Printed in Great Britain. All rights reserved

J. Mech. Phys. Solids, Vol. 44, No. 8, pp. 1337-1351, 1996
Copyright € 1996 Elsevier Science Ltd
Pergamon
0022-5096/96 $15.00+0.00
PII S0022-5096(96)00025-7

ON SMOOTH BIFURCATIONS IN NON-ASSOCIATIVE
ELASTOPLASTICITY

DAVIDE BIGONI

Istituto di Scienza delle Costruzioni, University of Bologna, Viale Risorgimento, 2, 40136 Bologna,
Italy

(Received 10 November 1995)

ABSTRACT

The second-order incremental constitutive equations proposed by Petryk and Thermann [(1985) Second-order
bifurcation in elastic—plastic solids. J. Mech. Phys. Solids 33, 577-593] are generalized to include non-
associativity of the plastic flow rule. It is shown that the exclusion principle of Raniecki [(1979) Uniqueness
criteria in solids with non-associated plastic flow laws at finite deformations. Bull. Acad. Polon. Ser. Sci.
Tech. XXVII(8-9), 391-399] for first-order bifurcations is sufficient to exclude second-order bifurcations.
The result holds true under specific regularity conditions and, accepting stronger regularity conditions, is
extended to the case of nth-order bifurcations. Copyright © 1996 Elsevier Science Ltd

Keywords : A. buckling, B. elastic—plastic material, B. finite strain.

1. INTRODUCTION

During quasistatic deformation of a solid body, the incremental response due to
prescribed small perturbations of the boundary conditions may cease to be unique.
This occurrence is indicated as a bifurcation of the equilibrium path. The usual
incremental theories of deformation refer to the velocity—stress rate problem ( first-
order rate problem in the following). This problem corresponds to retaining only the
first-order term in a series expansion of all quantities specifying the deformation of
the body, which can be thought to depend on a time-like parameter (we refer here to
rate independent materials). The general theoretical framework for stability and
uniqueness of the first-order rate problem was stated by Hill (1958, 1959) with
reference to associative elastoplasticity and later expressed through an alternative
formulation by Nguyen (1987). In particular, Hill (1958) obtained an exclusion
condition for first-order bifurcations (also called angular bifurcations). At least in
principle, however, any incremental and sufficiently smooth function of the time-like
parameter governing the deformation can be expanded into a series up to an arbitrary
order and, therefore, bifurcations of higher order (called also smooth bifurcations)
could occur even when first order bifurcations are excluded. This problem was ana-
lyzed by Triantafyllidis (1983), Petryk and Thermann (1985), Léger and Potier-
Ferry (1988, 1993), Nguyen and Triantafyllidis (1989) and Cheng and Lu (1993). In
particular, Triantafyllidis provided an example of smooth bifurcation occurring in a
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simple, and therefore significant, elastoplastic structure. This example was discussed
and generalized by Léger and Potier-Ferry. Under appropriate regularity conditions
of the fields, Petryk and Thermann proved that the Hill exclusion condition does in
fact also exclude second-order bifurcations and this result was extended by Nguyen
and Triantafyllidis, and later, using a different formalism, by Cheng and Lu, to nth-
order bifurcations. It may be important to remark that all these proofs bear on
regularity assumptions of the fields, that become more and more restrictive when the
order of possible bifurcation becomes higher.

