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Abstract

A linear elastic solid having part of the boundary in unilateral frictional contact with a stiffer
constraint is considered. Bifurcations of the quasistatic velocity problem are analyzed, making
use of methods developed for elastoplasticity. An exclusion principle for bifurcation is proposed
which is similar, in essence, to the well-known exclusion principle given by Hill (1958). Sufficient
conditions for uniqueness are given for a broad class of contact constitutive equations. The
uniqueness criteria are based on the introduction of ‘linear comparison interfaces’ defined both
where the contact rate constitutive equation are piece-wise incrementally linear and where
these are thoroughly nonlinear. Structural examples are proposed which give evidence to the
applicability of the exclusion criteria. © 1999 Elsevier Science Ltd. All rights reserved
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Notation

Vectors and second-order tensors are denoted by bold letters. The natural inner
product of two vectors a and b is denoted by a*b = a,b;. The tensor product a ® b of
two vectors is the tensor that assigns to each vector u the vector (b - w)a. In components
(a®b),; = ab;. The symbols V and div indicate the gradient and the divergence of a
vector or tensor field respectively. Also, L*(Q) and H'(Q) denote the well-known
Hilbert spaces of real functions defined on Q, equipped with the associated norms,
respectively:

12 12
H“HLZ(Q) = {J u'u} 5 H“HH‘(Q) = {J (“"H‘V“'V“)} .
o o

S0022-5096/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved
PII: S0022-5096(98)00083-0



276 E. Radi et al./Journal of the Mechanics and Physics of Solids 47 (1999) 275-296

1. Introduction

The problem of deformation of a solid body in contact with a stiffer frictional
constraint has an evident interest in many mechanical and civil engineering problems
and represents an interesting challenge in continum mechanics. From the physical
point of view, this is due to the occurrence of many instabilities, including slip-stick
motion and flutter (Rice and Ruina, 1983; Gu et al., 1984; Oden and Martins, 1985,
Simées and Martins, 1997). Moreover, bifurcation threshold stresses are strongly
reduced by the presence of interfacial effects (Bigoni et al., 1997). It follows that a
proper description of constitutive laws at interfaces becomes an essential ingredient
in buckling analyses. From the mathematical point of view difficulties are related to
the fact that an interfacial constitutive operator representing dry-frictional contact is
typically non-symmetric (Michalowski and Mroéz, 1978; Curnier, 1984; Jarzebowski
and Mroéz, 1994; Mro6z and Jarzebowski, 1994; Mro6z and Stupkiewicz, 1994). These
and other peculiarities complicate the numerical analysis of problems involving
contact, which is the subject of a number of contributions (see e.g. Kikuchi and Oden,
1988; Raous et al., 1988; Laursen and Simo, 1993; Laursen and Oancea, 1997 and
references cited therein).

The problem of uniqueness of solutions of boundary value problems during quasi-
static, unilateral, frictional contact has been analyzed from a number of perspectives.
In particular, Cocu (1984) has given uniqueness and existence results for the Signorini
problem with holonomic Coulomb friction. Necessary and sufficient conditions for
bifurcation for finite-dimensional contact incremental problems were stated by Curn-
ier and Alart (1988). Examples of non-uniqueness of the rate solution have been
presented by Klarbring (1990b) and reconsidered by Martins et al. (1994) including
the possibility of discontinuities in time. Sufficient conditions for uniqueness in the
rate problem were given by Klarbring (1987), Klarbring et al. (1988), Klarbring
(1990a), Chateau and Nguyen (1991), and Stromberg et al. (1996).

