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ABSTRACT

Slow, stable, rectilinear crack propagation is investigated for porous, elastoplastic solids displaying com-
bined isotropic and kinematic hardening. The Gurson model with constant porosity, and therefore the
associated flow rule, is used as the constitutive description. An asymptotic analysis of crack-tip fields is
performed under Mode I, steady-state, small-strain, plane stress and plane strain conditions. A continuous
distribution of asymptotic near-tip fields is found. However, the possibility of the appearance of stress
jumps in the asymptotic fields is analysed in detail. The results show many interesting features, which are
related to the presence of both porosity and Bauschinger effect. Copyright © 1996 Elsevier Science Ltd

NOTATION

We refer to the abstract tensor notation introduced by Gurtin (1981). Vectors and second
order tensors are denoted by bold letters. Lin denotes the set of all tensors and Sym the subset
of all symmetric tensors. The natural inner product of tensors is denoted ( for any second order
tensor S and T) by S+ T = tr(S'T) = S,,7,,, where the last equality refers to the introduction of
an arbitrary coordinate frame, tr is the trace operator and ( )" denotes the transpose of a tensor.
The tensor product a @ b of two vectors a and b is the tensor that assigns to each vector v the
vector (b-v)a. In components: (a ® b); = ab;.

1. INTRODUCTION

In ductile metals slow, stable crack propagation is often observed before rupture. In
particular, for porous metals, porosity may cause a stabilizing effect on crack growth.
However, due to the fact that the stress and strain fields in the plastic zone near
the tip of a growing crack are subject to strongly non-proportional loading, the
conventional theory of incremental plasticity, based on isotropic hardening rules,
may overestimate the deformation response in that zone, and hence the capacity
of sustaining stable crack growth. Therefore, the influence of anisotropy of strain
hardening, i.e. of the Bauschinger effect, which may be relevant to crack propagation
in ductile-porous solids, is the focus of this paper.
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Fig. 1. Schematic representation of isotropic and kinematic hardening behaviors for non-proportional
loading.

The first asymptotic analysis of steady-state crack propagation in a linear isotropic
hardening J,-flow theory material was given by Amazigo and Hutchinson (1977) and
later generalized in different ways (Achenbach er al., 1981 ; Ponte Castafieda, 1987;
Ostlund and Gudmundson, 1988 Bigoni and Radi, 1993 ; Radi and Bigoni, 1993,
1994). Zhang et al. (1983, 1984) obtained the only asymptotic analysis available in
the literature concerning Mode I propagation for a mixed isotropic-kinematic hard-
ening J,-flow theory material. Their analysis has been recently completed by Bigoni
and Radi (1996), where Mode 111 propagation has been solved. Porous elastoplastic
metals were considered recently for the cases of stationary and growing cracks for
perfectly plastic behavior (Drugan and Miao, 1992 ; Miao and Drugan, 1993, 1995)
and for isotropic hardening (Radi and Bigoni, 1994), all employing a constant porosity
version of the Gurson model (Gurson, 1977a, b). The Gurson model, which may
describe the behavior of porous metals and particulate-reinforced metal matrix com-
posites, was generalized by Mear and Hutchinson (1985) through the introduction of
mixed isotropic-kinematic hardening. The Mear and Hutchinson version of the Gur-
son model has been employed to show that for non-proportional stress histories,
the J,-flow theory tends to be overly stiff when used to predict plastic instabilities
(Tvergaard, 1978, 1987; Becker and Needleman, 1986; Tvergaard and van der
Giessen, 1991). When isotropic hardening is used in the analysis of near crack-tip
fields, the elastic domain of a material particle in the proximity of the crack tip greatly
increases, due to the severe plastic deformations caused by the stress singularity.
Therefore, isotropic hardening produces a lower level of plastic deformation than
would be produced for kinematic hardening (Fig. 1).

In addition to the asymptotic solutions given by Zhang er al. (1983) and Bigoni
and Radi (1996), there are a number of finite element simulations of crack growth in
elastoplastic homogeneous material with anisotropic hardening, within the framework
of Jo-flow theory (Lam and McMeeking, 1984 ; Narasimhan and Venkatesha, 1993 ;
Narasimhan e? al., 1993), and in the case of the Gurson model (Aoki et al., 1987;
Jagota et al., 1987; Needleman and Tvergaard, 1987; Tvergaard and Needleman,
1992). Several results obtained in these works are qualitatively confirmed in the
present paper. In particular, Lam and McMeeking (1984) investigated the influence
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of corner formation on the yield surface, and of the Bauschinger effect. A large
reduction was found in the magnitude of stress components due to kinematic hard-
ening, together with a continuing decrease of the flow stress after the passage of the
crack tip. Narasimhan and Venkatesha (1993) simulated steady-state dynamic crack
propagation under Mode I plane strain conditions, in materials displaying isotropic
and anisotropic hardening. One of their conclusions is that for kinematic hardening,
no elastic unloading occurs for low crack speed. Narasimhan ez al. (1993) extended
this analysis to plane stress condition showing that the main difference between the
near-tip stress fields for isotropic and kinematic hardening is in the region behind the
crack tip, where a thick secondary plastic reloading sector is found in the case of
kinematic hardening only.

A generalization of the procedure introduced by Ponte Castafieda (1987) is
employed in this paper to obtain an asymptotic analysis of steady-state crack propa-
gation in an elastoplastic material obeying the mixed kinematic-isotropic hardening
Gurson model (Mear and Hutchinson, 1985 ; see also Tvergaard, 1987). Reference is
made to the incremental theory of plasticity, which makes it possible to consider
elastic unloading and subsequent plastic reloading in the crack wake. The analysis is
carried out under the hypothesis of uniform porosity, which may be valid for modeling
the behavior of incompletely sintered, or previously deformed metals, or materials
fabricated with intentional initial porosity (such as, e.g., HIPed porous materials, see
Ishizaki and Nanko, 1995). Beside the applicability to these materials, it should be
noted that the assumption of constant porosity may be reasonable in the range of
validity of the asymptotic analysis, since the results obtained from this kind of analysis
are valid outside of the very near crack-tip zone, where micro-inhomogeneities, cavi-
tation and finite deformation effects dominate. As noted by Drugan and Miao (1992),
large deformation numerical finite element solutions employing the Gurson model
show that outside the usual large-strain near-tip region, porosity changes are negli-
gible. In any case, when a nucleation law for the porosity is included, the crack-tip
fields may not admit a separate-variable form and their determination may require
finite element investigations. On the other hand, it is precisely in the zone where the
assumption of constant porosity is reasonable that the linear kinematic-hardening
model is meaningful. At large deformations, in fact, there seems to be no experimental
indication of significant Bauschinger effect, whereas its significance at small strains is
certain. In conclusion, it is precisely in the range of applicability of the asymptotic
analysis that the assumptions of constant porosity, linear kinematic hardening, and
small strains are correct, and therefore the analysis carried out in this paper can be
considered on the one hand mathematically consistent, and, on the other hand, based
on a proper material model.