All of the above mentioned works refer to time independent elastoplastic solids
with the associative flow rule. Non-associative flow rules were introduced by Mroz
(1963, 1966) and Mandel (1966) and soon become the object of a very intensive
resecarch. This 1s due to two main reasons. First, the non-associative flow rules can
represent the behaviour of many engineering materials more accurately than the
associative flow rule [we can mention : single crystals (Qin and Bassani, 1992), porous
metals and metals showing the SD effect (Spitzig et al., 1976), compacted powders
(Bortzmeyer, 1992), polymers (Whitney and Andrews, 1967), structural ceramics
(Chen and Reyes-Morel, 1986), concrete, rocks and soils (Lade and Kim, 1995)].
Moreover, many materials (e.g. rock-like materials) exhibit a coupling between elastic
and plastic deformation, which has the effect of making the flow rule formally similar
to the non-associative rule (Hueckel, 1976; Maier and Hueckel, 1979; Capurso,
1979). Secondly, the non-associativity of the flow rule produces a lowering in the
threshold for elastoplastic bifurcations, which would be unrealistically high in the case
of the associative flow rule (Rice, 1977 ; Needleman, 1979). Despite the importance of
non-associative plasticity, the context of bifurcation and stability remains not fully
understood for these solids [see the lucid discussion given by Needleman (1979)].
After pioneering work by Maier (1970), resting in the framework of the infinitesimal
theory, Raniecki (1979) and Raniecki and Bruhns (1981) gave a generalization of the
Hill exclusion principle, valid for non-associative plasticity with a smooth yield func-
tion and plastic potential. The Hill exclusion principle is based on the definition of a
linear comparison solid, which in turn coincides with the plastic branch of the consti-
tutive operator. Roughly speaking, the failure of the exclusion principle corresponds
to an effective bifurcation of the underlying elastoplastic solid only when conditions
of continuing yielding in the plastic zone occur for both the fundamental and the
bifurcated solutions [Hutchinson (1973) ; see also the detailed discussion in Léger and
Potier-Ferry (1988)]. Similarly, the Raniecki and Bruhns exclusion principle is based
on the definition of a family of linear comparison solids, which are in some sense a
symmetrization of the loading branch of the constitutive operator. As a consequence,
the failure of the Raniecki and Bruhns exclusion principle is less critical for bifurcation
in non-associative plasticity than is the failure of the Hill exclusion principle in
associative plasticity. In other words, when the exclusion principle fails for non-
associative flow rule, a bifurcation still may not be possible for the underlying ela-
stoplastic solid. Applications of the Raniecki and Bruhns exclusion principle were
given by Bruhns (1982), Tvergaard (1982) and Tomita et al. (1988), whereas inves-
tigations on strong ellipticity for the comparison solids can be found in Bigoni and
Zaccaria (1992a, b).

In the present paper, we generalize the result obtained by Petryk and Thermann
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(1985) to time independent, non-associative elastoplastic constitutive laws with
smooth yield function and plastic potential. Therefore, second-order constitutive
laws are introduced for non-associative elastoplastic materials and the second-order
problem is posed. Under the same regularity assumptions of Petryk and Thermann,
it is proved that the exclusion condition of Raniecki and Bruhns for first-order
bifurcations to exclude second-order bifurcations is still valid. Accepting the restrictive
regularity assumptions of Cheng and Lu, the result can be extended to nth-order
bifurcations, as is shown in the last section of the paper.

2. FIRST- AND SECOND-ORDER RATE CONSTITUTIVE EQUATIONS

The first-order incremental constitutive equations, relating the material derivatives
of two work-conjugate [in the Hill (1978) sense], symmetric, stress and strain measures
can be written in the form

S, = LE, sz{E—gP®Q, 2.1)

where [ is the incremental elastic fourth-order tensor having minor symmetries (its
major symmetries are not needed for subsequent calculations), Q is the yield function
gradient in strain space, P the plastic flow mode tensor in strain space (possibly the
gradient of a sufficiently regular plastic potential function) and g the plastic modulus,
which is assumed to be strictly positive (to exclude locking materials). The scalar x
takes the two discrete values 0 and 1, to distinguish, respectively, between the elastic
and plastic response.

