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Abstract

Superimposed dynamic, time-harmonic incremental deformations are considered in an

elastic, orthotropic and incompressible, infinite body, subject to plane, homogeneous—but

otherwise arbitrary—deformation. The dynamic, infinite body Green’s function is found and,

in addition, new boundary integral equations are obtained for incremental in-plane

hydrostatic stress and displacements. These findings open the way to integral methods in

incremental, dynamic elasticity. Moreover, the Green’s function is employed as a dynamic

perturbation to analyze interaction between wave propagation and shear band formation.

Depending on anisotropy and pre-stress level, peculiar wave patterns emerge with focussing

and shadowing effects of signals, which may remain undetected by the usual criteria based on

analysis of weak discontinuity surfaces.
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1. Introduction

FINDINGS by Bigoni and Capuani (2002) pertaining to quasi-static deformation
of pre-stressed, elastic orthotropic and incompressible materials are extended in the
present article to the dynamic, time-harmonic regime. In particular, infinite-body,
dynamic Green’s functions and boundary integral equations for incremental
displacements and in-plane incremental hydrostatic stress, are obtained for small-
isochoric and two-dimensional-deformation superimposed upon a given nonlinear
elastic and homogeneous strain. Due to the hypothesis of time-harmonic
deformation, the regime classification of the governing differential equations
remains identical to the quasi-static case, so that all obtained solutions lie within
the elliptic range. A perturbation in terms of a pulsating dipole can be therefore
obtained and employed to analyze material instabilities arising near the boundary of
ellipticity loss. The perturbative approach is general—since it can be employed for
any incrementally linear constitutive equation, dynamic loadings and inhomoge-
neous material (Willis, 1991)—and is capable of revealing aspects which may remain

undetected using methods for material instabilities based on weak discontinuity
surfaces (loss of ellipticity, e.g. Knowles and Sternberg, 1978). For instance, the
perturbative approach has revealed shear band formation for a Mooney–Rivlin
material in the quasi-static case (Bigoni and Capuani, 2002, their Fig. 3), a
circumstance confirmed by the present dynamic analysis, but not detected by the
conventional approach.

Results presented in this article provide a basis for the analysis of propagation of
dynamic disturbances near the boundary of loss of ellipticity. Depending on the level
of pre-stress and anisotropy, wave patterns are shown to emerge, with focussing of
signals in the direction of shear bands. Varying the direction of the dynamic
perturbation excites different wave patterns, which tend to degenerate to families of
plane waves parallel to the shear bands, when the elliptic boundary is approached.

Another possibility related to the finding of a Green’s function is the formulation
of a boundary element technique for the solution of incremental boundary value
problems. For quasi-static deformation, this technique was proved to possess certain
advantages—related for instance to the treatment of the incompressibility
constraint—with respect to other numerical techniques, such as finite-element
methods (Brun et al., 2003a, b). Now the development of the technique in dynamics
requires the finding of new boundary integral equations. While the integral equation
for incremental displacements does not formally change with respect to the quasi-
static case, a generalization is given of the integral representation for incremental in-
plane hydrostatic stress obtained by Bigoni and Capuani (2002).

The paper is organized as follows. After a brief presentation of the constitutive
framework (Section 2), the dynamic Green’s function set, composed of incremental
displacements (Eq. (31)), and in-plane incremental hydrostatic stress (Eq. (40)), is
obtained in Section 3. Wave patterns produced by a dynamic perturbation at
different pre-stress levels are analyzed in Section 4 and, finally, boundary integral
equations for incremental displacement (Eq. (43)), and in-plane incremental
hydrostatic stress (Eq. (54)), are given in Section 5.
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2. Constitutive framework

We refer to the two-dimensional Biot (1965) constitutive framework detailed in
Bigoni and Capuani (2002) and Brun et al. (2003a). In the principal reference system
of Cauchy stress (here denoted by in-plane indices 1 and 2) and using a Lagrangean
formulation of the field equations with the current state taken as reference, the
constitutive relation can be written as

_tij ¼ Kijklvl;k þ _pdij, (1)

where1 _tij is the increment of nominal stress tij ; induced by the gradient of
incremental displacement vi through the fourth-order tensor Kijkl and, indepen-
dently, by the in-plane hydrostatic stress increment _p: Note that tensor Kijkl possesses
the major symmetry, Kijkl ¼ Kklij and is a function of the principal components of
Cauchy stress s1 and s2; describing the pre-stress, and of two incremental moduli m
and m� (which can depend arbitrarily on the current stress and strain). It is defined by
the following non-null components:

K1111 ¼ m� �
s
2
� p; K1122 ¼ K2211 ¼ �m�; K2222 ¼ m� þ

s
2
� p,

K1212 ¼ mþ
s
2
; K1221 ¼ K2112 ¼ m� p; K2121 ¼ m�

s
2

(2)

with

s ¼ s1 � s2; p ¼
s1 þ s2

2
. (3)

The constitutive equations (1) are complemented by the incompressibility constraint

vi;i ¼ 0. (4)

