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Abstract

An elastic, incompressible, in1nite body is considered subject to plane and homogeneous de-
formation. At a certain value of the loading, when the material is still in the elliptic range, an
incremental concentrated line load is considered acting at an arbitrary location in the body and
extending orthogonally to the plane of deformation. This plane strain problem is solved, so that
a Green’s function for incremental, nonlinear elastic deformation is obtained. This is used in two
di5erent ways: to quantify the decay rate of self-equilibrated loads in a homogeneously stretched
elastic solid; and to give a boundary element formulation for incremental deformations super-
imposed upon a given homogeneous strain. The former result provides a perturbative approach
to shear bands, which are shown to develop in the elliptic range, induced by self-equilibrated
perturbations. The latter result lays the foundations for a rigorous approach to boundary element
techniques in 1nite strain elasticity. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The determination of Green’s functions and related integral representations of elastic
states are classical problems in the linear theory of elasticity. In this context, di5erent
classes of anisotropies have been considered for static and dynamic situations (Love,
1927; Lifshitz and Rozentsveig, 1947; Willis, 1965, 1973; Pan and Chou, 1976; more
recently, see Ting and Lee, 1997 and references cited therein).
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An in1nite-body Green’s function is obtained in the present article for incremental,
nonlinear elastic, isochoric deformation. To this purpose, the simplest setting is chosen,
corresponding to the Biot problem in which an in1nite medium is homogeneously and
biaxially deformed an arbitrary amount within the elliptic range. The current con1g-
uration is plane strain and characterized by two in-plane stretches. The incremental
response of this incompressible solid is linear and governed by the two Biot (1965)
moduli, which are functions of the in-plane stretches.
At a generic stage of this deformation path, an incremental point load is superim-

posed so that the plane strain constraint is not violated. The corresponding velocity
problem is solved and the nominal stress rate distribution is obtained. The singular so-
lution is worked out by using the plane-wave expansion method (John, 1955; Courant
and Hilbert, 1962; Gel’fand and Shilov, 1964) in the stream function formulation of
Hill and Hutchinson (1975). The result is new, even in the trivial case when the current
stress is null, but is in a sense expected, since our problem may be viewed as a spe-
cial case of the general formulation given by Willis (1991). In fact, singular solutions
for concentrated loads on the free boundary of an elastic, pre-stressed half-space have
already been obtained (Green et al., 1952; Green and Zerna, 1968; Beatty and Usmani,
1975; Dhaliwal and Singh, 1978; Filippova, 1978; Guz’ et al. 1998), but surprisingly—
with the remarkable exception of Willis (1991)—the case of an in1nite medium was
not considered. The solution relative to the in1nite medium is however important from
di5erent points of view, two of which will be analyzed in detail, namely:

• the evaluation of decay rates of self-equilibrated loads in incremental, nonlinear
elasticity;

• the formulation of boundary element for incremental deformations superimposed
upon a given homogeneous strain.

The problem of the evaluation of decay rates of self-equilibrated loads in linear elas-
ticity is related to the determination of the extent of local e5ects and to Saint Venant’s
principle. The topic has been thoroughly analyzed starting from pioneering works of
Zanaboni (1937) and Mises (1945) [see Gurtin (1972) and the review papers by Hor-
gan (1989, 1996)]. In nonlinear elasticity, the situation is much di5erent, and only few
contributions are available. Our interest here is in evaluating decay e5ects when small
deformations are superimposed on large deformations. In this context, semi-in1nite,
pre-stressed strips subjected to self-equilibrated, incremental end loads have been ana-
lyzed by Abeyaratne et al. (1985) and Durban and Stronge (1988). A self-equilibrated
incremental load acting at an arbitrary stage of homogeneous deformation of a non-
linear elastic continuum is considered in the present paper. Our analysis is based on
the availability of the singular solution for the point load; in particular, the e5ects are
investigated of a dipole, i.e. a self-equilibrated loading given by two equal but opposite
point loads. The solution is obtained by superposition, since the incremental problem
is linear. With the solution of this second problem in hand, we quantify the decay rate
of the self-equilibrated load. This is a function of the current in-plane stretches or, in
other words, of the current state of stress. When the latter is reduced to zero, a linear
elastic solution is obtained, which decays rapidly away from the load. On the other
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hand, the solution is shown to blow up when the boundary of the elliptic range is
approached. In this limit the decay distance becomes in1nite. Interestingly, it is shown
that, approaching the elliptic boundary, the incremental solution tends to self-organize
along well-de1ned shear band patterns. This provides a perturbative approach to strain
localization, which is shown to be induced by a perturbation while the deformation is
still in the elliptic range.
Finally, the obtained Green’s function is shown to be useful for the solution of

boundary value problems where incremental deformations are superimposed upon a
given, homogeneous strain. To this purpose, we provide an integral boundary repre-
sentation for velocity and in-plane hydrostatic stress rate. This, in the very particular
case of null current stress and incremental isotropy, formally coincides with the rep-
resentation given by Ladyzhenskaya (1963) for Navier–Stokes Mow. The integral rep-
resentation, together with the fundamental solution allows us to formulate a boundary
element technique for the incremental, homogeneous problem. A relevant advantage
of the boundary element approach is in dealing with the incompressibility constraint,
which is inherent in our formulation. To provide an example of the capabilities of
the proposed approach, we solve the problem of transversal incremental loading of a
Mooney–Rivlin elastic block subjected to a compressive axial load. In this case, the
bifurcation load, corresponding to a symmetric surface mode, is obtained through a
perturbative, numerical approach.
We believe that the fundamental solution and the integral formulation derived here

provide a 1rst step towards a rigorous application of the boundary element method to
large strain elastic problems.

2. Constitutive equations

Under plane strain conditions, the most general constitutive equations for a hyper-
elastic, initially isotropic, incompressible solid have been given by Biot (1965) and
can conveniently be expressed in the principal reference system of Cauchy stress (here
denoted by indices 1 and 2). In this system, using a Lagrangean formulation of the
1eld equations with the current state taken as reference, the relation between material
time derivative of nominal stress tij and velocity gradient vi; j can be written as

ṫij =K ijklvl;k + ṗ	ij; (1)

where a comma denotes partial di5erentiation, repeated indices are summed and range
between 1 and 2, 	ij is the Kronecker delta, ṗ the in-plane hydrostatic stress rate and
K ijkl are the instantaneous moduli. These possess the major symmetry K ijkl=Kklij and
are functions of the components of Cauchy stress 
1 and 
2 and of two incremental
moduli � and �∗, denoting respectively the moduli corresponding to shearing parallel
to, and at 45◦ to, the principal stress axes. The components of K ijkl di5erent from zero
are

K1111 = �∗ − 

2
− p; K1122 =K2211 =− �∗; K2222 = �∗ +



2
− p;

K1212 = � +


2
; K1221 =K2112 = � − p; K2121 = � − 


2
; (2)
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with


= 
1 − 
2; p=

1 + 
2
2

: (3)

In addition to Eq. (1), incompressibility requires that the velocity 1eld vi be solenoidal:

vi; i=0: (4)

The constitutive framework described by the above equations is quite broad and in-
cludes, for instance, the relevant cases of Mooney–Rivlin, Ogden materials and
J2-deformation theory material, introduced by Hutchinson and Neale (1979). In the
Mooney–Rivlin case, the incremental moduli and the deviatoric stress 
 depend on the
maximum current stretch 
¿ 1;


= �0 (
2 − 
−2); �∗= �=
�0
2
(
2 + 
−2); (5)

through the ground-state shear modulus �0. Constitutive equations (5) can be written
in a more general form, which includes the Ogden material, as (Ogden, 1984)


=
N∑
i=1

�i(
�i − 
−�i); �∗=
1
4

N∑
i=1

�i�i(
�i + 
−�i);

�=
1
2

4 + 1

4 − 1

N∑
i=1

�i(
�i − 
−�i); (6)

where �i and �i are material parameters.
It may be important to note that constitutive equations (1) and (2) describe also the

incremental behavior of materials which are initially orthotropic with respect to direc-
tions 1 and 2. In the interest of generality, no speci1c assumptions will be introduced
on the dependence of �∗ and � on the current state.

