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Abstract

A linear elastic solid having part of the boundary in unilateral frictional contact with a sti}er
constraint is considered[ Bifurcations of the quasistatic velocity problem are analyzed\ making
use of methods developed for elastoplasticity[ An exclusion principle for bifurcation is proposed
which is similar\ in essence\ to the well!known exclusion principle given by Hill "0847#[ Su.cient
conditions for uniqueness are given for a broad class of contact constitutive equations[ The
uniqueness criteria are based on the introduction of {linear comparison interfaces| de_ned both
where the contact rate constitutive equation are piece!wise incrementally linear and where
these are thoroughly nonlinear[ Structural examples are proposed which give evidence to the
applicability of the exclusion criteria[ Þ 0888 Elsevier Science Ltd[ All rights reserved
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Notation

Vectors and second!order tensors are denoted by bold letters[ The natural inner
product of two vectors a and b is denoted by a = b� aibi[ The tensor product a& b of
two vectors is the tensor that assigns to each vector u the vector "b = u#a[ In components
"a& b#ij � aibj[ The symbols 9 and div indicate the gradient and the divergence of a
vector or tensor _eld respectively[ Also\ L1"V# and H0"V# denote the well!known
Hilbert spaces of real functions de_ned on V\ equipped with the associated norms\
respectively]

>u>L1"V# � 6gV
u = u7

0:1

\ >u>H0"V# � 6gV
"u = u¦9u =9u#7

0:1
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0[ Introduction

The problem of deformation of a solid body in contact with a sti}er frictional
constraint has an evident interest in many mechanical and civil engineering problems
and represents an interesting challenge in continum mechanics[ From the physical
point of view\ this is due to the occurrence of many instabilities\ including slip!stick
motion and ~utter "Rice and Ruina\ 0872^ Gu et al[\ 0873^ Oden and Martins\ 0874^
Simo½es and Martins\ 0886#[ Moreover\ bifurcation threshold stresses are strongly
reduced by the presence of interfacial e}ects "Bigoni et al[\ 0886#[ It follows that a
proper description of constitutive laws at interfaces becomes an essential ingredient
in buckling analyses[ From the mathematical point of view di.culties are related to
the fact that an interfacial constitutive operator representing dry!frictional contact is
typically non!symmetric "Michalowski and Mro�z\ 0867^ Curnier\ 0873^ Jarzebowski
and Mro�z\ 0883^ Mro�z and Jarzebowski\ 0883^ Mro�z and Stupkiewicz\ 0883#[ These
and other peculiarities complicate the numerical analysis of problems involving
contact\ which is the subject of a number of contributions "see e[g[ Kikuchi and Oden\
0877^ Raous et al[\ 0877^ Laursen and Simo\ 0882^ Laursen and Oancea\ 0886 and
references cited therein#[

The problem of uniqueness of solutions of boundary value problems during quasi!
static\ unilateral\ frictional contact has been analyzed from a number of perspectives[
In particular\ Cocu "0873# has given uniqueness and existence results for the Signorini
problem with holonomic Coulomb friction[ Necessary and su.cient conditions for
bifurcation for _nite!dimensional contact incremental problems were stated by Curn!
ier and Alart "0877#[ Examples of non!uniqueness of the rate solution have been
presented by Klarbring "0889b# and reconsidered by Martins et al[ "0883# including
the possibility of discontinuities in time[ Su.cient conditions for uniqueness in the
rate problem were given by Klarbring "0876#\ Klarbring et al[ "0877#\ Klarbring
"0889a#\ Chateau and Nguyen "0880#\ and Stro�mberg et al[ "0885#[

In the present article\ uniqueness of the incremental response during quasistatic
deformation of a linear\ elastic body in unilateral\ frictional contact with a sti}er
constraint is considered afresh\ borrowing concepts from elastoplasticity theory[ In
particular\ the constitutive equations of a frictional interface and of non!associative
elastoplasticity "Hill\ 0856^ Mandel\ 0855^ Mro�z\ 0852\ 0855# have a similar structure\
a fact which re~ects an intimate connection between underlying physical micro!
mechanisms of deformation and slip[ In particular\ it is well!known "Klarbring\ 0889a#
that the zone of contact in the friction problem may be divided into four parts\
corresponding to the occurrence of separation\ grazing\ stick\ and stick or slip[ In the
grazing zone\ we refer to a general constitutive equation embracing a broad class
of speci_c constitutive laws employed in the literature[ In particular\ we assume a
thoroughly non!linear incremental constitutive equation with tangential and normal
compliance[ Results presented remain valid in the speci_c case where this compliance
is assumed to vanish for zero contact pressure "Oden and Martins\ 0874^ Klarbring\
0889a^ Buczkowski and Kleiber\ 0866#[ Tangential and normal compliance are also
assumed in the stick and slip zones[ In the region where the friction condition is
veri_ed\ stick or slip may occur depending on the incremental _elds[ In this zone the
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contact laws are incrementally piece!wise linear and formally similar to the equations
of incremental non!associative elastoplasticity with smooth yield and plastic potential
functions[ Therefore\ it is natural to employ the general framework for bifurcation
given by Hill "0847# and extended to non!associative plasticity by Raniecki "0868#
and Raniecki and Bruhns "0870#[ We present an integral exclusion condition for
bifurcation in essence similar to the Hill "0847# exclusion functional\ which was also
given*in a similar form*by Chateau and Nguyen "0880#[ Basically\ our exclusion
functional consists of the sum of two terms] a volumetric term and a surface term\
corresponding to the contact area[ The _rst term is always positive\ when the body is
elastic "with positive de_nite strain energy#\ whereas the surface term may be negative[
The surface term may be bounded in the stick:slip zone by introducing a family of
linear comparison interfaces formally analogous to the comparison solids introduced
by Raniecki "0868# and Raniecki and Bruhns "0870#[ These comparison solids were
formulated for incrementally piece!wise linear constitutive laws and therefore do not
cover the situation corresponding to the grazing zone\ where a thoroughly non!linear
incremental constitutive law is assumed[ Thus we introduce a new linear comparison
interface speci_cally valid in the grazing zone[ Nothing analogous is known for
thoroughly non!linear incremental theories of plasticity\ where all available results
are restricted to self!adjoint constitutive operators "Petryk\ 0878#[

