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Abstract

Flutter instability in an infinite medium is a form of material instability corresponding to the

occurrence of complex conjugate squares of the acceleration wave velocities. Although its occurrence

is known to be possible in elastoplastic materials with nonassociative flow law and to correspond to

some dynamically growing disturbance, its mechanical meaning has to date still eluded a precise

interpretation. This is provided here by constructing the infinite-body, time-harmonic Green’s

function for the loading branch of an elastoplastic material in flutter conditions. Used as a

perturbation, it reveals that flutter corresponds to a spatially blowing-up disturbance, exhibiting well-

defined directional properties, determined by the wave directions for which the eigenvalues become

complex conjugate. Flutter is shown to be connected to the formation of localized deformations, a

dynamical phenomenon sharing geometrical similarities with the well-known mechanism of shear

banding occurring under quasi-static loading. Flutter may occur much earlier than shear banding in

a process of continued plastic deformation.
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1. Introduction

Several micromechanisms acting at a microscale during deformation of granular and
rock-like materials involve Coulomb friction. As a consequence, the flow rule becomes
nonassociative and the phenomenological rate elastoplastic constitutive equations for these
materials become unsymmetric. Due to this lack of symmetry, two squares of the
propagation velocity of acceleration waves or, in other words, two eigenvalues of the
acoustic tensor, may become a complex conjugate pair. That this situation might
correspond to a form of material instability particularly relevant in granular material was
clear since Rice (1977) coined for it the term ‘flutter instability’, but neither examples of
constitutive equations displaying this instability nor a mechanical interpretation for it were
given at that time.
Consequently, research was initially focused on the determination of situations in which

flutter was possible (see Bigoni, 2000; Loret et al., 2000 for reviews). In particular, it
was shown that flutter instability may occur more often than one might expect, not
satisfying any hierarchical relation to other instabilities (such as for instance shear band-
ing or second-order work negativity), possibly at an early stage of a hardening process
and typically triggered by noncoaxiality (of the flow rule or induced by elastic or
plastic anisotropy). However, the problem of finding a mechanical interpretation
for the instability remained almost completely unexplored [with the exceptions of
Bigoni and Willis (1994) and Simões (1997), the former considering a very simple
problem setting and the latter providing some numerical tests]. This has been a major
problem retarding further progress in research since, though generically believed to
correspond to a dynamically growing disturbance, only the knowledge of the precise
mechanical features of the instability can permit its experimental identification for real
materials.
To shed light on this problem, a perturbative approach is developed in this article,

following the methodology proposed by Bigoni and Capuani (2002, 2005) to investigate
shear banding and other forms of material instabilities. In more detail, the analysis is
limited in the present article to the loading branch1 of an elastoplastic constitutive operator
(taken from Bigoni and Petryk, 2002) embodying features typical of the behaviour of
granular materials and capable of exhibiting flutter instability. An infinite body is
considered made up of this material, homogeneously and quasi-statically deformed in two
dimensions (plane strain or generalized plane stress). For this configuration a time-
harmonic Green’s function is found (in the way shown by Willis, 1991), which represents
the first dynamic Green’s function obtained for a nonsymmetric constitutive equation.2

The Green’s function is employed to form a pulsating dipole (two equal and opposite
forces having a magnitude varying sinusoidally with time) to be used as a dynamic
perturbation revealing effects of flutter.
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1See Bigoni and Petryk (2002) for a discussion of this delicate assumption.
2A quasi-static Green’s function for unsymmetric constitutive equation has been developed by Bertoldi et al.

(2005), but this is unsuitable for flutter analyses, since this instability is essentially dynamic and thus remains

unrevealed under the quasi-static assumption. In addition, Bertoldi et al. (2005) also derive boundary integral

equations under the unsymmetric constitutive assumption, which are shown to possess certain typical features

although not directly connected to the present discussion.
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Results demonstrate the following features of flutter instability that may3 also occur in a
material for which the tangent constitutive operator is positive definite (so that negative
second-order work and shear bands are excluded at the considered stress level).

� Different from shear bands, becoming already evident when the boundary of the region
of ellipticity is approached from its interior (Bigoni and Capuani, 2002, 2005), flutter
instability remains undetected while the eigenvalues of the acoustic tensor lie in the real
range, appearing only after two real eigenvalues have coalesced and then become a
complex conjugate pair;
� flutter instability corresponds to a disturbance blowing-up in space from the perturbing

dipole and self-organizing along well-defined plane waves.
� the normals to the above plane waves lie within the fan of directions corresponding to

flutter and have been found to have an inclination remarkably different from that
corresponding to shear bands, occurring later in the hardening process.