Constitutive equations (1)–(4) describe a broad class of material behaviors,
including all possible elastic incompressible materials isotropic in an initial state
(Biot, 1965; Brun et al., 2003a), but also materials which are orthotropic with respect
to the current principal stress directions (1 and 2). The latter situation has interesting
practical applications in the field of fiber-reinforced elastic materials. Here, loss of
ellipticity may explain occurrence of different failure modes, such as fiber kinking,
splitting and debonding (Merodio and Pence, 2001; Merodio and Ogden, 2002). In
particular, the constitutive framework given by Merodio and Pence (2001) and
Merodio and Ogden (2002) can be given the format employed in the present paper
when the principal components of current stress are aligned normal and parallel to
the fibers. In the following, no specific assumptions will be made on the dependence
of m� and m on the current state.
1The standard, indicial notation employed by Bigoni and Capuani (2002) is used throughout this paper,

where a comma denotes partial differentiation, repeated indices are summed (between 1 and 2) and dij is

the Kronecker delta. Superposed dot denotes an incremental quantity.
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3. The dynamic Green’s function set

Superimposed incremental deformations upon a homogeneously pre-deformed
infinite medium are considered, produced by application of a time-harmonic point
load acting at the point x ¼ 0 and with components _f 1ðtÞ; _f 2ðtÞ at time t; along the
principal stress axes. While the current state of stress trivially satisfies equilibrium,
the equations of motion for superimposed disturbances are

_tij;i þ
_f jdðxÞ ¼ rvj;tt, (5)

where d is the two-dimensional Dirac delta function and ;t denotes the material time
derivative. In the hypothesis of time-harmonic motion with circular frequency O;
every field gðx; tÞ can be expressed as gðxÞe�iOt and Eq. (5) becomes

ð2m� � mÞv1;11 þ m�
s
2

� �
v1;22 þ

_f 1dðxÞ ¼ � _p;1 � rO2v1,

ð2m� � mÞv2;22 þ mþ
s
2

� �
v2;11 þ

_f 2dðxÞ ¼ � _p;2 � rO2v2, (6)

where

_p ¼
_t11 þ _t22

2
¼ _p �

s
2

v1;1 (7)

is the increment of in-plane nominal hydrostatic stress. Note that, due to the time-
harmonic assumption, Eqs. (6) are independent of time.

Introducing the stream function cðx1;x2Þ as

v1 ¼ c;2; v2 ¼ �c;1 (8)

and the dimensionless pre-stress parameter

k ¼
s
2m

. (9)

Eqs. (6)1 and (6)2 can be combined to give

ð1 þ kÞc;1111 þ 2 2
m�
m
� 1

� �
c;1122 þ ð1 � kÞc;2222 þ

_f 1

m
d;2 �

_f 2

m
d;1

¼ �
rO2

m
ðc;11 þ c;22Þ. ð10Þ

It is important to realize now that, since only the principal part of a differential
operator plays a role in determining the regime classification (see for instance
Renardy and Rogers, 1993), the classification of Eq. (10) remains the same as for the
quasi-static case.

Since the classification of governing differential equations does not change from
the quasi-static case, we remark that all results in this paper will be restricted to the
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elliptic regime, defined through the condition that scalars g1 and g2:

g1

g2

)
¼

1 � 2m�=m�
ffiffiffiffi
D

p

1 þ k
; D ¼ k2

� 4
m�
m
þ 4

m�
m

� �2

, (11)

are either both real and negative in the elliptic imaginary regime (EI) or a conjugate
pair in the elliptic complex regime (EC). Note that D is positive in (EI) and negative
in (EC).

A consequence of the above discussion is that the emergence of weakly
discontinuous surfaces corresponds in the present context to failure of ellipticity,
as in the quasi-static case. This occurs in a continuous loading path (starting from E)
either when k ¼ 1 (so that g1 ¼ 0) or when D ¼ 0 (so that g1 ¼ g2). The former case
defines the elliptic-imaginary/parabolic boundary, while the latter the elliptic-
complex/hyperbolic boundary.
3.1. The dynamic Green’s function for incremental displacements

Taking _f i ¼ dig; Eq. (10) can be rewritten as

mLcg
þ d1g

q	
qx2

� d2g
q	
qx1

� �
dðxÞ ¼ �rO2r2cg, (12)

where r2 is the Laplacian and L is the linear differential operator defined as

Lð	Þ ¼ ð1 þ kÞ
q4
	

qx4
1

þ 2 2
m�
m
� 1

� �
q4
	

qx2
1 qx2

2

þ ð1 � kÞ
q4
	

qx4
2

. (13)

We follow here the procedure used by Bigoni and Capuani (2002) of employing
plane wave expansions of the functions involved (Gel’fand and Shilov, 1964; see
Willis, 1973, for applications in elasticity). In particular, the plane wave expansions
of the d function and of the stream function cg

ðxÞ are

dðxÞ ¼ �
1

4p2

I
jxj¼1

do

ðx.xÞ2
; cg

ðxÞ ¼ �
1

4p2

I
jxj¼1

~c
g
ðx.xÞdo, (14)

where x is a unit vector. Substituting representations (14) into Eq. (12) yields

ð ~c
g
Þ
0000

þ
rO2

LðxÞ
ð ~c

g
Þ
00
¼ 2

d1go2 � d2go1

LðxÞðx.xÞ3
, (15)

where a prime denotes differentiation with respect to the variable x.x and

LðxÞ ¼ mo4
2ð1 þ kÞ

o2
1

o2
2

� g1

� 	
o2

1

o2
2

� g2

� 	
40. (16)

Note that the velocity of a transverse plane wave propagating in the direction defined
by the unit vector x is ½LðxÞ=r�1=2:
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The integral of differential equation (15) with respect to the variable x.x can be
obtained through variation of parameters in the form