Constitutive equation (2.1) is related to the existence of the yield function f(E, H)
(defined here in the strain space), i.e. a sufficiently smooth scalar function of strain
and internal variables H (H symbolizes a collection of scalars, vectors or tensors,
depending on the complete history of inelastic straining), which associates negative
values to elastic states and the value zero when plastic incremental deformations are
possible. In the first-order rate theory, to which (2.1) is referred, elastic behaviour,
plastic loading and elastic unloading are defined in the usual wayt

a=0 iff(E,H) <0 (elastic state)
or AE,H) =0 and Q-E <0 (elastic unloading)
x=1 iff(E;tH)=0 and Q-E >0 (plastic loading) (2.2)

and the problem caused by neutral loading, i.e. (E,H) = 0 and Q- E = 0, where « is
not well defined, is bypassed using the continuity of constitutive relation (2.1) between
S, and E. In (2.1) and (2.2), E, P, Q, H and g, as well as f; are all functionals of the
entire path of deformation reckoned from some ground state. Their dependence on
the deformation history is to some extent not essential in the following analysis, but
has to be taken sufficiently smooth to make the series expansion in the time-like

T Throughout the paper, a dot over a symbol denotes the forward time rate, whereas A - B denotes, as in
Gurtin (1981), the natural inner product of second-order tensors A and B.
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parameter possible. This assumption is in reality more restrictive than it may appear.
It excludes in fact discontinuities in the tangent modulus with respect to the stress
and/or the strain (except when this discontinuity occurs at the elastic—plastic transition
and all the body is everywhere homogeneously deformed in the plastic range, a
condition frequently met, for instance, in the Shanley column model). Anyway, a
smooth dependence of the tangent modulus on strain is often postulated, e.g. accepting
Ramberg—Osgood type hardening laws (Hutchinson, 1973 ; Tvergaard and Needle-
man, 1975).

It may be worth mentioning that non-associative flow theories of plasticity at finite
strain proposed by Rudnicki and Rice (1975), Rice (1977), Raniecki and Bruhns
(1981), as well as the infinitesimal flow theories of plasticity based on smooth plastic
potential and yield function, can be expressed in the form (2.1), (2.2), with an
appropriate choice of the stress and strain rates, of the elastic moduli tensor and of
tensors P and Q. Moreover, constitutive equations (2.1) and (2.2) reduce to those
analyzed by Petryk and Thermann (1985)—in turn proposed by Hill (1958)—in the
particular case of associative flow rule: P = Q.

Before generalizing the constitutive equations to second-order rate, it may be
convenient to express them in terms of the material derivative of the first Piola—
Kirchhoff stress tensort S, and of the material derivative of the deformation gradient
F. This is obviously possible for every choice of the stress and strain measure in (2.1) ;
we will present this derivation when S, and E are identified with the second Piola-
Kirchhoff stress tensor and with the Green—Lagrange strain tensor. Hence,

S=FS,+LKF T, E=F'DF, (2.3)

where K is the Kirchhoff stress, L is the velocity gradient and D its symmetric part,
1.e. the velocity of deformation. Due to the symmetry of E, the yield function gradient
Q = Jf/CE, is also symmetric, and the following property holds true

Q-F'DF = !Q-[F"(L+L")F] = {(FQ-LF+FQ-L'F) = FQ-F. (24

From (2.4) it can immediately be concluded that the loading and unloading conditions
(2.2) can be expressed in terms of FQ-F, instead of Q-E. Note also that the yield
condition can clearly be written as a function of the deformation gradient, i.e. in the
form fx(F, H), and that its gradient with respect to F is FQ. This follows in fact from
the chain rule of differentiation and from the symmetry of Q

fe of CE |

—U==%"— = Q- [5(F" M) = FQ-U, 2.5

o U= 6F[U] Q FU+UF)]=FQ-U (2.5)
where U is any second-order tensor.