The introduction of the comparison interface makes possible the formulation of a
quadratic exclusion functional for bifurcation[ From this functional\ global and local
criteria of uniqueness are derived[ In cases where the grazing zone is absent\ a su.cient
criterion for uniqueness may be easily obtained by imposing the positive!de_niteness
of the linear comparison interface operator[ This is valid for certain interfacial consti!
tutive laws often employed in the literature "Michalowski and Mro�z\ 0867^ Cheng
and Kikuchi\ 0874#[ A more precise bound to the exclusion functional is obtained
through a comparison between the volume and the surface terms[ The comparison is
possible making use of functional analysis arguments based on a Korn!type inequality
and the trace theorem[ As shown by an example in which a square elastic domain
with frictional boundary on a side is considered\ this condition may be of di.cult
practical use[ This is a consequence of the well!known fact that the numerical value
of the constants appearing in the Korn!type inequality and in the trace theorem are
only known for very special cases[ In an additional example\ our approach is applied
to a simple 1!D[O[F[ elastic structure with a frictional constraint[ For this case and
when elastic compliance of the constraint is zero\ the bifurcation condition "in terms
of a critical value of friction# is known from Curnier and Alart "0877# and Klarbring
"0889b#[ The example reveals that our exclusion condition "in the limit of zero con!
straint compliance# is in this case over!conservative[ Moreover\ it should be noted
that our condition of uniqueness may not be critical for bifurcation\ in the sense that
failure of our condition does not imply bifurcation\ a circumstance in full agreement
with the non!associative elastoplasticity counterpart "Raniecki\ 0868^ Raniecki and
Bruhns\ 0870#[

The approach presented in this paper may be considered complementary to that
proposed by Klarbring "0889a#[ One of the advantages of our formulation is that an
extension to large strains seems to be possible[ In particular\ the generalization of the
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quadratic exclusion functional to elastoplastic solids subject to large deformations is
straightforward[ Moreover\ an analysis may be performed of higher!order bifur!
cations\ similar to that developed by Bigoni "0885# for non!associative elastoplasticity[

1[ Frictional contact rate problem

A linear elastic body occupying a bounded region V of the Euclidean point space
is considered "Fig[ 0#\ with Lipschitz boundary 1V�Su kSt kSc[ In the body\ the
usual incremental _eld equations hold]

divs¾¦f¾� 9\ s¾ �Eo"u¾#\ o"u¾#� 0
1
"9u¾¦9u¾T#\ in V\ "0#

where f¾ is the increment of body force\ s¾ the stress rate\ u¾ the velocity and E the elastic
constitutive fourth!order tensor of the body[ On Su and St velocities v¹ and traction
rates t¾ are prescribed\ respectively\ i[e[

s¾n� t¾\ on St\ u¾ � v¹\ on Su\ "1#

where n is the outer unit normal vector "see Fig[ 0#[ The problem under consideration
is evolutionary\ in the sense that the extension of the contact zone fully depends on
the history of loading up to the current time[ However\ this zone\ as well as its four
parts that will be de_ned in the following\ is completely independent of the incremental
_elds "Klarbring\ 0889a#[

We denote by Sc the part of the boundary in possible frictional\ unilateral contact
with a sti} constraint "Fig[ 0#[ Initially\ when the body is completely unstressed\ there
may not be complete contact on Sc[ In order to model this situation in an in_nitesimal
theory\ the presence of a gap ` between the contact boundary and the constraint is
introduced\ measured along the outward normal direction to Sc "as in Klarbring et
al[\ 0877#[ In a generic situation of the loading process\ the zone Sc may be divided
into four di}erent parts S0\ S1\ S2 and S3\ where separation\ grazing\ stick and stick
or slip\ may respectively occur\ depending on the current values of tractions and
displacements[ Therefore\ when the body is completely unstressed\ Sc consists of S0

and S1 only\ but during increasing loading the four regions S0\ [ [ [ \S3 form and evolve[
These may be de_ned as "Klarbring\ 0889a#]

Fig[ 0[ Sketch of the frictional contact rate problem[
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S0 � "x $Sc]uN−w³ `\ pN � 9\ pT � 9# "separation#\