In the present article, uniqueness of the incremental response during quasistatic
deformation of a linear, elastic body in unilateral, frictional contact with a stiffer
constraint is considered afresh, borrowing concepts from elastoplasticity theory. In
particular, the constitutive equations of a frictional interface and of non-associative
elastoplasticity (Hill, 1967; Mandel, 1966; Mroz, 1963, 1966) have a similar structure,
a fact which reflects an intimate connection between underlying physical micro-
mechanisms of deformation and slip. In particular, it is well-known (Klarbring, 1990a)
that the zone of contact in the friction problem may be divided into four parts,
corresponding to the occurrence of separation, grazing, stick, and stick or slip. In the
grazing zone, we refer to a general constitutive equation embracing a broad class
of specific constitutive laws employed in the literature. In particular, we assume a
thoroughly non-linear incremental constitutive equation with tangential and normal
compliance. Results presented remain valid in the specific case where this compliance
is assumed to vanish for zero contact pressure (Oden and Martins, 1985; Klarbring,
1990a; Buczkowski and Kleiber, 1977). Tangential and normal compliance are also
assumed in the stick and slip zones. In the region where the friction condition is
verified, stick or slip may occur depending on the incremental fields. In this zone the
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contact laws are incrementally piece-wise linear and formally similar to the equations
of incremental non-associative elastoplasticity with smooth yield and plastic potential
functions. Therefore, it is natural to employ the general framework for bifurcation
given by Hill (1958) and extended to non-associative plasticity by Raniecki (1979)
and Raniecki and Bruhns (1981). We present an integral exclusion condition for
bifurcation in essence similar to the Hill (1958) exclusion functional, which was also
given—in a similar form—Dby Chateau and Nguyen (1991). Basically, our exclusion
functional consists of the sum of two terms: a volumetric term and a surface term,
corresponding to the contact area. The first term is always positive, when the body is
elastic (with positive definite strain energy), whereas the surface term may be negative.
The surface term may be bounded in the stick/slip zone by introducing a family of
linear comparison interfaces formally analogous to the comparison solids introduced
by Raniecki (1979) and Raniecki and Bruhns (1981). These comparison solids were
formulated for incrementally piece-wise linear constitutive laws and therefore do not
cover the situation corresponding to the grazing zone, where a thoroughly non-linear
incremental constitutive law is assumed. Thus we introduce a new linear comparison
interface specifically valid in the grazing zone. Nothing analogous is known for
thoroughly non-linear incremental theories of plasticity, where all available results
are restricted to self-adjoint constitutive operators (Petryk, 1989).

The introduction of the comparison interface makes possible the formulation of a
quadratic exclusion functional for bifurcation. From this functional, global and local
criteria of uniqueness are derived. In cases where the grazing zone is absent, a sufficient
criterion for uniqueness may be easily obtained by imposing the positive-definiteness
of the linear comparison interface operator. This is valid for certain interfacial consti-
tutive laws often employed in the literature (Michalowski and Mro6z, 1978; Cheng
and Kikuchi, 1985). A more precise bound to the exclusion functional is obtained
through a comparison between the volume and the surface terms. The comparison is
possible making use of functional analysis arguments based on a Korn-type inequality
and the trace theorem. As shown by an example in which a square elastic domain
with frictional boundary on a side is considered, this condition may be of difficult
practical use. This is a consequence of the well-known fact that the numerical value
of the constants appearing in the Korn-type inequality and in the trace theorem are
only known for very special cases. In an additional example, our approach is applied
to a simple 2-D.O.F. elastic structure with a frictional constraint. For this case and
when elastic compliance of the constraint is zero, the bifurcation condition (in terms
of a critical value of friction) is known from Curnier and Alart (1988) and Klarbring
(1990b). The example reveals that our exclusion condition (in the limit of zero con-
straint compliance) is in this case over-conservative. Moreover, it should be noted
that our condition of uniqueness may not be critical for bifurcation, in the sense that
failure of our condition does not imply bifurcation, a circumstance in full agreement
with the non-associative elastoplasticity counterpart (Raniecki, 1979; Raniecki and
Bruhns, 1981).

The approach presented in this paper may be considered complementary to that
proposed by Klarbring (1990a). One of the advantages of our formulation is that an
extension to large strains seems to be possible. In particular, the generalization of the



278 E. Radi et al./Journal of the Mechanics and Physics of Solids 47 (1999) 275-296

quadratic exclusion functional to elastoplastic solids subject to large deformations is
straightforward. Moreover, an analysis may be performed of higher-order bifur-
cations, similar to that developed by Bigoni (1996) for non-associative elastoplasticity.

2. Frictional contact rate problem

A linear elastic body occupying a bounded region Q of the Euclidean point space
is considered (Fig. 1), with Lipschitz boundary dQ = S, ( J S, S.. In the body, the
usual incremental field equations hold:

dive+f=0, &=EFe(@), &) =31(Va+Vi"), inQ, (1)

where fis the increment of body force, & the stress rate, it the velocity and E the elastic
constitutive fourth-order tensor of the body. On S, and S, velocities ¥ and traction
rates t are prescribed, respectively, i.e.

én=t, onS, u=¥V, onsS, 2

where n is the outer unit normal vector (see Fig. 1). The problem under consideration
is evolutionary, in the sense that the extension of the contact zone fully depends on
the history of loading up to the current time. However, this zone, as well as its four
parts that will be defined in the following, is completely independent of the incremental
fields (Klarbring, 1990a).

