cosserat solid far from material instability ( 1 / 4ε = , 1 / 5β = , 1 / 4γ = ).  

 

 

Fig. 2: Dimensionless out-of-plane displacement produced by an antiplane unit force: the comparison between 
couple-stress theory and classical elasticity at 0y =  reveals that the Cosserat solution (solid line) is bounded 

and that it approaches the Cauchy elastic solution (dashed line) as the distance from the origin increases. 
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The dimensionless out-of-plane displacement 44w c  produced by a concentrated unit 

moment acting in the y -direction in a Cosserat solid far from material instability ( 1 4ε = , 

1 5β = , and 1 4γ = ) is plotted in Fig. 4. It is worth noting that there is no counterpart of 

such type of loading in the classical theory of elasticity. As expected from symmetry, the 

displacement is zero at the point of application of the concentrated moment. Moreover, the 

absolute value of the displacement exhibits a bounded maximum near the origin and then 

decays monotonically to zero as r → ∞ . 

 

 

 

 
 

Fig. 3: Dimensionless level sets of the out-of-plane displacement due to an antiplane concentrated unit force for 
two solids: one fully isotropic ( 1ε = , 1β = , 1γ =  – dashed line), and the other isotropic with respect to the 
Cauchy part but orthotropic in the Cosserat part ( 1ε = , 1 / 5β = , 1 / 4γ =  – solid line). Both solids are far 

from material instability. 
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Fig. 4: Dimensionless out-of-plane displacement due to an antiplane concentrated unit moment (applied at the 
spot) in an orthotropic Cosserat solid far from material instability ( 1 / 4ε = , 1 / 5β = , 1 / 4γ = ).  

 

 

4.  Stress channelling 
It is known that for classical Cauchy elastic materials with extreme orthotropic 

properties the stress produced by a concentrated load has a slow diffusion, so that the solution 

becomes highly localized and strongly directional. In fact, in the limit when the stiffness ratio 

between different material directions tends to zero, the equations governing equilibrium reach 

the elliptic boundary and the stress percolates through null-thickness deformation bands. This 

phenomenon is called stress channelling and occurs in highly orthotropic fibre-reinforced 

materials where disturbances can propagate along (singular) fibers without attenuation 

(Everstine and Pipkin, 1971). Stress channelling effects have been observed also 

experimentally in masonry models by Bigoni and Noselli (2010a;b) and can be easily 

visualized in the pinscreen toy (Fig. 1, Part I). 

 

4.1 Classical Cauchy materials 

For a classical Cauchy material under antiplane strain conditions, stress channelling and 

the associated loss of (SE) and (E) occur at the limit in which the ratio between the two shear 

moduli tends to zero or to infinity. In particular, when 55 44 0c cε = = , (E) is lost and the 

shear stresses defined in Eq. (8) become in the limit (Gelfand and Shilov, 1964) 
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( )2 20
lim 0

2xz
S x
x yε

εσ
π ε→

−
= =

+
,   ( ) ( ) ( )2 20

lim sgn
22yz

S y S y x
x yε

εs δ
π ε→

−
= = −

+
, (24) 

 

showing the Dirac delta singularity. Moreover, utilizing Eq. (5) with 55 0c = , so that (E) fails, 

and interpreting the inversion integral in the sense of distributions, the out-of-plane 

displacement can be derived in the following form  

 

( ) ( ) ( )1 2( )
1 22 2

44 2 44

1,
4 2

i k x k ycl S Sw x y e dk dk y x
c k c

d
π

∞ ∞
− +

−∞−∞

= = −
⌠ ⌠

 ⌡⌡
, (25) 

 

exhibiting again the Dirac delta singularity. Therefore, at ellipticity loss, the displacement 

exhibits a Dirac delta discontinuity along the singular line 0x = , Eq. (25), closely resembling 

the behavior of the pinscreen model (Fig. 1, in Part I).  