It should be noted that the blow-up found in our solution will occur rapidly and
nonlinearities neglected in our analysis (such as for instance the possibility of elastic
unloading and plastic reloading) may soon become important, possibly changing the
overall mechanical response. Equally significant is the fact that the rate of growth increases
with the frequency that is adopted. The governing equations of motion thus represent a
problem that is dynamically ill-posed in the general transient case, unless the tangent
moduli in fact display a frequency-dependence, such that the flutter effect reduces as
frequency increases.4 However, our results suggest that flutter instability should induce a
layering in an initially homogeneous material, inducing a localization of strain in a form
somehow similar—though possibly occurring much earlier in a hardening process—to that
pertaining to shear bands occurring in a dynamical context (Bigoni and Capuani, 2005).
Our hope is that this feature revealed by our results has now been made accessible to
experimental investigation.

1.1. Notation

A standard, intrinsic notation is used throughout the paper (as for instance in Bigoni
and Loret, 1999; Bigoni, 2000), where vectors and second-order tensors are denoted by
bold (the latter capital) letters. The scalar product between arbitrary tensors A and B is
denoted by

A.B ¼ trABT
¼ I .ABT, (1)

where the usual symbols denoting the identity, the transpose, and the trace operator have
been employed. In addition to the usual tensorial product between (vectors and) second-
order tensors A and B

ðA� BÞ½C � ¼ ðB.CÞA, (2)
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3More precisely, flutter instability has been shown by Bigoni and Loret (1999) to be unrelated to the occurrence

of other instabilities such as loss of positive definiteness of second order work, loss of strong ellipticity and loss of

ellipticity.
4Such a model was introduced by Bigoni and Willis (1994) in the context of a simple one-dimensional example.
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for every C , we will make use of the two tensorial products

ðA�BÞ½C � ¼ A
C þ CT

2
BT; ðA2BÞ½C � ¼ ACBT, (3)

so that I � I and I2I become the symmetrizing and the identity fourth-order tensors,
respectively.

2. A simple constitutive model evidencing flutter instability

We refer here to the model proposed by Bigoni and Petryk (2002) as a large strain
version of that proposed by Bigoni and Loret (1999) (see also Bigoni, 1995; Bigoni and
Zaccaria, 1994). In particular, an objective symmetric flux, namely, the Oldroyd derivative
of the Kirchhoff stress

K
�

¼ _K � LK � KLT, (4)

(where a dot over a symbol denotes material time derivative, L ¼ _FF�1 is the spatial
velocity gradient and F the deformation gradient) is related to the Eulerian strain rate

D ¼ 1
2

Lþ LT
� �

, (5)

through the piecewise-linear elastoplastic constitutive equation

K
�

¼
E½D� �

1

H
hQ.E½D�iE½P� if f ðK ;KÞ ¼ 0;

E½D� if f ðK ;KÞo0;

8<
: (6)

where the symbol h.i denotes the Macaulay brackets operator (defined for every scalar a as
hai ¼ ðaþ jajÞ=2), E is the elastic fourth-order tensor, f is the yield function in stress space
depending on a collection K of internal variables (of arbitrary scalar or tensorial nature);
moreover, P and Q are the normals to the plastic potential and yield surface, respectively,
and the plastic modulus H is related to the hardening modulus h through

H ¼ hþQ.E½P�. (7)

In the present article, we will refer to the loading branch of Eq. (6), which is

_K ¼ E½L� þ LK þ KLT �
1

H
ðE½P� � ET½Q�Þ½L�, (8)

where we have used the minor symmetries of E. Finally, introducing the first
Piola–Kirchhoff stress

S ¼ KF�T, (9)

Eq. (8) can be rewritten as

_S ¼ C½ _F�, (10)

where

C ¼ ðI2F�1ÞEðI2F�TÞ þ I2ðF�1SÞ �
1

H
ðI2F�1ÞðE½P� � ET½Q�ÞðI2F�TÞ. (11)

ARTICLE IN PRESS
A. Piccolroaz et al. / J. Mech. Phys. Solids 54 (2006) 2391–24172394



Note that the tangent constitutive operator C, Eq. (11), possesses neither the minor nor the
major symmetry, the latter except in the case of associative flow law, Q ¼ P, and major
symmetry of the elastic tensor, ET ¼ E.