We denote by S, the part of the boundary in possible frictional, unilateral contact
with a stiff constraint (Fig. 1). Initially, when the body is completely unstressed, there
may not be complete contact on S,. In order to model this situation in an infinitesimal
theory, the presence of a gap g between the contact boundary and the constraint is
introduced, measured along the outward normal direction to S, (as in Klarbring et
al., 1988). In a generic situation of the loading process, the zone S. may be divided
into four different parts S, S,, S; and S,, where separation, grazing, stick and stick
or slip, may respectively occur, depending on the current values of tractions and
displacements. Therefore, when the body is completely unstressed, S, consists of S,
and S, only, but during increasing loading the four regions S|, . . ., S, form and evolve.
These may be defined as (Klarbring, 1990a):

S / t
t /n Q
2k
Se Pr p

Fig. 1. Sketch of the frictional contact rate problem.
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Si = {xeScun—w < g,pn = 0,pr = 0} (separation),

S, = {xeScux—w = g,pn = 0,pr = 0} (grazing),

Sy = {xeSiux—w > g,px > 0,|pr —ppn < 0} (stick),

Sy = {xeScun—w > g,pn > 0, |prl —ppn = 0} (stick or slip), (3)

where u is the friction coefficient, w is the irreversible component of displacement
normal to the boundary, p = —on, and py, pr and uy, ur are the normal and tangential
components of tractions (with reversed sign) and displacement, namely

PN=P'D, Pr=P—pa0, Uy =U'D, Up=U—u\N. 4

It should be noted from conditions (3) that irreversible displacement in the contact
zone may consist of both a tangential and a normal component. The normal com-
ponent can model situations corresponding to interfacial dilatancy or contractivity as
related to the presence of asperities or wear. Note also that the assumed contact law
allows for positive normal displacements in the contact zone. This may be related to
a compliance of the frictional constraint, which may be constant or dependent on the
current state. Moreover, it should also be noted that in the definition of S; and S, a
Coulomb law of friction has been assumed, relating the modulus of the tangential
component of traction to the contact pressure.

2.1. Interfacial constitutive rate equations

The rate boundary conditions on S, may be expressed through the interfacial
constitutive laws relating traction rate and velocity. The constitutive laws are different
in the various zones in which S, is divided.

In the separation region S, the traction rate vector vanishes:

p=0. &)
In the stick region S;, a linear incremental relation is assumed:
p = Ca, (6)

where the positive definite tensor C indicates the elastic interface stiffness, may be
constant or dependent on the current state and may take the special simple form,
isotropic in the plane tangent to the contact

C = kTI + (kN - kT)n ® n, (7)

where ky and k; are the normal and tangential stiffness parameter of the interface,
respectively.

In the region S,, where the friction condition is satisfied, a linear relation between
traction rate and the reversible part of the velocity is assumed, namely p = Cu', where
u = o'+ and @’ is the irreversible part of the velocity due to slip. The reversible part
of the velocity can be attributed to the elastic deformations of the asperities of the
surfaces in contact, and it is usually called adherence. The irreversible part of velocity
has normal component @ *n = w, where w has been defined in (3). The slip term @°
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occurs only if the consistency condition a*p = 0 is verified, where a is the gradient of
the friction condition. In this case, the slip is given by w* = Ab, being A > 0 a scalar
multiplier and b a vector defining the direction of the irreversible part of velocity.
From the friction and slip conditions (Fig. 2), vectors a and b can be defined as:

Pr
a=_—— —
[P+l

P
pn, b= —f(p)n, @®)
[l
where parameter f(p) may describe dilatancy effects due to asperities or wear of the
contact and is assumed to vanish for zero normal pressure, i.e. f(0) = 0. Finally, by

imposing the consistency condition, the following value of A can be derived:
_aCu
~a-Ch’

and thus, the piecewise linear relation between traction rate vector and velocity,
holding in S,, results in:

p=Cua, ifa-Ca<0 (stick), 1)
. Cb®Ca\ K6 . . .
p= <C Ca'b )u, ifaCa>0 (slip), 9,)

so that stick or slip may occur depending on the incremental fields. Locking behavior
of contact interface is assumed to be excluded, thus Ca-b > 0 is assumed in (9),.

At this point, the formal analogy is evident between the interfacial constitutive laws
holding on S5 and S, and the rate of equations of non-associative, elastic—perfectly
plastic solids. In particular, a similarity may be noted with the Drucker—Prager model,
where the yield surface is a cone, and in its corner the incremental constitutive
equations become thoroughly non-linear. Analogously, vectors a and b, eqn (8), and
thus constitutive equations (9) are not defined when p = 0. Zero contact pressure
occurs in the grazing zone S,, where separation or stick/slip may occur depending on
the sign of normal velocity iy, namely

p=0, ifuy<0 (separation). (10))
Dn = kntin,  Pr = kqliy, iy >0 and  kqlig] < pkyin  (stick), (10,)

IpT|

Fig. 2. Friction condition and sliding rule.
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Ur

Pn = ki, Pro= phntin K ifiy >0 and krldg| > pkyig - (slip).

Tl
(105)

Observe that w = 0 as a consequence of $(0) = 0. It may be important to note that
the incremental constitutive equation (10) is thoroughly nonlinear and corresponds
to the vertex behavior of model (9) for constant stiffness parameters of the interface,
eqn (7).