3. The Green’s function set

At an arbitrary stage of a homogeneous, plane deformation of an in1nite medium,
we consider an incremental force (a line loading extending orthogonally to the plane of
deformation) acting at the point x= 0 and with components ḟ1;ḟ2 along the principal
stress axes. The incremental equilibrium equations are

ṫij; i +ḟj	(x)= 0; (7)

where 	 is the two-dimensional Dirac delta function and x denotes the generic material
point. Employing the constitutive equations and assuming a homogeneous current state,
Eqs. (7) become, in explicito

(2�∗ − p)v1;11 + (� − p)v2;12 +
(
� − 


2

)
v1;22 +ḟ1	(x)=− �̇;1;

(2�∗ − p)v2;22 + (� − p)v1;21 +
(
� +



2

)
v2;11 +ḟ2	(x)=− �̇;2; (8)
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where

�̇=
ṫ11 + ṫ22
2

= ṗ− 

2
v1;1: (9)

It is expedient to introduce a stream function  (x1; x2) de1ning a solenoidal but oth-
erwise arbitrary velocity 1eld

v1 =  ;2 ; v2 =−  ;1 ; (10)

so that by di5erentiating Eqs. (8)1 and (8)2 with respect to x2 and x1, respectively,
and subtracting the results, we obtain(

� +


2

)
 ;1111 +2(2�∗ − �) ;1122 +

(
� − 


2

)
 ;2222 +ḟ1	;2−ḟ2	;1 = 0: (11)

It is worth noting that when 
=0 and �∗= �; Eq. (11) becomes formally identical to
the stream function equation of Navier–Stokes model for incompressible, plane, viscous
Mow (Ladyzhenskaya, 1963, Section 2:3).
The standard regime classi1cation is performed on the basis of the characteristic

equation associated to Eq. (11). To this purpose, we de1ne

k =


2�

; (12)

which, without loss of generality, may always be taken to be nonnegative (simply
orienting axes 1 and 2 in a proper way). The equation de1ning the regime classi1cation
can therefore be written as

�!42

[
(1 + k)

!41
!42
+ 2

(
2
�∗
�

− 1
)

!21
!22
+ (1− k)

]
=0: (13)

Eq. (13) admits

• no real solution !1=!2 in the elliptic regime (E);
• four real solutions !1=!2 in the hyperbolic regime (H);
• two real solutions !1=!2 in the parabolic regime (P).

The elliptic regime, where k ¡ 1, may be further sub-divided into elliptic complex
(EC) and elliptic imaginary (EI) regimes. In particular, Eq. (13) admits

• two conjugate pairs of complex solutions !i in the elliptic complex regime (EC);
• four purely imaginary solutions (in conjugate pairs) !i in the elliptic imaginary
regime (EI).

If we explicitly introduce the roots for !21=!
2
2 of Eq. (13)

(1 + k)
!41
!42
+ 2

(
2
�∗
�

− 1
)

!21
!22
+ 1− k =(1 + k)

[
!21
!22

− �1

] [
!21
!22

− �2

]
; (14)

where

�1
�2

}
=
1− 2�∗=� ±√

�
1 + k

; �= k2 − 4�∗
�
+ 4

(
�∗
�

)2
; (15)
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we conclude that �1 and �2 are both real and negative in the (EI) regime and are a
conjugate pair in the (EC) regime. Therefore, � is positive in (EI) and negative in
(EC).
Note that the Mooney–Rivlin material corresponds to �= k and �1 = (k − 1)=

(k + 1); �2 =− 1.
There are two ways to exit the (E) regime, namely

• crossing the (EI)=(P) boundary. This corresponds to k =1, i.e. �1 must vanish;
• crossing the (EC)=(H) boundary. This corresponds to �=0, i.e. the two �i’s must
coincide.

It is worth noting that, when the (EC)=(H) boundary is approached from (E), �¡ 0
and �¿ 2�∗, whereas �¿ 0 and �¡ 2�∗; when the (EI)=(P) boundary is approached.
We recall from Biot (1965) and Hill and Hutchinson (1975) that incompressible,

elastic materials deformed in plane strain, which are isotropic in the initial state,
cannot penetrate the (P) regime, so that the (EI)=(P) boundary can be reached only at
the limit of in1nite stretch.
It is important to note that in the following we will always assume to remain within

the elliptic regime.

3.1. Determination of the velocity 5eld

We follow here the general procedure proposed by Willis (1971, 1972, 1973) to
solve singular problems in the in1nitesimal theory of elasticity. Since the incremental
problem is linear, the solution pertaining to a generic point load can be obtained as
the superposition of the solutions for two forces, one acting along axis 1 and the other
along axis 2. With this reference, we may take ḟ i= 	ig and rewrite Eq. (11) as

L g +
(
	1g

9·
9x2

− 	2g
9·
9x1

)
	(x)= 0; (16)

where L is the linear di5erential operator, with constant coeQcients, de1ned as

L(·)=
(
� +



2

) 94·
9x41

+ 2(2�∗ − �)
94·

9x219x22
+
(
� − 


2

) 94·
9x42

: (17)

The plane wave expansion of the 	 function is (Courant and Hilbert, 1962; Gel’fand
and Shilov, 1964)

	(x)=− 1
4�2

∮
|!=1|

d!
(! · x)2 ; (18)

where ! is the unit vector (Fig. 1), so that de1ning the analogous transform  ̃
g
(! · x)

of  g(x) as

 g(x)=− 1
4�2

∮
|!=1|

 ̃
g
(! · x) d!; (19)
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Fig. 1. Reference system, vectors !; x, and angles # and �.

the transform of Eq. (16) yields

L ̃
g
(! · x)= 2	1g!2 − 	2g!1

(! · x)3 : (20)

Employing the chain rule of di5erentiation

[ ̃
g
(! · x)];k =!k( ̃

g
)′; (21)

where a prime denotes di5erentiation with respect to the scalar ! · x, and introducing
the function

L(!)= �!42(1 + k)
[
!21
!22

− �1

] [
!21
!22

− �2

]
¿ 0; (22)

which is always strictly positive in (E), Eq. (20) becomes

L(!)( ̃
g
)′′′′=2

	1g!2 − 	2g!1
(! · x)3 : (23)

Integration of di5erential equation (23) with respect to the variable ! · x gives
 ̃

g
=

	1g!2 − 	2g!1
L(!)