 
Fig. 5: Dimensionless modulus of shear stress due to a concentrated unit force showing that stress channelling 

tends to become a Dirac delta for a classical Cauchy material near ellipticity loss.  

 

 

The result in Eq. (24)2 reveals the extreme localization of the classical Cauchy elasticity, 

yielding a shear stress yzσ  concentrated in a band of null-thickness when ellipticity is lost. 

This is substantiated in Fig. 5, where the map of the absolute value of the dimensionless shear 
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stress yzσ  is reported for a classical Cauchy material close to failure of ellipticity, 410ε −
− . 

Note that in Fig. 5, the shear stress and the coordinates ( ),x y  are normalized with respect to 

the characteristic length   of the Cosserat material, to facilitate comparisons. 

 

4.2 Extreme Cosserat materials 

The infinite-body Green’s function for an antiplane concentrated force is used now as a 

perturbing agent to investigate the effects of loss of (E) in extreme, orthotropic couple-stress 

materials, in the spirit of the perturbative approach detailed by Bigoni (2012).  

The condition of (E) for a couple-stress orthotropic material under antiplane strain 

deformation is recalled here to be (see also Eqs (94) and (106), in Part I) 

 
4 2 2 4

2 0 42 0x x y yb n b n n b n+ + ≠     : 1∀ =n n , (26) 

 

which, accordingly, implies that 

 

2 0b >   and  0 2 4b b b> − ,  (27) 

holding for 4 0b > . It is apparent that the condition of (E) does not depend upon the Cauchy 

moduli. On the other hand, the phase velocity of the dispersive SH waves in a couple-stress 

medium is recalled to be (see also Eq. (111), in Part I) 

 

( )
2

2 1 2 2 4 2 2 4
55 44 2 0 42

4S x y x x y y
kV c n c n b n b n n b nρ −  

= + + + + 
 

. (28) 

 

The (WP) condition states that 2 0SV > for all wavenumbers k  and directions of propagation 

n . Therefore, if the Cosserat material with 0ε =  is still in the elliptic range and 44 0c ≥ , Eq. 

(28) shows that an SH wave can still propagate along every direction in the orthotropic 

medium. It is remarked that, with 0ε = , the underlying classical Cauchy solid (in other 

words the solid obtained setting the Cosserat stiffness to zero) loses ellipticity and the 

solution exhibits the Dirac delta behavior (Fig. 5).  
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Using the solution (13), the stresses have been calculated (Appendix A), so that the 

absolute value of the dimensionless shear stress yzσ  is reported in Fig. 6 for two Cosserat 

materials with: (i.) 0ε = , 1β = , 1γ = , shown on the left, and (ii.) 0ε = , 1γ = , 0.01β = , 

shown on the right. Contrary to classical Cauchy elasticity, even if 0ε = , stress channelling 

is not observed in the former case (Fig. 6, left), so that the Cosserat contribution restores 

ellipticity and eliminates localization. On the other hand, as the ratio of the bending moduli 

β  decreases, approaching the (EI/P) boundary, the stress localizes in bands of finite 

thickness and channels through the material (Fig. 6, right). Therefore, stress channelling is 

related to the situation that the Cosserat material approaches failure of (E). This is more 

clearly depicted in Fig. 7, where the shear stress profile is shown for various values of β  

(left) and γ  (right), at the level y =  . It is observed that the stress localizes into a narrow 

band around the discontinuity line with decreasing β  and increasing γ . The width of the 

band depends strongly on the magnitude of the ratio of the bending moduli β . 

 

 

 
 

Fig. 6: Dimensionless modulus of shear stress due to an antiplane concentrated unit force showing that stress 
channelling, occurring in the underlying classical elastic material (Fig. 5), is eliminated in a Cosserat solid far 

from ellipticity loss, 0ε = , 1β γ= =  (left), but emerges when the material is close to failure of ellipticity 
(EI/P), 0ε = , 1γ = , 0.01β =  (right), so that stress channelling is related to failure of (E).  
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Fig. 7: Profiles of the dimensionless modulus of the shear stress at y =  , generated by a concentrated unit force 
for a material with: 0ε = , 1γ = , and different values of β  (left); 0ε = , 0.01β =  and different values of γ
(right). The stress in the classical elastic material localizes as a Dirac delta (solution reported red dashed), so 
that the addition of a Cosserat term emends this behavior until the limit of failure of (E) is approached at the 

(EI/P) boundary. 
 