S1 � "x $Sc]uN−w�`\ pN � 9\ pT � 9# "grazing#\

S2 � "x $Sc]uN−w× `\ pN × 9\ =pT=−mpN ³ 9# "stick#\

S3 � "x $Sc]uN−w× `\ pN × 9\ =pT=−mpN � 9# "stick or slip#\ "2#

where m is the friction coe.cient\ w is the irreversible component of displacement
normal to the boundary\ p�−sn\ and pN\ pT and uN\ uT are the normal and tangential
components of tractions "with reversed sign# and displacement\ namely

pN � p = n\ pT � p−pNn\ uN � u = n\ uT � u−uNn[ "3#

It should be noted from conditions "2# that irreversible displacement in the contact
zone may consist of both a tangential and a normal component[ The normal com!
ponent can model situations corresponding to interfacial dilatancy or contractivity as
related to the presence of asperities or wear[ Note also that the assumed contact law
allows for positive normal displacements in the contact zone[ This may be related to
a compliance of the frictional constraint\ which may be constant or dependent on the
current state[ Moreover\ it should also be noted that in the de_nition of S2 and S3 a
Coulomb law of friction has been assumed\ relating the modulus of the tangential
component of traction to the contact pressure[

1[0[ Interfacial constitutive rate equations

The rate boundary conditions on Sc may be expressed through the interfacial
constitutive laws relating traction rate and velocity[ The constitutive laws are di}erent
in the various zones in which Sc is divided[

In the separation region S0 the traction rate vector vanishes]

p¾ � 9[ "4#

In the stick region S2\ a linear incremental relation is assumed]

p¾ �Cu¾\ "5#

where the positive de_nite tensor C indicates the elastic interface sti}ness\ may be
constant or dependent on the current state and may take the special simple form\
isotropic in the plane tangent to the contact

C�kTI¦"kN−kT#n& n\ "6#

where kN and kT are the normal and tangential sti}ness parameter of the interface\
respectively[

In the region S3\ where the friction condition is satis_ed\ a linear relation between
traction rate and the reversible part of the velocity is assumed\ namely p¾ �Cu¾ r\ where
u¾ � u¾ r¦u¾ s and u¾ s is the irreversible part of the velocity due to slip[ The reversible part
of the velocity can be attributed to the elastic deformations of the asperities of the
surfaces in contact\ and it is usually called adherence[ The irreversible part of velocity
has normal component u¾ s = n�w¾ \ where w has been de_ned in "2#[ The slip term u¾ s
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occurs only if the consistency condition a = p¾ �9 is veri_ed\ where a is the gradient of
the friction condition[ In this case\ the slip is given by u¾ s �Lb\ being L× 9 a scalar
multiplier and b a vector de_ning the direction of the irreversible part of velocity[
From the friction and slip conditions "Fig[ 1#\ vectors a and b can be de_ned as]

a�
pT

=pT=
−mn\ b�

pT

=pT=
−b"p#n\ "7#

where parameter b"p# may describe dilatancy e}ects due to asperities or wear of the
contact and is assumed to vanish for zero normal pressure\ i[e[ b"9#�9[ Finally\ by
imposing the consistency condition\ the following value of L can be derived]

L�
a =Cu¾

a = Cb
\

and thus\ the piecewise linear relation between traction rate vector and velocity\
holding in S3\ results in]

p¾ �Cu¾\ if a =Cu¾ ¾ 9 "stick#\ "80#

p¾ � 0C−
Cb&Ca

Ca = b 1 u¾\ if a =Cu¾ × 9 "slip#\ "81#

so that stick or slip may occur depending on the incremental _elds[ Locking behavior
of contact interface is assumed to be excluded\ thus Ca = b× 9 is assumed in "8#1[

At this point\ the formal analogy is evident between the interfacial constitutive laws
holding on S2 and S3 and the rate of equations of non!associative\ elasticÐperfectly
plastic solids[ In particular\ a similarity may be noted with the DruckerÐPrager model\
where the yield surface is a cone\ and in its corner the incremental constitutive
equations become thoroughly non!linear[ Analogously\ vectors a and b\ eqn "7#\ and
thus constitutive equations "8# are not de_ned when p� 9[ Zero contact pressure
occurs in the grazing zone S1\ where separation or stick:slip may occur depending on
the sign of normal velocity u¾N\ namely

p¾ � 9\ if u¾N ¾ 9 "separation#[ "090#

p¾N �kNu¾N\ p¾T �kTu¾T\ if u¾N × 9 and kT=u¾T=¾mkNu¾N "stick#\ "091#

Fig[ 1[ Friction condition and sliding rule[
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p¾N �kNu¾N\ p¾T �mkNu¾N

u¾T

=u¾T=
\ if u¾N × 9 and kT=u¾T=×mkNu¾N "slip#[

"092#

Observe that w¾ �9 as a consequence of b"9#�9[ It may be important to note that
the incremental constitutive equation "09# is thoroughly nonlinear and corresponds
to the vertex behavior of model "8# for constant sti}ness parameters of the interface\
eqn "6#[

It should also be noted that an approximation to Signorini|s law of contact with
Coulomb friction can be recovered in our model as a limit behavior when the elastic
sti}ness tends to in_nity\ as the elasticÐperfectly plastic model tends to the limit of
the rigidÐperfectly plastic behavior\ when the elastic sti}ness tends to in_nity[