~c
g
ðx.xÞ ¼

ðd1go2 � d2go1Þ

O
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rLðxÞ

p fCiðZjx.xjÞ sinðZx.xÞ � SiðZx.xÞ cosðZx.xÞ

þ A1 sinðZx.xÞ þ A2 cosðZx.xÞ þ i½A3 sinðZx.xÞ þ A4 cosðZx.xÞ�g,

ð17Þ

where Aj ðj ¼ 1; . . . ; 4Þ are arbitrary constants, i ¼
ffiffiffiffiffiffiffi
�1

p
; Z is the wave-number (in

the direction x)

Z ¼ O
ffiffiffiffiffiffiffiffiffiffi
r

LðxÞ

r
(18)

and Ci and Si are the cosine integral and sine integral functions defined as

SiðxÞ ¼

Z x

0

sin t

t
dt; CiðxÞ ¼ gþ log x þ

Z x

0

cos t � 1

t
dt, (19)

where g ffi 0:577216 is the Euler Gamma constant.
To determine now constants Aj in Eq. (17), let us consider the far-field

approximation in the variable x.x of the following term:

CiðZx.xÞ sinðZx.xÞ � SiðZx.xÞ cosðZx.xÞ ¼ �
p
2

cosðZx.xÞ þ O
1

x.x

� �
,

ðx.x ! þ1Þ. ð20Þ

Neglecting an arbitrary harmonic solution, from Eqs. (17) and (20) we get the far-
field approximation for ~c

g

~c
g
ðx.xÞ ¼ �

ðd1go2 � d2go1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rO2LðxÞ

p p
2

cosðZx.xÞ þ i
p
2

sinðZx.xÞ
h i

þ O
1

x.x

� �
(21)

which features only outgoing waves.
As a consequence of asymptotic representation (21), constants Aj remain

determinate and Eq. (17) becomes

~c
g
ðx.xÞ ¼

ðd1go2 � d2go1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rO2LðxÞ

p CiðZjx.xjÞ sinðZx.xÞ
h

� SiðZx.xÞ cosðZx.xÞ � i
p
2

sinðZx.xÞ
i
. ð22Þ

Introducing the polar coordinates r ¼ jxj and W of the generic point, a sub-
stitution of Eq. (22) into the plane wave expansion (14)2 provides the stream

function

cg
ðr;WÞ ¼ �

1

2p2rOc

Z p

0

sinðaþ Wþ ð1 � gÞp=2Þ
Lðaþ WÞ

X
Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da, (23)
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where

XðxÞ ¼ sin x CiðjxjÞ � cos x SiðxÞ � i
p
2

sin x. (24)

Consistently with Eq. (16), the function L in Eq. (23) is defined as

LðaÞ ¼ sin4a½cot2a� g1�½cot2a� g2�40 (25)

and

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1 þ kÞ

r

s
, (26)

is the propagation speed of a transverse wave travelling parallel to x1-axis whereas

c
ffiffiffiffiffiffiffiffiffiffi
LðaÞ

p
(27)

is the velocity of propagation in the direction singled out by angle a:
Note that the stream function (23) is not singular at r ¼ 0 and it depends on W and

the dimensionless variable Or=c:
Use of Eq. (8) allows us to introduce now the infinite body Green’s function for

incremental displacements

v
g
1 ¼ cg

;2; v
g
2 ¼ �cg

;1, (28)

so that we get from Eqs. (22) and (28)

~vg
j ðx.xÞ ¼

ðd1jo2 � d2jo1Þðd1go2 � d2go1Þ

LðxÞ
CiðZjx.xjÞ cosðZx.xÞ
h

þ SiðZx.xÞ sinðZx.xÞ � i
p
2

cosðZx.xÞ
i

ð29Þ

which yields the Green’s tensor using

v
g
j ðxÞ ¼ �

1

4p2

I
jxj¼1

~vg
j ðx.xÞdo. (30)

In conclusion, the components of the Green’s tensor (30) become

v1
1ðr;WÞ ¼ �

1

2p2mð1 þ kÞ
log

Or

c

� �
þ g

� �Z p

0

sin2
ðaþ WÞ

Lðaþ WÞ

"

� cos
Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da

þ

Z p=2

0

log
cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

sin2
ðaþ WÞ

Lðaþ WÞ

� cos
Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

daþ
Z p=2

0

log
sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lðaþ Wþ p=2Þ
p

 !
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�
cos2ðaþ WÞ

Lðaþ Wþ p=2Þ
cos

Or

c

sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ Wþ p=2Þ

p
 !

da

þ

Z p

0

sin2
ðaþ WÞ

Lðaþ WÞ
I

Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da

� i
p
2

Z p

0

sin2
ðaþ WÞ

Lðaþ WÞ
cos

Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da

#
,

v2
2ðr;WÞ ¼ �

1

2p2mð1 þ kÞ
log

Or

c

� �
þ g

� �Z p

0

cos2ðaþ WÞ
Lðaþ WÞ

"

� cos
Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

daþ
Z p=2

0

log
cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

�
cos2ðaþ WÞ
Lðaþ WÞ

cos
Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da

þ

Z p=2

0

log
sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lðaþ Wþ p=2Þ
p

 !
sin2

ðaþ WÞ
Lðaþ Wþ p=2Þ

� cos
Or

c

sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ Wþ p=2Þ

p
 !