Results are given in this article for the near-tip stress and velocity fields as functions
of porosity and mixed hardening parameter. Both plane strain and plane stress Mode
I crack propagation are analyzed. Many previous results are obtained as special cases
of the present formulation. In particular, results obtained in the limit case of pure
isotropic hardening coincide with those obtained by Radi and Bigoni (1994), and,
when the porosity becomes zero, the J-flow theory is recovered, and results reduce
to those by Ponte Castafieda (1987) for isotropic hardening, and to those of Zhang
etal. (1983, 1984) for mixed hardening. In this last particular case, results will be given
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which complctc those by Zhang et al. (1983, 1984), presenting a wider exploration of
material parameters. These authors in fact apparently did not note that the asymptotic
stress fields exhibit rapid variations, for a sufficiently high component of kinematic
hardening, a circumstance analysed in detail in this paper.

The analysis presented elucidates the effects of porosity and of anisotropic hard-
ening on the local crack-tip fields. In particular, since a material point close to the
crack-tip trajectory is subject to one cycle of loading, the Bauschinger effect results in
a strong influence on the stress fields. Due to the presence of a larger reloading sector
adjacent to the crack flank, this effect is more pronounced under plane strain, as
opposed to plane stress, loading conditions.

Finally, it is worth mentioning that the obtained asymptotic fields always cor-
respond to continuous stress and velocity distributions. This is consistent with a
theorem by Drugan and Rice (1984), whose constitutive range of validity was recently
extended by Drugan (1995). All constitutive response modeled here is included in
this extended theorem. The “transition” value of the mixity hardening parameter is
obtained in the present paper for the case when the current yield locus does not
incorporate all prior yield loci [condition corresponding to the violation of Drugan
and Rice (1984) jump exclusion condition]. Although Drugan’s (1995) new result is
valid beyond this limit, and our solution does remain fully continuous beyond it, it is
interesting to note that, when the mixity parameter goes beyond this value, the
obtained solutions display a rapid variation in the fields.

2. CONSTITUTIVE EQUATIONS

Reference is made to the Gurson model of elastoplastic solids containing spherical
voids. The model is based on a family of isotropic—kinematic hardening yield surfaces
of the form ¢(s, a, o¢, ¢) = 0, where ¢ is the volume fraction of voids, ¢ is the average
macroscopic stress tensor and « denotes the back stress tensor. The variable op is
related to the behavior of the matrix material. In particular, when the matrix material
is modeled through the J,-flow theory, the internal variable o equals the radius of
the current yield surface of the matrix, and is therefore given by

or =(1—b)o,+ba,,, 2.1

where ¢, and &, are the initial yield stress and the current flow stress of the matrix,
respectively. Constant 4 is a mixed hardening parameter, which ranges between 0, for
pure kinematic hardening, and 1, for pure isotropic hardening.

The Gurson yield condition for a porous solid is taken in the form proposed by
Mear and Hutchinson (1985)

3|dev &/

, %, Op) = 3
flo,a, or) 262

tr&

+2¢ cosh<ﬂ)—(1 +¢?) =0, 2.2)
20k

where & = 0 —a, and dev & denotes the deviatoric part of . The generalization of the

yield function proposed by Tvergaard (1981, 1982, 1987) and Tvergaard and van der

Giessen (1991), which could be easily included, is not considered for the sake of
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simplicity. Moreover, the void volume fraction ¢ is assumed constant [the same
hypothesis was made also in Drugan and Miao (1992), Miao and Drugan (1993,
1995) and Radi and Bigoni (1994)] ; therefore ¢ is not an internal variable subject to
evolution. Since nucleation and growth of voids has been neglected, the condition of
associativity for the matrix material implies an associated plastic flow law for the
macroscopic porous material, i.e.

& = AQ, (2.3)

where A is the (non-negative) plastic multiplier and Q is proportional to the gradient
of the yield function (2.2), namely

0 3 tré
Q= f‘i%{ = —devé+yl, y= %sinh(j—a), (2.4)

The evolution law for the back stress is assumed in agreement with the Ziegler
(1959) hardening rule, in the form

& = uAé, 2.5

where u specifies the modulus of &.
As in Tvergaard (1987), the macroscopic plastic strain rate & is assumed to be
related to the effective plastic strain rate &, of the matrix material, by

&8 =(1—)opit,. (2.6)

Note that, for b = 1, (2.6) reduces to the equivalent plastic work relationship adopted
by Gurson (1977a). When the mechanical behavior of the metallic matrix is modeled
through an elastoplastic constitutive law displaying linear hardening, the equivalent
stress rate is related to the effective plastic strain rate by the following linear relation,
derived from the uniaxial stress—strain bilinear relation of the matrix material

6., = 3H &8, 2.7)

where H,, is the hardening modulus of the matrix material, which depends on the
ratio ag = G /G of the current tangential modulus to the elastic shear modulus of the
matrix material, or on the ratio ay = E,/E of current tensile modulus to the elastic
Young’s modulus

oG o

H, = , H,
™ o 3(1—op)

E. (2.8)

The evolution law for o may be derived from (2.1) written in incremental form, i.e.
oy = bo, using (2.3), (2.6) and (2.7)
3H.b
g =A—7—Q"6. 2.9)
F (1—¢)or Q (
Prager consistency must be satisfied during plastic flow, whence the expression of the
plastic multiplier may be derived
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A_lQD

- (2.10)

where { ), the Macaulay brackets, implies the value of the argument when it is positive
but zero otherwise, and

3H.b .
H=(Q" a)[#+(11—¢) FQ ail (2.11)

is the macroscopic hardening modulus of the porous material.

The elastoplastic model is completely determined when function p is specified.
However, there is some freedom in determining this function. Following Mear and
Hutchinson (1985) and Tvergaard (1987), we require that the mixed isotropic—kine-
matic hardening model and the isotropic hardening Gurson model give identical
response for proportional stress histories. In the following, index ( )g denotes quan-
tities referring to the Gurson isotropic hardening model, which is characterized by
the yield function f; = f(6g, om, ¢). For proportional stress histories, let & = y¢ and
65 = P&, where the (unit norm) second order tensor & specifies the direction of the
radial path in stress space and y and y5 the moduli. By assumption, & satisfies (2.2),
and when

LA (2.12)

7 OF
o also satisfies f(6g, 0., @) = 0. Note that condition (2.12) implies Qg = Q. There-
fore, for a fixed stress rate &, the mixed kinematic hardening and the isotropic models
give the same plastic strain rate &* when the plastic multiplier is the same for both
models, i.e. when A = Ag. This condition implies that H must be equal to the hard-
ening modulus Hg of the Gurson isotropic model [see, e.g., Radi and Bigoni (1994)];
therefore

3
2.13
(1—¢)m r [ (1—¢) ]Q(m 19

By introducing condition (2.12) into (2.13) and generalizing to any stress state,
namely, by replacing y& by &, ¢ can be obtained

3H,
1—b é. 2.14
=( ) )t ; Q- (2.14)

When expression (2.14) of u is employed, the macroscopic hardening modulus (2.11)
becomes

3H,
- 2.15
= U= F(Q &) (2.15)

Note from (2.7) that a positive hardening modulus of the matrix material H,, results
in a positive hardening modulus H of the porous material. In the following, the
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dimensionless hardening moduli of the metallic matrix and of the macroscopic porous
material are denoted by h,, = H,,/F and h = HJE, respectively.

