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Abstract—The effect of interfacial compliance on the bifurcation of a layer bonded to a substrate
is analyzed. The bifurcation problem is formulated for hyperelastic, layered solids in plane strain.
Attention is then confined to the problem of a layer of finite thickness on a half-space. The layer
and substrate are subject to plane strain compression, with the compression axis parallel to the
bond line. The materials in the layer and in the half-space are taken to be incrementally linear,
incompressible solids, with most results presented for Mooney-Rivlin and J,-deformation theory
constitutive relations. The limiting case of an undeforming half-space is also considered. The
interface between the layer and the substrate is characterized by an incrementally linear traction
rate vs velocity jump relation, so that a characteristic length is introduced. A variety of bifurcation
modes are possible depending on the layer thickness, on the constitutive parameters of the layer
and the substrate, and on the interface compliance. These include shear band modes for the layer
and the substrate, and diffuse instability modes involving deformation in the layer and the substrate.
For a sufficiently compliant interface, the mode with the lowest critical stress is a long (relative to
the layer thickness) wavelength plate-like bending mode for the layer. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

The stability of layered structures is a concern in a broad range of contexts including
sandwich panels in aircraft, submarine coatings, integrated circuits and the origin of geo-
logical formations. There is accordingly a large amount of literature where stability of
layered media is investigated from a variety of perspectives; see, for example, Biot (1965),
Dorris and Nemat-Nasser (1980), Steif (1986a, b; 1987; 1990), Papamichos et al. (1990),
Dowaikh and Ogden (1991), Benallal es al. (1993), Triantafyllidis and Lehner (1993),
Triantafyllidis and Leroy (1994), Shield er al. (1994), Ogden and Sotiropoulos (1995) and
Steigmann and Ogden (1996) and references cited therein. The loss of stability can lead to
the loss of cohesion between layers. In previous investigations, perfect bonding has been
assumed between the layers. Here, the effect of a finite, non-zero interfacial compliance on
the stability of layered structures is analyzed and the results show that reduced cohesion
between layers can promote instability.

The general problem of the finite deformation of a layered, hyperelastic, incompressible
material in plane strain is formulated. The interfaces between layers are modeled by a
constitutive relation expressed in terms of a linear relation between the velocity jump
across the interface and the nominal traction rate across the interface, so that dimensional
considerations introduce an interface characteristic length. Attention is focused on the
specific problem of a layer of finite thickness bonded to a half-space and subject to plane
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strain compression, with the compression axis parallel to the bond line. The fundamental
path is taken to correspond to equal deformations in the layer and the half-space. Bifur-
cation from this state is considered. There are two characteristic lengths ; that associated
with the interface description and the layer thickness.

Results are presented for two constitutive models, a Mooney—Rivlin material and a
J-deformation theory material. The results for both material models illustrate the role that
interfacial compliance can play in reducing the stress level at which bifurcation occurs. In
previous work, Suo et al. (1992) have carried out a general investigation of the effect of
interfacial compliance on the stability of two semi-infinite solids bonded along a planar
interface, Keer et al. (1982) have investigated a homogeneous half-space with an array of
cracks parallel to the free surface and found a substantial reduction in the bifurcation load
because of the presence of the cracks, and Steif (1990) has analyzed the bifurcation of two
plane strain infinite media in contact and noted that tangential slip between the two media
gave a reduction in the bifurcation strain. Here, for the case of a thin layer on a stiff
substrate it is found that interfacial compliance gives a pronounced reduction in the
bifurcation stress and changes the bifurcation mode. With a compliant interface, the
bifurcation mode becomes a plate-like bending mode for the layer, which leaves the substrate
almost undeformed, as opposed to a stationary-wave mode, which involves both media.
Moreover, for the J,-deformation theory constitutive relation, a variety of bifurcation
modes are found, including plate-like buckling for the layer and stationary waves-like
modes involving both the layer and the substrate, as well as interfacial, surface and shear
band modes in either the layer or the substrate. The occurrence of one or another of these
modes is related to the material and interface parameters, as well as to the layer thickness
and the boundary conditions. This variety of bifurcation modes is consistent with the
experimental observation on Cu-W laminates by Ozturk er al. (1991), where, when failure
is approached, a “‘competition” between shear banding and diffuse bifurcation modes was
observed.

2. PROBLEM FORMULATION

A laminated structure, as shown in Fig. 1, is considered. In the prebifurcation state,
all layers are specified to undergo the same homogeneous deformation so that equilibrium
and compatibility are trivially satisfied. Furthermore, plane strain conditions are assumed
to prevail, with the principal directions of deformation aligned normal and parallel to the
layers. Rate boundary conditions consistent with continuing deformation in the homo-
geneous mode are prescribed and the possibility of bifurcation from the homogeneous state
is investigated.

G . .
ty =hy=-Sy (v -vy)

o . .
43 =47=-Sy (V¢ -v)

Fig. 1. Sketch of the laminated structure analyzed. The layers can have different thickness and
correspond to different elastic materials. The interfaces between the layers have a specified interfacial
compliance. The nominal tractions are required to vanish on any external surface.
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A Lagrangian formulation of the field equations is used with the current state taken
as reference. Material points are identified by their Cartesian coordinates in the reference
state. Suppose that at some stage of the deformation history, two solutions are possible to
the rate equilibrium equations. Denote the difference between rate field quantities associated
with two possible solutions by (). In terms of the unsymmetric nominal stress tensor, t,
which is related to the traction transmitted across a material element of area having normal
n in the reference configuration by T = n-t, the difference fields must satisfy

i = O, (1)

where Cartesian tensor notation is used with a comma denoting partial differentiation and,
for plane strain, indices range from 1 to 2.