da

þ

Z p

0

cos2ðaþ WÞ
Lðaþ WÞ

I
Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da,

� i
p
2

Z p

0

cos2ðaþ WÞ
Lðaþ WÞ

cos
Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da

#
, ð31Þ

v1
2ðr;WÞ ¼ �

1

2p2mð1 þ kÞ

� � log
Or

c

� �
þ g

� �Z p

0

sinðaþ WÞ cosðaþ WÞ
Lðaþ WÞ

"

� cos
Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da�
Z p=2

0

log
cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

�
sinðaþ WÞ cosðaþ WÞ

Lðaþ WÞ
cos

Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da

þ

Z p=2

0

log
sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lðaþ Wþ p=2Þ
p

 !
sinðaþ WÞ cosðaþ WÞ

Lðaþ Wþ p=2Þ
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� cos
Or

c

sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ Wþ p=2Þ

p
 !

da

�

Z p

0

sinðaþ WÞ cosðaþ WÞ
Lðaþ WÞ

I
Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da

þ i
p
2

Z p

0

sinðaþ WÞ cosðaþ WÞ
Lðaþ WÞ

cos
Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da

#
,

where v1
2 ¼ v2

1 (since ~v1
2 ¼ ~v2

1 from Eq. (29)) and

IðxÞ ¼ cos x

Z x

0

cos t � 1

t
dt þ sin x SiðxÞ (32)

which is not singular at x ¼ 0:
It can be observed from Eqs. (31) that the incremental displacement has a

logarithmic singularity, when Or=c tends to zero. Therefore, near the singularity,
r ! 0; the asymptotic behavior of the dynamic Green’s function is identical to the
quasi-static case.

3.2. The dynamic Green’s function for in-plane incremental hydrostatic stress

To complete the Green’s function set, the in-plane incremental hydrostatic stress
still needs to be determined. Differentiating Eq. (6)1 with respect to x1; Eq. (6)2 with
respect to x2 and summing the results gives

_p;11 þ _p;22 ¼ �2ðm� � mÞðv1;111 þ v2;222Þ þ
s
2
ðv1;111 � v2;222Þ �

_f 1d;1 � _f 2d;2 (33)

which is identical to the quasi-static case. Therefore, following the same arguments
employed in the quasi-static case we arrive at

~pgðx.xÞ ¼ �2ðm� � mÞ o3
1ð~v

g
1Þ

0
þ o3

2ð~v
g
2Þ

0
� �

þ
s
2

o3
1ð~v

g
1Þ

0
� o3

2ð~v
g
2Þ

0
� �

þ
og

x.x
, (34)

where the Green’s incremental displacement is given by Eq. (29), so that

ð~vg
i Þ

0
¼

dig � oiog

LðxÞ

1

x.x
� ZXðZx.xÞ

� 	
(35)

with function X given by Eq. (24). Employing Eq. (35) into Eq. (34) yields

~pgðx.xÞ ¼
og

x.x
þ ð2g � 3Þ

ogð1 � o2
gÞ

LðxÞ
2ðm� � mÞðo2

1 � o2
2Þ �

s
2

h i

�
1

x.x
� ZXðZx.xÞ

� 	
. ð36Þ

The plane wave expansion

_pgðxÞ ¼ �
1

4p2

I
jxj¼1

~pgðx.xÞdo, (37)
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applied to Eq. (36) finally yields the Green’s function for the in-plane incremental
hydrostatic stress

_p1ðr; WÞ ¼ ð _p1Þstaticðr; WÞ �
O

2p2ð1 þ kÞc

�

Z p

0

sin2
ðaþ WÞ cosðaþ WÞ

L3=2ðaþ WÞ
Gðaþ WÞX

Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da,

_p2ðr;WÞ ¼ ð _p2Þstaticðr;WÞ þ
O

2p2ð1 þ kÞc

�

Z p

0

cos2ðaþ WÞ sinðaþ WÞ

L3=2ðaþ WÞ
Gðaþ WÞX

Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da, ð38Þ

where

GðaÞ ¼ 2
m�
m
� 1

� �
ð2cos2a� 1Þ � k, (39)

the integrals are non-singular functions of r and (.)static identifies the Green’s function
of the quasi-static problem

ð _p1Þstatic ¼ �
cos W
2pr

þ
1

2p2rð1 þ kÞ

Z p

0

1

cos a
sin2

ðaþ WÞ cosðaþ WÞGðaþ WÞ
Lðaþ WÞ

�

þ
cos2W sin WGðWþ p=2Þ

LðWþ p=2Þ

�
da,

ð _p2Þstatic ¼ �
sin W
2pr

�
1

2p2rð1 þ kÞ

Z p

0

1

cos a
sinðaþ WÞcos2ðaþ WÞGðaþ WÞ

Lðaþ WÞ

�

�
cos W sin2 WGðWþ p=2Þ

LðWþ p=2Þ

�
da. ð40Þ

It may be important to notice that the Green incremental hydrostatic stress (Eq.
(38)) reduces to the quasi-static case both in the low-frequency limit and in the
isotropic case, m ¼ m�; k ¼ 0; the latter corresponding to GðaÞ ¼ 0:
4. Wave propagation and shear bands

Employing self-equilibrated combinations of concentrated forces, Bigoni and
Capuani (2002) provided a perturbative approach to material instability analyzed
within the boundary of loss of ellipticity. In particular, the simplest perturbing
system was employed, consisting of a dipole (two equal and opposite forces), acting
on a pre-stressed, infinite medium. This approach is general, so that it applies to any
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incrementally linear constitutive equation2 and allows for investigation of situations,
such as inhomogeneous materials or dynamic loadings, where instability criteria
based on weakly discontinuous surface may be in a sense ‘‘opaque’’. As examples of
such situations, we may mention the cases of Mooney–Rivlin, which will be
confirmed here to display shear band pattern formation for dynamic disturbances,
and of flutter instability, a situation which may occur when the constitutive
equations lack major symmetry (which is not the case considered in this paper, but is
analyzed by Piccolroaz et al. (2005)) and which remains unexplored using the
conventional approach.