The rate of translation and growth of the yield surface, measured by & and &y,
becomes fully specified when the expression (2.10) for the plastic multiplier A is
introduced into (2.9) and (2.5)

Qo Qe
Q-4 U Qe T
If the elastic behavior is assumed isotropic, the elastoplastic incremental constitutive

equations relating the stress rate ¢ to the velocity of deformation &, can finally be
written in the standard form

a=(1-b)—x—~ (2.16)

1
f=—|6—— A 2.17
& ZG[G (tra)l]—f— Q, ( )
where v is the Poisson ratio. Equations (2.16) and (2.17) hold when the stress state
satisfies the yield condition (2.2). Otherwise, the incremental constitutive relationship
reduces to the elastic isotropic behavior, which can formally be obtained from (2.17)
by setting A = 0.

3. CRACK PROPAGATION

3.1. Problem formulation

The problem of a plane crack quasi-statically propagating at constant velocity c,
along a rectilinear path in an infinite medium, is considered. The mechanical behavior
of the material is described by the anisotropic-hardening, incremental elastoplastic
constitutive law presented in Section 2. This framework allows incorporation of elastic
unloading sectors, which may appear in the proximity of the crack tip during crack
propagation. A cylindrical coordinate system (O, e, ey, €;) moving with the crack tip
in the § = 0 direction is adopted, with the x;-axis along the straight crack front. The
steady-state condition yields the following time derivative rule, for any scalar, vector

or second order tensor X
. cloX . X
:"“|:08 —V—(,}TCOSQII\ (31)

where r and 3 are the polar coordinates in the plane orthogonal to the x;-axis. It is

important to remark that the components of the derivatives of a tensor X are different

from the derivatives of the components. In the following, the derivatives of a tensor

X and of its components with respect to § are denoted by X', and by X, ,, respectively.
The kinematic compatibility condition between strain rates and velocities is

E=3(Vv+ V). (3.2)

The condition &; = 0 must be considered in addition to (3.2), for the plane strain
problem.
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The quasistatic equilibrium condition is
dive = 0. (3.3)

Compatibility (3.2), equilibrium (3.3) and the incremental constitutive equations
(2.16) and (2.17) form a system of first order PDEs which governs the problem of
crack propagation. The solution is sought in a separable-variable form, by considering
single-term asymptotic expansions of near crack-tip fields. In particular, the stress,
back stress, velocity, and flow stress fields are assumed in the forms

v(r, 8) = §<%>sw(9)’ o(r,9) = E(%)s T(9),

a(r, 9) = E(%> A@S), op(r,9) = E(%) Te(9), (3.4)

where s is the exponent of the fields singularity and B denotes a characteristic dimen-
sion of the plastic zone. Observe that s and functions w, T, A and T are the unknowns
of the problem and do not depend on the value of the crack propagation velocity c,
since inertia is not accounted for. Moreover, the characteristic dimension B of the
plastic zone remains undetermined, since the asymptotic problem is homogeneous.
For finite geometry of the body containing the crack, the determination of the
amplitude of the asymptotic fields requires a matching procedure with the applicable
boundary conditions.

The material time rates of the fields ¢, « and o may be derived from representation
(3.4) by using the steady-state derivative (3.1) in the form

5(r,9) = E%(%) £(9).

a(r, 9) = Ef(é—g) Q(9),

G, 9) = EC<5

p B) Ze(9), (3.5

where the functions X, Q and X, which are independent of r, may be written, using
representation (3.4}, in the form

X=T'sin3—sTcos 3,
Q=A’sin%—sAcos9,
Tp = Trsin3—sTecos . 3.6)

When the asymptotic fields (3.4) are introduced into equilibrium equations (3.3), the
following ordinary differential equations are derived (see Appendix 1)
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T'ey+sTe, = 0. 3.7
Equation (3.7) gives the following two scalar equations
Ty = —(1+5)T+ Ty,

Thys = —(2+8)Ty. (3.8)

By applying (3.6,) to the unit vector ey, using equilibrium equations (3.7) and, finally,
relations (A1l.1), the following condition can be derived

Ye, = —sT(e,sin3+e;cosd) = —sTe,, 3.9)

which gives the stress rate components X, and Ty, as functions of the components of
the stress tensor T.
Finally, the strain rates (3.2), which correspond to the velocity fields (3.4,), are

cfry )
£ = ;(E) W ® ey +sw® e ]syms (3.10)

where symbol [ Jg,,, denotes the symmetric part of the tensor argument.

It is worth noting that, when the asymptotic fields (3.4) are introduced into the
yield function (2.2) and its gradient (2.4), these become independent of r. Therefore,
Mo, a,0r) = f(T, A, Tx), and the yield condition and yield function gradient become

a7 = Y agcom(ST)-asen =0
and
¢ tr'T
Q= 2TFdevTﬁ—,l }—’SI h(ZT}) (3.12)

where T = T—A.
As a consequence of relation (3.5;), the plastic multiplier (2.10) may be written as

QX
(><> A—T (3.13)

where £ is the dimensionless hardening modulus of the porous material. Noting (3.4),
h may be expressed in the form

3, QT
-9y 1%

It should be observed that 4 is always greater than zero, since porous metals with
positive hardening modulus of the matrix material (H, > 0) are considered (the
product QT vanishes if and only if T = 0, which may occur only when the stress
point is inside the yield locus).

When the asymptotic fields (3.4) and their rates (3.5) are introduced into the

(3.14)
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incremental constitutive relationships (2.16) and (2.17), a system of nine equations is
obtained, namely

1

(S;w’ ®ey+w® e,) =(1+v)Z—vtrZI4+ {4)Q, (3.15)

Sym
A’sin 9§ = sAcos 9+ (1 —b){p>T, (3.16)
Ttsind = sTrcos 3+bp) Tk, (3.17)

where
Q-x

P=o T (3.18)

The constitutive equations (3.15)-(3.17) are valid when the stress point lies on the
yield surface. During elastic unloading or neutral loading, the constitutive relation
(3.15) reduces to the incremental equation of linear isotropic elasticity, and (3.16)
and (3.17) become equivalent to the conditions & = 0 and 6 = 0.

System (3.15)—(3.17), together with the equilibrium equations (3.7), results in 11
first order ODEs of homogeneous type, for the 11 unknown components of the
angular functions w, T, A and 7. The components of these functions reduce to nine
under plane stress, where T3; and A,, vanish. The unknown exponent s may be
determined as an eigenvalue of the problem, when a normalization condition for the
solution is considered. A lucid discussion on the formulation of a crack propagation
problem in terms of a generalized non-linear eigenvalue problem has been given by
Bose and Ponte Castafieda (1992).