(! · x)(log |! · x̂| − 1); (24)

a formula where additional cubic, quadratic and linear terms in ! · x, representing
inessential contributions, have been disregarded. In Eq. (24), x̂ represents a dimension-
less measure of distance, i.e. x is divided by any characteristic length. The antitransform
of Eq. (24) determines the stream function

 g=− 1
4�2

∮
|!=1|

	1g!2 − 	2g!1
L(!)

(! · x)(log |! · x̂| − 1) d!; (25)

which may be expanded to yield

 g =− r
2�2�(1 + k)

[
(log r̂ − 1)

∫ �

0

sin[�+ #+ (1− g)�=2]cos �
�(�+ #)

d�

+
∫ �=2

0

sin[�+ #+ (1− g)�=2] cos � log(cos �)
�(�+ #)

d�

−
∫ �=2

0

cos[�+ #− (g− 1)�=2] sin � log(sin �)
�(�+ #+ �=2)

d�

]
; (26)
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where, with reference to Fig. 1, the distance r= |x| and the angle # are polar coordi-
nates, r̂ is a dimensionless measure of distance, and

�(�)= sin4 �[cot2 �− �1][cot2 �− �2]¿ 0: (27)

The Green’s tensor for the in1nite body represents the velocity 1eld associated with
stream function (26) and, according to Eq. (10), is given by

vg1 =
9 g

9x2
; vg2 =− 9 g

9x1
: (28)

The tensor components (28) have to satisfy the identity

v21 = v12; (29)

which may be directly veri1ed using Eq. (28) in Eq. (26) and, more in general, is
a consequence of the major symmetry of K ijkl. Employing Eqs. (25) and (28), we
obtain

vgi =− 1
4�2

∮
|!=1|

ṽgi (! · x) d!; (30)

where

ṽ g
i (! · x)= (	1i!2 − 	2i!1)(	1g!2 − 	2g!1)

log |! · x̂|
L(!)

: (31)

With the coordinate system of Fig. 1, the components of the Green’s tensor (30) take
the expression

vgm =
1

2�2�(1 + k)

[
log r̂

∫ �

0

sin[�+ (1− m)�=2] cos[�+ (2− g)�=2]
�(�)

d�

+
∫ �

0

sin[�+ #+ (1− m)�=2] cos[�+ #+ (2− g)�=2] log |cos �|
�(�+ #)

d�
]
;

(32)

where the integrals independent of # can be evaluated, yielding

v11 =
log r̂

2��(1 + k)
1

�1
√−�2 +

√−�1 �2

− 1
2�2�(1 + k)

∫ �=2

0

log(cos �) sin2(�+ #)
�(�+ #)

d�

− 1
2�2�(1 + k)

∫ �=2

0

log(sin �) cos2(�+ #)
�(�+ #+ �=2)

d�;

v22 =− log r̂
2��(1 + k)

1√−�1 +
√−�2

− 1
2�2�(1 + k)

∫ �=2

0

log(cos �) cos2(�+ #)
�(�+ #)

d�

− 1
2�2�(1 + k)

∫ �=2

0

log(sin �) sin2(�+ #)
�(�+ #+ �=2)

d�;
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v12 = v21 =
1

2�2�(1 + k)

∫ �=2

0
cos(�+ #) sin(�+ #)

×
(
log(cos �)
�(�+ #)

− log(sin �)
�(�+ #+ �=2)

)
d�: (33)

In Eq. (33), the dependence on r is explicit and the integrals are improper Riemann
integrals which may easily be shown to converge. Therefore, the numerical treatment
of Eq. (33) is straightforward, at least for material parameters not too close to the (E)
boundary (see Section 4). Moreover, it is easy to show that the components of the
Green’s function (33) satisfy the following symmetries:

vii(#)= vii(−#)= vii(�− #); v12(#)=− v12(−#)=− v12(�− #);

v12(0)= v12(�=2)=0 (34)

(with i=1; 2) so that # can be restricted to range within [0; �=2].
In the limit case of in1nitesimal theory (k =0) and isotropic elasticity (�= �∗,

�1 = �2 =− 1), Eq. (33) returns the well-known Green’s function for Stokes Mow (La-
dyzhenskaya, 1963, Section 3:4):

vmm=− log r̂
4��

+
3− 2m
8��

cos(2#); v12 =
1
4��

sin # cos#: (35)

3.2. Determination of the velocity gradient

The velocity gradient associated to the Green’s tensor is given by

9vgi
9x1

= cos#
9vgi
9r − sin #

r
9vgi
9# ;

9vgi
9x2

= sin #
9vgi
9r +

cos#
r

9vgi
9# : (36)

It should be noted that due to symmetry of Green’s tensor (29) and the incompress-
ibility constraint (4), we have

v12;2 = v21;2 =− v11;1; v12;1 = v21;1 =− v22;2;

so that only four components of the velocity gradient are to be determined. Moreover,
Eqs. (33) have a form in which the dependence on r is explicit and the dependence on
# involves an integral. Therefore, the derivatives with respect to r yield a singularity
of the order 1=r, whereas the derivatives with respect to # do not alter the singularity.
Hence, the velocity gradient can be expressed as

v11; g =
1

2�2�(1 + k)r

[
� cos[#+ (1− g)�=2]
�1
√−�2 +

√−�1�2
+ sin[#+ (1− g)�=2]

×
∫ �=2

0
(log(cos �)!(�+ #; �+ #)

+ log(sin �)!(�+ #+ �=2; �+ #+ �=2)) d�
]
;
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v22; g =− 1
2�2�(1 + k)r

[
� cos[#+ (1− g)�=2]√−�1 +

√−�2
− sin[#+ (1− g)�=2]

×
∫ �=2

0
(log(cos �)!(�+ #+ �=2; �+ #)

+ log(sin �)!(�+ #; �+ #+ �=2)) d�
]
; (37)

where

!(�; ")=
sin(�)[2 cos(�)�(")− �′(") sin(�)]

�2(")
; �′(")=

9�(")
9" : (38)

3.3. Determination of the incremental stress 5eld

Once the velocity gradient is known, the part of nominal stress rate linearly related
to it can be obtained from Eq. (1), but the in-plane hydrostatic stress rate ṗ (or,
equivalently, �̇) remains unknown. In order to determine �̇, Eqs. (8)1 and (8)2 can be
di5erentiated with respect to x1 and x2, respectively, and summed to get

�̇;11 + �̇;22 =− 2(�∗ − �)(v1;111 + v2;222) +


2
(v1;111 − v2;222)−ḟ1	;1 −ḟ2	;2:

(39)

A substitution of Eq. (30) for the Green velocity 1eld into Eq. (39) with ḟi= 	ig

provides the following relation in the transformed domain:

(�̃ g)′′ =−2(�∗ − �)[!31(ṽ
g
1 )

′′′ + !32(ṽ
g
2 )

′′′] +


2
[!31(ṽ

g
1 )

′′′ − !32(ṽ
g
2 )

′′′]

+ 2
!1	1g + !2	2g
(! · x)3 ; (40)

and, consistently with Eq. (30), the Green hydrostatic nominal stress rate is given by