1[1[ A possible `eneralization of the interfacial constitutive equations

It is interesting to note that\ extending the analogy between friction and plasticity
along the lines drawn in "Michalowski and Mro�z\ 0867^ Curnier\ 0873^ Cheng and
Kikuchi\ 0874#\ the constitutive equations "8#\ which hold on S3\ can be generalized
to include some hardening as follows]

p¾ �Lu¾\ "00#

where L is the frictional interface constitutive tensor\ namely

L�C if a =Cu¾ ¾ 9 "stick#\ "010#

L�C−
Cb&Ca

h¦Ca = b
if a =Cu¾ × 9 "slip#\ "011#

and h is the interface hardening coe.cient "describing softening when negative\ and
assumed null for vanishing contact pressure\ i[e[ h�9 for p� 9#[ In the following\
the quantity h¦Ca = b is assumed positive[ Even if the normality rule is generally
considered inadequate to describe frictional behavior\ Bowden and Tabor "0853# have
proposed a model of interfacial behavior based on a normality rule[ In the present
context\ this case simply corresponds to a� b[

2[ Uniqueness criteria

Uniqueness criteria are obtained in this section following the method introduced
by Hill "0847#[ Let v"0# and v"1# be two di}erent solutions "under the same external
loading rates f¾ and t¾#[ Let us introduce the admissible velocity function manifold

V� "v $H0"V#]v� v¹ on Su#\

which is a subset of the Hilbert space H0"V#\ and the tangent space of the manifold
V]
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H� "v $H0"V#]v� 9on Su#[

On application of the divergence theorem it follows that

gV
o"Dv# =Eo"Dv#¦gSc

Dp¾ =Dv� 9\ [v"0#\ v"1# $V\ "02#

where Dv� v"0#−v"1# and Dp¾ � p¾ "0#−p¾ "1# is the incrementally non!linear function of v"0#

and v"1# de_ned by "4#Ð"8# or by "4#Ð"7# and "00#[ From relation "02#\ an exclusion
condition for bifurcation in Hill|s sense can be given in the form

JV"Dv#¦Jc"v"0#\ v"1##× 9\ [v"0#\ v"1# $V\ "03#

where

JV"Dv#� gV
o"Dv# =Eo"Dv#\ Jc"v"0#\ v"1##� gSc

Dp¾ =Dv[ "04#

The quadratic functional "04#0 is positive de_nite in the present context\ being pro!
portional to an elastic sorted energy[ Note that\ in the absence of friction\ condition
"03# reduces to the well!known Kirchho} uniqueness argument of elasticity[ The non!
linear functional "04#1 may assume negative values and therefore uniqueness may be
lost[ A uniqueness condition similar to "03# was proposed by Chateau and Nguyen
"0880#[

2[0[ Raniecki type linear comparison interface

Following Hill "0847#\ Raniecki "0868# and Raniecki and Bruhns "0870#\ we intro!
duce a family of linear comparison interfaces\ thus bonding the non!linear function
"04#1 in the zone S3 from below with a quadratic functional of velocity di}erence[
This family of comparison interfaces provides a lower bound to bifurcation as is
de_ned through the constitutive tensor

LR �C−
C"b¦ca#&C"b¦ca#

3c"h¦Ca = b#
\ "05#

where the arbitrary parameter c× 9 de_nes the family of comparison interfaces[ The
following comparison theorem holds true]

Dp¾ =Dv−Dv = LRDv\ [v"0#\ v"1# $V[ "06#

Proof] The proof is similar to that of Raniecki "0868# for non!associative plasticity
and is only summarized here[ In the two cases a =Cv"i# ³ 9 or a =Cv"i# × 9\ with
i�0\ 1\Dp¾ �LDv and it can be shown that
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Dv = "L−LR#Dv�

F

H

j

J

H

f

ðC"b¦ca# =DvŁ1

3c"h¦Ca = b#
− 9 if Cv"i# = a³ 9

ðC"b−ca# =DvŁ1

3c"h¦Ca = b#
− 9 if Cv"i# = a× 9

so that "06# is veri_ed[
The condition a =Cv"i# ³ 9 and a =Cv"j# × 9\ with i\ j�0\ 1"i� j#\ only needs to be

examined[ In this case\ algebraic manipulations yield

3c"h¦Ca = b#"Dp¾ =Dv−Dv = LRDv#

� ð1ca =Cv"i#¦" j−i#"b−ca# = CDvŁ1−3c1"a =Cv"i##"a =Cv" j##− 9[

2[1[ A new linear comparison interface for the `razin` zone

In the grazing zone S1\ the incremental constitutive equations are thoroughly non!
linear[ In this zone we de_ne a linear comparison interface bounding the non!linear
functional "04#1 from below with a quadratic functional of velocity di}erence[ As for
the Raniecki comparison solid\ also the new comparison interface provides a lower
bound to bifurcation[

We prove the following comparison theorem at every point of S1\ under the consti!
tutive assumption "09#]

Dp¾ =Dv−−kN

z0¦m1−0
1

=Dv=1\ [v"0#\ v"1# $V[ "07#

Proof] The proof follows from the preliminary lemma]

mDvND=vT=¦"DvN#1 −−
z0¦m1−0

1
=Dv=1\ [v"0#\ v"1# $V\ "08#

which can be obtained from

mDvND=vT=¦"DvN#1 � ðDvN\D=vT=Ł $
0 m:1

m:1 9 % $
DvN

D=vT=%
−−

z0¦m1−0
1

ð"DvN#1¦"D=vT=#1Ł

and =Dv=1 − ð"DvN#1¦"D=vT=#1Ł[
The proof is now divided into six cases\ in which two solutions belonging to di}erent

constitutive situations are considered[

"0# v"0# corresponds to separation "v"0#
N ¾ 9\ p¾ "0# � 9# and v"1# to slip "09#2]
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Dp¾ =Dv�kNv"1#
N $m 0=v"1#