The ODEs (3.16) and (3.17) are in explicit form [y'($) = f(¥(3), )], whereas
(3.15) is still in implicit form. In order to obtain the explicit forms, some algebraic
manipulations are necessary. In particular, by considering the components rr and 33
of the constitutive equations (3.15), and using the plane strain condition, the following
system of equations may be derived

(h+ Qrzr)zrr ~(vh— 0, 043)Z53 = wh+(vh— 0, 04)X 55 — 20,0 X,
(vh—0.0::)X, —(h+0Q %3)233 = 2033012 — (vh— 053099) Zys. (3.19)

Equations (3.9) make explicit that £,, and X, are independent of the components of
T’, and, therefore, the right hand sides of relations (3.19) are independent of these
also. Equations (3.19) may be solved for X, and X;. In particular, X, can be obtained
in the following form

|
X, = A {Za (1 +v)h+v05:(Q13 — Qus) — 0r (V035 + Q)]

-_er.‘JQrv’J(vQ,?Z +er)+wr(h+Q%3)}* (320)

where A =(1 v )h+ Q3+ Q% +2vQ,.Q5;. is always greater than zero. With X,
known from (3.20), X;; may be obtained from a rearrangement of (3.19,). When X,
and X, are substituted into (3.6,), the derivatives with respect to the angular coor-
dinate J of the stress components 7T, and 75; may be obtained
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Tos =2T s+ (sT,,cos 3+2,.)/sin 3,
Ty39 = (sT3;cos 3+Z53)/sin 9. (3.21)
The expressions for w, , and w, , follow from the constitutive relations (3.15)
wey = (1—=5)wg+ 2s[(1 +v)Z, o + <D0,
Wyy = — W, +5[Zgy — V(2 + Z33) +{AD 0] (3.22)

Equations (3.8), (3.16), (3.17), (3.21) and (3.22) form the first order ODE system,
which governs the near-tip stress and velocity fields. This system may be written in
the following form

o~ {fp(S,y(S),s) ifAT.A,Te) =0 and Q-I >0,
L9, ¥(9), 5) if AT, A, T) < 0or fIT,A, Tx) =0 and Q-Z <0,

(3.23)
Where y = {M?rﬁ Wy, Tr-’)e Trrs T.‘J.’is T}Sa Ar.’a\ﬂ Arr’ A&‘h A}S’ TF}

3.2. Elastic unloading and secondary plastic reloading

The motion of the material particles close to the trajectory of the crack tip is
assumed to occur along a straight path, paraliel to the crack-tip trajectory (Fig. 2).
This assumption, consistent within the framework of the infinitesimal theory, is
widely accepted (see, e.g., Ponte Castafieda, 1987). A generic material point near the
trajectory of the crack tip experiences, in general, plastic loading, elastic unloading
and subsequent plastic reloading. The angular coordinate $ singles out the position
of a material point moving along its rectilinear path at a fixed distance, say d, from
the crack line. The straight path of a generic point is defined by the geometric relation
r(3) = d/sin §.

A material point, initially ahead of the crack tip, leaves the plastic loading sector
when Q(3,) * Z(3,) = 0, which is the condition determining the elastic unloading angle
#,. In the elastic unloading sector, the plastic multiplier A vanishes, and the rate
constitutive law (2.17) reduces to the linear isotropic elastic relation. Throughout this
sector the back stress a and the flow stress o remain constant for each material point,
and equal to their values at the elastic unloading angle 9,, namely

a[r(9), 9] = a[r(31). 9], op[r(9). 9] = a¢lr(9)), 9], (3.24)

plastic
reloading

—
——

crack-tip
Fig. 2. Crack-tip geometry.
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for 3, < 9 < 9,, where 9, denotes the plastic reloading angle (Fig. 2). The rep-
resentations (3.4;,) of « and o, and conditions (3.24), imply that functions A and T
have the following dependence on the polar coordinate 9 in the elastic sector

A= (Sin(‘g >S A(‘gl)v Ty = (:lﬂ)s TF(SI)s (3'25)

sin 9, in 3,

for 9, < 9 < 9, [the equivalence of (3.25) to & = 0 and 6 = 0 may be appreciated
considering (3.6,5)]. Plastic reloading adjacent to the crack flanks occurs when the
particle reaches a stress state lying on the yield surface in the form it had developed
when unloading began. Thus reloading takes place at the angle 3,, which satisfies

Holr(82), 921, alr(81), 8,1, 0r[r(91), 8,1} = 0. (3.26)

3.3. Pure kinematic hardening limit

In the limit case of pure kinematic hardening, i.e. for b = 0, the yield surface does
not change in dimension, therefore, the parameter oy is constant and equal to the
yield stress a,. Considering the form (2.2) of yield function, it can be concluded that
the reduced stress remains finite even when the crack tip is approached, i.e. when r —
0. From this observation, and assuming the separable variable representation (3.4)
of stress and back stress fields, the singular terms of these quantities must coincide,
namely at first order stress and back stress angular function must be equal: T = A,
and the reduced stress T can be determined by introducing higher order terms.
Therefore, the first order asymptotic representation used in this paper is not sufficient
for obtaining the near crack-tip fields, in the limit case of pure kinematic hardening.
A higher order field representation is necessary. The results presented in Sections 6
and 7 show that the first order solution tends, within the margin of precision of the
numerical procedure, to the asymptotic field distribution corresponding to a crack
growing in an isotropic elastic material. A qualitative explanation of this effect can
be the following. In the pure kinematic-hardening limit, the yield surface is subject to
a pure translation in stress space during plastic deformation. Due to the stress singu-
larity, the stress and the back stress tend to infinity and their difference, the reduced
stress, becomes negligible, compared to these. This produces a behavior similar to an
elastic material. These observations were precisely confirmed by Bigoni and Radi
(1996), where an analytical second order solution was given for Mode II1 propagation
in a J,-flow theory material, obeying pure kinematic hardening. In particular, it has
been shown that the first order asymptotic solution is coincident with the asymptotic
solution of a crack growing in an isotropic elastic material, having elastic shear
modulus equal to the plastic modulus in shear. In the present case of Gurson ela-
stoplastic model, a second order asymptotic solution based on the stress representation
of Bigoni and Radi (1996) needs more investigation.