 
 

 
 

Fig 8: Dimensionless modulus of shear stress due to an antiplane concentrated unit force showing that stress 
channelling is eliminated in a Cosserat solid far from ellipticity loss 0ε γ= = , 1β = , (left), but emerges when 

the material is close to failure of ellipticity (EC/H) 0ε = , 0.99γ = − , 1β = , (right). Note that an extreme 
stress channelling with only one localization band would be manifested in the underlying classical elastic 

material. 
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Fig. 9: Profiles of the dimensionless modulus of shear stress at y =  , generated by a concentrated unit force for 
a material with 0ε = , 1β = , and for different negative values of γ . The stress in the classical elastic material 
localizes as a Dirac delta (solution reported red dashed), so that the addition of a Cosserat term eliminates this 
behavior until the limit of failure of (E) is approached at the (EC/H) boundary, where two channels emerge 
(instead than one as in the classical theory).  
 

 

A type of stress channelling not observable in classical Cauchy elasticity emerges as 

the ratio γ  takes on negative values and approaches the limit γ β→ − , where loss of (E) is 

attained at the (EC/H) boundary (see also Fig. 3, Part I). Fig. 8  reports the variation of the 

modulus of the normalized shear stress yzσ  produced by a concentrated unit force for two 

orthotropic Cosserat materials with: (i) 0ε = , 1β = , 0γ =  – far from the (EC/H) boundary 

– (Fig. 8, left), and (ii) 0ε = , 1β = , 0.99γ = −  – close to the (EC/H) boundary – (Fig. 8, 

right). As it is expected stress channelling is not observed in the former case, however, as 

1γ → − , approaching the (EC/H) boundary, the stress channels through two finite width 

bands inclined at 45° (Eq. (107), Part I). The progressive localization of the shear stress is 

more clearly depicted in Fig. 9, where the shear stress profile is shown for various negative 

values of γ , at the level y =  . Two localization bands are evidenced for the Cosserat 

material when failure of (E) is approached, instead than the single band typical of the 

classical case. 

 

5.  Localized single and cross folding of a Cosserat continuum 
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There are two cases of loss of (E) in an orthotropic couple-stress material under 

antiplane strain conditions. The first is at the boundary of the elliptic-imaginary/parabolic 

regime (EI/P), whereas the second occurs at the boundary of the elliptic-complex/hyperbolic 

regime (EC/H) (see also Fig. 3, Part I). It is shown below that in both these cases, the solution 

produced by the infinite-body antiplane Green’s function (20) exhibits weak elastostatic 

shocks (i.e. finite jump discontinuities in certain components of the deformation gradient). 

On the other hand, the displacement remains continuous but displays localized folding, a 

phenomenon that cannot be captured within the context of the classical elasticity theory. 

Finally it should be noted that although the jumps in the components of the displacement 

gradient remain finite, some curvature components suffer a Dirac delta discontinuity. 

 

5.1 Single folding at (EI/P) ellipticity loss 

At the elliptic-imaginary/parabolic (EI/P) boundary, loss of ellipticity is attained when 

0β =  and 0γ >  (or equivalently 2 0b =  and 0 0b > ). In this case, although ellipticity fails, 

the (WP) condition still holds (provided that 44 0c >  and 55 0c > ), so that the Green’s 

function (15) can still be obtained.  