2.1. Anisotropic elasticity

Following Bigoni and Loret (1999) an anisotropic elastic law is assumed in the form

E ¼ lB � B þ 2mB�B, (12)

where l and m are material constants subject to the restrictions m40, 3lþ 2m40, and B is
a symmetric, positive definite second-order tensor, selected in the format

B ¼ b1b� bþ b2ðI � b� bÞ, (13)

where b1 and b2 are the eigenvalues of B, while the line spanned by the unit vector b and
the plane perpendicular to it are the corresponding eigenspaces. Moreover, the material
constants b1 and b2 are assumed to depend on a single angular parameter b̂, restricted to
the range �0�; 90�½ to meet the positive definiteness requirement of B,

b1 ¼
ffiffiffi
3
p

cos b̂; b2 ¼

ffiffi
3
2

q
sin b̂, (14)

so that the isotropic behaviour is recovered when b1 ¼ b2 ¼ 1 or b̂ � 54:74�.

2.2. The acoustic tensor

The acoustic tensor Aep
ðnÞ associated with the tangent constitutive operator C and the

mass density r is defined by

Aep
ðnÞg ¼

1

r
C½g� n�n, (15)

where n and g are the direction and amplitude of the propagating wave, respectively.
Therefore, the acoustic tensor corresponding to C in Eq. (11) is

Aep
ðnÞ ¼ Ae

ðnÞ �
1

rH
ðE½P�F�Tn� ET½Q�F�TnÞ, (16)

where Ae
ðnÞ is the elastic acoustic tensor, defined as

Ae
ðnÞ ¼

lþ m
r
ðBF�TnÞ � ðBF�TnÞ þ

m
r
½ðF�TnÞ.ðBF�TnÞ�B þ

1

r
½n.ðF�1SnÞ�I . (17)

Since C does not have the major symmetry, the acoustic tensor (16)–(17) is also not
symmetric.

2.3. Examples of flutter instability for plane problems

The current configuration is assumed as reference, so that F ¼ I and S ¼ K ¼ T, where
T denotes the Cauchy stress. The plane problem is considered in which vector b and
the propagation direction n lie in the plane spanned by k1 and k2, two unit eigenvectors
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of K ¼ T. Assuming the Drucker–Prager yield criterion, tensors P and Q take the form

P ¼ cos w
devT

jdevTj
þ

sin wffiffiffi
3
p I ; Q ¼ cosc

devT

jdevTj
þ

sincffiffiffi
3
p I , (18)

respectively, where devT ¼ T � trT=3 and the angular parameters w and c describe,
respectively, the dilatancy and the pressure sensitivity of the material.
In the reference system fn; s;k3g, where s ¼ k3 � n, the acoustic tensor Aep

ðnÞ becomes

Ae
nn �

1

rH
ðn.qÞðn.pÞ Ae

ns �
1

rH
ðn.qÞðs.pÞ 0

Ae
ns �

1

rH
ðs.qÞðn.pÞ Ae

ss �
1

rH
ðs.qÞðs.pÞ 0

0 0
m b2ðn.BnÞ þ n.Tn

r

0
BBBBBBB@

1
CCCCCCCA
, (19)

where

q � E½Q�n ¼ lðB.QÞBnþ 2mBQBn,

p � E½P�n ¼ lðB.PÞBnþ 2mBPBn, (20)

and Ae
nn, Ae

ss, Ae
ns are the in-plane components of the elastic acoustic tensor Ae

ðnÞ, namely

Ae
nn ¼

lþ 2m
r
ðn.BnÞ2 þ

1

r
n.Tn,

Ae
ss ¼

lþ m
r
ðs.BnÞ2 þ

m
r
ðn.BnÞðs.BsÞ þ

1

r
n.Tn,

Ae
ns ¼

lþ 2m
r
ðn.BnÞðs.BnÞ. (21)

Note that the out-of-plane eigenvalue A
ep
33 in Eq. (19) corresponds to a wave with out-of-

plane amplitude (g proportional to k3) and is assumed to remain strictly positive.
From matrix (19), we get the sum and the product of the two in-plane eigenvalues

(squares of the acceleration waves propagation velocities) c21 and c22 corresponding to
waves with in-plane amplitude (g lying in the plane spanned by k1 and k2),

c21 þ c22 ¼ Ae
nn þ Ae

ss �
1

rH
ðf 1 � f 2Þ,

c21c22 ¼ Ae
nnAe

ss � ðA
e
nsÞ

2
þ

1

rH
ðAe

nsf 3 � Ae
ssf 1 þ Ae

nnf 2Þ, (22)

where

f 1 ¼ ðn.qÞðn.pÞ; f 2 ¼ �ðs.qÞðs.pÞ,

f 3 ¼ ðn.qÞðs.pÞ þ ðs.qÞðn.pÞ. (23)