It should also be noted that an approximation to Signorini’s law of contact with
Coulomb friction can be recovered in our model as a limit behavior when the elastic
stiffness tends to infinity, as the elastic—perfectly plastic model tends to the limit of
the rigid—perfectly plastic behavior, when the elastic stiffness tends to infinity.

2.2. A possible generalization of the interfacial constitutive equations

It is interesting to note that, extending the analogy between friction and plasticity
along the lines drawn in (Michalowski and Mréz, 1978; Curnier, 1984; Cheng and
Kikuchi, 1985), the constitutive equations (9), which hold on S,, can be generalized
to include some hardening as follows:

p=Lu, (11)

where L is the frictional interface constitutive tensor, namely

L=C ifa-Ca<0 (stick), (12))
Ch®Ca . .
L=C— m ifa:Ca>0 (Sllp), (122)

and 4 is the interface hardening coefficient (describing softening when negative, and
assumed null for vanishing contact pressure, i.c. # = 0 for p = 0). In the following,
the quantity 2+ Ca-b is assumed positive. Even if the normality rule is generally
considered inadequate to describe frictional behavior, Bowden and Tabor (1964) have
proposed a model of interfacial behavior based on a normality rule. In the present
context, this case simply corresponds to a = b.

3. Uniqueness criteria

Uniqueness criteria are obtained in this section following the method introduced
by Hill (1958). Let v\ and v*® be two different solutions (under the same external
loading rates f and t). Let us introduce the admissible velocity function manifold

Y = {veH'(Q)v=7vonS,},

which is a subset of the Hilbert space H'(Q), and the tangent space of the manifold
v
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H = {ve H'(Q):v=00nS,}.

On application of the divergence theorem it follows that

J g(Av)- [Es(Av)—f—J Ap-Av =0, W vPey (13)
Q Se

c

where Av = vV —v® and Ap = p” —p® is the incrementally non-linear function of vtV
and v defined by (5)~(9) or by (5)—(8) and (11). From relation (13), an exclusion
condition for bifurcation in Hill’s sense can be given in the form

Jo(AV) +J. (v, v?) > 0, vy vPey, (14)
where
Jo(Av) = J g(Av) - Ee(Av), J (v, v?) = J Ap- Av. (15)
Q Se

The quadratic functional (15), is positive definite in the present context, being pro-
portional to an elastic sorted energy. Note that, in the absence of friction, condition
(14) reduces to the well-known Kirchhoff uniqueness argument of elasticity. The non-
linear functional (15), may assume negative values and therefore uniqueness may be
lost. A uniqueness condition similar to (14) was proposed by Chateau and Nguyen
(1991).

3.1. Raniecki type linear comparison interface

Following Hill (1958), Raniecki (1979) and Raniecki and Bruhns (1981), we intro-
duce a family of linear comparison interfaces, thus bonding the non-linear function
(15), in the zone S, from below with a quadratic functional of velocity difference.
This family of comparison interfaces provides a lower bound to bifurcation as is
defined through the constitutive tensor

_ C(b+ya) ® C(b+ya)

R _
L=c 4y(h+Ca-b) °

(16)

where the arbitrary parameter iy > 0 defines the family of comparison interfaces. The
following comparison theorem holds true:

Ap-Av = Av-LRAv, v vPey (17)
Proof: The proof is similar to that of Raniecki (1979) for non-associative plasticity

and is only summarized here. In the two cases a-Cv? <0 or a-Cv? > 0, with
i =1,2,Ap = LAv and it can be shown that
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C(b+a) - Av]? ) ,
M> 0 1va(’)'a <0
4y(h+Ca-b)

[C(b—ya)- Av]? . .
- - @ @0 > (i) o
4+ Ca-b) >0 ifCv”-a>0

Av-(L—L®MAv =

so that (17) is verified.
The condition a*Cv? < 0 and a-Cv" > 0, with i,j = 1,2(i # j), only needs to be
examined. In this case, algebraic manipulations yield

4 (h+Ca-b)(Ap- Av— Av- LRAY)
= [2ya- Cv+ (j—i)(b—a)- CAV] —4y>(a- Cv?)(a- Cv) > 0.

3.2. A new linear comparison interface for the grazing zone

In the grazing zone S,, the incremental constitutive equations are thoroughly non-
linear. In this zone we define a linear comparison interface bounding the non-linear
functional (15), from below with a quadratic functional of velocity difference. As for
the Raniecki comparison solid, also the new comparison interface provides a lower
bound to bifurcation.

We prove the following comparison theorem at every point of S,, under the consti-
tutive assumption (10):

14 u?