A substitution of (2.1) and (2.3), in (2.3), gives

+ The first Piola—Kirchhoff stress tensor used here is the transpose of the nominal stress tensor employed,
among others, by Hill (1978).
1 From the definition of derivative :

CE i _ ,
;T?[U] = lim == [(F+2U)" (F +£U) ~F'F] = {(U'F + F'U).
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S = CF, CzG—;M@N, G=B+IKS'F ', (2.6)

where N = FQ, M = FP, and tensor B is defined as
B=FxDEFxD". (2.7)
The tensor product denoted in (2.6) and (2.7) by symbol [X] was introduced by Del
Piero (1979), for any second-order tensors A, B, C, ast
(AKX B)C = ACB". (2.8)

Turning attention now to the second-order rate problem, we have to generalize the
condition for elastic unloading and plastic loading. This is done in the way proposed
by Petryk and Thermann : at a given material point the deformation is elastic (plastic)
if any sufficiently short segment of the deformation path, starting from the current
state (F, H), remains within (leaves) the current elastic domain

xa=0 iffe(F,H) <0 (elastic state)
or fe(F,H)=0 and f:(F+0F H) <0 (elastic unloading)
a=1 iffg(FFH =0 and f:(F+J6F,H)>0 (plasticloading), (2.9)
which is the generalization of condition (2.2). Note that the generalization of Prager
consistency is fp(F+0F, H+ JéH) = 0, during plastic loading. In order to specify cri-
teria (2.9) for second-order rate, we note that F (and H) depends on a time-like

parameter ¢, governing the loading. Therefore, assuming that function f(F,H) can
be expanded in a Taylor series (with H held fixed)

S (F+3F. H)—fe (F,H) = fe(F(1+30. H(1) — /e (F(). H(1)
(.| T Mg 8 o
(62| e e

cF oF

Noting from (2.6) that plastic first-order rate of deformation, and therefore also H,
vanishes when N-F = 0, we arrive at the identity

e

- F =(N'F). 2.11
8F2F+F aFF (N-F) (2.11)

F+F-

(1)

}sf +o(dn)?.  (2.10)

()

F
(valid when N-F < 0) which allows us to write conditions (2.9) in the form
a=0 iffe(F,H) <0
orfe(FFH =0 and N-F<0
or fe(F,H)=N:F=0 and (N'F)" <0
a=1 iffp(FFH =0 and N-F>0
or fe(F,H) =N:F=0 and (N:-F) > 0. (2.12)

T The components of tensors A [X] B and B are defined as
(A B)l/hA = A./,B/A- B.,/.A = FVAE\[I/\F)H'
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We are now in a position to formulate the second-order constitutive laws. To this
end, we assume that the rate of change of tensor C be defined by the prior strain
history and by the actual values of strain rate and parameter o, defined in turn by
condition (2.12). Therefore,

§=CF+CF. C=G- %[-ZM@NJFM@NJFM@N]‘ 2.13)

Parameter o is not well defined when N+ F = (N-F)" = 0, but the dependence of S on
I still remains continuous. This can be easily proved by observing that the quantity

Sax=1)-8S@=0)=— ; [M(N-F)— §M(N-F)+M(N-F)+M(N-F)}

= ~1{M(N-F)'—FM—M}(N -F)} (2.14)
g g

vanishes when N*F = (N-F)" = 0.

It should be noted that the second-order rate constitutive equation (2.13) is linear in
F (but non-homogeneous) either when N+ F < 0 or N+ F > 0, and becomes piecewise-
linear when N-F = 0.

3. UNIQUENESS FOR THE REGULAR SECOND-ORDER RATE
PROBLEM

In order to formulate the second-order rate problem, we assume that the current
geometry and the state of the body is known, as well as the solution of the first-order
rate problem, namely, the velocity field and the related stress rate, both corresponding
to a prescribed increment in the boundary conditions. In a second-order rate problem,
the class of functions where solutions have to be found should be widened to include
possibility of discontinuities of accelerations. As in Petryk and Thermann (1985), we
restrict our study to the regular problem, namely, we assume stress, displacements
and velocity to be continuously differentiable (i.e. smooth) functions of the place X,
whereas first-order stress rate and acceleration are assumed continuous, piecewise-
smooth functions of the place. The second-order rate of stress, the acceleration
gradient and the constitutive tensor (2.13), can suffer jumps across regular surfaces
but remain continuously differentiable in the rest of the body, shortly, they are
piecewise smooth. We do not consider, for simplicity, body forces and therefore, the
local conditions of equilibrium give, for first- and second-order ratef

+ Differently from Hill (1978). the divergence operator of a smooth tensor field S (with respect to the
material coordinates) is defined here as in Gurtin (1981):

(DivS)+a = Div(STa),

for every (constant) vector a.
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DivS=0 inQ, (3.1)
DivS=0 inQ\X, (3.2)
[S[v=0 onZ, (3.3)

where Q is the region occupied by the body in the reference configuration, having
piecewise-smooth closure Q. X is any surface of discontinuity of § in the reference
configuration, v its unit normal vector, and the symbol | | denotes the jump of the
relevant argument.