The materials considered are rate independent and incompressible, with the rate consti-
tutive relation having the form

t:-j = Kijklvl,k +p5,j (2)

Here, ¢, is the Kronecker delta, p is the hydrostatic stress rate (positive in tension) and K,
are the instantaneous moduli, which are presumed to possess the symmetries K, = K.
In addition to (2), incompressibility requires

U,-,,- — 0, (3)

where v denotes the velocity.

With the coordinate system in Fig. 1, attention is restricted to layered solids that are
unbounded in the x, direction. Any external surface has its normal parallel to the x;
direction and is taken to be subject to dead loading so that for the bifurcation problem

f1h =0, f;,=0. 4

At each interface between layers, the boundary conditions are that the traction rate is
continuous across the interface and that this traction rate is related to the velocity jump
across the interface by an elastic interfacial constitutive relation. These require that

=1t =16, h=1Inh="l,, (5)
and
= =S —v0), fn=—Su@ —ur), (6)

with the superscripts + and — referring to quantities on opposite sides of the interface as
sketched in Fig. 1. The sign convention in (6) is such that the x,-axis is directed towards
(—) and away from (+).

In plane strain, the instantaneous stiffness of the interface, S, is a 2 x 2 matrix of
dimension [stress/length], which may depend on the deformation jump history up to the
current state, but is independent of the current velocity jump. Whatever the history depen-
dence, the key feature of the interface response is that, with increasing separation, the
traction across the interface reaches a maximum and then decreases. For a softening
interface, one or more eigenvalues of S are negative. The limiting cases of a traction free
surface and a perfectly bonded interface correspond to S = 0 and S — oc, respectively.

In each layer, bifurcations of the form
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ik,
>

v = w(x;)e P = q(x,)e*, @)

are sought. The functions w/{x,) and ¢(x,;) will, in general, differ from layer to layer but the
wave number £ is taken to be the same for all layers.
Substituting (7) with (2) into (1) gives

KWl + Ky oW +ik (Ko + Ky )wh k(K 2, + Ko )W)

—k*Ky 3wy —k* Ky 0w, +q =0,
Kool + KioWs + k(K221 + Koz )W k(K225 + Koo p2)W)

—Kk* Koy Wi —k* Kpppaws +ikg = 0, (8)

where ( )’ denotes differentiation with respect to x,.
Equations (8) and the incompressibility condition

wi +ikw, =0, C)

constitute three constant coefficient ordinary differential equations for the three unknown
functions w,(x,), w,(x,) and g(x,).

2.1. Material behavior

For orthotropic, incompressible, rate independent solids deforming in plane strain,
Biot (1965) has shown that the incremental response is governed by two in-plane shearing
moduli. With g and u, denoting the moduli corresponding to shearing parallel to the
principal stress axis and shearing at 45°, the components of the instantaneous moduli K in
(2) have the form (Biot, 1965 ; Hill and Hutchinson, 1975)

o
K =ﬂ*_5—P, Ky = —piy, Kij12 =K1 =0,
o
Ky = —ts Kizao =#*+5—‘P, K>z1: = Ky =0,
o o
K, =p+ 5 Ky =p—p, Ko =Hh=5s (10
with
g,+0

o=0=0:, p=—75—. (11)

Subsequently, numerical examples are given for two specific materials, both of which
are initially isotropic elastic solids. One is the Mooney-Rivlin material for which the strain
energy, W, in plane strain is given by

=BGz +13-2), (12)

where A, and 1, are the principal in-plane stretches. In the current state, A, = Aand 4, = 1/4.
For the Mooney-Rivlin material

0= p( =2, m=p=20G 4072, (13)

The other material is a J,-deformation theory solid introduced by Hutchinson and
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Neale (1979). For power law hardening in plane strain, the strain energy function is given
by

o080 [\ TV 2 2
W=m< ) , ae=\/§[(1n/1,)2+(1n42) 1 (14)

&o

Here, 0, and ¢, are material constants ( for the pure power law hardening in (14) these
enter only in the combination ¢,/e)) and u, 44 and o are given by

N
ae = 0'0 <B—E> L] (15)

)

No, /e, \V ! oo (& \"
= — R =——|—| coth(\/3¢,), 16
=3 (80) u \/§<80> (/32) (16)

with g, = 28/\/3, e=Inland o, = \/_3;0/2.

The significance of the J,-deformation theory solid is that it can serve as Hill’s (1958)
linear comparison solid for an elastic—plastic solid with a corner on its yield surface,
see, for example, Christoffersen and Hutchinson (1979). Briefly, for elastic—plastic solids
exhibiting piecewise linear behavior, the neighborhood of the current state in strain rate
space can be divided into a number of cones, in each of which a linear relationship between
stress rate and strain rate holds. For example, the constitutive relation for the classical
eclastic—plastic solid is piecewise linear with two branches; one for plastic loading and the
other for elastic unloading. Hill (1958) has shown that for elastic—plastic solids and for a
pre-bifurcation state corresponding to continued plastic loading, the first possible bifur-
cation can be investigated for a solid having moduli that are independent of rate quantities
and that correspond to the active moduli in the pre-bifurcation state. The solid with these
moduli is termed the linear comparison solid.

2.2. General solution
The solution to the system of homogeneous ordinary differential eqns (8) and (9) has
the form

TXy

wi(x) = ae™, q(x,) = ce™.