�̇ g=− 1
4�2

∮
|!=1|

�̃ g(! · x) d!: (41)

Integrating Eq. (40) and neglecting inessential contributions lead to

�̃ g=− 2(�∗ − �)[!31(ṽ
g
1 )

′ + !32(ṽ
g
2 )

′] +


2
[!31(ṽ

g
1 )

′ − !32(ṽ
g
2 )

′] +
!1	1g + !2	2g

! · x ;

(42)

where according to Eq. (31)

(ṽ g
i )

′=
|!|2	ig − !i!g

L(!)
1

! · x ; (43)

so that we arrive at

�̃g=
!g

! · x + (2g− 3)
!g(1− !2g)

(! · x)L(!)
[
2(�∗ − �)(!21 − !22)−



2

]
: (44)
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We note that for in1nitesimal (k =0), isotropic (�∗= �) elasticity, the antitransform
of Eq. (44) yields two Cauchy principal value integrals which may be solved to give

�̇1 =− cos#
2�r

; �̇2 =− sin #
2�r

: (45)

More generally, the antitransform of Eq. (44) is

�̇1 =− cos#
2�r

+
1

2�2r(1 + k)
P:V:

∫ �

0

sin2(�+ #) cos(�+ #)
�(�+ #) cos �

#(�+ #) d�;

�̇2 =− sin #
2�r

− 1
2�2r(1 + k)

P:V:
∫ �

0

sin(�+ #) cos2(�+ #)
�(�+ #) cos �

#(�+ #) d�; (46)

where

#(�)= 2
(
�∗
�

− 1
)
(2 cos2 �− 1)− k: (47)

Eqs. (46) contain two Cauchy principal value integrals, singular at �= �=2; however,
due to the fact that the Cauchy principal value of

∫ �
0 d�=cos � is zero, the integrals in

Eqs. (46) can be evaluated as

�̇1 =−cos#
2�r

+
1

2�2r(1 + k)

∫ �

0

1
cos �

(
sin2(�+ #) cos(�+ #)#(�+ #)

�(�+ #)

+
cos2 # sin ##(#+ �=2)

�(#+ �=2)

)
d�;

�̇2 =− sin #
2�r

− 1
2�2r(1 + k)

∫ �

0

1
cos �

(
sin(�+ #) cos2(�+ #)#(�+ #)

�(�+ #)

− cos# sin
2 ##(#+ �=2)

�(#+ �=2)

)
d�: (48)

The numerical treatment of Eqs. (48) does not present diQculties, at least for material
parameters suQciently distant from the (E) boundary (see Section 4).
The hydrostatic nominal stress rate (48), together with the velocity 1eld (33), repre-

sents the Green’s function set {vgi ; �̇g} for the homogeneously stretched, in1nite elastic
body.

4. Decay e�ects and shear bands

The singular solution previously obtained can be used to analyze the e5ects of a
perturbation superimposed upon a given homogeneous deformation of an in1nite, non-
linear elastic body. Since the incremental problem is linear, several self-equilibrated
loading systems can be constructed simply superimposing the unit force solution. Here,
a dipole—the simplest self-equilibrated perturbation—is considered, corresponding to
two equal and opposite incremental forces.
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Fig. 2. Decay of the modulus of velocity (multiplicated by �) along reference axes (x1=a and x2=a) for a
dipole inclined at 45

◦
.

4.1. Decay properties of self-equilibrated loads

The analysis of the decay e5ects for self-equilibrated loads is an easy task in our
present position. In particular, we consider two equal and opposite unit incremental
forces acting at a distance 2a and inclined at � with respect to axis x1. The modu-
lus of velocity |C| for this loading system may be easily evaluated by superposition,
using Eqs. (33). For instance, the decay of |v| (multiplied by �) along axes x1 and
x2 is reported in Fig. 2 as a function of the dimensionless distances x1=a and x2=a for
�∗=�=1 (Mooney–Rivlin material) and for �∗=�=1=4. In the same 1gure, the angle
�= �=4 has been considered and di5erent values of the pre-stress k are investigated.
We may observe from the 1gure that all the curves initiate at the origin where veloc-
ity vanishes, due to symmetry conditions. Moreover, all curves have a similar trend,
exhibiting a maximum where the distance to the point of application of the force is
minimum, and a subsequent decay to zero. An important feature is the fact that the
solution blows up when approaching the (EI)=(P) boundary (�∗=�=1 and k =1) or the
(EC)=(H) boundary (�∗=�=1=4 and k ≈ 0:866). Therefore, two important questions
arise, namely, whether the modulus of velocity goes to in5nity when the elliptic bound-
ary is approached, so that decay does not occur, and how the solution behaves when
the elliptic boundary is approached. We will show below that the answer to the 1rst
question is positive and that, concerning the second question, the solution self-organizes
along well-de1ned shear band patterns, geometrically akin to the discontinuous strain
rate, occurring only at the elliptic boundary.
We start now by considering the velocity 1eld (33) and analyzing the coeQcients

of the logarithmic terms, when the elliptic boundary is approached.
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We note that

• when the (EI)=(P) boundary is approached, k → 1, �1 → 1 − 2�∗=� (¡ 0) and
�2 → 0−, therefore,

1
�1
√−�2 +

√−�1�2
→ −∞ and

1√−�1 +
√−�2

→ 1√
2�∗=� − 1 ; (49)

• when the (EC)=(H) boundary is approached, �¡ 0,

�1 → lim
�→0−

(1− 2�∗=� +
√
�)=(1 + k)

and �2 → lim
�→0−

(1− 2�∗=� −
√
�)=(1 + k);

therefore,
1

�1
√−�2 +

√−�1�2
→ −∞ and

1√−�1 +
√−�2

→ +∞: (50)

In addition to the above terms, we note that the components (33) of the Green’s tensor
also contain integral terms. Considering now v22 , it is easy to show that the integrands
in Eq. (33)2 do not become singular at the (EI)=(P) boundary. Consequently, v22 remains
1nite when the (EI)=(P) boundary is reached. An analogous property holds true for v12,
which remains 1nite at (EI)=(P). On the contrary, v11 diverges at the (EI)=(P) boundary.
Finally, all components of the Green’s tensor tend to in1nity at the (EC)=(H) limit.
These properties are proved in Appendix A.
Let us consider now the dipole. For 1xed values of pre-stress and incremental mod-

uli, the solution always decays at in1nity. However, as a consequence of the above
discussion, the modulus of velocity at 1xed points tends to in1nity when the elliptic
boundary is approached, so that decay does not occur at that limit. On the other hand,
the behavior of the velocity components is essentially modi1ed whether the (EI)=(P)
or the (EC)=(H) boundary is approached. In particular, all velocity components diverge
when approaching the (EC)=(H) boundary, whereas only v11 diverges when approaching
the (EI)=(P) boundary. This conclusion preludes the problem analyzed below, namely,
how the velocity patterns are modi1ed when the elliptic boundary is approached.