A necessary and sufficient condition for the existence of complex conjugate eigenvalues a
ep
1

and a
ep
2 is represented by the simultaneous fulfillment of the following three conditions
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(Bigoni and Loret, 1999)

f 4 ¼ ðA
e
nn � Ae

ssÞ
2
½ðf 1 þ f 2 þ 2ef 3Þ

2
� ð1þ 4e2Þðf 1 � f 2Þ

2
�40,

f 5 ¼ ðA
e
nn � Ae

ssÞðf 1 þ f 2 þ 2ef 3Þ40,

f 5 �
ffiffiffiffiffi
f 4

p
ðAe

nn � Ae
ssÞ

2
þ 4ðAe

nsÞ
2
or2Ho

f 5 þ
ffiffiffiffiffi
f 4

p
ðAe

nn � Ae
ssÞ

2
þ 4ðAe

nsÞ
2
, (24)

where

e ¼
Ae

ns

Ae
nn � Ae

ss

. (25)

With reference to Fig. 1, let ys and yn be the angles of inclination of the direction
of elastic anisotropy b and wave propagation normal n with respect to the stress principal
axis k1.

Dividing all quantities having the dimension of a stress in Eqs. (19)–(24) by m, the
parameters on which the condition of flutter depends are:

� Elastic parameters: l=m, strength of anisotropy b̂, and orientation of the axis of elastic
symmetry with respect to the principal stress axis k1, namely, ys.
� Plastic parameters: plastic modulus H=m, pressure sensitivity c, and dilatancy w
parameters.
� Principal normalized deviatoric stress values: devT1=jdevTj, devT2=jdevTj,
devT3=jdevTj. However, these are not independent, so that given the form (18) of P
and Q, flutter depends on the angle

yL ¼ sgn
devT1

jdevTj
þ 2

devT2

jdevTj

� �
cos�1

ffiffiffi
3

2

r
devT1

jdevTj

 !
(26)

in the deviatoric plane, which is a ‘modified Lode angle’, defined for yL 2 ½�p;p� and in
which sgnð0Þ ¼ 1.

It is possible to study flutter for all the propagation directions n while varying the plastic
modulus H=m and all remaining parameters in the above list are kept fixed, by use of
inequalities (24). Therefore, the ranges in which flutter occurs can be plotted in the plane
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k1

k2

b

n

s

n

�θ

θ

Fig. 1. Principal stress axes k1 and k2, axis of elastic symmetry b and propagation direction n, singled out by

angles ys and yn, respectively.
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H=m versus yn. Restricting the analysis to the infinitesimal theory, where the flux (4) is
identified with _T, analyses have been performed for simplicity with different values of the
modified Lode parameter yL ¼ f60�; 30�; 0�;�30�;�60�g, as indicated in Fig. 2.
Results are reported in Figs. 3 and 4, the latter giving more detail for four of the cases

reported in the former figure. Different stress paths defined by the values of the modified
Lode angle (26) reported in Fig. 2 are considered for different anisotropy inclination ys in
Fig. 3 at given values of c ¼ 30� and w ¼ 0�. In the graphs the closed contours denote

ARTICLE IN PRESS

�� = 15° �� = 30° �� = 45° �� = 60°

�L = -60°

�L = -30°

�L = 0°H
 /

 �

�n (°)

�L = 30°

�L = 60°

Fig. 3. Regions of flutter instability (occurring for internal points) in the H=m vs. yn plane, for the stress paths

shown in Fig. 2 at various anisotropy inclinations ys. The following values of material parameters have been

considered: l=m ¼ 1, b̂ ¼ 80�, c ¼ 30�, and w ¼ 0�.

L

1

30° -30°

-60°

0°

60°

θ

σ

2σ 3σ

Fig. 2. Stress directions in the deviatoric plane, defined by the modified Lode angle (26), considered for flutter

analysis.
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regions where flutter occurs in the plane defined by the normalized critical plastic modulus
H=m and the inclination of propagation direction yn.

Four details of Fig. 3 are reported in Fig. 4, where l=m ¼ 1, b̂ ¼ 80�, c ¼ 30�, and
w ¼ 0�, as in Fig. 3. The six regions in Fig. 4 correspond to the four cases yL ¼ 0� and
ys ¼ 15� (Case 1), yL ¼ ys ¼ 30� (Case 2), yL ¼ 0 and ys ¼ 45� (Case 3), and yL ¼ 0 and
ys ¼ 60� (Case 4).