Similarly to the quasi-static case, a time-harmonic pulsating dipole is used as a
perturbing agent, acting on a pre-stressed infinite medium. The effect of the dynamic
perturbation decays with distance, but the decay becomes slower and slower in a
path (in the k vs. m�=m space) towards the boundary of ellipticity. The interesting
feature is represented by the deformation patterns emerging when the loss of
ellipticity is approached.

We begin with the simple example of a Mooney–Rivlin material (in our case of
plane strain deformation this material model coincides with a neo-Hookean
material) for which

s ¼ m0ðl
2
� l�2

Þ; m� ¼ m ¼
m0

2
ðl2

þ l�2
Þ; k ¼

l4
� 1

l4
þ 1

, (41)

where l41 is the maximum current stretch and m0 is a shear modulus in an
initial state. Ellipticity would be lost in the above material when k ¼ 1;
corresponding to the unphysical situation of infinite stretch (see Eq. (41)3). For
this material, shear band formation in the sense of emergence of discontinuity
surfaces remains excluded.

Level sets of the modulus of the real (left in the figure) and imaginary (right in the
figure) parts of the Green’s function for incremental displacements (Eq. (31) non-
dimensionalized through multiplication by m) are represented in the figures, in a
region defined by the non-dimensional coordinates x1=a and x2=a; where 2a is the
distance between two unit forces defining the dipole. Unless otherwise specified, the
dipole is centred at the origin and aligned parallel to the x1-axis. Figs. 1–3, pertaining
to Mooney–Rivlin material, are relative to different values of the pre-stress
parameter k: In particular, k ¼ 0 (or l ¼ 1 from Eq. (41)3), for Fig. 1; k ¼ 0:5 (or
l ffi 1:316 from Eq. (41)3), for Fig. 2; and k ¼ 0:98 (or l ffi 3:154 from Eq. (41)3),
for Fig. 3.

In the quasi-static case, the displacement maps plotted in the dimension-
less coordinates x1=a and x2=a become independent of the dipole distance a. This
is not true in the dynamic case: the solution now depends on the dimensionless
2In classical elastoplasticity, the constitutive equations are incrementally piecewise linear and some care

should be used in adopting the perturbation criterion suggested in this paper. Roughly speaking, the

perturbation should be superimposed on a uniform incremental field capable of ‘‘compensating’’ for the

possible elastic unloading which may occur near the perturbation itself (see Bigoni and Petryk, 2002, for a

related discussion).
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Fig. 1. Level sets of the modulus of the real part (left) and imaginary part (right) of incremental

displacement, for a time-harmonic pulsating dipole aligned with the x1-axis. A Mooney–Rivlin material is

considered, with null pre-stress, k ¼ 0: Effects of varying the frequency parameter aO=c are shown: low

frequency aO=c ¼ p=100 (upper part), aO=c ¼ p=4 (central part) and high frequency aO=c ¼ p (lower part).
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Fig. 2. Level sets of the modulus of the real part (left) and imaginary part (right) of incremental

displacement, for a time-harmonic pulsating dipole aligned with the x1-axis. A Mooney–Rivlin material is

considered, with a pre-stress k ¼ 0:5; corresponding to a stretch l ¼ 1:316: Effects of varying the

frequency parameter aO=c are shown: low frequency aO=c ¼ p=100 (upper part), aO=c ¼ p=4 (central

part) and high frequency aO=c ¼ p (lower part).
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Fig. 3. Level sets of the modulus of the real part (left) and imaginary part (right) of incremental

displacement, for a time-harmonic pulsating dipole aligned with the x1-axis. A Mooney–Rivlin material is

considered, with a pre-stress k ¼ 0:98; corresponding to a stretch l ¼ 3:154; so that the material is near the

elliptic boundary. Effects of varying the frequency parameter aO=c are shown: low frequency aO=c ¼

p=100 (upper part), aO=c ¼ p=4 (central part) and high frequency aO=c ¼ p (lower part). Localized

deformations are evident.
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scale parameter

aO
c

¼
a2p
l1

, (42)

where l1 corresponds to the wavelength of a plane wave propagating parallel to the
x1-axis. Therefore, parameter (42) can be viewed as a measure of the perturbation
wavelength related to the distance between the two forces forming the dipole.