T =−
v"1#

T = v"0#
T

=v"1#
T = 1−DvN%

−min "9\ kNðmDvND=vT=¦"DvN#1Ł#\

where −DvN − v"1#
N × 9 has been used[

"1# Both v"0# and v"1# correspond to slip "09#2]

Dp¾ =Dv�mkN $v"1#
N =v"1#

T =¦v"0#
N =v"0#

T =−v"0#
T = v"1#

T 0
v"0#

N

=v"0#
T =

¦
v"1#

N

=v"1#
T =1%¦kN"DvN#1

− kNðmDvND=vT=¦"DvN#1Ł\

where v"0#
T = v"1#

T ¾ =v"0#
T ==v"1#

T = has been used[
"2# v"0# corresponds to separation "v"0#

N ¾ 9\ p¾ "0# � 9# and v"1# to stick "09#1]

Dp¾ =Dv�kT=v"1#
T =1−kTv

"0#
T = v"1#

T ¦"kNv"1#
N #1−kNv"0#

N v"1#
N

−−kT=v"1#
T = 0D=vT=¦

0
m

DvN1
−min "9\ kNðmDvND=vT=¦"DvN#1Ł#\

where −DvN − v"1#
N × 9 and kT=v"1#

T =¾mkNv"1#
N have been used[

"3# v"0# corresponds to stick "09#1 and v"1# to slip "09#2]

Dp¾ =Dv�mkNv"1#
N 0=v"1#

T =−
v"1#

T = v"0#
T

=v"1#
T = 1−kTv

"0#
T = "v"1#

T −v"0#
T #¦kN"DvN#1

−−"mkNv"1#
N −kT=v"0#

T =#D=vT=¦kN"DvN#1[

Now\ D=vT=× 9cmkNv"1#
N −kT=v"0#

T =³ 9cDp¾ =Dv− 9\ whereas if D=vT=¾ 9]

Dp¾ =Dv− kNDvN"mD=vT=¦DvN#[

"4# Both v"0# and v"1# correspond to stick "09#1]

Dp¾ =Dv�kT=DvT=1¦kN"DvN#1 − 9[

"5# Both v"0# and v"1# correspond to separation "v"0#
N ¾ 9 and v"1#

N ¾ 9\ p¾ "0# � p¾ "1# � 9#]

Dp¾ =Dv� 9[

In the special case in which kN is a function of the current state\ null for p� 9\ the
comparison solid "07# gives Dp¾ =Dv− 9[ The case in which kT vanishes for p� 9 and
kN is not negative may be also interesting and is analyzed in the Appendix[
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2[2[ Exclusion condition for bifurcation with quadratic functionals

The functional Jc in the exclusion condition "03# is the sum of the four contributions
relative to the zones into which Sc has been divided\ namely] Jc � J0¦J1¦J2¦J3\
where

Jk"v"0#\ v"1##� gSk

Dp¾ =Dv "k� 0\ 1\ 2\ 3#[ "19#

It is necessary to separately analyze the four contributions Jk[ Firstly\ it may be easily
checked that J0 �9\ since Dp¾ � 9 on S0 as follows from "4#[

We are now in a position to formulate the su.cient condition for uniqueness in
terms of two quadratic functionals] The velocity problem of an elastic body with part
of the boundary in frictional\ unilateral contact with a sti}er constraint\ de_ned by
relations "4#Ð"00#\ is unique if

JV"v#¦Jc"v#× 9\ [v $H\ "10#

where

Jc"v#�J1"v#¦J2"v#¦J3"v#\

J1"v#� gS1

kN

0−z0¦m1

1
=v=1\ J2"v#� gS2

v = Cv\ J3"v#� gS3

v = LRv[ "11#

Therefore\ the contributions to Jc from S1\ S2 and S3 can be bounded by three
quadratic functionals[

2[3[ Lower bounds for J1\ J2 and J3

Functionals J1\ J2 and J3 de_ned in "11# can be estimated[ In particular\

J1"v#− inf
S1 6kN

0−z0¦m1

1 7 >v>1
L1"S1# ¾ 9\ [v $H\ "12#

and a lower bound to J2 is consequent to the positive de_niteness of tensor C]

J2"v#− inf
S2

"g#>v>1
L1"S2# − 9\ [v $H\ "13#

where g is the minimum "positive# eigenvalue of C[ A lower bound for J3 can be found
on the basis of the following proposition[

For every vector v\ the following inequality holds true]

v = LRv−−rRG=v=1\ "14#

where
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rR �
0
1 $

z"Ca = a#"Cb = b#−h
h¦Ca = b

−0% "15#

and G is the maximum eigenvalue of C in the case rR × 9[0 Note that rR is not less
than zero for h¾ 9\ but it may be less than zero for h× 9[