4.2. A perturbative approach to shear bands

As is well known, the formation of shear bands can be viewed as the emergence
of discontinuous strain rate patterns. Following Biot (1965) and Hill and Hutchinson
(1975), in a continuous, quasi-static path starting from a situation of ellipticity, shear
band formation is excluded until the elliptic boundary is reached. In particular, two
situations are possible:

• at the (EI)=(P) boundary (k =1) one shear band becomes possible, always aligned
parallel to axis 1. For instance, the band is aligned parallel to the tensile axis for
uniaxial traction, whereas the band is orthogonal to the compressive direction for
uniaxial compression.



484 D. Bigoni, D. Capuani / J. Mech. Phys. Solids 50 (2002) 471–500

• at the (EC)=(H) boundary (�=0) two shear bands become simultaneously possible,
equally inclined with respect to the coordinate axes. The inclination " of the normal
to the band with respect to axis 1 may be calculated from the following formula:

tan2 "= [1 + 2
√

�∗=�(1− �∗=�)]=(1− 2�∗=�):

The above two situations agree with the observation that when the (EI)=(P) boundary is
approached from the ellliptic regime, v22 and v12 remain both 1nite whereas, in contrast,
all components vgi diverge when the (EC)=(H) boundary is approached. This observation
suggests the conjecture that when the elliptic boundary is approached from the interior
of the elliptic region, a perturbation in terms of a dipole gives rise to deformation
patterns similar to the discontinuous shear bands. Since discontinuous shear bands are
only possible at the elliptic boundary, our approach provides a perturbative technique
to localized deformations. This is con1rmed by the qualitative analysis reported in the
following.
We consider a self-equilibrated two-force system, centered at the origin of axes, with

a distance, say, 2a between the two application points of forces. For this perturbation,
the streamlines (i.e. the lines  =const.) and the level sets of the modulus of velocity
(33) are plotted, in a region where the nondimensional coordinate axes x1=a and x2=a
vary between −5 and 5. Results are reported in Figs. 3–7, for di5erent values of
the nondimensional pre-stress k and anisotropy ratio �∗=�. Figs. 3–5 pertain to the
Mooney–Rivlin case �∗=�=1 whereas Figs. 6 and 7 to �∗=�=1=4. Reaching k =1 in
the former case corresponds to a point on the (EI)=(P) boundary, whereas reaching
k ≈ 0:866 in the latter case corresponds to a point on the (EC)=(H) boundary. Figs. 3
and 4 are relative to the two forces aligned parallel to axes x1 and x2, respectively. In
both 1gures an horizontal shear band appears when k increases. In greater detail, we
note the following features:

• the streamlines become parallel along the shear bands, evidencing the shear mode
within the band;

• consequent to the initial isotropy, the plots in Fig. 3 can be obtained by a 90◦
rotation of the plots in Fig. 4 when k =0;

• a shear band progressively emerges in Fig. 3 when k is increased. Vice versa, a
shear band is induced by a kind of “Poisson e5ect” in Fig. 4, where the pre-stress
has now a sti5ening e5ect.

The situations analyzed in Figs. 3 and 4 are however peculiar, because the perturbing
forces are aligned parallel in one case and orthogonal in the other, to the shear band
expected at the elliptic boundary. It is therefore interesting to investigate a generically
inclined force system. To this purpose, Fig. 5 is relative to �= �=4 and k =0:98. We
note the formation of a mechanism consisting in two horizontal shear bands. Inclinations
di5erent from 0 and �=2 always produce a mechanism with two shear bands. These
two shear bands degenerate into a single band at �=0 and �=2. However, the band
corresponding to �=0 is narrow, compared to the thickness relative to �= �=2. The
thickness of the band is related to the parameter a, which introduces a characteristic
length in the problem.
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Fig. 3. Level sets of the modulus of velocity and streamlines for Mooney–Rivlin material, for a dipole
aligned with axis x1. The (EI)=(P) boundary is approached as the pre-stress k increases.

Figs. 6 and 7, relative to �∗=�=1=4, correspond to a dipole aligned with axis
x1 (�=0) and to di5erent inclinations, respectively. In Fig. 6 a system of four shear
bands develops at increasing k. These bands are inclined, with respect to axis x1, at an
angle corresponding to the inclination (≈ 27:367◦) calculated at the elliptic boundary
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Fig. 4. Level sets of the modulus of velocity and streamlines for Mooney–Rivlin material, for a dipole
aligned with axis x2. The (EI)=(P) boundary is approached as the pre-stress k increases.

by the discontinuous shear band analysis. The level sets of the modulus of velocity
are reported in Fig. 7 for k =0:86 (corresponding to a point close to the (EC)=(H)
boundary) and di5erent inclinations � of the two-force system. The two inclinations
�=27:367◦ and 62:633◦ refer to the dipole directed along and orthogonal to the shear
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Fig. 5. Level sets of the modulus of velocity and streamlines for Mooney–Rivlin material, for k =0:98 and
a dipole inclined at 45

◦
.

band calculated at the elliptic boundary. In the former case, �=27:367◦, a mechanism
consisting of three shear bands forms, one of which is thinner than the others. In the
latter case, �=62:633◦, only two shear bands form. For all other inclinations, four
shear bands emerge.
Features similar to those evidenced in Figs. 3–7 were found for a broad range of

material parameters and force inclinations (not reported here for conciseness). As a
general conclusion, we may therefore point out that our results show that a perturba-
tion during homogeneous deformation of a solid body (occurring close enough to the
elliptic boundary) may induce localization of deformation still in the elliptic regime.
Since localization occurs in the elliptic range, it might be concluded that regularization
techniques are not needed to follow its subsequent growth. However, it is important to
remark that the distance 2a between the two applied forces introduces a characteristic
length in the problem, so that the band thickness will anyway depend on the geometry
of perturbation.

5. Integral representations for velocity and hydrostatic stress rate in the incremental
boundary value problem

Let us consider now a generic hyperelastic solid subjected to certain boundary con-
ditions preserving homogeneous strain until the current state, assumed as the reference
con1guration. Superimposed in1nitesimal deformation (generally inhomogeneous) is
produced by incremental mixed boundary conditions in the usual form

v= Vv on 9Bv and ṫijni= '̇j on 9B'; (51)
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Fig. 6. Level sets of the modulus of velocity and streamlines for �∗=�=1=4, for a dipole aligned with axis
x1. The (EC)=(H) boundary is approached at increasing pre-stress k.

where 9Bv and 9B' are the two nonoverlapping portions of the boundary where veloci-
ties and nominal traction rates are respectively prescribed. If we assume for simplicity
null incremental body forces, superimposed nominal stress rates satisfy equilibrium

ṫij; i=0: (52)
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Fig. 7. Level sets of the modulus of velocity for �∗=�=1=4 and k =0:86, for a dipole at various inclinations
with respect to axis x1.