We consider mixed boundary conditions where the displacement and the nominal
tractions are prescribed, sufficiently smooth, functions of place and time over specific
portions ¢, and 0Q, of the boundary in the reference configuration
(0Q, U 0Q, = dQ). Differentiation of these functions with respect to time gives the
first-order rate boundary conditions

x = &X,1 ondQ,,
Sn=&(X,1) ondQ,, (3.4)

and the second-order rate boundary conditions

.

x=£&¢(X,n ondQ,
Sn=4(X,7) ondQ,, (3.5)

where n denotes the outward unit vector (in the reference configuration) normal to
that part of the boundary where tractions are prescribed.

The constitutive equations (2.6) and (2.13) can be employed to write S and S in
(3.1)~(3.3) and (3.4), and (3.5), in terms of velocity, acceleration and their gradients

Div(CF) =0 inQ, (3.6)
(CF)n =&(X,7) onéQ,, (3.7
Div(CF+CF) =0 inQ\Z, (3.8)
[CF+CFv=0 onZ, (3.9)
(CF+Ci)n =8(X.1) ondQ,. (3.10)

Therefore, the regular second-order rate problem can be stated as follows: given a
solution of first-order rate problem, i.e. a continuously twice differentiable velocity
field satisfying conditions (3.4),, (3.6) and (3.7), find a continuous and piecewise
continuously twice differentiable (shortly, admissible) acceleration field, which sat-
isfies conditions (3.5), and (3.8)—(3.10).

If this problem admits two solutions, say X, and %,, their difference A% defines an
admissible acceleration field with a gradient AF satisfying (3.8) in @/ and (3.9) on
Z and corresponding to homogeneous conditions on dQ. On application of the
divergence theorem it follows that
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JA'S'-AF=0. (3.12)
Q

Therefore, a sufficient condition to exclude second-order rate bifurcations is

J AS - AF > 0, (3.13)
Q

for all pairs of distinct, admissible acceleration fields taking the given values (3.5), on
Q..

Note that the exclusion condition (3.13) would be true even replacing ** > with
“<”. Asin Hill (1958), we do not consider this possibility here.

4. EXCLUSION CONDITION OF REGULAR SECOND-ORDER RATE
BIFURCATIONS

Raniecki (1979) and Raniecki and Bruhns (1981) have introduced a family of linear
comparison solids defined by the constitutive tensor (for every yy € R™)

R

Ny

such that the following comparison theorem holds true

C =G (M+yN) @(M+yN), @.1)

AS - AF = AF <(C'AF), 4.2)

for every difference of tensors AF = F,—F, and related difference AS = CF,—CF,.
Therefore, the first-order exclusion condition for bifurcation

j AS-AF > 0, 4.3)
Q

(for all pairs of distinct, continuous and piecewise continuously twice differentiable
velocity fields, taking the given values on ¢Q), ) is necessary satisfied when the stronger
condition holds true

J F-(CF) > 0, 4.9)
Q

for all continuous and piecewise continuously twice differentiable velocity fields,
satisfying homogeneous conditions on dQ,. The comparison solid C° in (4.4) is equal,
by definition, to C' in the current plastic zone [i.e. where f-(F,H) = 0] and to G in
the current elastic zone [i.e. where fx(F, H) < 0].

The advantage of condition (4.4) compared to (4.3) is in the linearity of the
integrand. In particular, bifurcation is excluded if it is possible to find a positive
defined tensor C° at every point of Q.