With reference to the Cases 1–4, detailed in Fig. 4, we note that the critical values of
plastic modulus for loss of positive definiteness of the constitutive operator HPD

cr and for
loss of ellipticity HE

cr permitting shear bands with normal inclined at ynE are5:

Case 1 : HPD
cr =m ¼ 0:42; HE

cr=m ¼ 0:19; ynE ¼ �28:0�,

Case 2 : HPD
cr =m ¼ 1:22; HE

cr=m ¼ 0:18; ynE ¼ �16:4�,

Case 3 : HPD
cr =m ¼ 1:03; HE

cr=m ¼ 0:74; ynE ¼ �32:0�,

Case 4 : HPD
cr =m ¼ 1:84; HE

cr=m ¼ 1:57; ynE ¼ �33:9�, (27)

so that in all cases flutter may initiate when the constitutive operator is positive definite
(therefore at an early stage of a deformation process) and may extend in a region possibly
involving loss of ellipticity. Note that thresholds (27) have been graphically represented in
Fig, 4, where light grey regions correspond to regions where flutter may occur with the
constitutive operator still positive definite, while in the dark grey regions ellipticity is lost
(horizontal lines marking ellipticity loss are denoted with ‘E (case i)’, where i ¼ 1; . . . ; 4
stands for the number of the relevant case). In the same figure, three black spots and
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- 90 - 60 - 30 0

1

2

3

4

H
/µ

θn (°)

case 1

case 2

case 3

case 4

E (case 4)

E (case 3)

E (case 1)

E (case 2)

ϑnE(1)

ϑnE(2)

ϑnE(3)

ϑnE(4)

Fig. 4. Regions of flutter instability (occurring for internal points) in the H=m vs. yn plane, for l=m ¼ 1, b̂ ¼ 80�,

c ¼ 30�, and w ¼ 0�. Case 1: yL ¼ 0� and ys ¼ 15�. Case 2: yL ¼ 30� and ys ¼ 30�. Case 3: as in case 1, but

ys ¼ 45�. Case 4: as in Case 1, but ys ¼ 60�. The regions of positive definiteness of the constitutive operator are

marked in light grey, while (E) denotes loss of ellipticity into shear bands (regions shaded in dark grey) inclined at

ynEðiÞ, where i ¼ 1; . . . ; 4 denotes the relevant case.

5Note that with ‘ellipticity loss’ we mean here the condition pertinent to the underlying quasi-static

deformation. Moreover, due to anisotropy, only one shear band is found as first noticed by Bigoni et al. (2000).
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a white spot (referred to Case 2) indicate the inclinations of shear bands at first loss of
ellipticity. Note that the small flutter regions of Cases 3 and 4 are beyond the positive
definiteness threshold, but still in the elliptic region. It may be important to remark that

the initial inclinations of propagation normals for flutter and shear bands are
unrelated and remarkably different.

From the above analysis it can be deduced that the constitutive model allows one to
approach flutter starting from a well-behaved state. Moreover, it may be interesting to
note from Fig. 4 that there are overlapping regions corresponding to different stress states
(Cases 1 and 2). In these zones the flutter may have identical characteristics even if the
stress state is different.

2.4. Spectral analysis of the acoustic tensor

The spectral analysis of the acoustic tensor is instrumental to the development of the
Green’s function that will be presented in the next section. The analysis is restricted to the
in-plane components of the acoustic tensor Aep

A ¼ A
ep
11ðk1 � k1Þ þ A

ep
12ðk1 � k2Þ þ A

ep
21ðk2 � k1Þ þ A

ep
22ðk2 � k2Þ, (28)

represented for later convenience in the principal stress basis k1;k2. The inverse of (28) can
be written as

A�1 ¼
1

A
ep
11A

ep
22 � A

ep
12A

ep
21

½A
ep
22ðk1 � k1Þ � A

ep
12ðk1 � k2Þ � A

ep
21ðk2 � k1Þ þ A

ep
11ðk2 � k2Þ�.

(29)

Now, the eigenvalues of the acoustic tensor (28) can be written in the form

c21

c22

)
¼

A
ep
11 þ A

ep
22 	 D

2
; D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA

ep
11 � A

ep
22Þ

2
þ 4A

ep
12A

ep
21

q
, (30)

so that assuming nondefectiveness, the spectral representations of A and A�1 are

A ¼ c21ðv1 � w1Þ þ c22ðv2 � w2Þ, (31)

and, assuming6c21a0 and c22a0,

A�1 ¼
1

c21
ðv1 � w1Þ þ

1

c22
ðv2 � w2Þ, (32)

where fv1; v2g and fw1;w2g are dual bases, thus satisfying vi.wj ¼ dij (i; j ¼ 1; 2), composed
of right, vi, and left, wi, eigenvectors. This basis is given by

v1 ¼ k1 þ
D� ðAep

11 � A
ep
22Þ

2A
ep
12

k2; v2 ¼ k1 þ
�D� ðAep

11 � A
ep
22Þ

2A
ep
12

k2,
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6For D! 0 (coalescence of the eigenvalues), the tensor A becomes defective (except for the trivial case where A

is isotropic) and each term in the spectral representation of A, and also of A�1, blows up but A�1 continues to

exist and to be defined correctly. Indeed a substitution of Eqs. (30) and (33) or (34) into Eq. (32) leads to Eq. (29).
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w1 ¼
Dþ ðAep