Substituting into (8) and (9) and using (10) gives

_ . o a) | .
—=—pltt—k|pu—3 ith(u—py— T
(#* 3 ) ( ) (B—pe—p) a 0
. . _ 2 E . E_ 2 X a, | = 0l
itk(p— ps—p) T (IH‘ 2) (u*+2 p>k ik . 0
L T ik 0

a7

Setting the determinant of coefficients in (17) to zero determines the four values of the
exponent T as
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2i—dp+ A
na =tk [FEE, as

2u—4ue—A
= bk [T (19)
where
A= 0" —16pe(pn—py). (20)

Therefore, assuming that the roots are distinct, the general solution for w,(x,), w,(x,)
and ¢(x,) has the form

4 4
wi(x,) = Y bafer™, q(x;) =Y biclev™, #3))
j=1 =1

where b; are arbitrary coefficients and (af, ¢) is the eigenvector of (17) corresponding to
eigenvalue 1;.
The solutions are

Wl(xl) = blerlxl +bze—1lxl +b3€13x1 +b4e—13x1, (22)
AT 7. x -1, x T3 T,X —1,X
wy(x;) = 1[?@16‘ ' —beT M)+ ?(bse r—bue ‘)], (23)
T, (0+A ;3(6—A
ar) = D g erm ey 4 T o ey

Using (2), (10) and (7) in (5), continuity of tractions across an interface takes the form
+ a* + +y/ + __ o - -y -
2/»‘*"‘2“"17 (wi) +g" = 2#*"“2““P wr)Y+4q,
; + +Ywt + o" +y/ : - ~Yy— -, 9 =y
e —p i + (W T w3 = ke —p Wi+ (T ), (@29)

and the interfacial constitutive relation (6) becomes

o
<2N*—§_P)W/1+q= —Siwi —wi)—=8p(wy —wy), (26)
o
ik(u—p)w, + (ﬂ+ 5) wh = =Sy (Wi —wi) =8 (w3 —wy), 27

where, from (25), the quantities on the left hand side of (27) can be associated with either
the + or — side of the interface. Together, (25)—(27) constitute four equations for the eight
unknown coefficients b} and b;". The remaining equations come from the boundary con-
ditions at the other edges of the + and — layers. For example, if the opposite edge of the
+ layer is traction free, the boundary condition there is of the form of (25) with the left
hand sides set equal to zero; if the — layer is half-space that is unbounded for x, - o,
then the two coefficients of the terms with positive real exponents vanish. In any case,
imposition of the boundary conditions gives a set of homogeneous equations for the
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unknown constants in the layers. Setting the determinant of this set of equations to zero
gives the critical condition for bifurcation.

The character of the exponents 7; depends on the character of the governing equations.
Using the standard classification of regimes, Hill and Hutchinson (1975), the 7; are: (i) all
real in the elliptic imaginary regime, (ii) two complex conjugate pairs in the elliptic complex
regime, (iii) all pure imaginary in the hyperbolic regime, and (iv) two pure imaginary and
two real in the parabolic regime. The significance of this is that a loss of ellipticity is
associated with a shear band bifurcation. For the constitutive relations considered here,
the rate equations are either elliptic or hyperbolic and the undeformed state is in the elliptic
regime. For the Mooney—-Rivlin material, the rate equations remain elliptic regardless of
the magnitude of the deformations. On the other hand, for the J,-deformation theory solid,
the governing equations become hyperbolic when (Hutchinson and Tvergaard, 1981)

£ = %\/j\’(r~N), r = /3e coth(\/3e,). (28)

Thus, if the critical strain in (28) is reached in a layer before bifurcation into the
layered solid mode (7), a shear band localization in that layer precedes the layered solid
bifurcation.

3. RESULTS

3.1. Layer on a half-space

For a layer laying between 0 £ x; < A on the half-space x, > A, the boundary con-
ditions (4) apply at x, = 0 and the interface conditions (6) are imposed at x, = h. Addition-
ally, the condition that the solution decays with depth in the half-space has to be imposed.
The + field quantities are taken to be associated with the layer and the — field quantities
with the half-space. Attention is focused on circumstances where bifurcation occurs while
the material in both the layer and in the half-space is in the elliptic regime. With the signs
in (18) and (19) chosen so that R(z,) and R(z;) are positive, b7 and b3 must vanish (note
that in the hyperbolic regime the 7, are all pure imaginary so that this condition cannot be
imposed). The bifurcation condition becomes

det(M) =0, (29)
where M is the 6 x 6 coefficient matrix of the system of equations

- Lt -
M, M, M; M, M; st“ ]+ r 0
My My, My, My, M My b: 0‘
M, M,, M,; M;, M, My by 0 (30)
My My My My, My Mg bs 0
Mg M5, Msy Ms, Mss Msg by 0

0

-M6l M62 M63 M64 M65 M66 -~

L by mu T

The expressions for the components of M are given in the Appendix assuming that
Si2 = S, = 0. Thus, the results presented here are confined to the special case where the
coupling between the normal and shear response is absent.

The bifurcation condition (29) involves the dimensionless parameters kh, us/(hS,,)
and ui/(hS,,). The wavenumber k can be written as k = 2n// where / is the wavelength of
the bifurcation mode. With the coordinate system in Fig. 1, S;, corresponds to the normal
stiffness of the interface and Sy, to the shear stiffness of the interface. These moduli can be
written as
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C, G
5’

S =5_, S22 =

@3n

where C, and C, have the dimension of stress, and J, and §, are normal and tangential
interface characteristic lengths. The ratios pf/(AS,,) and uf/(AS,,) can then be written

as
N AV AN P CAY I
hS”—(h)<C,,’ wsn - \n)\¢c.) @2

In general, the interface characteristic lengths J, and &, are expected to be small
compared to the layer thickness 4. The value of the interfacial stiffness will depend on the
bonding of the layer and the substrate and, in general, will decrease with increasing
interfacial separation ; when the normal and tangential tractions across the interface reach
a maximum the corresponding stiffness, C, and C,, respectively, vanishes. Hence, the values
of uf/C, and uf/C, can be large.