The dimensionless displacement 44wc  depicted in Fig. 10 shows how a single, localized 

folding is formed when an antiplane concentrated unit force is applied to an orthotropic 

material at failure of ellipticity ( 1 2ε = , 0β = , and 1γ = ). In particular, it is observed that 

when (E) is lost the material folds (crumples) along the discontinuity line 0x = . Accordingly, 

the normal derivative of the displacement xw∂  exhibits a finite jump across the discontinuity 

surface, showing, thus, that the solution suffers a weak elastostatic shock. The magnitude of 

the jump depends strongly upon the parameter γ  (Fig. 11, left).  
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Fig. 10: Single folding emerging at the (EI/P) boundary for an orthotropic material ( 1 / 2ε = , 0β = , and 1γ =

) is evidenced by the dimensionless out-of-plane displacement produced by an antiplane concentrated unit force. 

 

 

In general, at the (EI/P) boundary only one possible discontinuity surface emerges, a 

‘single folding’, which is aligned parallel to the y -axis. In that case, the requirement of 

continuity of tractions across the discontinuity surface and the use of the Maxwell 

compatibility conditions (Eqs. (68)-(70), Part I), lead to the following underdetermined 

differential system for the jumps in the gradients of the out-of-plane displacement 

 
( ) 2 (1)

0 3( ) (1) (3) 32
55 3 3 2

2
0 0

4 4
n

z

b b d gbP c g g
dy

+
= ⇒ − − = 

 
 

, (29) 

( ) (2)2
30 0

2
n

y
bR g= ⇒ − = 

 
 

, (30) 

 
where ( )( )

3
p p

xg y w= ∂ 

 
 

 with 1, 2,3p = . Note that Eqs. (29) and (30) can be directly derived 

from the general differential system (82) in Part I. Now, since 2 0b =  at (EI/P) ellipticity loss, 

the second jump condition, Eq. (30), is identically satisfied, so that (2)
3g  can be different from 

zero. Under these circumstances, Eq. (29) assumes the following form 

 

( ) 2 (1)
0 3(1) 3

55 3 2

2
0

4
b b d gc g

dy
+

− = , (31) 
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which implies that the jump in the normal displacement gradient (1)
3g  satisfies a second-order 

differential equation with the following exponential decaying solution along the discontinuity 

line ( 0x = ) 

 

( ) ( )
55

0 3

2
2(1) (1)

3 3 0
c

y
b bg y g e

−
+= . (32) 

 

In fact, Eq. (32) shows that, in the case of loss ellipticity at the (EI/P) boundary, the original 

differential system, Eqs. (29) and (30), becomes determinate and therefore admits a solution, 

a fact substantiating the general result obtained in Part I (Section 6, Part I). It is worth noting 

that expression (32), describing the variation of 
 

(1)
3 xg w= ∂  along the discontinuity line, 

involves also the Cosserat modulus 3b  (i.e. the secondary bending stiffness). However, Eq. 

(5) shows that the determination of the infinite body Green’s function does not involve the 

parameter 3b , but rather the parameter 0 1 3b b b= − . This implies that the discontinuity surface 

that is predicted to occur at failure of ellipticity can violate equilibrium, or in other words 

continuity of the reduced tractions (29) and (30). Nonetheless, this continuity holds if (E) and 

(PD)B are lost simultaneously, in which case 3 0b =  and the emerging discontinuity surface 

becomes admissible. 

Fig. 11 on the right, shows that the jump in the normal derivative of the displacement 

( )(1)
3g y , is finite and decays exponentially according to Eq. (32) (with 3 0b = ). The 

magnitude of the jump depends strongly upon the parameter γ . It is observed that small 

values of γ  lead to jumps with large magnitude near the origin and fast decay. 
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Fig. 11: Single folding emerging at the (EI/P) boundary as the effect of a unit antiplane concentrated force. The 
normal derivative of the displacement suffers a jump across the discontinuity line 0x =  (left). The jump 

(1)

3 ( )g y  decays exponentially along the discontinuity line (right). 

 
 

5.2 Cross folding at (EC/H) ellipticity loss 

At the elliptic-complex/hyperbolic (EC/H) boundary, loss of ellipticity is attained when 

0β >  and γ β= −  (or equivalently 2 0b >  and 0 2 4b b b= − ). In this case, two inclined 

discontinuity surfaces become possible.  