11 � A
ep
22Þ

2D
k1 þ

A
ep
12

D
k2; w2 ¼

D� ðAep
11 � A

ep
22Þ

2D
k1 �

A
ep
12

D
k2, (33)

when A
ep
12a0, or by

v1 ¼
Dþ ðAep

11 � A
ep
22Þ

2A
ep
21

k1 þ k2; v2 ¼
�Dþ ðAep

11 � A
ep
22Þ

2A
ep
21

k1 þ k2,

w1 ¼
A

ep
21

D
k1 þ

D� ðAep
11 � A

ep
22Þ

2D
k2; w2 ¼ �

A
ep
21

D
k1 þ

Dþ ðAep
11 � A

ep
22Þ

2D
k2, (34)

when A
ep
21a0. The case A

ep
21 ¼ A

ep
12 ¼ 0 is trivial.

3. The dynamic time-harmonic Green’s function for general nonsymmetric constitutive

equations

An initial static homogeneous deformation of an infinite body is considered, satisfying
equilibrium in terms of first Piola–Kirchhoff stress, namely,

divS ¼ 0, (35)

and taken as the reference state in an updated Lagrangian formulation. A dynamic
perturbation is superimposed upon this state, defined by an incremental displacement u
satisfying the equations of incremental motion, written with reference to the constitutive
equation (10) in which dotted symbols are to be interpreted now as incremental quantities
rather than rates. Thus

Cijkluk;lj þ f i ¼ rui;tt, (36)

where ;t denotes material time derivative and f i and r are the incremental body forces and
the mass density, respectively.

Eqs. (36) look like ordinary elastodynamics, except that

Cijkl has neither the usual major CijklaCklij nor the minor CijlkaCijklaCjikl

symmetries.

Note that tensor Cijkl can be identified (and will be in the examples) with that provided by
Eq. (11), but can also be thought completely arbitrary in the following. To investigate the
properties of Eq. (36), outside and inside the flutter region we follow the Bigoni and
Capuani (2002, 2005) approach, based on the determination of the dynamic Green’s
function, sought for simplicity under the time-harmonic assumption

uiðx; tÞ ¼ ûiðxÞe
�iot; f iðx; tÞ ¼ f̂ iðxÞe

�iot, (37)

where o is the circular frequency and t and x denote time and space variables, respectively,
so that the time dependence can be removed from Eq. (36) and consequently

Cijkl ûk;lj þ ro2ûi þ f̂ i ¼ 0. (38)

The Green’s tensor GipðxÞ is obtained by solving Eq. (38) when the body forces f̂ i are
identified with dipdðxÞ, where dðxÞ denotes the Dirac delta function. We obtain

CijklGkq;ljðxÞ þ ro2GiqðxÞ þ diqdðxÞ ¼ 0. (39)
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In order to approach the flutter condition, we exploit the analysis of the acoustic tensor
developed for the planar problem in Section 2.3, considering an infinite medium subject to
plane strain (or generalized plane stress conditions), in which only four relevant
components of the Green’s function appear

Giq ¼ Giqðx1;x2Þ; i; q ¼ f1; 2g, (40)

and depend only on the two coordinates x1 and x2.

3.1. Radon transform

The Green’s function is determined employing a Radon transform technique [the
alternative approach employed by Bigoni and Capuani (2005) and based on a plane wave
expansion is presented for completeness in Appendix A]. The Radon transform of a
generic function f ðxÞ, x 2 R2 is defined as

R½f ðxÞ� ¼ f̂ ðp; nÞ ¼

Z
R2

f ðxÞdðp� n.xÞdx; p 2 R; n 2 R2 (41)

with the inverse

f ðxÞ ¼
1

4p2

Z
jnj¼1

eþ1�1
f̂ 0ðp; nÞ

ðn.x� pÞ
dpds, (42)

where the crossed integral stands for Cauchy principal value and a prime denotes partial
differentiation in the following way:

f̂ 0ðp; nÞ ¼
qf̂ ðp; nÞ

qp
. (43)

In addition to the linearity, we will make use of the following properties of the Radon
transform:

� derivative transforms

R½f ;jðxÞ� ¼ nj f̂
0
ðp; nÞ; R½f ;ljðxÞ� ¼ nlnj f̂

00
ðp; nÞ, (44)

� transform of the two-dimensional Dirac delta function

R½dðxÞ� ¼ dðpÞ. (45)