4. MODE I BOUNDARY CONDITIONS

Mode I symmetry conditions render the analysis of the interval 0 < 9 < = sufficient
and, together with the regularity assumption for the stress and velocity functions,
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imply the vanishing of the non-symmetric stress and velocity functions along the
symmetry plane at 9 = 0 [seec Bose and Ponte Castafieda (1992) for a detailed dis-
cussion on regularity conditions]

wy(0) = T,y(0) = 0,
Wew(0) = T, 5(0) = Ty 5(0) = T35,4(0) = 0. 4.0

Two additional boundary conditions are given by the vanishing of the traction Te,
on the crack surfaces at 9 = =

Tyy(n) = Toy(m) = 0. 4.2)

Moreover, a non-singular behavior of the angular functions X, Q and Zy is assumed
at 3 = 0, which implies from (3.6)

Z(0) = —sT(0), Q) = —5A(0), Z(0) = —sT(0). (4.3)
By substituting these initial data into relations (3.16) and (3.17) one finds
Q(0) - T(0)

AO) =(1-5) 665110 - a0 TO AO) (44)
Q0) - A(0) =(1-5)Q(0) - T(0), (4.5)
whence a substitution of (4.5) into (4.4) gives
A(0) =(1-5H)T(0), (4.6)
and therefore
T(0) = T(0) ~ A(0) = HT(0). 4.7

Observe that at 3 = 0, e, = e, and ey = e,. Therefore, tensor T can be written at 3 = 0
in the form

T(0) = T.(0)e, @ e; + Ty (0)e, ® e, + T3:(0)e; ® e;. (4.8)

By using the boundary conditions (4.1) and the equilibrium equation (3.8,) evaluated
at & = 0 [see (A1.5) of Appendix 1}, the tensor T'(0) reduces to

T(0) = —sT,,(0)(e; @ e, e, ®e,). (4.9)

Moreover, by using the boundary conditions (4.1), the values at 3 = 0 of the vector
w and its derivative w’ [see (A1.6) of Appendix 1], can be cast in the form

w(0) = w,(O)e,, (4.10)
w(0) = [wy3(0)+w,(0)]e,. 4.11)
Then, the constitutive relation (3.15) at 9 = 0 becomes
[Ws(0) +w,(0)]e; @ e, +sw,.(0)e, ® e, = —s*[(14+v)T(0) —vtr T(0)I] +54(0)Q(0),
(4.12)
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where Q(0) and 4(0) may be evaluated from (3.12) and (3.13) by using conditions
(4.3)) and (4.7)

3b T
Q) = mdev T©O)+y(0)1, y(0)= ?sinh(;rTFEO; b), 4.13)
20) = —s 3b|dfalvtl"((€)))le(O) ) (4.14)
3h,,b> [W +9(0) tr T(O)]

Since all the assigned boundary conditions (4.1) and (4.2) are of homogeneous
type, the normalization condition Ty,(0) = 1 is adopted to avoid the trivial solution.

In order to solve the system (3.15)—(3.17) of ODEs, the Runge-Kutta procedure is
used. This approach requires the knowledge of the values w(0), T(0), A(0) and 7¢(0).
The boundary conditions together with the system (3.15)—(3.17) evaluated at 9 = 0,
do not specify the value of T,,(0). Therefore, the integration is performed by assuming
arbitrary initial values for 7,,(0) = p and s. On the basis of a check on the final values
Tyy(n) and T,4(7), the guessed values of p and s are reassigned and the process is
iterated using a modified Powell hybrid method, until 7Tyy(n) and 7,4(n) are found to
be sufficiently close to zero. The values of T3;(0) and 7(0) may be found by solving
the non-linear algebraic system of equationst formed by the plane strain condition
and the yield condition at 8 = 0

—5{T13(0) = v[T+(0) + T35 (0)]} + A(0)Q15(0) = 0, (4.15)
3|devT(0))* trTO) 5
2—————7%(0) b +2q5cosh(2TF(o) b)— 1+¢°. (4.16)

When T3;(0) and Tr(0) are known, w.(0) and w;, 4(0) may be derived from (4.12)
w(0) = —5{7.,(0) —v[Ty5(0) + T35 (0)]} + A(0)Qy, (0), 4.17)
Wyy(0) = —w,(0) =57 { Ty5(0) = V[T, (0) — T3 (0)]} +54(0)Qys(0).  (4.18)
Conditions (4.1), (4.6), (4.15)~(4.17) give all the components of vector y(0).

4.1. Series expansions at 3 =0

The governing system of (3.23) has a singularity at $ = 0 and at 3 = «, due to the
term sin $ multiplying the higher order derivative. The singularity at 3 = n does not
create problems for numerical solution. The solution is in fact well-behaved near
3 = x, and thus the numerical integration can be performed to an angle 7 —¢ as close
to 7 as needed to satisfy any required precision. In order to avoid the numerical
difficulty at 3 = 0, the integration of (3.23) must be initiated from a small value, say
e, of §. Therefore, the values of the unknown functions in y at a small & must

t Integration of the ODEs system (3.23) has been performed using Runge-Kutta—Verner method, and
iterations for satisfying boundary conditions at 3 = = were performed using the modified Powell hybrid
algorithm. These were available in the IMSL Library (Subroutines DIVPRK and DNEQNF). The non-
linear system (4.17)—(4.18) was solved by using Subroutine DNEQNJ of the IMSL Library.
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be evaluated. These values are obtained in Appendix 2, by performing asymptotic
expansions of the unknown fields ahead of the crack tip. In particular, we obtain the
following values of the stress components at § = ¢

Too(e) = e[T45(0) — (s+ 1) T, (0)] + o(e),

T.(e) = T (0)+0(e),

Tyy(e) = Tyy(0) +o(e),

T3:(e) = T33(0)+o(e). (4.19)

When (A2.13) is multiplied by the unit vectors (A2.15), we obtain the Taylor series
expansion of the back stress components

a
2

- 1)7”(0)}0(5),

Au(e) = 2() ~b>[n.9(0>+ (,H

A (e) = (1=0)T:(0) +o(e),
Agg(e) = (1 =5)Tyy(0) +o(e),
A33(8) = (1-5)T55(0) + o(e). (4.20)

From the Taylor series expansion (A2.2) of w, the velocity functions at 3 = ¢ may
be determined

w. (&) = w(0)+0(e), wy(e) = ewyy(0)+o(e), (4.21)

w.(0) and w,4(0) being known from (4.17) and (4.18). Finally, (A2.14) gives the
Taylor series expansion for 7.

All the values of the unknown functions in y(g) are now determined within an error
lower than ¢, and the numerical solution of problem (3.23) can be obtained by starting
the integration at 3 = ¢, rather than at 3 = 0.

Finally, all results are normalized through the condition 7§(3) =1, so as to
facilitate comparisons with Ponte Castafieda (1987) and Radi and Bigoni (1994).

It is important to remark that all the equations reported in the present section are
referred to plane strain. The plane stress case can easily be obtained simply by
introducing the conditions T3; = A5 = 0 in all the previous equations. In Sections 6
and 7, results referring to plane strain and plane stress are presented. The next section
is dedicated to a detailed analysis on continuity of stress fields at the crack tip.