We show now that, under the field regularity conditions invoked in Section 3,
condition (4.4) also rules out second-order bifurcations. By assumption, the first-
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order rate problem has unique solution, let us assume now the existence of two
solutions of the acceleration problem which define AF. We prove now the second-
order rate comparison theorem

AS - AF = AF -(C'AF), (4.5)

for every difference of tensors AF = F, —F, and related difference AS = (CF))’ — (CF,)",
for which F, = F, = F (the first-order solution is unique), but F, # F,.
Proof-

In the two cases N*F < 0 or N+ F > 0 (i.e. parameter « is zero or 1 for each solution,
respectively), the constitutive equation (2.13) is linear in ¥, hence AS = CAF, and

M- AR N- AR .
(__Ei_,A_F)_Z() fNF<0

.. .. Wy
AF(C—C")AF = M- AF— N~ AFY? , (4.6)
_(___i__l >0 ifN‘F>0
4yg

so that (4.5) is verified. The condition N+ F = 0 only needs to be examined. In this
case, we have

A§=GAF‘—%(N-Fl+N'F)M+a—;~(N'F:+N‘F)M» “4.7)

where indices 1 and 2 refer to the two different solutions. The two cases o, = a, =0
and oy = a, = 1 lead to the same condition (4.6), and so only the two cases ; = 0
and o, = 1,and «; = 1 and o, = 0 need to be analyzed. In particular, we have to prove
that

4l [N-F, +N-F]—o,[N-F, + N-F}M- AF < (M- AF +yN-AF)2,  4.8)
which, after algebraic manipulation, can be written as
{02 =0 )M-AF + Y [N-F, +N-F,] + 2yN-F}2 — > (N-F )’'(N-F,)" >0,
(4.9)

valid when a; =0 and %, =1, or 2, =1 and a, = 0. To conclude the proof it is
sufficient to note from the loading—unloading second-order conditions (2.12) that the
non-squared term on the left hand side of condition (4.9) is always positive.

In the elastic zone, the second-order constitutive relation (2.13), reduces to the
elastic constitutive relation, which is linear in ¥, so that, for K, =F,,
AS - AF = AF-(GAF). Therefore, with the comparison theorem (4.5), the sufficient
condition for uniqueness of second-order rate problem becomes

j F(Ci) >0, (4.10)

for all admissible acceleration fields satisfying homogeneous conditions on 0Q,.
Condition (4.10) is equivalent to condition (4.4). Therefore, the exclusion condition
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obtained by Raniecki and Bruhns for first-order rate bifurcations, is sufficient to
exclude any second-order bifurcation of the regular second-order rate problem.

It should be noted finally that, the first-order solution being known, the parts of
the plastic zone are known where N - F is different from zero. In these zones, the value
of « is known. Therefore, as in Cheng and Lu (1993), a “‘refined” definition of
comparison solid C¢ could be proposed, in which C¢ = C" where fg(F,H) = N* F=0,
C° = G where fi(F,H) < 0 or f(F,H) = 0 and N-F < 0, and, finally, C¢ = C, with
x = 1. where f(F.H) = 0 and N-F > 0. If we denote with C* this solid, the property

AS - AF = A «(C*AF), 4.11)

holds true in every point of the body, for all AF = F, —F, and related difference
AS =(CF,)’ —(CF,)", such that F, = F,. The definition of this “refined”” comparison
solid, seems however to be useless in the present context. In fact, when the exclusion
condition for first-order bifurcation fails, nothing is a priori known about uniqueness
of first-order solution, so that the hypothesis F, = F, loses validity.

5. EXCLUSION CONDITION OF REGULAR nth-ORDER RATE
BIFURCATIONS

The extension of results of Sections 24 to nth-order bifurcations can be obtained,
when the strong regularity conditions introduced by Cheng and Lu (1993) are
imposed. The result parallels the same arguments used previously, and therefore are
exposed briefly in the section.