—1
Ap-Av = —ka|AV|2, v vP ey, (18)

Proof: The proof follows from the preliminary lemma:

J1+p2—1
AUNAVE + (Avn)? = — +|Av|2, Wy ey, (19)

which can be obtained from

AvnAlve| +(Avn)* = [Avy, Alv4]] LA
UnAV vn)? = [Avp, Al
HAUNA|VT N N T w2 0 Alvy|

1+’ —1
> — \/TZH[(AUN)ZHAIVTI)Z]

and |AV]® = [(Avx)*+ (Alve])’]-
The proofis now divided into six cases, in which two solutions belonging to different
constitutive situations are considered.

(1) v corresponds to separation (v’ < 0, p®* = 0) and v to slip (10);:
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v -y
Ap- Av—kNvm[ <|V(T2)|— e >—AZJN:|
vt

> min {0, kn[pAonAlVe| + (Avy)’]},

where —Avy = 2 > 0 has been used.
(2) Both vV and v*? correspond to slip (10)5:

() X2)
UN UN
Ap- Av = uky |:v(2)|v(2)| + oV = v v <|(1)| + | (2)|>:|+kN(AvN)2
VT VT

= kn[pAvNAlvL] + (AUN)ZL

where v{ - v < |v{"||v$¥)| has been used.
(3) vV corresponds to separation (v’ < 0, p”’ = 0) and v® to stick (10):

Ap - AV = kg]vP)? — kv - v 4 (k') — ka0
1
— ke V5| <A|VT| + #ADN>

> min {0, kn[pAvnAlve] + (Aon)*1},

where —Avy = 0¥ > 0 and k|v{)| < pkv? have been used.
(4) vV corresponds to stick (10), and v to slip (10);:

v v

Ap-Av = ,ukNv(z)<|v(T2)| -
v

) fervi - (V) —¥iD) 4 kn(Aoy)?

> — (et — Kl Vi DAIVL] + kx(Aoy).
Now, Alvy| > 0 = kP —k1v{"| < 0= Ap-Av > 0, whereas if A|v{| <

AP Av = knAvn(uA|ve| + Avy).
(5) Both v and v correspond to stick (10):

Ap* AV = kel Ava + kn(Avn)> = 0
(6) Both v\ and v correspond to separation (v’ < 0 and v’ < 0, p¥ = p® = 0):

Ap-Av = 0.
In the special case in which ky is a function of the current state, null for p = 0, the

comparison solid (18) gives Ap*Av > 0. The case in which k1 vanishes for p = 0 and
ky 1s not negative may be also interesting and is analyzed in the Appendix.
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3.3. Exclusion condition for bifurcation with quadratic functionals

The functional J, in the exclusion condition (14) is the sum of the four contributions
relative to the zones into which S, has been divided, namely: J, = J,+J,+J5+ /4,
where

J(vD,v@) = j Ap-Av  (k=1,2,3,4). (20)

Sy

It is necessary to separately analyze the four contributions J,. Firstly, it may be easily
checked that J, = 0, since Ap = 0 on S, as follows from (5).

We are now in a position to formulate the sufficient condition for uniqueness in
terms of two quadratic functionals: The velocity problem of an elastic body with part
of the boundary in frictional, unilateral contact with a stiffer constraint, defined by
relations (5)—(11), is unique if

Jo(V)+J(v) >0, Vves, 21
where

JL¥) = o (¥) +J5(v) +u(V),

=T+
J2(V)=J kN%MZ, Ti(v) = J v-Cv, J4(v)=J vIY. ()
S, S3 Sy

Therefore, the contributions to J. from S,, S5 and S, can be bounded by three
quadratic functionals.

3.4. Lower bounds for J,, J; and J,

Functionals J,, J; and J, defined in (22) can be estimated. In particular,

1= /T4
Jz(v)>igf{kN2+“} V235, < 0. Vve s, (23)

and a lower bound to J; is consequent to the positive definiteness of tensor C:

J3(v) = it (7 vlis, = 0, Ve, 24

where y is the minimum (positive) eigenvalue of C. A lower bound for J, can be found
on the basis of the following proposition.
For every vector v, the following inequality holds true:

v-LRy = —pRIv|%, (25)

where
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(26)

x|l (Ca-a)(Cb-b)—h
Pt == —1
2 h+Ca-*b

and I is the maximum eigenvalue of C in the case p® > 0.' Note that p® is not less
than zero for 4 < 0, but it may be less than zero for 4 > 0.