The Radon transform of Eq. (39) is therefore

CijklnlnjĜ
00
kqðp; nÞ þ ro2Ĝiqðp; nÞ þ diqdðpÞ ¼ 0, (46)

where

Ĝ00kqðp; nÞ ¼
q2

qp2
Ĝkqðp; nÞ. (47)

Eq. (46) can be rewritten in tensorial form as

AðnÞĜ 00ðp; nÞ þ o2Ĝðp; nÞ þ
dðpÞ
r

I ¼ 0. (48)

Let us assume that AðnÞ has two nonnull and distinct eigenvalues c2N and corresponding
left and right eigenvectors wN , vN , (N ¼ 1; 2), which can be used as dual basis vectors,
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therefore, satisfying vN .wM ¼ dNM , (N;M ¼ 1; 2). Employing the spectral representations
of AðnÞ and I

AðnÞ ¼
X2
N¼1

c2NvN � wN ; I ¼
X2
N¼1

vN � wN , (49)

in Eqs. (48) and representing the transformed Green’s function as

Ĝðp; nÞ ¼
X2
N¼1

fNðp; nÞvN � wN , (50)

where fN is a (for the moment unknown) function of p and n, we get

X2
N¼1

c2Nf
00
N þ o2fN þ

dðpÞ
r

� �
vN � wN ¼ 0, (51)

which is equivalent to the following uncoupled system of two equations:

f00N þ k2
NfN þ

1

rc2N
dðpÞ ¼ 0; N ¼ 1; 2, (52)

where the wavenumber kN ¼ o=cN has been introduced. Since we have chosen the
harmonic time dependence to be of the form e�iot, the outgoing wave solution of (52) in
the p coordinate is

fN ðp; nÞ ¼ �
eikN jpj

2rikNc2N
, (53)

so that

Ĝðp; nÞ ¼ �
X2
N¼1

eikN jpj

2rikNc2N
vN � wN (54)

and

Ĝ 0ðp; nÞ ¼ �
X2
N¼1

sgnðpÞeikN jpj

2rc2N
vN � wN . (55)

The antitransform of Eq. (54) leads to

GðxÞ ¼ �
1

4p2
X2
N¼1

Z
jnj¼1

Z þ1
�1

sgnðpÞeikN jpj

2rc2Nðn.x� pÞ
vN � wN dpds. (56)

The integral in the variable p can be evaluated in the way shown in Appendix B, so that,
employing the cosine and sine integral functions

CiðzÞ ¼

Z z

þ1

cos t

t
dt; j arg zjop and SiðzÞ ¼

Z z

0

sin t

t
dt, (57)
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the Green’s function can be finally written in the form

GðxÞ ¼ �
1

8p2
X2
N¼1

Z
jnj¼1

½2 cosðkNn.xÞCiðkN jn.xjÞ

þ 2 sinðkNn.xÞSiðkNn.xÞ � ip cosðkNn.xÞ�
vN � wN

rc2N
ds. ð58Þ

We introduce polar coordinates so that the position vector x has modulus r ¼ jxj and is
inclined at angle y to the x1-axis. Taking the unit vector n inclined at aþ y with respect to
the x1-axis (so that a is the angle between x and n) and noting that cosð
ÞCið
Þ and
sinð
ÞSið
Þ are even functions, we can re-write Eq. (58) as

GðxÞ ¼ �
1

8p2
X2
N¼1

Z 2p

0

½2 cosðrkN j cos ajÞCiðrkN j cos ajÞ

þ 2 sinðrkN j cos ajÞSiðrkN j cos ajÞ � ip cosðrkN j cos ajÞ�
vN � wN

rc2N
da, ð59Þ

where kN , vN , wN and c2N depend on aþ y.
The acoustic tensor is a periodic function of a with period p since

rAikðnÞ ¼ Ci1k1n
2
1 þ ðCi1k2 þ Ci2k1Þn1n2 þ Ci2k2n2

2, (60)

where n1 ¼ cosðaþ yÞ and n2 ¼ sinðaþ yÞ, and also cN , kN , vN , and wN are periodic
functions of a with the same period. It follows that the integrand in Eq. (59) is p-periodic.
Therefore,

the two-dimensional, time-harmonic Green’s function corresponding to a generic,
completely nonsymmetric constitutive fourth-order tensor, relating the increment of
the first Piola–Kirchhoff stress to the deformation gradient increment, Eq. (10), can
be written in the form

GðxÞ ¼ �
1

4p2
X2
N¼1

Z p

0

½2 cosðrkN j cos ajÞCiðrkN j cos ajÞ

þ 2 sinðrkN j cos ajÞSiðrkN j cos ajÞ � ip cosðrkN j cos ajÞ�
vN � wN

rc2N
da, ð61Þ

where kN ¼ o=cN and c2N are the eigenvalues of the acoustic tensor A, Eq. (31), with
corresponding left and right eigenvectors wN and vN , all quantities depending on n, which
means on aþ y.
It can be noted that the integrand in Eq. (61) displays a logarithmic singularity at r ¼ 0

and a ¼ p=2, since (Lebedev, 1965)