For instance, Fig. 12 shows how a cross, localized folding is formed when an antiplane 

concentrated unit force is applied to an orthotropic material at failure of ellipticity ( 1 2ε = ,

1β = , and 1γ = − ). In particular, it is observed that when (E) is lost two discontinuity 

surfaces are created with an inclination of 45οϕ = ±  and a cross folding emerges along the 

lines y x= ± . Along these folds the normal derivative of the displacement nw∂  exhibits a 

finite jump that decays away from the origin. 
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Fig. 12: Cross folding emerging at the (EC/H) boundary for an orthotropic material ( 1 / 2ε = , 1β = , 1γ = − ) 
is evidenced by the dimensionless out-of-plane displacement produced by an antiplane concentrated unit force. 

 

 

Further, employing the Maxwell compatibility conditions together with the requirement 

of the continuity of the tractions across the discontinuity surface, yields 

 
( ) 0n

zP = ⇒ 

 
 

 

       ( )
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+ −+ + − + + +  
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( ) ( )

1 4 1 4(2)
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2 4
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, (33) 

 

( )( ) ( ) ( )
(1)

1 4 1 4( ) (2)3
0 2 4 2 4 2 4 2 4 30 0n

s
dgR b b b b b b b b b g
ds

 
= ⇒ − + − − = 

 
 

 
 

, (34) 

 

where ( ) ( )
3

p p
ng w= ∂ 

 
 

 ( 1, 2,3p = ), and s  is the tangential coordinate positioned along the 

inclined discontinuity line. In the case of loss of ellipticity at the (EC/H) boundary  

( 0 2 4b b b= − ), the differential system described by Eqs. (33) and (34) becomes determinate. 
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In fact, the condition governing the jump in the tangential moment traction, Eq. (34), is 

identically satisfied, whereas Eq. (33) becomes 

 
2 (1)

2 44 4 55 (1) 3
3 2 4 2

2 4

0
b c b c d gg b b

dsb b
+

− =
+

, (35) 

 

where it has been assumed that (E) and (PD)B are lost simultaneously, so that 3 2 4b b b=  and 

1 0b =  (see Eq. (90), Part I). Note that if (E) is lost after (PD) and not simultaneously, the 

discontinuous solution violates continuity of reduced tractions. The solution of the 

differential equation (35) shows that the jump in the normal derivative of the out-of-plane 

displacement is exponentially decaying along the discontinuity line (i.e. in the s -direction).  

 

5.3 Non-decaying single folding  

It is worth noting that in both the previously examined cases of loss of (E), SH waves 

still propagate in the Cosserat medium in all directions. In fact, at the (EI/P) boundary ( 2 0b =

, 0 0b > ), SH waves can travel with a real non-zero velocity provided that 55 0c >  and 44 0c ≥

. In particular, when the direction of propagation of the SH wave is aligned with the 

discontinuity surface parallel to the y-axis, the velocity becomes: 55SV c ρ= . On the other 

hand, when ellipticity is lost at the (EC/H) boundary the propagation velocity is given in the 

limit of 0 2 4b b b= −  by Eq. (28), with 2 0b > . More specifically, when the direction of the 

wave propagation coincides with the direction of the discontinuity surface, the velocity of the 

SH waves becomes: ( )2 2
55 44S x yV c n c n ρ= + , with 55 0c >  and 44 0c > , and the components 

of n  are defined by Eq. (108) in Part I. 