Proof: The Cauchy—Schwarz inequality in the metric induced by C (which is symmetric

and positive definite), i.e. (a* Cb)* < (a- Ca)(b- Cb) yields for every vector v:

(b+a) - C(b+a)
4y(h+Ca-b)

v'Lsz[l— :|(V‘CV)

1[ b-Cb+ya-Ca—2yh

=3 20(h+ Ca-b) :| (v Cyv). 27)

The last term of the right hand side of (27) attains a maximum for

Cb-b
V= Ca-a’

and therefore, for every vector v:

T _1[ (Ca-a)(Cb-b)—h

LGt feen

It should be noted that the bound (25) is optimal because equality holds for
v=b+ya.
From the above proposition, the following lower bound to J,(v) can be given:

Ju(v) = —S’S{‘p {Tp®} ‘|VH2?(S4): Vve . (28)

Just neglecting the positive contribution of J;, the following lower bound for J.

trivially follows:
vV 1 +/‘2 —1 R) 2
J(v) = —max SUup ka ,Sgp {Tp" [VIZ2s,0s0, VVEA. (29)

3.5. Relations between the two linear comparison interfaces

Let us consider for C representation (7) and f = & = 0. The following inequality
holds true:

"In the case p® < 0, T should correspond to the minimum eigenvalue. This case is less interesting, because
itis J, = 0 (see also the following Section 3.6).
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1+u*—1

< max {ky, k1}p~, (30)

where, in this case (26) reduces to

1 k
R _ © 2N
0 —2< 14+u kr 1>.

Equality occurs in (30) for ky = k¢ or 4 = 0. A consequence of inequality (30) is that
the Raniecki comparison interface may still be used to provide a bound also in the
grazing zone S,. However, this bound is not optimal.

3.6. A local condition for uniqueness

Invoking experimental evidence, it is often assumed in the literature that the com-
pliance of the contact constraint, ky and kg, is a function of the contact pressure
(Oden and Martins, 1985; Klarbring, 1990a; Buczkowski and Kleiber, 1997). In
particular, it is often assumed that both the normal and tangential compliances vanish
at zero contact pressure. In this case, p = 0, the grazing and separation zones can be
included in the same zone, for which J, = J, = 0. This situation also applies in the
case where the tangential compliance is null for zero contact pressure, but the normal
compliance is not (see the Appendix). In other cases, as for instance in Stankowski et
al. (1993), the separation and consequently the vertex behavior in the grazing zone
are assumed not to exist. In all these cases (where J, is a priori null) as J, is always
positive, p® < 0 is a local sufficient condition for uniqueness. This condition can be
written in terms of a critical value of the interfacial hardening modulus. Therefore,
the solution of the contact problem is unique when

h> h, =3{/(Ca-a)(Cb-b)—Ca-b] > 0. (31)

Condition (31) is analogous to the condition of positiveness of second order work in
plasticity (Maier and Hueckel, 1979). Extending this analogy, it may be interesting to
note that the interfacial operator L is positive definite for 4 > h,. This follows
immediately from the comparison theorem, noting that for every vector v,

v-Lv > v-L%.
But L®? is positive definite for h > A, and v+-Lv = 0 for h = ., and

v=b,/Ca-a+a,/Cb-b.

Note that the coincidence between loss of positive definiteness of the two operators
L® and L implies that bifurcation is excluded when L is positive definite. This result
is analogous to the situation of elastoplasticity (Raniecki, 1979).
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3.7. Lower bounds for Jq

Estimates of the functional J, are presented in the following by using classical
arguments of functional analysis. When meas {S,} > 0, it may be proved that there is
a positive constant K, which depends on the geometry of the body and the extent of
S,, such that

HS(U)HLZ(Q) > KH“HH‘(Q)a Vue A, (32)

where g(u) = (Vu+ Vu?)/2. Note that inequality (32) is an immediate consequence of
the Korn and Poincaré inequalities when dQ = S,.. The generalization to the case meas
{S.} > 0 was given in (Fichera, 1972; see also Brenner and Scott, 1994, Section 9.2).

If o > 0 denotes the minimum eigenvalue of E, by using standard coercivity argu-
ments we can write

Jo(v) = alle()l|z2@ = oKV, VVeH . (33)
An application of the trace theorem:
Collyo | 2200) < ull @) Yue H'(Q), (34)

where 7, is the trace operator, ¢, is a positive constant (depending on the geometry of
the body, for instance for a unit disk ¢, = 8~"*; see Brenner and Scott, 1994, Section
1.6), yields

Jo(v) = OC(COK)ZHVO(V)M%Q) = OC(COK)ZHVH%%SZ\JS“) Vved. (39%5)
It should be noted that the last inequality of (35) clearly underestimates J, since the
bound is obtained considering only the contribution of zones S, and S,.