Proof] The CauchyÐSchwarz inequality in the metric induced by C "which is symmetric
and positive de_nite#\ i[e[ "a =Cb#1 ¾ "a =Ca#"b =Cb# yields for every vector v]

v = LRv− $0−
"b¦ca# = C"b¦ca#

3c"h¦Ca = b# % "v = Cv#

�
0
1 $0−

b =Cb¦c1a =Ca−1ch
1c"h¦Ca = b# % "v = Cv#[ "16#

The last term of the right hand side of "16# attains a maximum for

c�XCb = b

Ca = a
\

and therefore\ for every vector v]

v = LRv−−
0
1 $

z"Ca = a#"Cb = b#−h
h¦Ca = b

−0% "v = Cv#[

It should be noted that the bound "14# is optimal because equality holds for
v� b¦ca[

From the above proposition\ the following lower bound to J3"v# can be given]

J3"v#−−sup
S3

"GrR#>v>1
L1"S3#\ [v $H[ "17#

Just neglecting the positive contribution of J2\ the following lower bound for Jc

trivially follows]

Jc"v#−−max 6sup
S1 6kN

z0¦m1−0
1 7\ sup

S3

"GrR#7 >v>1
L1"S1*S3#\ [v $H[ "18#

2[4[ Relations between the two linear comparison interfaces

Let us consider for C representation "6# and b� h�9[ The following inequality
holds true]

0 In the case rR ¾ 9\ G should correspond to the minimum eigenvalue[ This case is less interesting\ because
it is J3 − 9 "see also the following Section 2[5#[
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kN

z0¦m1−0
1

¾max "kN\ kT#rR\ "29#

where\ in this case "15# reduces to

rR �
0
1 0X 0¦m1 kN

kT

−01[

Equality occurs in "29# for kN � kT or m�9[ A consequence of inequality "29# is that
the Raniecki comparison interface may still be used to provide a bound also in the
grazing zone S1[ However\ this bound is not optimal[

2[5[ A local condition for uniqueness

Invoking experimental evidence\ it is often assumed in the literature that the com!
pliance of the contact constraint\ kN and kT\ is a function of the contact pressure
"Oden and Martins\ 0874^ Klarbring\ 0889a^ Buczkowski and Kleiber\ 0886#[ In
particular\ it is often assumed that both the normal and tangential compliances vanish
at zero contact pressure[ In this case\ p¾ � 9\ the grazing and separation zones can be
included in the same zone\ for which J0 � J1 �9[ This situation also applies in the
case where the tangential compliance is null for zero contact pressure\ but the normal
compliance is not "see the Appendix#[ In other cases\ as for instance in Stankowski et
al[ "0882#\ the separation and consequently the vertex behavior in the grazing zone
are assumed not to exist[ In all these cases "where J1 is a priori null# as JV is always
positive\ rR ³ 9 is a local su.cient condition for uniqueness[ This condition can be
written in terms of a critical value of the interfacial hardening modulus[ Therefore\
the solution of the contact problem is unique when

h× hcr �
0
1
"z"Ca = a#"Cb = b#−Ca = bŁ− 9[ "20#

Condition "20# is analogous to the condition of positiveness of second order work in
plasticity "Maier and Hueckel\ 0868#[ Extending this analogy\ it may be interesting to
note that the interfacial operator L is positive de_nite for h× hcr[ This follows
immediately from the comparison theorem\ noting that for every vector v\

v = Lv− v = LRv[

But LR is positive de_nite for h× hcr\ and v = Lv�9 for h� hcr and

v� bzCa = a¦azCb = b[

Note that the coincidence between loss of positive de_niteness of the two operators
LR and L implies that bifurcation is excluded when L is positive de_nite[ This result
is analogous to the situation of elastoplasticity "Raniecki\ 0868#[
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2[6[ Lower bounds for JV

Estimates of the functional JV are presented in the following by using classical
arguments of functional analysis[ When meas "Su#× 9\ it may be proved that there is
a positive constant K\ which depends on the geometry of the body and the extent of
Su\ such that

>o"u#>L1"V# −K>u>H0"V#\ [u $H\ "21#

where o"u#� "9u¦9uT#:1[ Note that inequality "21# is an immediate consequence of
the Korn and Poincare� inequalities when 1V0Su[ The generalization to the case meas
"Su#× 9 was given in "Fichera\ 0861^ see also Brenner and Scott\ 0883\ Section 8[1#[

If a× 9 denotes the minimum eigenvalue of E\ by using standard coercivity argu!
ments we can write

JV"v#− a>o"v#>1
L1"V# − aK1>v>1

H0"V#\ [v $H[ "22#

An application of the trace theorem]

c9>g9"u#>L1"1V# ¾ >u>H0"V#\ [u $H0"V#\ "23#

where g9 is the trace operator\ c9 is a positive constant "depending on the geometry of
the body\ for instance for a unit disk c9 �7−0:3^ see Brenner and Scott\ 0883\ Section
0[5#\ yields

JV"v#− a"c9K#1>g9"v#>1
L1"1V# − a"c9K#1>v>1

L1"S1*S3# [v $H[ "24#

It should be noted that the last inequality of "24# clearly underestimates JV\ since the
bound is obtained considering only the contribution of zones S1 and S3[

2[7[ Lower bounds to the suf_cient conditions for uniqueness

Finally\ from the lower bound "18# to Jc and "24# to JV\ it follows]