5. CONTINUITY CONDITIONS AND TRANSITION OF HARDENING
TYPE

Discontinuities in stress and velocity fields may in general occur in the framework
of plasticity [see, e.g., Brannon and Drugan (1993) and references cited therein]. For
the steady-state crack propagation problem, discontinuities in the asymptotic stress
field may exist across radial lines emanating from the crack tip. In particular, the
stress components ¢, and ¢3; only may suffer jumps, since continuity of the tractions
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current
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Fig. 3. Subsequent yield surfaces.

are implied by quasistatic equilibrium condition. Drugan and Rice (1984) proved a
sufficient condition to exclude these stress jumps for elastoplastic materials with
associative flow-rule, and any type of hardening behavior for which the current yield
locus fully incorporates all preceding yield loci. Drugan (1995) has recently extended
the constitutive range of validity of this proof; it now contains as a subclass all types
of response analysed in the present paper. In the case of the Gurson model considered
in the present paper, we show that for the mixed hardening parameter b greater than
the transition value 0.5, all the subsequent yield surfaces contain the preceding.
Although Drugan’s (1995) new analysis applies for all 4 values, and all of our solutions
are completely continuous regardless of b-value, this transition value is interesting as
it seems to coincide with the appearance of a region of rapid field variation in our
solution.

In order to obtain the transition value of the mixed hardening parameter b, let us
denote by ¢ and ¢* two generic stress states, which belong to the yield surface &* at
time ¢ (Fig. 3).

f‘(a*vaa O-F) =f(07“9 O-F) = 0 (51)

The stress increment from the initial state at time ¢, described by the state variables
g, o and o, to the final state at 7+dz, is denoted by & d:. If this increment satisfies
plastic unloading or neutral loading conditions, the yield surface remains frozen.
Otherwise, for A > 0, the hardening variables are incremented by & ds and & d7, where
the material derivatives are the functions (2.16) of the stress ¢ and stress rate 6. As a
consequence of the increment of hardening variables, the yield surface expands and
translates in stress space (&** in Fig. 3) and the elastic domain becomes the set of all
the stress states a** satisfying the condition

flo**, a+adt, op+ ¢ di) <O0. (5.2)

Therefore, the yield locus at ¢+ dz fully incorporates the yield locus at ¢, if, for every
¢ and o* satisfying (5.1), ¢* satisfies (5.2), too, i.e.

fle*,a+adt,or+dpdt) <0, Vo,6*cS* (5.3)
A Taylor series expansion of f'near ¢*, « and oy yields
‘ . . . of of
fle*, a+adt, o +6pdt) = fle*, a,0p) + | &= Op 5 dz+ o(di).
Cot (6*.2,0¢) 0OF (e*.a,0p)

(5.4)
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By using (5.1) and (2.16) in (5.4), and neglecting higher order terms in d¢, condition
(5.3) becomes

Q*-[(b—1)6—5b6*] <0, Veo,6%cF*, (5.5)
where
3 ¢ . [tré*
* sk
Q Sor dev é* + 5 smh< . >I. (5.6)

It is possible to find the maximum value of the left hand side of inequality (5.5), for
o satisfying the yield condition (5.1), by employing the technique of Lagrangian
multipliers

max {Q* [(b—1)6—b6*]— & flo,a,0r)} <0, Va*eS*, 6.7

where ¢ is a Lagrangian multiplier. From problem (5.7) the following extremum
condition can be obtained

(b—1)Q* = £Q, Vo,a%cS*. (5.8)

The admissible solutions of (5.8) are & = +(b—1), since Q is one to one with the
stress state ¢ on the yield surface, so that Q* = +Q and correspondingly ¢* = +4.
It is easy to see that the maximum is achieved when these relations are taken with the
minus sign. Finally, we obtain that for 4 > 0.5 inequality (5.5) is always satisfied, and
this condition holds true regardless of the value of porosity, and, therefore, it is also
valid for von Mises yield surface.

6. PLANE STRAIN: RESULTS

Values of the singularity (s), elastic unloading (#,) and reloading (J,) angles are
reported in Tables 1 and 2 for different values of porosity (¢) and hardening parameter
b. Tables 1 and 2 refer to o = 0.001 and o = 0.1, respectively. For conciseness, only
the value v = 1/3 has been considered.

The angular distribution of components of functions T, A, T and w are plotted in
Figs4-9, for different values of mixity parameter b and small and high strain hardening
(ag = 0.001, in Figs 4-6, and o = 0.1, in Figs 7-9). Functions w, T, A represent,
aside from an amplitude factor, the asymptotic near-tip velocity, stress and back
stress fields, respectively. The cases ¢ = 0 (J,-flow theory), ¢ = 0.01, and ¢ = 0.05
are investigated. First of all, it is important to note the strong effects of the hardening
modulus and porosity, which were already known from the isotropic hardening case.
On comparison of the cases relative to b = 0.8 (hardening almost isotropic) and
b = 0.1 (hardening almost kinematic), the effect of anisotropic hardening is evident.
The out-of-plane, radial and circumferential stress components, which tend to coalesce
for b = 0.8 in the central zone of the graphs, tend to separate when b decreases, and
the angular distribution of components of A clearly tend to the angular distribution
of components of T. Moreover, the elastic sector behind the crack tip becomes very
thin, compared to the elastic sector for isotropic hardening. More significant effects
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Table 2. Values of the singularity exponent s and angles 9, and 3, for v=1/3 and
g = 0.1, for different values of mixed hardening parameter b and porosity ¢, under
plane strain conditions

b 0 0.05
b 5 9, 9, s 9, 9,
100 —0.20956  122.012 175.318 026382 94.585
0.80  —020412  130.627 168.299 023375 104.951
060 —021107  140.298 162.949 —0.20119  126.776 175.582
040  —0.23711  151.959 164.083 —0.21079  152.769 165.185
020 —032727  167.656 176.021 ~0.31581  168.644 176.597
0.10  —0.40934  176.012 179.996 —0.40336  176.527

of anisotropic hardening can be appreciated from Figs 10 and 11, which demonstrate
the effects of hardening mixity on field singularity and thickness of elastic sector in
the crack wake. In particular, Fig. 10 shows that the singularity decreases with
porosity and in any case tends to the value —0.50 when the isotropic component of
hardening tends to vanish. Figure 11 refers to ¢ = 0, 0.01, and 0.05, respectively. In
these figures the amplitude of the unloading and reloading angles are reported as
functions of . The porosity is seen to produce an increase in the thickness of the
elastic sector, whereas an opposite effect is related to an increase in the kinematic
component of hardening. Moreover, the elastic sector moves toward 3 = =, when the
mixity parameter b decreases. The above results may have the following qualitative
explanation : in the case of pure kinematic hardening, during the plastic history of the
near-tip particle, the yield surface translates in stress space without any modification
in size. Therefore, compared to the isotropic-hardening case, the elastic path of the
particle is extremely short, the energy dissipation during a loading-reloading cycle is
small, and the material remains almost always on the plastic branch of constitutive
equation. In conclusion, a thin elastic sector results and the singularity approaches
the value —0.5, corresponding to a linear constitutive equation. The tendency of T
to zero, the tendency of the singularity to the value —0.5, and the decrease of the
elastic sector, when the mixity parameter » approaches 0, induce to the conjecture
that the solution corresponds to the asymptotic fields relative to a crack steadily
running in an isotropic linear elastic medium, in the limit of pure kinematic hardening.
This conjecture was indeed analytically confirmed in the case of Mode I11 propagation
in a J,-material (Bigoni and Radi, 1996).