In the numerical results presented subsequently, further simplifications are made. In
most cases it is assumed that C,/d, = C,/d,. In a few calculations, C, is taken to be zero (no
interface shear stiffness). Hence, the bifurcation results depend on the ratio of layer thickness
to bifurcation mode wavelength 4/! and on the ratio of an interface characteristic length to
layer thickness c/h, where

=, (£), o

The ratio c/k is zero for a perfectly bonded interface and the value of this ratio increases
with increasing interface compliance. In the limit of zero interface stiffness, ¢/h - o and
the interface becomes a free surface.

The prebifurcation state is taken to be specified by the principal extensions 4, = 1/4,
2, = A on both sides of the interface (the 2-axis is parallel to the interface, as sketched in
Fig. 1). For a perfectly bonded interface, continuity of the normal displacement gradient
across the interface, together with incompressibility, requires the strain state to be the same
on both sides of the interface. With a compliant interface, there can be a displacement jump
across the interface, so that a difference in deformation state is possible. Here, it is presumed
that the loading is such as to enforce the same strain state on both sides of the interface in
the pre-bifurcation state. Results for Mooney—Rivlin and J,-deformation theory materials
are presented when the pre-bifurcation state corresponds to plane compression on each
side of the interface, i.e., A > 1,6} =0y =0and o, <0.

3.1.1. Mooney—Rivlin material. It is assumed that both the layer and the substrate are
Mooney-Rivlin materials homogeneous and unstressed in the ground state. Quantities with
a + are associated with the layer and quantities with a — are associated with the substrate.
From (13), with u* and u~ denoting the current incremental moduli for the layer and the
substrate, respectively, the non-vanishing in-plane stress component is given by

}.2_1—2 B B 22__[142 )
67 = —2u* (m‘:), o, = —2u (m:) (34)

From (34) and (13) the following relation holds on the fundamental path,
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ar + +
2B B const. (35)
g, 12 Ho

Using (35) in (18) to (20) the expressions for the exponents 7 simplify to

- 2—|os|/u -
+ +
=1 =k /2 e 13 =13 =k (36)

Using (36), the components of the matrix M in (30) can be written in a simple form
and the bifurcation stress is obtained from (29).

The results are presented in Figs 2-4 as plots of o,/u vs h/l. From (34),
o /ut = o5 /u~ and the common value of this ratio is denoted by o,/u. The ratio A/l is the
ratio of the layer thickness divided by the wave length of the bifurcation mode, i.e., !/ = 2n/k.
For all the curves in Figs 24, the long wavelength limit, #// — 0 corresponds to the surface
mode bifurcation of the substrate and the short wavelength limit, #// - oo, corresponds to
the surface mode bifurcation of the layer (Hutchinson and Tvergaard, 1980 ; Dowaikh and
Ogden, 1991). For the Mooney—Rivlin material, the values of a,/u in these two limits are
equal. For 4/l = 1, the value of o,/p is very close to the value for the surface mode bifurcation
of the layer.

Figure 2 is included for reference and pertains to the case of a perfectly bonded
interface. Results for different ratios u~/u* are shown. The case u~/u* = 1, not shown,
corresponds to the surface instability of a homogeneous half-space for which a,/u ~ 1.68.
The results in Fig. 2 are consistent with the observation of Papamichos et al. (1990) who
noted that the stiffer material dominates the development of the instability. If the layer on
the half-space is a soft layer then it behaves as a confining medium for the stiff half-space
and acts to increase the bifurcation stress above that of the homogeneous half-space. On
the other hand, if the material of the layer is stiffer than that of the substrate, then the half-
space behaves as a confining medium for the layer. As will be shown in the following,
this behavior changes in the presence of interfacial compliance. The bifurcation modes
corresponding to the bifurcation stresses in Fig. 2 are stationary wave-like modes which
involve both the layer and the substrate. Moreover, when p*/u~ tends to infinity, the

2.0 et

-0, /u|

15

10} | .
[ p/'=0.5 |
osp T HW/u'=0.8 -
[ —————— . ———— p’-/u+=
T W=
o'o PR S NS KN VAT S SR WHN N VOO SR S VRV N TS ST VNS S R SIS WU S
0.0 0.2 0.4 0.6 08 10

Fig. 2. Bifurcation stress, a,, divided by y, for a layer (+) on a substrate (—) as a function of the

layer thickness (h) divided by the wavelength of the bifurcation mode (/). A perfectly bonded

interface and different ratios g~ /u* are considered. The layer and the half-space substrate are both
Mooney—Rivlin materials.
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h /I1 .0
Fig. 3. Bifurcation stress, 0, divided by g, for an elastic half-space with an interface embedded at a

depth 4 as a function of the depth (#) divided by the wavelength of the bifurcation mode (/), for a
Mooney-Rivlin material. Various values of interfacial compliance c/h are considered.

solution tends to the bifurcation stress of the layer disconnected from the substrate, i.e., to
the case of an isolated layer investigated by Biot (1965), Hill and Hutchinson (1975), and
Young (1976). It is also worth noting that the results in Fig. 2 differ from the analogous
results of Dorris and Nemat-Nasser (1980) because of their assumption of equal stress in
the layer and substrate in the fundamental path.