We refer to the regular nth-order rate problem, in which all #—1 rate fields are
known. Furthermore, the stress, together with its n— 2 rates, and the displacement,
together with its n—1 rates, are assumed smooth functions of the place. The n—1
rates of stress and velocity are assumed continuous, piecewise-smooth functions of
place. The nth-rates of stress and of displacement gradient are assumed piecewise
smooth, and therefore they can suffer jumps across regular discontinuity surfaces. As
remarked by Petryk (1993), it is important to note that the regularity assumption for
the nth-order rate problem is much less satisfactory than is the regularity assumption
for the second-order rate problem. High-order rate fields may in fact be discontinuous
and have other singularities absent in low-order rate problems.

The loading—unloading criterion (2.9) can be expressed for nth-order rate as:

a=0 if fo(F,H)<0
or f(FFH) =0 and N-F<0
or fo(F,H) =(N-F)®» =0, and (N-F)* <0.
for a given ie [0,n— 1] and all ke [0,i—1].
a=1 if ff(FFH) =0 and N-F>0
or fo(FLH)=(N:F)* =0, and (N-F)* >0,
fora given i€ [0,n—1] and all ke[0,i—1]. 5.1

where the superscript index ()" denotes the ith-derivative with respect to time.
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The nth-order rate constitutive equations can be written as
n n—b/ip—1\in—i
S=Z( l, >CF, (5.2)
=0

where the index over tensors denote time derivative, C = C and the binomial

coefficient is defined as
n n!
=, 5.3
<i> if(n—i)! 63

Equation (5.2) can be transformed into

n n=l i I\ i n-i n=1/ip_ 1 1 (yn—1—i n—1—i , n—1—i-j
T ) ol 3 R Ly N e
=0 P} g j=0 J

When (N:F)? >0 or (N-F)? <0, for i < n—1, the constitutive equation (5.2) is
linear in F. When (N-F)© = 0, for all ie[0,n—2], the constitutive equation (5.2)
becomes piecewise-linear in F. Finally, when (N F)® = 0 for all i€ [0, n— 1], a is not
well defined, but the constitutive response remains continuous. In fact, it can be
immediately deduced from (5.4) that

S(z = 1)—S(x = 0) = 0, (5.5)

where (N F)¥ = 0, for all ie [0, n—1].

The regular nth-order problem with mixed boundary conditions, corresponds to
finding a continuous piecewise twice differentiable field x and its constitutively related
field S satisfying

k=EX.1) onaQ,

Sn—a(X.1) onaQ, (5.6)
DivS =0 inQ. (5.7)
H]v -0 onx, (5.8)

where X denotes a regular surface of discontinuity of S, having unit normal v, and n
denotes the outward unit vector to éQ,.
If the nth-order problem admits a bifurcation, the difference between two solutions
satisfies
Ax=0 ondQ,
ASn =0 on dqQ,, (5.9

DivAS =0 inQ, (5.10)
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[{Aé}lv —0 onz, (5.11)

where, clearly, Aé =(CAF)" . Therefore an exclusion condition for nth-order bifur-
cations is

f AS- AF > 0, (5.12)
Q

for all pairs of distinct, continuous and piecewise continuously twice differentiable
fields x, taking the given values (5.6), on aQ,.
We prove now the nth-order rate comparison theorem

AS*AF > AF -(C"AF), (5.13)

for every difference of tensors, Al’:"i = l?_l —an and related difference
AS =(CF,y"~' —(CF,)" ', for which F, = F, = F (for all ie[0,n—1]), but F, # F,
(representing two possible nth-order solutions).