It can be finally observed from Figs 4 and 5 that the out-of-plane and radial stress
components develop a (continuous) rapid variation across the elastic sector, when b
decreases below the transition value 0.5, i.e. the value at which the material hardening
alters so that the current yield locus no longer incorporates all prior yield loci (see
Section 5). The continuity of the variation of the stress components can be appreciated
in Fig. 12, where the detail of the rapid variation of Fig. 4, relative to b = 0.4, is
reported. It should be noted that the more the kinematic component of hardening is
high, the more the variation is steep. Moreover, an increase in the porosity. or in the
hardening modulus, tends to eliminate this effect (in Figs 7 and 8, relative to g = 0.1
the rapid variations are absent).



1494 E. RADI and D. BIGONI

— Age ag = 0.001
®

= 0.00

b = 0.8
30 60 80 120 150 180
LV

-1.0

o,
S
©
o
R
o
o-
A
o
o
]
)

3.0

ag = 0.001 % = 0.00

~1.0

T T T T T T

60 80 120 150 180

Ot
[}
(=)

~1.0 T T T T v 1
0 "3 60 90 120 150 180 0 30 60 80 1320 150 180
]

Fig. 4. Angular distribution of stress functions near crack tip for small hardening of the matrix material
(2g = 0.001), corresponding to different values of the mixity parameter b, plane strain condition. Case
¢ =0, J,-flow theory.
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Fig. 6. Near crack-tip velocity functions (normalized with respect to the singularity s) for small hardening
of the matrix material (a; = 0.001), for different values of the mixity parameter 4, in plane strain conditions.
The cases ¢ = 0 and 0.05 are reported.

In conclusion, anisotropy of hardening and porosity have opposite effects: the
former tends to make the unloading sector thin, the singularity high and the angular
distribution of fields similar to the elastic case. The latter has an opposite effect, but
the limit case of pure kinematic hardening seems to be not influenced by the value of
porosity and of hardening modulus.

7. PLANE STRESS: RESULTS

Values of the singularity (s), elastic unloading ($,) and reloading (9,) angles are
reported in Tables 3 and 4 for different values of porosity (¢) and hardening parameter
b. Tables 3 and 4 refer to ag = 0.001 and «; = 0.1, respectively. Due to the fact that
the Poisson ratio does not influence results, the only value v = 1/2 has been considered.

The angular distribution of components of functions T, A, 7} and w are plotted in
Figs 13 and 14, for ¢ = 0.01, for different values of mixity parameter b, and small
strain hardening (xg = 0.001). In Fig. 15 the singularity s is reported as a function of
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Fig. 7. Angular distribution of stress functions near crack tip for high hardening of the matrix material
(2 = 0.1), corresponding to different values of the mixity parameter b, plane strain condition. Case ¢ = 0,
J,-flow theory.

the mixity parameter . The amplitude of the elastic sector is plotted, as a function of
the parameter b, in Fig. 16. All graphs refer to the case ¢ = 0.01, because results
remain qualitatively unaffected by the porosity [analogously to the isotropic-hard-
ening case of Radi and Bigoni (1994)].
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Fig. 8. As for Fig. 7, except that ¢ = 0.05.

Considerations analogous to the plane strain case can be made and are not repeated
here. The principal difference with respect to the plane strain situation is that the
elastic sector in the crack wake is of remarkably large size. This was also found by
Narasimhan et al. (1993), using a finite element technique. It may be important to
remark that the unloading sector tends always to zero thickness and moves toward
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Fig. 9. Near crack-tip velocity functions (normalized with respect to the singularity s) for high hardening
of the matrix material (x; = 0.1), for different values of the mixity parameter b, in plane strain conditions.
The cases ¢ = 0 and 0.05 are reported.
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Fig. 12. Particular of Fig. 5: the rapid variation of out-of-plane and radial stress components.

3 = 7, when the limit case of pure kinematic hardening is approached. Note also from
Fig. 15, that, differently from the plane strain case, the strength of the singularity,
before the dramatic increase toward —0.5, slowly decreases, for 4 inferior than,
approximately, the transition value 0.5. Due to the small influence of porosity on the
results, the effect of anisotropic hardening is more apparent here than in the plane
strain case.

It may be interesting to note that, in the case of the J,-flow theory (¢ = 0), two
elastic sectors appear in the solution for » around the transition value 0.5. This
particular feature was found also by Zhang er al. (1984), and disappears when the
porosity is increased (Table 3).

Finally, it can be noted that the radial stress in the crack wake changes from
compressive to tensile when the kinematic component of hardening increases. There-
fore, the kinematic component of hardening eliminates the unrealistic effect of com-
pressive radial stress in the crack wake, which seems now to be related to isotropic
hardening.
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Table 3. Values of the singularity exponent s and angles 8, and 3, for v = 1/2 and
ag = 0.001, for different values of mixed hardening parameter b and porosity ¢, under
plane stress conditions

1) 0.00 0.01

b s 3 3, s % 3,
1.00 —0.028664 53.202 179.999 —0.028492 53.034 179.999
0.80 —0.025974 59.965 —0.025830 59.760
0.60 —0.022122 74.848 —0.022016 74.528
0.55 —0.020813 83.001 180.000 —0.021324 82.500
0.50 —0.019313 101.621 158.716 —0.019086  101.319 178.124

9, =172.527 9,=177.022

0.45 —0.042199 174.376 176.712 —0.042015 174933 177.183
0.40 —0.083854 174.328 176.067 —0.083726  174.594 176.300
0.30 —0.177150 174.688 175.905 —0.177095 174.797 176.000
0.20 —0.279683 176.410 177.274 —0.279670  176.461 177.316
0.10 —0.389211 179.201 179.607 —0.389212  179.219 179.619

Table 4. Values of the singularity exponent s and angles 3, and $,, for v = 1/2 and
ag = 0.1, for different values of mixed hardening parameter b and porosity ¢, under
plane stress conditions

¢ 0.00 0.01

h $ 3, 9, s 3 3,
1.00 —0.23721 73.646 —0.23604 73.476
0.80 —0.22540 78.558 —0.22431 78.366
0.60 —0.20614 89.726 —0.20517 89.478
0.50 —0.19060 106.705 —0.18974 106.335
0.40 —0.18128 171.908 179.007 —0.18045 172.077 179.118
0.30 —0.22853 172.104 179.111 —0.22799 172.213 179.157

8. CONCLUSIONS

A first order asymptotic solution has been obtained for near-tip fields of a crack
quasi-statically growing at constant speed, under Mode I loading conditions, in a
material characterized by the mixed isotropic—kinematic strain hardening Gurson
incremental elastoplastic model, with constant porosity. This is a generalization of
the asymptotic solutions obtained by Miao and Drugan (1995) and Radi and Bigoni
(1994) for Gurson model with no hardening and linear isotropic hardening, respec-
tively.