JV"v#¦Jc"v#

− $a"c9K#1−max 6sup
S1 6kN

z0¦m1−0
1 7\ sup

S3

"GrR#7% >v>1
L1"S1*S3#\ "25#

[v $H\

and thus\ an exclusion condition for bifurcation can be given in the form

max 6sup
S1 6kN

z0¦m1−0
1 7\ sup

S3

"GrR#7³ a"c9K#1\ "26#

where G and rR depend on the constitutive laws of the interface[ Moreover\ the
positive constants a\ c9 and K depend on the elastic constitutive tensor\ the geometry
and boundary conditions of the solid V[ A condition analogous to "26# was obtained
by Klarbring et al[ "0877# for a particular constitutive assumption concerning the
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normal compliance[ It may be important to remark that condition "26# depends on
the extent of the grazing zone S1 and of the slip:stick zone S3[ However\ in the
interesting case in which h�b�9\ m is constant and C admits representation "6#
with constant values of kN and kT\ condition "26# can be made independent of these
zones\ just observing from "29# that

max 6sup
S1 6kN

z0¦m1−0
1 7\ sup

S3

"GrR#7¾max "kN\ kT#
0
1 0X 0¦m1 kN

kT

−01\
"27#

and therefore the exclusion condition becomes

max"kN\ kT#
0
1 0X 0¦m1 kN

kT

−01³ a"c9K#1[ "28#

It should be noted that condition "28# is independent of the loading program and
therefore uniqueness can be a priori established[

3[ Examples

We present in this section applications of the exclusion criterion "28# to a two!
dimensional elastic system and to a 1 D[O[F[ elastic structure[ The conditions of
bifurcation of the elastic structure were already known from Curnier and Alart "0877#
and Klarbring "0889b#\ in the limit case of Signorini|s contact with Coulomb friction[
All the following examples are referred to a simple constitutive interface model
without hardening and wear\ i[e[ with b� h�9\ which is explained in the following[

3[0[ Specialization of exclusion condition to a simple constitutive model

The elastic constitutive tensor of the body is assumed isotropic\ namely

E� 1GI¦lI& I\ "39#

where G and l are the Lame� constants and the interface sti}ness tensor C is assumed
in the form "6# with constant kN and kT[ Therefore\ the eigenvalue a is equal to 1G[
Furthermore\ wear and hardening at the interface are neglected "i[e[ b� h�9#\ and
thus

a�
pT

=pT=
−mn\ b�

pT

=pT=
\ "30#

where m is assumed constant[ In this case\ G coincides with max "kN\ kT#\ and the
su.cient exclusion condition for bifurcation "28# becomes



E[ Radi et al[:Journal of the Mechanics and Physics of Solids 36 "0888# 164Ð185189

m1 ³
7Gc1

9K
1kT

kN max "kN\ kT# 00¦
1Gc1

9K
1

max"kN\ kT#1[ "31#

In the limit case when kN :�\ we obtain an approximation of the impenetrability
condition\ corresponding to the Signorini problem with Coulomb friction[ In this
case\ condition "31# gives as a limit value m�9\ a circumstance also occurring in an
analogous condition given by Klarbring et al[ "0877#[ This trivial result may be related
to the fact that the su.cient condition for uniqueness turns out to be in this limit case
over!su.cient[

In the other limit case when kT :�\ a _nite limit is obtained from "31#]

m1 ³
7Gc1

9K
1

kN

[ "32#

3[1[ Elastic square domain with friction on one side

A linear!elastic\ isotropic square domain "having size dimension a# is considered\
as shown in Fig[ 2[ On the left side of the domain displacements are prescribed to be
zero\ i[e[ ui"9\x1#�9 "i�0\ 1#[

On the right side a frictional constraint is present\ corresponding to the constitutive
equations "6# and "30# and on the upper and lower sides a generic\ but symmetric
"about the x0!axis# system of forces is prescribed\ i[e[

Fig[ 2[ Two!dimensional elastic domain with one side in frictional contact[
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t1"x0\ a:1#�−t1"x0\−a:1#\ t0"x0\ a:1#�t0"x0\−a:1#[ "33#

Bifurcations with null mean spin "including symmetric bifurcations about the x0!axis#
can be excluded as follows[ First\ we want to bound the norm in L1"V# of the velocity
gradient _eld in the body\ with the norm in L1"Sc# of the velocity in the zone of
contact[ To this purpose\ following an argument similar to Villaggio "0866\ Section
8[2# and Brenner and Scott "0883\ Section 0[5#\ we write\ for vi $C0"VÞ#\

vi"x0\x1#−vi"9\x1#� g
x0

9

1vi"t\x1#
1t

dt "i� 0\ 1#\ "34#

which\ taking into account the condition vi"9\x1#�9\ squaring each member and
applying the CauchyÐSchwarz inequality\ becomes

v1
i "x0\x1#¾x0 g

x0

9 0
1vi

1x01
1

dx0 ¾ a g
a

9 0
1vi

1x01
1

dx0 "i� 0\ 1#[ "35#

Evaluating "35# for x0 � a and summing the components\ we obtain

v1
0"a\x1#¦v1

1"a\x1#¾ a g
a

9

=9v=1 dx0[ "36#

Finally\ integration for x1 between −a:1 and a:1 of both sides of "36# yields

>v>1
L1"Sc# ¾ a>9v>1

L1"V#[ "37#

Now\ we restrict the attention to bifurcation satisfying null mean spin\ i[e[

gV
"vi\j−vj\i# dV� 9\

which includes symmetric bifurcations[ For this case Korn|s constant has been boun!
ded by Horgan and Payne "0872# "see also Horgan\ 0884# between 3 and 7¦3z1 and
its precise value has been conjectured to be seven[ Assuming this conjecture value\ we
obtain