Moreover, the nominal stress rate ṫgij(x; y) associated to the Green’s function set {vgi ; �̇g}
given by Eqs. (33) and (48) satis1es

ṫgij; i + 	gj	(x− y)= 0; (53)

where x is the generic material point and y denotes the place where the force is ap-
plied, so that r= |x−y| and #= tan−1[(x2−y2)=(x1−y1)]. Let us consider a disk C* of
radius * centered at y. By integrating on the domain B–C* the scalar product of
Eq. (53) with vj and of Eq. (52) with vgj , we may write∫

B–C*

[ṫgij; i(x; y)vj(x)− ṫ ij; i(x)v
g
j (x; y)] dx=0: (54)

An application of the divergence theorem yields

−
∫
9C*

[ṫgij(x; y)nivj − ṫijniv
g
j (x; y)] dlx =

∫
9B
[ṫgij(x; y)nivj − ṫijniv

g
j (x; y)] dlx;

(55)
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where the major symmetry K ijkl=Kklij has been taken into account and ni is the
outward unit normal to 9B and 9C*.
Recalling now that vgi ∼ log r, it follows that
lim
*→0

∫
9C*

[ṫijniv
g
j (x; y)] dlx =0; (56)

and, consequently, Eq. (55) reduces in the limit * → 0 to

vj(y)C
g
j =
∫
9B
[ṫijniv

g
j (x; y)− ṫgij(x; y)nivj] dlx; (57)

where

Cg
j = lim*→0

∫
9C*

ṫgij(x; y)ni dlx (58)

is the so-called C -matrix, which involves a regular integral, since ṫgij ∼ 1=r. For interior
points of B, an integration of Eq. (53) over C* and use of the properties of the delta
function gives Cg

j = 	gj, so that

vg(y)=
∫
9B
[ṫijniv

g
j (x; y)− ṫgij(x; y)nivj] dlx: (59)

Eq. (59) represents an integral equation relating the velocity in interior points of the
body to the boundary values of nominal traction rates and velocities. Eq. (59) is
formally similar to the analogous boundary integral equation in the in1nitesimal theory.
In addition to Eq. (59), a boundary integral equation for the in-plane hydrostatic

stress rate ṗ is needed, to complete the boundary integral representation of 1eld quan-
tities. To this purpose, substituting the constitutive equation (1) into Eq. (52) we may
express the gradient of ṗ as a function of the second gradient of velocity. This may
be obtained di5erentiating (59) twice with respect to y, thus giving

ṗ;h(y)=−
∫
9B
Knhsg[ṫijniv

g
j; sn(x; y)− ṫgij; sn(x; y)nivj] dlx; (60)

an expression in which the second derivatives in the integrand can be either performed
with respect to x or y, indi5erently. For interior points, x �= y, rate equilibrium requires
that

Knhsgv
g
j; sn=Knhsgvjg; sn=− ṗj

;h; (61)

where

ṗg= �̇g +


2
vg1;1: (62)

Taking Eqs. (61) and (62) into account, Eq. (60) becomes

ṗ;h(y)=
∫
9B

ṫigniṗ
g
;h(x; y) dlx +

∫
9B
Knhsgṫ

g
ij; sn(x; y)nivj dlx; (63)

where ṗg
;h is di5erentiated with respect to xh. Using the constitutive relation (1) for

ṫgij; sn and the derivative of Eq. (61)

Knhsgvlg; snk =− ṗl
;hk (64)
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into Eq. (63), we get

ṗ;h(y) =
∫
9B

ṫigniṗ
g
;h(x; y) dlx −

∫
9B

nivjK ijkgṗ
g
;hk(x; y) dlx

+
∫
9B

niviKnhsgṗg
; sn(x; y) dlx: (65)

It should be noted that—with a change in sign—a derivative with respect to yh can be
extracted from the 1rst two integrals on the right-hand side of Eq. (65). Moreover, it
is proved in Appendix B that

Knhsgṗg
; sn=

[(
4��∗ − 4�2∗ + �
 − 2�∗
 − 
2

2

)
v11;11 − 


(
� +



2

)
v22;11

]
; h
; (66)

so that Eq. (65) can be integrated with respect to yh, yielding

ṗ(y) =−
∫
9B

ṫigniṗg(x; y) dlx +
∫
9B

nivjK ijkgṗ
g
;k(x; y) dlx

−
∫
9B

nivi

[(
4��∗ − 4�2∗ + �
 − 2�∗
 − 
2

2

)
v11;11(x; y)

−

(
� +



2

)
v22;11(x; y)

]
dlx; (67)

where ṗg
;k is di5erentiated with respect to xk . Moreover, it is worth noting that the

signs opposite to Eq. (65) are a consequence of integration with respect to y and that
the constant of integration is null. The latter fact can be explained noting that Eq. (67)
holds for every closed contour 9B internal to the body and also for points y external
to the body, where ṗ=0. Therefore, considering external points, the integrands in Eq.
(67) are bounded, so that the integrals tend to zero when the contour of integration
shrinks to a point and this implies vanishing of the integration constant.
Eq. (67) represents an integral equation relating the in-plane hydrostatic stress rate

in the interior points of the body to the boundary values of nominal traction rates
and velocities. For null pre-stress (
=0) and isotropy (�= �∗), the boundary integral
equation (67) becomes formally analogous to the corresponding equation for incom-
pressible, viscous Mow (Ladyzhenskaya, 1963, Section 3.2).

6. Boundary element technique

The boundary integral equation (57) may be used as the starting point for developing
a boundary element technique to solve problems of incremental deformations superim-
posed upon a given homogeneous strain. To this purpose, we note that Eq. (59) gives
the velocity 1eld in the interior points of the body. In order to obtain the velocity 1eld
on the boundary of the body, we take the source point y to the boundary and re-write
Eq. (57), where the integral becomes a Cauchy principal value integral; consequently,
the C -matrix (58) is re-de1ned as

Cg
j (y)= lim*→0

∫
#*

ṫgij(x; y)ni dlx; (68)
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Table 1
C-matrix for Mooney–Rivlin material

k p=�=− k p=�= k

C12 C21 C12 C21

0 0.15915 0.15915 0.15915 0.15915
0.2 0.19759 0.15807 0.15807 0.13172
0.4 0.25749 0.15449 0.15449 0.11035
0.6 0.36773 0.14709 0.14709 0.09193
0.8 0.65569 0.13114 0.13114 0.07285

where #* is the intersection of the circle of radius * centered at y with the region
occupied by the body and, consistently with Eq. (58), the outward unit normal ni

points towards y. Using polar coordinates r and # with origin at y, de1nition (68)
becomes

Cg
j =
∫ #1

#0
ṫgij(r; #)ni(#)r d#; (69)

where #0 and #1 are the angular coordinates of the half-tangents to the boundary at
point y. As expected, since ṫgij ∼ 1=r, the integrand in Eq. (69) is independent of r.
At a smooth point of the boundary, elementary considerations of symmetry are suf-