In Fig. 3, u~/u* = 1, so that the results pertain to an infinitely long, straight interface
embedded at depth /4 in a homogeneous half-space. For small values of ¢/h, the bifurcation
stress differs little from that for a homogeneous half-space for which o,/u =~ 1.68. However,
for large values of c/h, the minimum bifurcation stress can be reduced by a factor of two
or more. Also, for a homogeneous half-space there is no preferred wavelength because
there is no characteristic length in the problem. The presence of the compliant interface
introduces a characteristic length and a specific wavelength associated with the minirnum
bifurcation stress. The value of this wavelength increases (#/! decreases) with increasing
interface compliance, i.e., increasing values of c/h. In Fig. 3, for a fixed value of c/h, there
can be more than one bifurcation mode with the same critical stress. The longer wavelength
mode, the smaller value of 4/l, corresponds to a plate-like bending mode for the layer while
the shorter wavelength mode, the larger value of A//, corresponds to a surface mode for the
layer. The bifurcation mode near the minimum of the curves corresponds to a plate-like
bending mode for the layer, which leaves the substrate almost undeformed. This feature is
found quite generally when the compliance of the interface is non-zero. The limiting case
c/h = oo corresponds to zero interface stiffness so that the layer of thickness 4 acts as an
infinitely long (in the x,-direction) plate, for which the bifurcation stress is zero. Another
limiting case is the long wavelength limit, 4/l — 0, in which case the critical condition for
the surface instability of a half-space is recovered. The strong effect of interfacial compliance
on bifurcation is also seen in Keer ez al. (1982) who considered an array of cracks embedded
at depth h and parallel to the free surface.

Figure 4 shows four cases where the stiffness of the layer and the substrate differ. Fig.
4a pertains to a more compliant layer on a stiffer substrate (u~/u* = 2), while Fig. 4b is
for a stiffer layer and more compliant substrate (u~/u* = 1/2). In each figure the curve
c/h = 0 corresponds to the case of a perfectly bonded interface. In Fig. 4a, the substrate is
stiffer and the bifurcation stress for a perfectly bonded interface is above that for the
isolated substrate. With a non-zero interface compliance, the minimum bifurcation stress
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Fig. 4. Bifurcation stress, o,, divided by g, of a layer (4) on an elastic substrate (—) as a function

of the layer thickness (k) divided by the wavelength of the bifurcation mode (/). Various values of

interfacial compliance c/h are considered. The layer and half-space substrate are both Mooney—

Rivlin materials. (a) The layer is weaker than the substrate (u~/u* = 2). (b) The layer is stiffer than
the substrate (u~/u* = 1/2).

falls below that for the isolated substrate. In Fig. 4b where the layer is stiffer than the
substrate, the shape of the curve of o,/u vs A/l is similar for all values of the interfacial
compliance parameter, c/A, with the minimum of the curve decreasing with increasing c/A.

3.1.2. J,-deformation theory material. For this constitutive relation, the layer and
substrate are characterized by the two material parameters N*, K*, and N—, K™, respec-
tively, where the parameter K has the dimensions of stress and is defined by

K= ;‘7" (-\%)M ; 37
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It is convenient to characterize the current state by the logarithmic strain & = In 1.
From (14), the current stress state is specified by o, = 0 and o, = — K¢¥. The determinant
(29), is now considered a function of ¢ and the bifurcation condition is expressed as a
critical value of the logarithmic strain, ¢, instead of as a critical stress value.

The logarithmic strain at bifurcation is plotted against #// in Fig. 5 for different values
of the parameter c/h defined in (33). The results in Fig. 5a are for K~ /K* =2, N* = 0.1,
N~ = 0.4, while those in Fig. 5b are for K~ /K* = 1/2, N* = 0.1, N~ = 0.4, and those in
Fig. 5¢c for K~ /K* =2, N* = 0.4, N~ =0.1. For the case in Fig. 5a the magnitude of the
stress in the substrate exceeds that in the layer when ¢ > 0.099. On the other hand, the
magnitude of the stress in the layer exceeds that in the substrate over the entire range in
Fig. 5b. In Fig. 5c, the properties of the layer and substrate are reversed from those in Fig.

0.50 T——r—r—r
(a) L 1
€ ¢/h=0 1
¢/h=0.005
0‘40- ¢/h=0.05 |
c/h=5 |
0.30 -
0.20 T
T
0.10 |1 . 3
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Fig. 5. Logarithmic strain at bifurcation, ¢, for a layer (+) on an elastic substrate ( —) as a function

of the layer thickness (/) divided by the wavelength of the bifurcation mode (}). Various values of

interfacial stiffness ¢/A are considered. The layer and the half-space substrate are both J,-deformation

theory materials. (a) K~/K* =2, N* =0.1, N =04. (b) K /K* =1/2, N* = 0.1, N” =04 (c)
K /Kt =2, Nt =04, N =01
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Fig. 5~—Continued

5b so that here the magnitude of the stress in the substrate exceeds that in the layer over
the range shown.

For the J,-deformation theory solid, loss of ellipticity may occur before bifurcation
into the diffuse mode. This is indeed the case for the initial portions of the graphs in Figs
5a and Sb, where loss of ellipticity occurs in the layer ; with N* = 0.1 this occurs at ¢ ~ 0.32.
The portion of the curves falling above this value (denoted in the graphs by a horizontal
dotted line) corresponds to circumstances where strain localization terminates the homo-
geneous response along the fundamental path and diffuse bifurcation modes become avail-
able subsequently. The stiffer the interface, the larger the regime in which homogeneous
deformation is terminated by strain localization in the layer. In Fig. 5S¢, bifurcation always
occurs in the elliptic range.