The effects related to the changes in parameter (42) are systematically investigated,
so that different parts of the same figures correspond (unless otherwise specified) to
different values of the parameter. In particular, all upper parts of Figs. 1–3 refer to a
low frequency limit, aO=c ¼ p=100; so that the real part is coincident with the quasi-
static solution reported by Bigoni and Capuani (2002, their Fig. 3). The central parts
of the figures correspond to aO=c ¼ p=4 and the lower parts to aO=c ¼ p: Compared
to Fig. 1, we note anisotropy effects in Fig. 2, where shear banding is not yet visible.
However, the anisotropy dramatically affects the propagation in Fig. 3, where k ¼

0:98; a value relatively close to the loss of ellipticity. Here shear band emergence
interacts with wave propagation, creating a strong orientation (shear bands become
horizontal at the EI boundary) and focussing of the signal, which tends to propagate
only in the horizontal direction. The effect increases with frequency, so that at
aO=c ¼ p; the width of shear bands becomes so narrow that the definition of the plot
is not sufficient to visualize displacement patterns, at least at the same scale of the
other figures. In this case, the signal almost does not propagate and therefore the
displacement map remains prevailingly dark. Specifically, according to Eq. (27), the
propagation speeds in a Mooney–Rivlin material (41) for plane waves travelling
parallel to axes x1 and x2 are lðm0=rÞ

1=2 and ðm0=rÞ
1=2=l; respectively. The former

tends to infinity and the latter to zero when the elliptic boundary is approached. In
the particular case of aO=c ¼ p=4 and k ¼ 0:98; the wavelengths characterizing
propagation parallel to axes x1 and x2 are 8a and 0:80a; respectively. The wavelength
in the direction x2 is visible in the central part of Fig. 3 (where distance between
peaks corresponds to one half of the wavelengths), whereas those along x1-axis
become visible in Fig. 4, which is an extension of Fig. 3 with x1=a ranging between 0
and 20. This figure shows that wave patterns emanating from the dipole have an
elliptical shape, whose aspect ratio depends on the pre-stress parameter k: At
increasing distance from the dipole, the disturbances tend to propagate as plane
waves travelling parallel to the x2-axis. Moreover, the elliptical shapes tend to self-
similarly decrease for increasing values of aO=c; thus explaining the ‘‘shadowing
effect’’ visible in the lower part of Fig. 3.

An anisotropic material with m�=m ¼ 1=4 (in which failure of ellipticity occurs at
k ¼ 0:866) is considered in Figs. 5–8. The parameter k is now equal to 0 in Fig. 5,
which therefore corresponds to a orthotropic, incompressible material in the
framework of the usual infinitesimal theory of elasticity. We note that the effect of
anisotropy is pretty evident, but it is remarkably different from the situation near
the boundary of loss of ellipticity, where the signal becomes localized in
narrow ‘‘channels’’. These are evident in Fig. 7 (corresponding to k ¼ 0:860),
with inclination ð�27:367�Þ corresponding to shear bands occurring at failure of
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Fig. 4. Level sets of the modulus of the real part (upper part) and imaginary part (lower part) of

incremental displacement, for a time-harmonic pulsating dipole aligned with the x1-axis. A Moon-

ey–Rivlin material is considered, as in the central part of Fig. 3: k ¼ 0:98 and aO=c ¼ p=4: The region

x1=a 2 ½0; 20� and x2=a 2 ½�5; 5� is considered.

D. Bigoni, D. Capuani / J. Mech. Phys. Solids 53 (2005) 1163–11871178
ellipticity. Fig. 6 pertains to the ‘‘intermediate’’ case of k ¼ 0:4; where the
pre-stress affects the anisotropy of the material, but is still insufficient to
trigger phenomena like those evidenced near the elliptic boundary. Far from the
dipole, the texture observed in the lower parts of Figs. 5 and 6 is generated by
the intersection of two families of inclined wave patterns. Further, we note that,
while results relative to aO=c ¼ p=100; p=4 and p are reported in Figs. 5 and 6, the
value aO=c ¼ p=6 is considered in Fig. 7 instead of p since in this case
the ‘‘shadowing effect’’ prevails and almost nothing is visualized at the same scale
of the other figures.

Investigation of the effects related to possible inclinations of the dipole with
respect to the principal stress reference system, also reveals interesting features
(Fig. 8). We limit the present discussion to examples pertaining to a dipole aligned
parallel (b ¼ 27:367�; Fig. 8 upper part) and orthogonal (b ¼ 62:633�; Fig. 8 lower
part) to the shear band that would occur at the elliptic boundary. The quasi-static
counterpart in the low-frequency limit may be found in Bigoni and Capuani (2002,
their Fig. 7)). The frequency parameter aO=c has been selected here equal to p=8
(upper part of the figures). It is interesting to note that a single family of plane waves
is generated in Fig. 8 (lower part), so that vibration tends to become focussed into
parallel layers.

Although restricted to plane, incompressible elasticity, it is considered unlikely
that the above conclusions are specific to the assumed constitutive model. Rather, we
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Fig. 5. Level sets of the modulus of the real part (left) and imaginary part (right) of incremental

displacement, for a time-harmonic pulsating dipole aligned with the x1-axis. An anisotropic material with

m�=m ¼ 1=4 and null pre-stress k ¼ 0 is considered. Effects of varying the frequency parameter aO=c are

shown: low frequency aO=c ¼ p=100 (upper part), aO=c ¼ p=4 (central part) and high frequency aO=c ¼ p
(lower part).
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Fig. 6. Level sets of the modulus of the real part (left) and imaginary part (right) of incremental

displacement, for a time-harmonic pulsating dipole aligned with the x1-axis. An anisotropic material with

m�=m ¼ 1=4 and a pre-stress k ¼ 0:4 is considered. Effects of varying the frequency parameter aO=c are

shown: low frequency aO=c ¼ p=100 (upper part), aO=c ¼ p=4 (central part) and high frequency aO=c ¼ p
(lower part).
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Fig. 7. Level sets of the modulus of the real part (left) and imaginary part (right) of incremental

displacement, for a time-harmonic pulsating dipole aligned with the x1-axis. An anisotropic material with

m�=m ¼ 1=4 and a pre-stress k ¼ 0:86 is considered near the boundary of ellipticity. Effects of varying the

frequency parameter aO=c are shown: low frequency aO=c ¼ p=100 (upper part), aO=c ¼ p=6 (central

part) and high frequency aO=c ¼ p=4 (lower part). Localized deformations are evident.
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Fig. 8. Level sets of the modulus of the real part (left) and imaginary part (right) of incremental

displacement, for a time-harmonic pulsating dipole inclined at angles 27:367� (upper part) and 62:633�

(lower part) with respect to the x1-axis (i.e. the dipole is aligned parallel and orthogonal to the shear band

evaluated at the elliptic boundary). An anisotropic material with m�=m ¼ 1=4 and a pre-stress k ¼ 0:86 is

considered near the boundary of ellipticity and aO=c ¼ p=8:

D. Bigoni, D. Capuani / J. Mech. Phys. Solids 53 (2005) 1163–11871182
believe that the above approach opens a new perspective to the analyses of material
instability.
5. Integral representations for time-harmonic dynamics

For incremental problems consisting of dynamic time-harmonic deformation
superimposed upon a given homogeneous, pre-stressed (and equilibrated) state, it is
possible to formulate integral representations for incremental displacements vi and
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in-plane hydrostatic stress _p: The procedure is strictly analogous to the quasi-static
case for displacements, while it becomes substantially different for the hydrostatic
stress and yields a generalization to the previous formulation given by Bigoni and
Capuani (2002).

The importance of the boundary integral representations is that they provide
(together with the obtained Green’s function set) the basis for boundary element
methods in nonlinear elasticity, a possibility explored for the quasi-static case by
Bigoni and Capuani (2002) and Brun et al. (2003a, b).

5.1. Boundary integral formulation for incremental displacements

Following the same procedure employed for the quasi-static case, but considering
the equations pertinent to the time-harmonic dynamics, one obtains for the
incremental displacement at point y of a generic body

vjðyÞC
g
j ¼

Z
qB

½_tij niv
g
j ðx� yÞ � _tg

ijðx� yÞnivj�dlx, (43)

where qB denotes the boundary of the body with outer unit normal ni; vi is the
incremental displacement; _tij and _tg

ij are the incremental nominal stresses, associated
with vi and v

g
i ; respectively. Finally, the matrix C

g
j still has the same definition as in

the quasi-static case, namely

C
g
j ¼ lim

e!0

Z
qCe

_tg
ijðx� yÞni dlx, (44)

where Ce is a disk of radius e centred at y. Since the dynamic Green’s function
asymptotically reduces to the quasi-static one as r ! 0; the components of C

g
j are the

same as in the quasi-static case. For points y interior to the body, C
g
j ¼ dgj ; while

C
g
j ¼ dgj=2 at a smooth boundary point.

5.2. Boundary integral formulation for in-plane incremental hydrostatic stress

As for the quasi-static case (Bigoni and Capuani, 2002), to establish an integral
representation for incremental hydrostatic stress we follow here a procedure which
represents a generalization of the technique employed by Ladyzhenskaya (1963) for
two-dimensional Stokes flow. In particular, a substitution of the constitutive
equations (1) into the rate equations of (time-harmonic) motion gives

_p;h ¼ �Kihklvl;ki � rO2vh (45)

which, used with the second gradient of Eq. (43) taken at interior points, yields

_p;hðyÞ ¼ �

Z
qB

Knhsg½_tijniv
g
j;snðx� yÞ � _tg

ij;snðx� yÞnivj �dlx � rO2vh. (46)

Noting that at interior points, xay; the following relationship holds:

� _pj
;h ¼ Knhsgv

g
j;sn þ rO2v

j
h, (47)
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where

_pg ¼ _pg þ
s
2

v
g
1;1. (48)

Eq. (46) becomes

_p;hðyÞ ¼

Z
qB

_tigni _p
g
;hðx� yÞdlx þ

Z
qB

Knhsg _t
g
ij;snðx� yÞnivj dlx

þ rO2

Z
qB

_th
ijðx� yÞnivj dlx, ð49Þ

where _pg
;h is derived with respect to xh: By means of a procedure similar to that

employed for quasi-static deformation, the following expression for the gradient of
the hydrostatic stress increment can be obtained at a point y interior to the body

_p;hðyÞ ¼

Z
qB

_tigni _p
g
;hðx� yÞdlx �

Z
qB

nivjKijkg _pg
;hkðx� yÞdlx

þ

Z
qB

vini 4mm� � 4m2
� þ sm� 2m�s�

s2

2

� �
v1
1;11ðx� yÞ

�

� s mþ
s
2

� �
v2
2;11ðx� yÞ

	
;h

dlx

þ rO2

Z
qB

vini ahðx� yÞ þ _phðx� yÞ
� �

dlx, ð50Þ

where

a1 ¼ 2ðm� m�Þv
1
1;1 � sðv1

1;1 þ v2
2;1Þ; a2 ¼ 2ðm� m�Þv

2
2;2. (51)