A case of interest occurs when the phase velocity of the SH waves becomes zero and 

stationary discontinuity surfaces can emerge. Under these circumstances, the (WP) condition 

is also violated at the (EI/P) or (EC/H) boundaries, and a non-decaying type of folding 

occurs. To investigate such a case, an extreme Cosserat material is considered with 0β =  

and 0ε →  (i.e. 2 0b =  and 55 0c → ), where (E) is lost at (EI/P) boundary and a single non-

decaying folding emerges, parallel to the y-axis. It should be noted that in this case, the 
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integral for the out-of-plane displacement in Eq. (5) diverges since one pair of the conjugate 

roots of the characteristic quartic polynomial (6) approaches zero (along the imaginary axis) 

for all 1k ∈ , leading, thus, to a ‘near-by’ double pole singularity at the origin of the real 

axis. However, this difficulty can be circumvented by perturbing the orthotropic body with a 

quasi-statically applied dipole of forces (two equal and opposite antiplane concentrated unit 

forces), placed symmetrically at a distance 2h  along the discontinuity line 0x = , 

 

( ) ( ) ( ), , ,dw x y w x y h w x y h= − − + , (36) 

 

where the dipole distance is assumed to be 2 10h =  .  

Fig. 13 depicts the emergence of a non-decaying single folding in the case of loss of 

ellipticity at the (EI/P) boundary when, in addition, the (WP) condition is near to be violated (
910ε −

− ). It is observed that the displacement dw  induced by the force dipole does not decay 

in the y -direction. In fact, the constant displacement profile shown in Fig. 14 is obtained at 

every level y const= , with 2y >  . Moreover, the displacement produces a folding, so that 

the (bounded) maximum of displacement is reached on the discontinuity line 0x = and decays 

transversally determining a displaced zone of finite width. Note that in Fig. 14 the 

displacement profiles for couple-stress and classical elasticity are compared. It is shown that 

the displacement for Cauchy material (dashed line) exhibits an infinite jump (Dirac delta) 

along the discontinuity line, so that it results localized in a zone of null thickness, Eq. (25), 

whereas the couple-stress displacement solution localizes in a band of finite thickness ruled 

by the parameter γ . 
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Fig. 13: Non-decaying single folding forming at the (EI/P) boundary for a Cosserat orthotropic material (

910ε −
− , 0β = , 1γ = ) is evidenced by the dimensionless out-of-plane displacement dw  produced by a unit 

force dipole (two equal and opposite forces applied at ( )0, h± ). 
 
 

 

 
 

Fig. 14: Non-decaying single folding at the (EI/P) boundary for an orthotropic material  
( 910ε −
− , 0β = , 1γ = ) produced by a unit force dipole (two equal and opposite forces applied at 

( )0, h± ). Comparison between the couple-stress and classical displacement profiles (the latter reported dashed 
and red) for different values of γ . 
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5.4 An analytical solution showing decaying & non-decaying folding in two orthogonal 

directions 

In the extreme case of a Cosserat material with all null bending rigidities 

2 3 4 0b b b= = =  (so that the only non-vanishing couple-stress moduli is the torsional stiffness 

1 0b > ), a closed form solution for the Green’s function can be derived, showing 

simultaneously a decaying single folding aligned with the x -axis and a non-decaying single 

folding aligned with the y -axis. It should be remarked that in this extreme case both (E) and 

(WP) conditions are violated. In particular, using Eq. (5) and interpreting the inversion 

integral in the sense of distributions, the Green’s function is obtained as 

 

( )
( )

( )

441 2
0

2

1 22 2 2 2
44 2 0 1 2 44 0

, F.P.
4 2 2 2

ci k x k y x
bS e Sw x y dk dk y e

c k b k k c bπ

∞ ∞ − + −

−∞−∞

= = −
+

⌠ ⌠
 

⌡⌡
,  (37) 

 

with 0 1b b= .  