3.8. Lower bounds to the sufficient conditions for uniqueness

Finally, from the lower bound (29) to J. and (35) to J,, it follows:
Jo(V)+J(v)

2 v 1—|—,u2—1 R 2
= | a(coK)” —max Slsl7p ka s Sgp{rp } HV”LZ(szusw (36)

Vve A,
and thus, an exclusion condition for bifurcation can be given in the form

J1+i2—1
max {sgp {kN +2“} sup { FPR}} < a(coK)?, (37)

where I' and p® depend on the constitutive laws of the interface. Moreover, the
positive constants a, ¢, and K depend on the elastic constitutive tensor, the geometry
and boundary conditions of the solid Q. A condition analogous to (37) was obtained
by Klarbring et al. (1988) for a particular constitutive assumption concerning the
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normal compliance. It may be important to remark that condition (37) depends on
the extent of the grazing zone S, and of the slip/stick zone S,. However, in the
interesting case in which 7 = =0, u is constant and C admits representation (7)
with constant values of ky and &, condition (37) can be made independent of these
zones, just observing from (30) that

J1+2—1 1 k
max {S}gp {kN H} sup {FPR}} < max {ky, kr} 2( L= — 1>,

2 ke
(38)

and therefore the exclusion condition becomes

max{ky, kﬁi( [14 “Z%N _ 1> < a(coK)>. (39)

It should be noted that condition (39) is independent of the loading program and
therefore uniqueness can be a priori established.

4. Examples

We present in this section applications of the exclusion criterion (39) to a two-
dimensional elastic system and to a 2 D.O.F. elastic structure. The conditions of
bifurcation of the elastic structure were already known from Curnier and Alart (1988)
and Klarbring (1990b), in the limit case of Signorini’s contact with Coulomb friction.
All the following examples are referred to a simple constitutive interface model
without hardening and wear, i.e. with f = & = 0, which is explained in the following.

4.1. Specialization of exclusion condition to a simple constitutive model

The elastic constitutive tensor of the body is assumed isotropic, namely
E=2GI+A®]I, (40)

where G and 1 are the Lamé constants and the interface stiffness tensor C is assumed
in the form (7) with constant ky and k. Therefore, the eigenvalue « is equal to 2G.
Furthermore, wear and hardening at the interface are neglected (i.e. f§ = & = 0), and
thus

_Pr _Pr

a=_——u, b=", 41)
[P+l [P+l

where p is assumed constant. In this case, I' coincides with max {ky, kr}, and the
sufficient exclusion condition for bifurcation (39) becomes
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2

U

8Gc2 KKy < 2Ge2K? ) @)

< kxmax {ky, kr} + max{ky, kr}

In the limit case when ky — oo, we obtain an approximation of the impenetrability
condition, corresponding to the Signorini problem with Coulomb friction. In this
case, condition (42) gives as a limit value u = 0, a circumstance also occurring in an
analogous condition given by Klarbring et al. (1988). This trivial result may be related
to the fact that the sufficient condition for uniqueness turns out to be in this limit case
over-sufficient.

In the other limit case when k; — oo, a finite limit is obtained from (42):

8GciK?
kn

12 < . (43)

4.2. Elastic square domain with friction on one side

A linear-elastic, isotropic square domain (having size dimension «) is considered,
as shown in Fig. 3. On the left side of the domain displacements are prescribed to be
zero, i.e. u(0,x,) =0 (= 1,2).

On the right side a frictional constraint is present, corresponding to the constitutive
equations (7) and (41) and on the upper and lower sides a generic, but symmetric
(about the x,-axis) system of forces is prescribed, i.e.

s
N
»
L

L
Q

N

14/

Fig. 3. Two-dimensional elastic domain with one side in frictional contact.
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L(xy,a/2) = —1(x,—a/2), t(xy,a/2) = 1,(x;,—a/2). (44)

Bifurcations with null mean spin (including symmetric bifurcations about the x,-axis)
can be excluded as follows. First, we want to bound the norm in L*Q) of the velocity
gradient field in the body, with the norm in L*(S.) of the velocity in the zone of
contact. To this purpose, following an argument similar to Villaggio (1977, Section
9.3) and Brenner and Scott (1994, Section 1.6), we write, for v,e C'(Q),

1 avi(ls x2)

Ui(xla xz) _U[(O, XZ) = J

T dr (i=1,2), (45)

which, taking into account the condition v/0, x,) = 0, squaring each member and
applying the Cauchy—Schwarz inequality, becomes

X a . 2 a a X 2
U7 (1, X2) <X1J <U,> dx, < HJ < Ul) dx, (=12). (46)

o \0X, 0 \0x,

Evaluating (46) for x, = a and summing the components, we obtain

vila, ;) +v3(a, x;) < aJ [Vv|* dx,. (47)

0

Finally, integration for x, between —a/2 and a/2 of both sides of (47) yields
HVHiz(sc) < GHVVHiz(Qy (48)

Now, we restrict the attention to bifurcation satisfying null mean spin, i.e.
J (vi;—v,)dQ =0,
Q

which includes symmetric bifurcations. For this case Korn’s constant has been boun-
ded by Horgan and Payne (1983) (see also Horgan, 1995) between 4 and 8 +4ﬁ and
its precise value has been conjectured to be seven. Assuming this conjecture value, we
obtain

HVHiz(SzuSD < HVHiz(sc) < aHVVH%Z(Q) < 7aH3(V)Hi2(9), (49)

and we can conclude that in this case that the constant (c,K)* in (42) takes the value
1/(7a). Note that in this way, condition (42) depends on the dimensional parameter
a.