>v>1
L1"S1*S3# ¾ >v>1

L1"Sc# ¾ a>9v>1
L1"V# ³ 6a>o"v#>1

L1"V#\ "38#

and we can conclude that in this case that the constant "c9K#1 in "31# takes the value
0:"6a#[ Note that in this way\ condition "31# depends on the dimensional parameter
a[

3[2[ A structural example

Let us consider the elastic frame in Fig[ 3\ having a frictional constraint on one
edge[ The elastic incremental relations between forces and displacements at the point
in frictional unilateral contact\ are given by
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Fig[ 3[ Elastic frame with frictional constraint[

−p¾ �Kv\ "49#

where

p� "pN\ pT#\ v� "vN\ vT#\ K�k $
7 2

2 1%\ "40#

and k�5EJ:"6l2#\ being EJ the ~exural rigidity of the frame elements[
Moreover\ for the frictional support with elastic compliance\ we have

a� 6−m\
pT

=pT=7\ b� 69\
pT

=pT=7\ C� $
kN 9

9 kT%\ "41#

and thus a substitution of "41# into "15#\ by considering h�9\ gives

rR �
0
1 0X 0¦

kN

kT

m1−01[ "42#

In this case\ the two functionals in the su.cient condition for uniqueness "10# may
be directly estimated to be

JV"v#� gV

Mþ 1

EJ
dx� v = Kv\ Jc"v#−−rR"v = Cv#\ "43#

where M is the bending moment[ Therefore\ bifurcation is excluded when

v = "K−rRC#v× 9\ [v� 9[ "44#

The 1×1 symmetric matrix "K−rRC# turns out to be positive de_nite if both its
determinant and trace are positive\ namely if rR ³rc\ where

rc �
k

kTkN

"3kT¦kN−z05k1
T¦k1

N¦kTkN#[ "45#

Therefore\ by using results "42# and "45# uniqueness is ensured when m³mR\ where
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mR � $3rc"0¦rc#
kT

kN%
0:1

[ "46#

It should be noted that in the limit case of Signorini|s contact with Coulomb friction\
obtained as kN :�\ the critical value of the frictional coe.cient "46# reduces to
mR �9[ On the other hand\ it is known from Klarbring "0889b# that bifurcation may
occur for m−mH �1:2[ Therefore\ the criterion of exclusion of bifurcation turns out
to be in this limit case over!su.cient[

4[ Conclusions

Conditions for bifurcation in velocities of linear elastic solids in frictional\ quas!
istatic\ unilateral contact with a sti}er constraint on a part of the boundary have been
examined[ A normal and tangential compliance has been assumed in the zone of
contact[ This is a largely used assumption for contact problems[ Global exclusion
conditions for bifurcation in velocity have been proposed\ which are similar to con!
ditions formulated for elastoplasticity "Hill\ 0847^ Raniecki\ 0868^ Raniecki and
Bruhns\ 0870#[ Global and local exclusion conditions for bifurcation are derived
making use of results from functional analysis[ It may be important to mention that
in the speci_c case where the contact pressure is zero\ the assumed incremental
constitutive laws for the contact are thoroughly non!linear[ For this behavior\ an
incrementally linear composition contact law has been formulated[

The main advantage of the proposed approach to bifurcation\ an alternative to that
of Klarbring et al[ "0877# and Klarbring "0889a#\ is the possibility of a generalization
to include large strain and elastoplastic behavior of the solid in contact[ Its main
shortcoming is related to the fact that the conditions for uniqueness may well be often
over!su.cient\ a fact already known in the context of elastoplasticity[ Due to its
connections with elastoplasticity theory\ the proposed method of analysis furnishes a
new key to explore the behavior of non!associative elastoplastic solids\ taking advan!
tage of the analogy with friction[
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Appendix] A special interfacial constitutive law

We consider here the case in which the elastic compliance of the interface C reduces\
for vanishing contact pressure p� 9\ to the law
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C9 �k9n& n\ "A0#

where k9 is a "non!negative# normal sti}ness coe.cient[ As a consequence of "A0#\
tangential sti}ness is assumed not to occur for vanishing normal pressure[ For this
choice of contact law in the grazing zone\ the comparison interface "07# still works\
but is not optimal[ It may in fact be proved that

Dp¾ =Dv− 9\ [v"0#\ v"1# $V\ "A1#

when "A0# holds[

Proof] The proof is divided into three cases[
"i# v"i#

N ¾ 9\ for i�0\ 1[ Then\ from "09#0\ p¾ "i# � 9\ and thus

Dp¾ =Dv� 9[

"ii# v"i#
N × 9 for i�0\ 1[ Then\ from "09#1 and "7#\ p¾ "i# � k9v

"i#
Nn\ and thus

Dp¾ =Dv�k9"DvN#1 − 9[

"iii# v"i#
N ¾ 9\ and v" j#

N × 9\ for i\ j�0\ 1 "i� j#[ Then\ from "09# and "7#\ p¾ "i# � 9\ and
p¾ " j# � k9v

" j#
N n\ and thus

Dp¾ =Dv�k9ð"v" j#
N #1−v"i#

Nv" j#
N Ł− 9[
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