Fig. 15 depicts the variation of the normalized displacement dw  induced by a dipole of 

out-of-plane forces for an extreme Cosserat material with 2
1 44b c=   and 44 0c > . It is 

observed that, immediately outside the dipole zone ( y h> ), the displacement profile 

becomes constant in the y -direction, so that the disturbance does not decay with increasing 

distance from the dipole. Moreover, a localization zone of finite width is observed for 

displacement, where the percolation thickness is a function of the material microstructure. In 

particular, the localization zone in Fig. 15 appears to be narrower ( 6  ) and with a sharper 

profile than that reported in Fig. 14. As a conclusion, for an orthotropic Cosserat material at 

the (E) boundary, the presence of a torsional stiffness ( 1 0b > ) suffices to prevent extreme 

localization of displacement, even when all the other couple-stress moduli are vanishing. 
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Fig. 15: Non-decaying single folding emerging at the (E) boundary for an extreme Cosserat orthotropic material 
with two non-vanishing stiffnesses (the shear stiffness 44c  and the torsional stiffness 2

0 44b c= 
, while 55 0c = ,  

2 3 4 0b b b= == ) is evidenced by the dimensionless out-of-plane displacement dw  produced by a unit force 

dipole (two equal and opposite forces applied at ( )0, h±  ). 
 
 

 

5.5 An analytical solution showing Dirac localization  

In the case where the only non-vanishing couple-stress moduli is 4b  (which is the 

bending stiffness in the x -direction), the Green’s function for the displacement can be 

derived from Eq. (5), with 55 0c = , as 

 

( )
( )

( )
( ) 441 2

4
2

4
1 22 2 4

44 2 4 2 44 44
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 
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⌠ ⌠
 

⌡⌡
. (38) 

 

Solution (38) implies that the displacement suffers an extreme localization (as in the case of 

classical elasticity), exhibiting a Dirac delta singularity [note, however, that the structure of 

the out-of-plane displacement is now different than the classical one, Eq. (25)]. This case 

corresponds to the origin point ( 0β =  and 0γ = ) in the regime classification reported in Fig. 

3 of Part I. Therefore, the extreme localization, displaying a Dirac delta variation, occurs 

because now Cosserat effects do not improve material stability, a circumstance that can be 
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visualized with the deck of cards example sketched in Fig. 16. In particular, this extreme 

Cosserat material can be visualized as a (frictionless) deck of cards that can display a bending 

stiffness in the plane of the cards, but this stiffness does not preclude a Dirac delta solution 

for the displacement, when subject to a concentrated force parallel to a card.  

 

 

           
 

Fig. 16: A (frictionless) deck of cards can display a finite bending stiffness in the plane of the cards (Left); 

however, this bending stiffness does not change the response of the deck of cards to a concentrated force in the 

plane of the cards, which resembles a Dirac delta, as in the classical case (Right). 

 

 

6.  Single and cross faulting in a Cosserat continuum 
It is shown in this Section that the application of a concentrated antiplane moment on 

an extreme Cosserat material at failure of ellipticity yields the emergence of faulting 

(elastostatic shocks of finite amplitude) in single and cross geometries. It is worth noting that 

there is no counterpart of such type of deformation in the classical theory of elasticity. 

For the case of a concentrated unit moment (assumed parallel to the y -axis), the two 

situations of loss of ellipticity, on the (EI/P) and the (EC/H) boundary are respectively 

considered in Figs. 17 and 18, where the dimensionless displacement 44w c  is plotted. In 

particular, Fig. 17 shows the formation of single faulting along the discontinuity line 0x = , at 

loss of ellipticity at the (EI/P) boundary for an orthotropic Cosserat material with 1 2ε = , 

0β = , and 1γ = . On the other hand, at the (EC/H) boundary, two discontinuity surfaces 

emerge. For instance, assuming 1 2ε = , 1β =  and 1γ = − , the inclination of the 

discontinuity surfaces becomes 45οϕ = ±  (Fig. 17).  
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Fig. 17: Single faulting forming at the (EI/P) boundary for a Cosserat orthotropic material ( 1 / 2ε = , 0β = , 

1γ = ) is evidenced by the dimensionless out-of-plane displacement produced by an antiplane concentrated unit 
moment (applied at the spot) parallel to the y -axis. 