1cient to conclude that

Cg
j =

1
2
	gj; (70)

whereas, for piecewise smooth boundary, the C -matrix turns out to be generally unsym-
metrical at a corner. In this case, the terms of the C -matrix depend on the nondimen-
sionalized pre-stress k, the hydrostatic stress p=� and on the ratio �∗=�. For instance, let
us take y at the corner of a right angle. Due to symmetry considerations, C11 =C22 = 1=4
for any value of material parameters and pre-stress, but the out-of-diagonal terms de-
pend on k, p=� and �∗=�. In particular, some out-of diagonal terms are reported in
Table 1 for Mooney–Rivlin material and di5erent values of nondimensional pre-stress k
and hydrostatic stress p=�. Note that the C -matrix becomes symmetrical in the special
case of a null pre-stress.
In order to implement a boundary element technique, the contour of the body has

to be discretized into 1nite elements and appropriate shape functions for velocity and
nominal traction rate have to be chosen. By collocating the integral equation (57)
with the C -matrix (69) at the element nodes, a linear algebraic system is obtained,
for the unknown nodal values of velocities and nominal traction rates. Obviously, the
determination of the coeQcients of the algebraic system requires the evaluation of
weakly singular integrals (involving the Green’s functions vgi ) and of Cauchy principal
value integrals (related to the nominal stress rate ṫgij of the Green’s state). Once the
boundary quantities are known, the interior 1elds may be readily obtained using Eq.
(59) for the velocity and Eq. (67) for the in-plane hydrostatic stress rate.
An application of the boundary element technique to the solution of an incremental

boundary value problem is developed below.
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6.1. Example: a perturbative approach to bifurcation of an elastic block

In the current con1guration, a square elastic block in plane strain conditions is con-
sidered, subject to uniaxial, compressive stress. For simplicity, the analysis is restricted
to Mooney–Rivlin material, for which the axial stress and incremental moduli are pro-
vided by Eq. (5). Planar, smooth, rigid constraints maintain the uniform compression
(Biot, 1965; Hill and Hutchinson, 1975; Young, 1976) and, starting from this con-
1guration, a symmetric perturbation is assigned as an incremental nominal traction,
acting orthogonally to a portion of the free edges of the block (see the particular of
Fig. 8). In order to determine the nominal traction rates on the constrained ends and the
velocities on the free edges of the block, the boundary element procedure is applied.
The boundary is discretized using linear shape functions for velocities and nominal
stress rates.
Uniform meshes have been chosen, so that having elements of equal length avoids

the problem of evaluating strongly singular contributions to the integrals in Eq. (57).
These can be shown to be zero on the basis of the following identities:

ṫ111(r; #= �=2)= ṫ111(r; #=− �=2)=0; ṫ121(r; #=0)= ṫ121(r; #= �)= 0; (71)

when the collocation node is located at a free edge, and

ṫ211(r; #=− �=2)=− ṫ221(r; #= �); ṫ112(r; #=− �=2)=− ṫ122(r; #= �); (72)

when the collocation node is located at a corner. Identities (71) follow from symmetry
considerations, whereas identities (72) are derived in Appendix C.
The loaded portion has been taken equal to 1=9 of the edge length. Two meshes hav-

ing 72 and 144 elements of equal length have been employed. The results of numerical
investigation are reported in Figs. 8 and 9. The velocity vC at the middle point of the
edge (nondimensionalized as �vC=(b'̇), where b is the half-length of the edge and '̇
is the applied nominal traction rate) is plotted versus the pre-stress k. The computed
values are marked by a spot. The values k = {0; 0:2; 0:4; 0:6; 0:7; 0:8; 0:82; 0:84; 0:845}
have been reported in Fig. 8 for the 1ne mesh and k = {0; 0:2; 0:4; 0:6; 0:7; 0:8; 0:82; 0:84;
0:86; 0:868} for the coarse mesh. The pro1les of velocity components [multiplied by
�=(b'̇)] along the edge are shown in Fig. 9, for di5erent values of k. In both 1gures,
comparisons are also included with results obtained using ABAQUS-Standard (Ver.
5.8-Hibbitt, Karlsson and Sorensen Inc, Pawtucket, RI), with plane-strain, 4-node, bi-
linear, hybrid elements (CPE4H). In particular, the following procedure within the
ABAQUS environment has been adopted. Starting from an unloaded con1guration of
a rectangular block, this is biaxially deformed until a square con1guration subject to a
desired value of axial compression k is reached. The initial mesh is chosen so that at
this stage of deformation the elements are square and have the same number of nodes
on the edges of the 1ne boundary element discretization. At this point, the incremen-
tal loading is given in the prescribed zones of the edges and the linear incremental
problem is solved (option PERTURBATION).
A progressive degradation of sti5ness in the response may be noted from Fig. 8,

when the level of pre-stress is increased. The curves relative to two meshes exhibit
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Fig. 8. Velocity of the central point C (multiplied by �=b'̇) versus pre-stress k.

asymptotes at critical values of k between 0.849 and 0.850 for the 1ne mesh, and
between 0.880 and 0.881 for the coarse mesh.
Pro1les of components of velocities along the edge are shown in Fig. 9 for k = {0; 0:4;

0:845}. Results relative to the 1ne mesh are represented by a continuous curve along
the edge, whereas results obtained by ABAQUS are marked with spots in the upper
part of the edge (positive values of x2=b) and results obtained with the coarse mesh are
reported in the lower part of the edge (negative values of x2=b). Results of ABAQUS
are always in excellent agreement with our results, except for the component v2 in
the case k =0. In this particular case, comparisons with results of ABAQUS obtained
using 1ne meshes (not reported here) show that our results are the most accurate.
Results relative to the coarse and the 1ne meshes are in good agreement, except for
high values of pre-stress. This can be explained as follows. For increasing values of
k, the corresponding pro1les of velocity undergo a shape variation and evolve towards
the pro1le associated to a bifurcation mode. This can clearly be observed in Fig. 9. To
understand this point in detail, we have to recall results from bifurcation analysis of a
rectangular elastic block (Biot, 1965; Hill and Hutchinson, 1975; Young, 1976). For
Mooney–Rivilin material, bifurcations in anti-symmetric modes always occur at values
of pre-stress lower than those relative to symmetric bifurcations. For a square geom-
etry, the 1rst anti-symmetric bifurcation occurs at k ≈ 0:522. Since the incremental
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Fig. 9. Velocity pro1les (multiplied by �=b'̇) along the free edge.
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Table 2
Some critical values of pre-stress and wavelength of the associ-
ated symmetric bifurcation mode for Mooney–Rivlin material

k 
=2b

0.926 1.5
0.866 2
0.849 2.5
0.843 3
0.841 3.5
0.840 4
...

...
0.839 ∞

load '̇ is symmetrical, such a bifurcation mode and, in general, anti-symmetric modes
are not activated in the present example (Fig. 8). On the other hand, the 1rst sym-
metric bifurcation occurs at the surface instability limit k ≈ 0:839. This limit value is
an accumulation point for pre-stress associated to both symmetric and anti-symmetric
bifurcation modes. In particular, the highest value of k for a symmetric bifurcation is
k ≈ 0:925, corresponding to a mode with wavelength 
=2b=1:5. All in1nite values
of k for symmetric bifurcation range between the two above extreme values. Some of
these values are reported in Table 2, obtained using Eq. (6:2) of Young (1976). The
two deformation pro1les relative to the asymptotes in Fig. 8 correspond to bifurcation
modes 
=2b=3 for the 1ne mesh, and 
=2b=2 for the coarse mesh. The values of
k corresponding to the asymptotes in Fig. 8 are higher than those predicted from the
bifurcation analysis (Table 2). This is consistent with the fact that the discretization
makes the system sti5er, so that the 1ner is the mesh, the more the surface instability
threshold is approached.