In the long wavelength limit, 4// — 0, the critical condition for a surface instability of
the substrate is approached, for all curves in Fig. 5. In contrast to the Mooney—Rivlin
material, the short wavelength limit may correspond to the surface mode being the one at
the layer—half-space interface. This is the case in Fig. 5c, where, for a perfectly bonded
interface, the solution tends to the interfacial bifurcation mode and strain in the short
wavelength limit 4#// — co0. This is due to the fact that the critical strain for the interfacial
mode is less than that corresponding to a free surface instability of the layer. For finite
stiffness of the interface, the solution tends once more to that for an interfacial instability
and, slowly, to the surface bifurcation strain of the half-space. This agrees with results for
interfacial bifurcation, in the presence of an interface of the type (6) : the surface bifurcation
strain of the half-space more prone to instability is approached in the short wavelength
limit.

For a better understanding of Fig. Sc, follow the curve relative to ¢/h = 1, for A/l
increasing. Initially the bifurcation strain corresponds to the surface instability mode for
the substrate. Then, the bonding to the layer leads to a very small increase in this bifurcation
strain. The critical mode soon evolves into a plate-like buckling mode for the layer (cor-
responding to the minimum of the curve). This mode remains close to the isolated layer
solution, until a flat portion of the curve, where an interfacial bifurcation mode becomes
available. This interfacial bifurcation mode slowly tends to the surface bifurcation mode of
the substrate, for 4// increasing.

3.2. Layer on an undeforming substrate
In this section the special case of a layer connected through an interface of the type
(6) to an undeforming substrate is considered. The substrate, however, is supposed to
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follow the deformation of the layer in the fundamental path, until bifurcation occurs. Since
the only material properties that enter are those of the layer, the superscript +associated
with layer quantities is dropped. The fundamental solution is one of compression parallel
to the layer so that o, = 0 and o, < 0. Therefore, the layer is subject to traction free
conditions on one side, at x; = 0, whereas it is subject to the interface conditions (6), with
vy = 0, on the other side, at x; = A, The bifurcation condition becomes

det(N) = 0, (38)

where N is the 4 x 4 coefficient matrix of the system of equations

Ny N Ny Ny b,
Ny Nyy Ny Ny b,
N3y N3, Nz Ny b;
N4y Niz Ni Nug b,

(39)

S O O O

The expressions for the components of N are given in the Appendix assuming that
Si =82, =0.

The bifurcation condition (38) involves the ratio p/u, and depends on the length
parameters kA and ¢, where, as in the previous results, the assumption 6,/C, = §,/C, is made
so that there is a single interface characteristic length given by (33). In the limit S — 0, the
results for a free layer are recovered.

In Fig. 6 bifurcation results are presented as a function of u/u,, without assuming any
specific dependence of y or p, on stress or deformation. Results for u/u, = 1/3, 1 and 3 are
shown in Figs 6a, 6b and 6c, respectively. In each figure, the critical compressive stress,
normalized by the modulus u, is plotted against 4/, the ratio of layer thickness to bifur-
cation mode wave length. In each case results for various values of the ratio of layer
thickness, 4, to interface characteristic length, c, are plotted ; #/c = 0 corresponds to a free
layer, C, = C, = 0, and increasing values of this ratio correspond to increasing interface
stiffness. For fixed values of the interface stiffness parameters C, and C, increasing h/c
corresponds to increasing layer thickness.

For hjc = 0, the minimum bifurcation stress is associated with a column buckling
mode for a column of zero aspect ratio and is, therefore, zero. With increasing interface
stiffness (or increasing layer thickness) the minimum bifurcation stress increases and the
wavelength of the corresponding bifurcation mode decreases. For a very stiff interface, or
a very thick layer, #/c — oo, the minimum bifurcation stress tends to the critical stress for
a surface instability of the layer. For pu/u, = 1/3, 1 and 3, the critical values of —a,/u, for
a surface instability are 0.64, 1.68 and 3.73, respectively. For long wavelengths, #// — 0 the
curves for h/c > 0 are terminated at the value of o,/u, for which ellipticity is lost in the
layer. These values are o,/py = —2/3 for p/pu, = 1/3 in Fig. 6a, 0,/psx = —2 for pfps =1
in Fig. 6b and o,/us = —4ﬁ for u/p, = 3 in Fig. 6¢.

Results for J,-deformation theory materials are shown in Fig. 7, with N = 0.1 in Fig.
7a, and with N = 0.4 in Fig. 7b. Here, the strain for bifurcation is plotted against A/l In
Fig. 7a, where N = 0.1, loss of ellipticity occurs at ¢ ~ 0.32 and the strain at which a
surface instability occurs is ¢ &~ 0.20. For N = 0.4 these values are ¢ ~ 0.68 and ¢ ~ 0.37,
respectively. In Fig. 7a, for i/c > 0, there are two local minima ; the one corresponding to
the longer wavelength, i.e., the smaller value of #//, is the absolute minimum for smaller
values of 4/c, but the larger value of 4/! is the absolute minimum for a stiffer interface or a
thicker layer, i.e., a larger value of h/c. On the other hand, for N = 0.4, the longer wavelength
mode, i.e., the smaller value of 4/, is the absolute minimum in all cases shown. In both
Figs 6 and 7 the strong effect of a compliant interface in precipitating bifurcation can be
seen.