 

 

Fig. 18: Cross faulting forming at the (EC/H) boundary for a Cosserat orthotropic material ( 1 / 2ε = , 1β = , 
1γ = − ) is evidenced by the dimensionless out-of-plane displacement produced by an antiplane concentrated 

unit moment (applied at the spot) parallel to the y -axis. 
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Finally, it should be noted that although the jumps in the out-of-plane displacement 

remain finite, so that they can be represented as Heaviside functions for both cases of single 

and cross faulting, the normal (to the discontinuity line) derivatives of the displacement suffer 

a Dirac delta type of jump. 

 

7.  Conclusions 

Extreme Cosserat materials have been defined in Part I of this study to be close to a 

material instability either for the Cauchy or the Cosserat part of the constitutive equations. 

For these materials uniqueness conditions (positive definiteness of the elastic energy and 

strong ellipticity of the elastic tensor) and stability conditions (propagation of plane waves 

with non-vanishing speed and ellipticity) were introduced. It is remarkable that wave 

propagation and ellipticity have been found to be not interdependent conditions. The former 

is necessary and sufficient for the determination of the infinite-body Green’s function, the 

latter provides the condition for the formation of stress channelling, and of folding or faulting 

in a couple stress elastic continuum, which may occur in a single or cross modes. Note that 

the conclusions regarding Green’s functions have been obtained under the restrictive 

hypothesis of antiplane strain, while the more complex case of plane strain will be addressed 

elsewhere. 

Note that although the emergence of folding and faulting for extreme Cosserat 

materials has been demonstrated in the limit situation of loss of (E), these effects are already 

clearly visible when the material still has a strictly positive defined strain energy, but is close 

to failure of (E). This means that extreme materials displaying effects such as folding or 

faulting can be designed and realized in practice, which opens new perspectives in the design 

of ultra-performant materials.  
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Appendix A. Evaluation of the shear stresses in the case of concentrated 

force  
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Upon substituting the displacement solution (13) into the constitutive equations (87) 

and (88) in Part I, the (asymmetric) shear stresses become 

 

( ) ( ) ( )1 1 10
, , sin

2xz xz
Sx y k y k x dks
π

∞
= S∫ , (A1a)  

( ) ( ) ( )1 1 10
, , cos

2yz yz
Sx y k y k x dks
π

∞
= S∫ , (A1b) 

 

with 

 

( ) ( ) ( )1 21 1
1 1 44 2 44

1

, 1 2 1 2
2

p y p y
xz

ik y p c e p c e
k

− −− − Σ = − ∆ + + ∆  , (A2a)  

( ) ( ) ( ) ( )1 21 1
1 44 44

sgn
, 1 2 1 2

2
p y p y

yz

y
k y c e c e− −− − Σ = − ∆ + + ∆  . (A2b) 

 

Note that for 1 0k →  the functions xzΣ  and yzΣ  are bounded and, therefore, the 

decomposition employed for the evaluation of the out-of-plane displacement in Eq. (15) is 

not needed. On the other hand, as 1k → ∞  the above functions exhibit the following 

asymptotic behavior 

 

( ) 1 1 2 1

1
1 1 2lim ,

2
m k y m k y

xzk

ik y m e m e− −

→∞
 Σ = +  , (A3a) 

( ) ( )
1 1 2 1

1
1

sgn
lim ,

2
m k y m k y

yzk

y
k y e e− −

→∞
 Σ = +  , (A3b)  

 

with 2
1,2m γ γ β= ± − . Thus, utilizing the Abel-Tauber theorem (Davies, 2002), the shear 

stresses in the vicinity of the concentrated force behave as  

 

( )
2

2 2 2
1

,
4

j
xz

j j

m xSx y
x m y

σ
π =

=
+∑ ,  ( )

2

2 2 2
1

,
4

j
yz

j j

m ySx y
x m y

σ
π =

=
+∑    as   0r → . (A4) 
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Consequently, the Cauchy-type singularity of the stresses is retained just as in the classical 

theory, although the detailed structure of these fields is altered. However, it is worth noting 

that although the stresses are singular, their symmetric part is not. 
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