When (5.13) holds, nth-order bifurcations are excluded when

J F-(CF) > 0. (5.14)
Q

for all continuous and piecewise continuously twice differentiable fields x satisfying
homogeneous conditions on ¢Q,. Therefore the Raniecki and Bruhns exclusion con-
dition for first-order bifurcations is still able to exclude nth-order bifurcations. Note
that the comparison solid C¢ is defined as in (4.4) : equal to G and to C' in the elastic
and plastic zones of Q, respectively.
Proof"

In the cases (N'F)® =0 and (N-F)* #0, for a given ie[0,n—2] and all
kel0.i—1], (ie. parameter « is zero or l” for both solutions), the constitutive equation
(5.4) is linear in F, therefore, AS = CAF and

N
f n\-

(M-Ath-AF

>0 iIf(N-F)? <0, i<n—1
20y )

AF+(C—C") AF = )
<M-AF—¢N-AF

A >0 if(N'F)” >0, i<n—1
4y

(5.15)

so that inequality (5.13) is satisfied. The condition (N:F)? = 0 for all i€[0,n—2]
only needs to be examined. In this case, condition (5.13) may be written
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. n . n ] n n ]2
—o, (N F )" UM-AF 4+ o,(N-F,)"~"M-AF + @[M'AF+WN 'AF] =0,

(5.16)

where indices 1 and 2 refer to the two different solutions. The two cases o, = a, =0
and o, = o, = 1, lead to the same condition (5.15), therefore only the two cases o; = 0
anda, = 1,and 2, = 1 and &, = 0 need to be analyzed. In particular, being the solution
unique till order n— 1, we can write

. n n—1 _1 i n—i
(N-F7)<"l>:N-FT+Z<"I, >N-F, (5.17)
=1

where the index y takes the two values 1 and 2, and, hence

(N-F )" D (N-F,)" 1 = N-AF. (5.18)
Using (5.17) and (5.18), inequality (5.16) can be written in the form

n n n n—1 “1 i n—i)2
{(az—oc,)M'AF+x{1(N-Fl +N-F2>+21// y (” l_ >N- F}
i=1

_4‘[/2(N'F1)lnm'l)(N'Fz)("““ 20. (519)

valid when o, =0 and a, =1, or o, =1 and a, = 0. To conclude the proof it is
sufficient to note from the loading-unloading nth-order conditions (5.1) that the non-
squared term on the left hand side of inequality (5.19) is always positive.

Therefore, the exclusion condition obtained by Raniecki and Bruhns for first-order
rate bifurcations, is sufficient to exclude any nth-order bifurcation of the regular sth-
order rate problem.

A particular consequence of the obtained results is that positive definiteness of the
second order work (Mréz, 1963, 1966 ; Hueckel and Maier, 1977 ; Maier and Hueckel,
1979 ; Raniekci and Bruhns, 1981) in infinitesimal, non-associative elastoplasticity
excludes both angular and smooth bifurcations of the regular infinitesimal rate problem.

Analogously to the case of the second-order rate problem, we can observe that a
“refined” comparison solid could be defined replacing C* in those parts of the plastic
zone where all i—1 (<n—3) time derivatives of N+F are null by G, if (N-F)? <0,
or by C with a = 1, if (N*F)® > 0. Analogously to the 2nd-order rate problem, this
new comparison solid seems to be useless in the present context.

6. CONCLUSIONS

The results obtained in this paper extend to non-associative elastoplasticity findings
by Petryk and Thermann (1985), Nguyen and Triantafyllidis (1989) and Cheng
and Lu (1993). In particular, it has been shown that, under appropriate regularity
conditions, the second- and, more generally, the s#th-order rate problems for time
independent, non-associative elastoplastic solids with smooth yield function and plas-
tic potential admit a unique solution, when the Raniecki and Bruhns sufficient con-
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dition for uniqueness of the first-order rate problem holds true. However, it is well
known that failure of this condition is in general not critical for bifurcation. This is a
difference with respect to associative plasticity, where failure of the Hill exclusion
condition is critical for bifurcation under broad hypotheses (Hutchinson, 1973). The
counterpart of this in the case of non-associative flow rule was rarely investigated
[(Bruhns, 1982; Tvergaard, 1982; Tomita e al., 1988), see also the related works
regarding bifurcations in the comparison solid “in loading”: Needleman (1979),
Vardoulakis (1981), Chau and Rudnicki (1990)]. Moreover, another unexplored,
but important point is related to the effect of non-associativity on the post-critical
behaviour.
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