4.3. A structural example

Let us consider the elastic frame in Fig. 4, having a frictional constraint on one
edge. The elastic incremental relations between forces and displacements at the point
in frictional unilateral contact, are given by
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IVEJ

. v l PN
kr Pt T —

kn 7 _pr:T <_l VN Pr

Fig. 4. Elastic frame with frictional constraint.

4

—p = Ky, (50)

where

8 3
p= {PN:PT}» V= {UNaUT}» K= K[ :|a (51)

and k = 6EJ/(71°), being EJ the flexural rigidity of the frame elements.
Moreover, for the frictional support with elastic compliance, we have

k 0
az{_M’PT}, bz{o’l’T}, cz[ N } (52)
Il 121 0 kg

and thus a substitution of (52) into (26), by considering & = 0, gives

1

k
pR=2< 1+k’“u2—1>. (53)
T

In this case, the two functionals in the sufficient condition for uniqueness (21) may
be directly estimated to be

JYe
Jo(v) = J de =v'Kv, J(v) = —p®(v-Cy), (54)
Q

where M is the bending moment. Therefore, bifurcation is excluded when
v (K—pRCv >0, Vv #0. (55)

The 2 x 2 symmetric matrix (K—p®*C) turns out to be positive definite if both its
determinant and trace are positive, namely if p® < p., where

_ K
Pe= ferkn

(A + hex — / 16k3 + k& + k) (56)

Therefore, by using results (53) and (56) uniqueness is ensured when u < pg, where
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kT 1/2
Py = [4&(1 +pc) kN} . (57)

It should be noted that in the limit case of Signorini’s contact with Coulomb friction,
obtained as ky — oo, the critical value of the frictional coefficient (57) reduces to
iz = 0. On the other hand, it is known from Klarbring (1990b) that bifurcation may
occur for u = py = 2/3. Therefore, the criterion of exclusion of bifurcation turns out
to be in this limit case over-sufficient.

5. Conclusions

Conditions for bifurcation in velocities of linear elastic solids in frictional, quas-
istatic, unilateral contact with a stiffer constraint on a part of the boundary have been
examined. A normal and tangential compliance has been assumed in the zone of
contact. This is a largely used assumption for contact problems. Global exclusion
conditions for bifurcation in velocity have been proposed, which are similar to con-
ditions formulated for elastoplasticity (Hill, 1958; Raniecki, 1979; Raniecki and
Bruhns, 1981). Global and local exclusion conditions for bifurcation are derived
making use of results from functional analysis. It may be important to mention that
in the specific case where the contact pressure is zero, the assumed incremental
constitutive laws for the contact are thoroughly non-linear. For this behavior, an
incrementally linear composition contact law has been formulated.

The main advantage of the proposed approach to bifurcation, an alternative to that
of Klarbring et al. (1988) and Klarbring (1990a), is the possibility of a generalization
to include large strain and elastoplastic behavior of the solid in contact. Its main
shortcoming is related to the fact that the conditions for uniqueness may well be often
over-sufficient, a fact already known in the context of elastoplasticity. Due to its
connections with elastoplasticity theory, the proposed method of analysis furnishes a
new key to explore the behavior of non-associative elastoplastic solids, taking advan-
tage of the analogy with friction.
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Appendix: A special interfacial constitutive law

We consider here the case in which the elastic compliance of the interface C reduces,
for vanishing contact pressure p = 0, to the law
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Cy)=kon®n, (A1)

where k, is a (non-negative) normal stiffness coefficient. As a consequence of (Al),
tangential stiffness is assumed not to occur for vanishing normal pressure. For this
choice of contact law in the grazing zone, the comparison interface (18) still works,
but is not optimal. It may in fact be proved that

Ap-Av =0, VW yPey (A2)
when (A1) holds.

Proof: The proof is divided into three cases.
@) v <0, fori=1,2. Then, from (10),, p” = 0, and thus

Ap-Av = 0.
(ii) v > 0 for i = 1, 2. Then, from (10), and (8), p*” = ken, and thus
Ap- Av = ko(Avn)? > 0.

(iil) v\ <0, and v > 0, for i, j = 1, 2 (i # j). Then, from (10) and (8), p” = 0, and
pY = kov{n, and thus

Ap- Av = ko[(o)* — o] > 0.
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