Let us now take _f i ¼ digdðxÞ in Eqs. (6) written for the Green incremental
displacement v

g
i and subtract the resulting Eq. (6)2; with g ¼ 1; from Eq. (6)1; with

g ¼ 2: The following identity results

ða1 þ _p1Þ;2 ¼ ða2 þ _p2Þ;1, (52)

showing that a potential W ðx� yÞ can be introduced

W ;h ¼ ðah þ _phÞ, (53)

so that Eq. (50) can be integrated with respect to yh; yielding

_pðyÞ ¼ �

Z
qB

_tigni _p
gðx� yÞdlx þ

Z
qB

nivjKijkg _pg
;kðx� yÞdlx

�

Z
qB

vini 4mm� � 4m2
� þ sm� 2m�s�

s2

2

� �
v1
1;11ðx� yÞ

�

� s mþ
s
2

� �
v2
2;11ðx� yÞ þ rO2W ðx� yÞ

	
dlx, ð54Þ

where _pg
;k is differentiated with respect to xk: It is worth noting that the fact that the

signs of Eq. (54) are opposite to those appearing in Eq. (50) is a consequence of
integration with respect to y. Eq. (54) is an integral equation relating the in-plane
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hydrostatic stress increment at interior points of the body to the boundary
values of nominal traction and displacement increments. Note that the
term W contained in Eq. (54) (and which is absent in the quasi-static counter-
part) is not null even under the assumption of isotropy, m ¼ m�; and null pre-
stress, k ¼ 0: Moreover, the fact that the potential W is defined modulo an
arbitrary constant does not affect the boundary integral equation (54) since the flux
of velocity vi through any closed surface is null as a consequence of incompressi-
bility.

To make Eq. (54) explicit, the expression for the potential W must be obtained.
Let us begin observing that it follows from Eq. (53) that

W ;1 þ W ;2 ¼ 2ðm� m�Þðv
1
1;1 þ v2

2;2Þ � sðv1
1 þ v2

2Þ;1 þ _p1 þ _p2. (55)

Taking the plane wave expansion of function W

W ¼ �
1

4p2

I
jxj¼1

~W ðx.xÞdo. (56)

Eq. (55) can be re-written as

ðo1 þ o2Þ ~W
0
¼ 2ðm� m�Þðo1 ~v

1
1 þ o2 ~v

2
2Þ

0
� so1ð~v

1
1 þ ~v2

2Þ
0
þ ~p1 þ ~p2. (57)

Employing the incompressibility condition and the symmetry property v1
2 ¼ v2

1; Eq.
(57) can be integrated leading to

~W ¼ 4ðm� m�Þo
2
2 � s

� �
~v2
2ðx.xÞ þ log jx.xj, (58)

where ~v2
2ðx.xÞ is given by Eq. (29).

Finally, Eq. (58) through Eq. (55) provides the potential W to be employed in the
boundary integral equation (54)

W ðr; WÞ

¼ �
1

2p
log

Or

c
�

1

2p2mð1 þ kÞ

� log
Or

c

� �
þ g

� �Z p

0

4ðm� m�Þsin
2
ðaþ WÞ � s

Lðaþ WÞ
cos2ðaþ WÞ

"

� cos
Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

daþ
Z p=2

0

4ðm� m�Þsin
2
ðaþ WÞ � s

Lðaþ WÞ

�cos2ðaþ WÞ log
cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

cos
Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da

þ

Z p=2

0

4ðm� m�Þcos2ðaþ WÞ � s
Lðaþ Wþ p=2Þ

sin2
ðaþ WÞ log

sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ Wþ p=2Þ

p
 !
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� cos
Or

c

sin affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ Wþ p=2Þ

p
 !

daþ
Z p

0

4ðm� m�Þsin
2
ðaþ WÞ � s

Lðaþ WÞ

�cos2ðaþ WÞI
Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da� i
p
2

Z p

0

4ðm� m�Þsin
2
ðaþ WÞ � s

Lðaþ WÞ

�cos2ðaþ WÞ cos
Or

c

cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðaþ WÞ

p
 !

da

#
. ð59Þ

Since the potential W is defined modulo an arbitrary constant, we note that the term
logðOr=cÞ in Eq. (59) can be replaced by log r̂; with r̂ denoting any dimensionless
measure of distance. In the particular case of isotropy, m ¼ m�; and null pre-stress,
k ¼ 0; W reduces to � logðOr=cÞ=ð2pÞ and the boundary integral equation (54) with
W given by Eq. (59) boils down to that provided by Polyzos et al. (1998) and, in the
quasi-static limit ðrO ! 0Þ; to that obtained by Ladyzhenskaya (1963).
6. Conclusions

Time-harmonic dynamics of incremental nonlinear and incompressible elastic
deformations superimposed upon an arbitrary but homogeneous strain has been
considered. The infinite-body Green’s function set has been determined together with
boundary integral equations for incremental displacements and hydrostatic stress.
These results provide the basis for boundary element techniques in dynamic,
nonlinear elasticity.

Employed as a dynamic perturbation, the Green’s function has revealed features
of signal propagation in a solid stretched until near the boundary of loss of
ellipticity. Here the propagation becomes highly localized along directions
corresponding to the shear band inclinations found in the quasi-static limit. Even
though this might have been anticipated, the analytical determination of dynamic
deformation maps provides a new point of view, which for example may help in the
design of filters for mechanical waves. Results presented in this paper demonstrate
that the proposed perturbative approach may become effective when employed in,
say, ‘‘nonstandard situations’’. In particular, we believe that the proposed technique
can be extended to a broad range of contexts, involving dynamics (for instance in the
analysis of flutter instability in a continuous medium (Piccolroaz et al., 2004)), non-
homogeneity (for instance shear bands formation in a non-uniform material) and
temperature effects (for instance analysis of adiabatic vs. isothermal shear banding).
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