Interfacial compliance 4319

In Fig. 8, we consider the special case S, = 0, with §;, # 0. This case corresponds to
a layer on “continuously distributed transverse springs”, analogous to a Winkler foun-
dation. The predictions based on (38) and (39) are compared with results obtained from
approximate Kirchhoff plate theory. Approximations of this type have been used in previous
investigations of the stability of layered solids, e.g., Shield ez al. (1994). In order to obtain
this approximation under the present constitutive assumptions, consider a layer of current
thickness 4 in the x—x,-plane, where x, has the direction of the bond line and
x, € [—h/2, h/2]. Before bifurcation, the layer is subject to a state of compression parallel to
X,, so that the only non-zero component of Cauchy stress is ¢, < 0. In these circumstances,
Biot (1965, Sect. 2) has shown that equilibrium requires

M,22 '+‘m72 +q+h6251,22 = O, (40)
(@) 0-7_""1"f'|""l"'-r"'—'_
-G /M.
06}
05§
0.4Ff
0.3}
[ /7
[ /s —
0.2 - /"/ h/c=0
[ / wp.=1/3 h/c=0.1 ]
oaf /T hic=0.4 ]
v — h/c=0.6 |
00’*{'1..1..,llAL.._l...‘l‘.JL‘
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Fig. 6. Bifurcation stress, o, divided by y,, for a layer on an undeforming substrate, as a function

of the layer thickness (k) divided by the wavelength of the bifurcation mode (/). Various values of
interfacial stiffness 4/c are considered. (8) u/p, = 1/3. (b) p/u, = 1. (©) w/u, = 3.
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Fig. 6—Continued

where
+h/2
M;J X1 dxy, m=f13X | 2m2 —E12X1 e, = w25
—h/2
. . l +hH/2
g =lle,=n2 —fiilx,=—n2> D1 =ZJ vy dx,. 41)
—hj2
Because the tangential stiffness of the interface vanishes, i.e., S, = 0,m = 0,and g = — 5,7,
and therefore (40) becomes
M, =810, +ho,0,,5, =0. 42)
The plate theory deformation assumption is
0, = w(xy) v = up(xy) —x,wo, (43)

so that d;, = 0. Also, each layer of the plate is assumed to be in a state of plane stress so
that

fH, =6y, =0, (44)
and, therefore, from (2), (10) and incompressibility, (3), p = 2u,v, , so that
o = (4Us—02)02 5. (45)

Using (43) in (44), M can be calculated and substituting into (42) gives

Dy— —0h— +Suw=0, (46)
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where

3

h
Dy = E(“'ﬂ* —03). 47)

Note that (42) is exact (as remarked by Biot, 1965), whereas (46) is approximate,

because of both the assumptions of plane stress and the plate theory deformation mode
(43).

For an infinite (in the x,-direction) plate, write

w(x,) = Asin(kx,) (48)

where k& = nn/l is the bifurcation mode wavelength.
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Fig. 8. Bifurcation stress, divided by 4 for a layer on an undeforming substrate (with S, = 0) and

for an isolated layer (S|, = §,; = 0), for a Mooney-Rivlin material, compared with the plate theory

approximation (50). In (b) results for a layer on an elastic half-space with u~/u* = 2 are also
shown.

Solving for a,4 results in

1
"‘o'zh = D*k2+Sl] —2.

(49)
Assuming that 4y, >» |a,| and using (33), (49) can be written as
g, 1 h 1
— 2= —(kh)>+ - . 50
Hx 3 ¢ (kh)? 0

It is expected that (50) will give a good approximation to the layer on elastic foundation
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Fig. 9. Logarithmic strain at bifurcation, ¢, for a layer on an undeforming substrate for a Jo-
deformation theory material and for an isolated layer with ¥ = 0.4, compared with a layer on an
elastic substrate with K= /K* =2, N* =04, N~ =0.1.

problem when 4// and c¢/h are sufficiently small. Figure 8 shows a comparison of the solution
based on (38) and (39) with the approximation (50) for a Mooney—Rivlin material. Also
included are results for an isolated layer and, in Fig. 8b, for a layer on an elastic half-space,
in order to illustrate the approximation involved in idealizing the half-space as undeforming.
The results for a layer on an elastic half-space differ from those in Section 3.1 in that in
Fig. 8b S5, = 0. In Fig. 8a 4/c = 0.1, while in Fig. 8b p~/u* = 2 and h/c = 0.2. Note that
for —o,/p higher than about 0.3, the approximations made in leading to (50) (including
4u > |0,]) are not necessarily accurate. Nevertheless, over a fairly wide range the approxi-
mation is reasonably good. Other results for h/c = 0.01 and smaller (not shown here)
indicate that (50) gives a good approximation of the minimum value of the bifurcation
stress. Similar calculations were carried out using J,-deformation theory with ¥ = 0.1 (also
not shown here) and, as in Fig. 8, the results for a layer on an elastic foundation are
qualitatively similar to those for a layer on elastic-half space, except close to the long
wavelength limit 4// = 0. This is not the case for the J,-deformation theory solid with
N = 0.4 in Fig. 9 because of the occurrence of an interfacial bifurcation between the layer
and the half-space that is not possible for the layer on an elastic foundation.

4. CONCLUDING REMARKS

The bifurcation of a layer bonded to a substrate has been analyzed allowing for
interfacial compliance. The substrate is idealized as a half-space and the compliant interface
is described by an incrementally linear constitutive law between the nominal traction rate
and the velocity jump across the interface. Plane strain conditions have been assumed
and the layer and substrate materials were taken to be hyperelastic, incompressible and
orthotropic. Specific examples have been given with the layer and substrate materials
modeled as Mooney—Rivlin and J,-deformation theory materials. The special case of a
layer on an undeforming substrate has also been considered.