7. Conclusions

A Green’s function for an in1nite body and a boundary integral formulation for ve-
locity and hydrostatic stress rate have been obtained in the framework of incremental
elastic deformations superimposed upon a given homogeneous strain. The above re-
sults have been exploited in two di5erent directions. First, decay of self-equilibrated
loads and related material instabilities have been investigated. A perturbative approach
to shear bands occurring within the elliptic range has been proposed. We believe that
similar perturbative techniques could be used in di5erent contexts, to investigate other
instabilities, as for instance Mutter in a dynamic context. Second, the boundary integral
equations have been employed to build up a boundary element technique for incremen-
tal elastic deformation. This technique may become particularly convenient in view of
the incompressibility constraint typical of elastic deformations. Although limited to in-
cremental deformations superimposed upon a given homogeneous strain, the proposed
boundary element technique paves the way for a rigorous approach to 1nite elasticity
via boundary elements.
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Appendix A. Behaviour of Green’s tensor components at the elliptic boundary

According to Eq. (32), component v12 is given by

v12 =
1

2�2�(1 + k)

∫ �

0

cos(�+ #) sin(�+ #)
�(�+ #)

log |cos �| d�; (A.1)

which may be re-written as

v12 =
1

2�2�(1 + k)

∫ �

0

cos � sin �
�(�)

log |cos(�− #)| d�: (A.2)

At the elliptic boundary, where shear bands become possible, �(�) vanishes for values
of � characterizing normals to shear bands. In particular, at the (EI)=(P) boundary,
�(�) vanishes when �= �=2, whereas at the (EC)=(H) boundary �(�) vanishes when
�= �n and �= � − �n, with �n ranging between �=4 and �=2 and denoting the angle
between the normal to a shear band and the axis x1.
When approaching the (EC)=(H) boundary, a small positive � can be considered

such that integral (A.2) may be sub-divided into

∫ �

0
[ ]=

∫ �n−�

0
[ ] +

∫ �n+�

�n−�
[ ] +

∫ �−�n−�

�n+�
[ ] +

∫ �−�n+�

�−�n−�
[ ] +

∫ �

�−�n+�
[ ];

(A.3)

so that the singularity of Eq. (A.2) can be condensed in the contribution

1
2�2�(1 + k)

∫ �n+�

�n−�

cos � sin �
�(�)

log
∣∣∣∣cos(�− #)
cos(�+ #)

∣∣∣∣ d�: (A.4)

With the exception of #= n�=2 (n=0; 1; 2; : : :) where v12 = 0, integral (A.4) diverges
and consequently v12 goes to in1nity when approaching the (EC)=(H) threshold. A
similar argument can be applied to show that components v11 and v22 diverge in the
(EC)=(H) limit.
When approaching the (EI)=(P) boundary, i.e. taking the limit �1 → 0−, a small

positive � can be considered such that the singularity is condensed in the contribution

1
2�2�(1 + k)

lim
�1→0−

∫ �=2+�

�=2−�

cos � sin �
�(�)

log |cos(�− #)| d�: (A.5)
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Now, being cos � sin �=�(�) an odd function of �, we note that∫ �=2+�

�=2−�

cos � sin �
�(�)

log |cos(�− #)| d�

=
∫ �=2+�

�=2−�

cos � sin �
�(�)

[log |cos(�− #)| − log |cos(�=2− #)|] d� (A.6)

where the integrand on the right-hand side is not singular when �1 = 0. Hence, Eq.
(A.5) remains 1nite at the (EI)=(P) boundary and, in particular, the component v12
tends to

v12 =
1

2�2�(1 + k)
P:V:

∫ �

0

tan �

cos2 �− �2 sin
2 �
log |cos(�− #)| d�: (A.7)

Finally, when approaching the (EI)=(P) boundary, the singularity in v11 is represented
by

−1
2�2�(1 + k)

lim
�1→0−

∫ �=2+�

�=2−�

sin2 �
�(�)

log |r̂ cos(�− #)| d�; (A.8)

which can easily be shown to diverge.

Appendix B. Derivation of relation (66)

The components of Knhsgṗg
; sn are

Kn1sgṗg
; sn=

(
�∗ − 


2
− p

)
ṗ1;11 + (� − �∗ − p)ṗ2;12 +

(
� − 


2

)
ṗ1;22;

Kn2sgṗg
; sn=

(
�∗ +



2
− p

)
ṗ2;22 + (� − �∗ − p)ṗ1;12 +

(
� +



2

)
ṗ2;11: (B.1)

Using Eq. (64), which rewritten with the above indices reads

ṗg
; sn=−Kpnqrvgr;qps; (B.2)

we calculate the components of ṗg
; sn

ṗg
;11 =−

(
2�∗ − � − 


2

)
vg1;111 −

(
� − 


2

)
vg1;122;

ṗg
;22 =

(
2�∗ − � +



2

)
vg1;122 −

(
� +



2

)
vg2;112;

ṗg
;21 =

(
2�∗ − � +



2

)
vg1;121 −

(
� +



2

)
vg2;111;

ṗg
;12 =−

(
2�∗ − � − 


2

)
vg1;121 −

(
� − 


2

)
vg1;222; (B.3)

where

ṗg
;12 = ṗg

;21: (B.4)
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A substitution of Eq. (B.3) into Eq. (B:1)1 gives

Kn1sgṗg
; sn=

(
4��∗ − 4�2∗ − �
 + 2�∗
 − 
2

2

)
v11;111 − 


(
� − 


2

)
v12;222; (B.5)

which, using Eq. (B.4), may be transformed into

Kn1sgṗg
; sn=

[(
4��∗ − 4�2∗ + �
 − 2�∗
 − 
2

2

)
v11;11 − 


(
� +



2

)
v22;11

]
;1
: (B.6)

A substitution of Eq. (B.3) into (B:1)2 gives

Kn2sgṗg
; sn=

[(
4��∗ − 4�2∗ + �
 − 2�∗
 − 
2

2

)
v11;11 − 


(
� +



2

)
v22;11

]
;2
; (B.7)

which, together with Eq. (B.6), gives the components of Eq. (66).

Appendix C. Derivation of identities (72)

Using constitutive equations, identities (72) are equivalent to

2�∗v21;1(−�=2) + �̇2(−�=2)=− �v22;1(�)−
(
� − 


2

)
v21;2(�); (C.1)

(
� +



2

)
v12;1(−�=2) + (� − p)v11;2(−�=2)=− (2�∗ − p)v12;2(�)− �̇1(�): (C.2)

Using Eqs. (32) together with Eqs. (36) and (41), we obtain

v21;1(−�=2)=− v22;2(−�=2)=− v22;1(�)=− 1
2�2�(1 + k)r

∫ �

0

cos2 �
�(�)

d�; (C.3)

v21;2(�)=− v11;1(�)=− v11;2(−�=2)=− 1
2�2�(1 + k)r

∫ �

0

sin2 �
�(�)

d�; (C.4)

�̇1(�)=
1
2�2r

∫ �

0

[
1− sin2 �

(1 + k)�(�+ �)
#(�+ �)

]
d�; (C.5)

�̇2(−�=2)=
1
2�2r

∫ �

0

[
1 +

sin2 �
(1 + k)�(�− �=2)

#(�− �=2)

]
d�: (C.6)

Substitution of Eqs. (C.3)–(C.6) into Eqs. (C.1) and (C.2) proves identities (72).
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