As a consequence of the fact that the material particle approaching the crack tip
suffers a strongly non-proportional loading history, the effect of the strain anisotropy
has been found significant as (but opposite to) the effects of porosity. Many interesting
features have been found, which partially confirm results already known in different
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of the matrix material (a; = 0.001), for different values of the mixity parameter 4, in plane stress conditions.
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contexts (e.g. in Modc I11, or for different constitutive equations), and partially are
new. In particular:

e An increase in the anisotropic component of hardening leads to a narrow region
of elastic unloading. This unloading region occurs much closer to the crack flank
when compared to isotropic hardening [in the framework of J,-flow theory, a similar
conclusion was obtained by Delph (1994) and Bigoni and Radi (1996), for Mode 111
loading conditions, and by Narasimhan and Venkatesha (1993) and Narasimhan et
al. (1993), using finite element techniques).

e An increase in the anisotropic component of hardening leads to higher values of
the singularity strength, which tends to the elastic limit —0.5 when pure kinematic
hardening is approached.

e When the pure kinematic hardening limit is approached, the first order rep-
resentation of reduced stress tends to vanish, and the solution approaches the fields
corresponding to propagation in a linear, isotropic elastic material. This apparently
occurs independently of the value of porosity. This circumstance was fully confirmed
by Bigoni and Radi (1996) in the simple case of Mode Il propagation in J,-flow
theory material.

o When the scalar parameter governing the anisotropic component of hardening
drops below the transition level 0.5, below which the current yield locus no longer
incorporates all prior yield loci, the radial (and out-of-plane, for plane strain) normal
stress suffers a rapid variation across the elastic sector.

e As noted by Zhang et al. (1984), for plane stress J,-flow theory, two elastic
unloading sectors appear in the solution, when the hardening mixity is close to the
transition value. These two sectors coalesce when the porosity is increased.

e For plane stress, isotropic hardening, the radial stress in the plastic sector in the
crack wake is compressive (see, e.g., Ponte Castafieda, 1987). This unrealistic effect
disappears when the kinematic component of hardening is relevant, and the radial
stress becomes tensile.

The fact that an increase in the anisotropic component of hardening produces a
strengthening of the singularity suggests the conjecture that the kinematic component
of hardening can have an instabilizing effect on crack propagation. On the other
hand, an opposed effect is related to an increase of porosity [this latter effect was
found by Radi and Bigoni (1994) and Miao and Drugan (1995)].
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APPENDIX I

In the cylindrical coordinates (r, 3, z), the basis vectors e, e; and e, are defined as
e (3 =e cosI+e;sind, ey(d) = —e; sind+e,cos9, e, =e;, (Al.1)
and, therefore
e () = %e, =ey, e€yd) = d%]e,, = —e,. (Al1.2)
When the asymptotic expansion (3.4,) for the stress are introduced into the equilibrium (3.3)
equations one obtains
div [*T(9)] =0, (A1.3)
which may be expanded to
rdivT(3) +sT(He, = 0. (Al.4)

Finally, when the divergence operator is applied to the tensor T which is independent of the
polar coordinate r, the equilibrium condition (A1.4) reduces to (3.7).

The components of the derivative with respect to $ of the stress tensor T in cylindrical
coordinate may be derived by using relations (A1.2)

(T =Te e =T,,—2T,,
(T)y=Te ey =Ty, +T,— Ty,
(T = Teyrey = Tyy 3 +2T,. (ALS)

Moreover, the components of the derivative with respect to 3 of the velocity vector w may be
found to be

(w/)r = W” € = Wrg— Wy,

W), =we; =wy,+w,. (A1.6)

APPENDIX II

The derivatives T" and w” at 3 = 0 are known from (4.9) and (4.11) ; therefore, Taylor series
expansions of the stress tensor and velocity vector functions at $ = 0 are possible

T(e) = T(0)+£T'(0) +0(e), (A2.1)

w(e) = w(0) +ew'(0) + o(e). (A22)

Moreover, Taylor expansions of the back stress and the flow stress may be performed at 3 = 0
Ae) = A(0) +A"(0) + 0 ().

Ty(g) = Te(0) +eT1:(0) +o(e), (A2.3)

which are known, whence the values of A" and Tt at 3 = 0 are derived.
In order to obtain these values, (3.6,) is differentiated with respect to 3

Y =(T'+sT)sin3— (14+5)T cos 3, (A2.4)

and evaluated at 3 = 0 [assuming appropriate regularity conditions for angular function T;
see the discussion in Appendix B of Bose and Ponte Castafieda (1992)]
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0= —(14+9)T(0) = s(1+ 5T (0)(e, e, +e, ®e,). (A2.5)

Moreover, an evaluation of (3.12) at 3 = 0 results in

3 ¢ . (btrT(0)
QO) = 575 dev T(O)+ 3 smh( Toi0) )1, (A2.6)

so that Q,4(0) = 0, and therefore, by (A2.5)
Q(0)'T(0) =0, Q(0)-X(0)=0. (A2.7)

Now, from (3.18), (4.3,) and (4.7), we obtain p(0) = —s/b. Moreover, the derivative of (3.18)
with respect to & is

_Qr+Q-x QT+Q-F

/ = — X, A2.8
QT Q1 ¢ (A28
which gives, for 3 =0
s Q(0)-A(0)

) — 2 A2.9
PO == 0T (A29)

The derivative of (3.16) with respect to 9, evaluated at 3 = 0, is

o s[Q(0) A(0) o

and the scalar product with Q(0) yields Q(0)-A’(0) = 0, which introduced in (A2.9) gives
p’(0) = 0. A substitution of this result into (A2.10) gives

1-b
h—s

A'(0) = —s——T(0). (A2.11)

The derivative of (3.17) with respect to 3, evaluated at 3 =0, is
(1=5)TL(0) = bp(0) T=(0); (A2.12)

therefore, considering that p(0) = —s/b, we obtain T7.(0) = 0. When the expressions of A’(0)
and T¢(0) are introduced into the series expansions (A2.3), the fields A and 7% can be evaluated
at 3 = ¢, as functions of the stress tensor T and its derivative T’ at 3 = 0, given by (4.8) and
(4.9)

Ale) =(1 Ab)[T(O)—sbivT’(O):|+o(a), (A2.13)

Te(2) = Te(0)+0(e), (A2.14)

where T(0) can be obtained by solving the system (4.15)—(4.16).
By using the relations (Al.1) in Appendix 1, the unit vectors of the cylindrical reference
system assume the following expressions at 3 = ¢

e.(¢) = e.(0)+eey(0)+o0(e) = e, +ey+o(e),
e (e) = —¢ee(0)+e,(0)+0(c) = —ee, +e,+0(¢), (A2.15)
which are needed to obtain the components (4.19)—(4.21).