A variety of bifurcation modes are possible depending on the layer thickness, on the
constitutive parameters of the layer and the substrate, and on the interface compliance.
These modes include shear band modes for the layer and the substrate, and a surface
instability mode for the layer that are unaffected by the compliance of the interface. Diffuse
bifurcation modes that involve deformation of both the layer and the substrate are affected
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by the compliance of the interface. For large interfacial compliance, there is also a plate-
like bending mode for the layer that leaves the substrate almost undeformed.

Because the constitutive relation for the interface is a relation between the nominal
traction rate and the velocity jump across the interface, a characteristic length is introduced.
In the numerical results presented here we assume that the interface compliance matrix has
only one non-vanishing component (or two equal components). The ratio of the charac-
teristic interface length, ¢ defined by (33) to the layer thickness 4 then characterizes the role
of the interface compliance. For a perfectly bonded interface ¢/h = 0 (h/c — o), while a
free surface between the layer and substrate corresponds to ¢/h — oo (h/c = 0).

From (33) the ratio ¢/A can be written as (6,/4) (us/C,). The first term is the ratio of
an interface characteristic length to the layer thickness which is expected to be small, say
of the order of 1073 or smaller. For a well bonded interface, the second term would be of
the order of unity. Hence, ¢/h would be very small and the interface compliance would play
a negligible role on the bifurcation behavior. However, when the bond between the layer
and substrate is weak, the interface stiffness C, is small and the ratio (u3/C,) can be large.
In such a situation c/k can be large enough to substantially affect bifurcation even though
(6,/h) is small. It is also worth noting that because the compliance of the interface is
expected to vary with the normal traction across it, the onset of bifurcation in the cir-
cumstances analyzed would depend on whether or not the layer and substrate were subject
to an all around hydrostatic tension or compression, even though the materials considered
here are incompressible.

Quite generally, in the cases considered here, the lowest bifurcation stress corresponds
to the plate like bending mode for the layer with a wavelength of from 5 to 20 times the
layer thickness. This mode can be critical even when the layer and interface are bonded ;
complete debonding is not required. This mode is not available for a perfectly bonded layer
so the reduction in critical stress due to interface compliance is substantial. In some cases,
for example in Figs 6¢c and 7a, there is also a shorter wavelength regime where the bifurcation
stress is reduced because of the compliance of the interface. However, for the problem
considered in which the length parallel to the interface is infinite, the longer wavelength
plate-like mode gives a lower bifurcation stress.

Suppose a layer bonded to a substrate is considered where the bond is weak along a
segment of the interface. If this weakly bonded segment is very long compared to the layer
thickness, the result for an infinitely long layer is expected to apply and the plate-like mode
would be critical. Bifurcation into the plate-like mode can occur with very small pre-
bifurcation strains. On the other hand, if the length of the weakly bonded segment is of the
order of the layer thickness or less, the bifurcation mode involves coupled deformations of
the layer, and bifurcation only occurs after large strains (or large values of |o,/u|). Then,
depending on material properties, there may, e.g. Fig. Sa, or may not, e.g. Fig. 5b, be a
significant effect of interfacial compliance on precipitating bifurcation. Accordingly, in a
specific circumstance, the bifurcation mode observed would be expected to depend on the
extent of the region of weak bonding as well as on the material and interface properties.

It is worth noting that although attention has been focused on a layer on a half-space
substrate the general formulation, through a change in boundary conditions, can readily
be extended to consider more general layered solids.
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APPENDIX
The components of M in (30) are:

M, =A%, M,,=-M, (1)
My =Dy, My,=-M; (52)
Ms=M;:=0 (53)

T\
M= e (L) s = ay e

\?
My, =B*+C* <_k_)’ M,y = M, (55)
Mys =M, =0 (56)
M, = A" 1{ exp(zih), My = —A* 1 exp(—1{h) (57
M3 = D*1f exp(tih), Ma, = —D* 1 exp(—13h) (58)

Mss = A1, MseD7135 (59)
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M, = M, exp(zih), M, = M, exp(—1{h)

My = My exp(tih), M, = Mayexp(—13h)

T\ 5\

Mys=—-B"—-C" (-F), My=—B —C~ (—k—)
M, =exp(tih), Ms, =exp(—1ih)
My, =exp(th), Ms, =exp(—t3h)

A7ty D™ty
-1, Mse=— -1
S” 56

Mg = — S
i1

Ty . Ty .
M =—k_3XP(T1 h), Mg, = ——k'exp(”ﬂ h)

15

k

ave (V15T m=[mse (S) ] m
o= [ (i Jsp o e[ () s %

t+
Mg, =——exp(tih), Mg, = — -ks-—exp(-r;'h)

where
A o A
4= (ZM,—P+ 5), B=p-p, C=pt3, D= (211*—1)— 5).
The components of N in (39) are:

Ny =47, Naop=-N,

Nyy=D1;, Nyy=—Ny;

2
Ny = B+C(%) ., Ny =Ny

2
Nas =B+C<Eki> s Ny =Ny

T S T S
Ny, = (Ar] + %)exp(tlh)a N, = <_A¥l+—;_)ex17(—rlh)’

T3 Sy
(—D; + X )exp(—-uh),

[

S
Ny = (D%j- + T")exp(r;h), Nae

2 2
Na = [B+C<T—I> + ——Snr']exp(rlh). Ng = |:B+C(“l-) ——_Suﬁ]exp(_ﬁh),
k k2 k J

2 2
Ny = [B+C(’—’) + ——S’m]exp(nh), Ny = [B+C(3’~) - S“r’]eXP(—rsh),
k JE k R

where A4, B, C and D are still defined by (69).
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