CiðzÞ ¼ gþ log z�

Z z

0

1� cos t

t
dt; j arg zjop, (62)

where g is Euler’s constant.
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4. A dynamical interpretation of flutter instability

The dynamical interpretation of flutter instability will be achieved following the
approach introduced by Bigoni and Capuani (2002, 2005), so that the Green’s function is
employed to provide a dynamical perturbation to be superimposed upon a given state of
equilibrium of a homogeneously deformed material. Several plots of Green’s tensor
components will be presented, so that a preliminary normalization of the Green’s tensor
and a study of the involved non-dimensional parameters becomes instrumental. In
particular, introducing an arbitrary characteristic length a and consequently the
dimensionless spatial variable x̄ ¼ x=a, making use of the property

dðax̄Þ ¼
1

a2
dðx̄Þ; x̄ 2 R2, (63)

Eq. (39) can be rewritten as

C̄ijkl

q2Ḡkqðx̄Þ

qx̄j qx̄l

þ ō2Ḡiqðx̄Þ þ diqdðx̄Þ ¼ 0; x̄ 2 R2, (64)

where

C̄ijkl ¼
Cijkl

m
; ō ¼ a

ffiffiffi
r
m

r
o. (65)

Thus, a dimensionless version of the Green’s tensor (58) reads

Ḡðx̄Þ ¼ �
1

8p2
X2
N¼1

Z
jnj¼1

½2 cosðk̄Nn.x̄ÞCiðk̄N jn.x̄jÞ

þ 2 sinðk̄Nn.x̄ÞSiðk̄Nn.x̄Þ � ip cosðk̄Nn.x̄Þ�
vN � wN

c̄2N
ds, ð66Þ

where

k̄N ¼ akN ¼
ō
c̄N

; c̄N ¼

ffiffiffi
r
m

r
cN , (67)

so that c̄2N are the eigenvalues of the dimensionless acoustic tensor Ā ¼ rA=m.

4.1. Effects of flutter instability on Green’s tensor

The behaviour of the Green’s function, Eq. (61), is briefly analysed here, outside and
inside the flutter region. As a reference, we consider Case 3 shown in Fig. 4, in which the
material is subject to the radial stress path corresponding to yL ¼ 0 in Fig. 2 and the
direction of the axis of elastic symmetry is taken inclined at ys ¼ 45� with respect to the
principal stress direction k1. The employed material parameters are l=m ¼ 1, b̂ ¼ 80�,
c ¼ 30�, and w ¼ 0�. The dimensionless Green’s tensor components have been computed
for ō ¼ 1 and for several values of the plastic modulus H=m, including the values 3.53,
and 1.5. These correspond, respectively, to situations near and inside the flutter region (see
Fig. 4), but still in a situation where the constitutive operator is positive definite. The
values of the components are plotted in Fig. 5 as functions of the distance from the
singularity along a radial line inclined at �45� with respect to the x1 axis, normalized
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through division by a. The real (imaginary) parts of the Green’s function components are
plotted left (right) in the figure, the plots having been obtained starting from x1 ¼ 1=10 to
exclude the singularity (in the real components of the Green’s tensor).
Commenting on the results, first, we note from the figure that the Green’s tensor is not

symmetric (since the acoustic tensor is not), so that G12aG21.
Second, results referring to values of plastic modulus H=m higher than 3.53 and up to 7,

not reported here for conciseness, produce curves practically coincident to those pertaining
to H=m ¼ 3:53; we can therefore conclude that there is not much difference between the
situations in which the material is far from and very near to the flutter region. This feature
has been confirmed by us with several calculations (not reported here) and distinguishes
flutter from shear banding, the latter becoming already visible when the condition of loss
of ellipticity is approached from the interior of the elliptic range (Bigoni and Capuani,
2002, 2005).
Third, a blow-up of the solution with the space variable, clearly visible in all components

of the Green’s tensor is the characteristic feature of instability inside the flutter region,
H=m ¼ 1:5. This blow-up is similar to that evidenced by Bigoni and Willis (1994), but in a
constitutive setting including viscosity, which is now absent.
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Fig. 5. Dimensionless Green’s tensor components (real part left, imaginary part right in the figure) along a radial

line inclined at �45� with respect to x1-axis, for Case 3 of Fig. 4 and ō ¼ 1. Two values of the plastic modulus

H=m ¼ f3:53; 1:5g are considered, corresponding, respectively, to situations near and inside the flutter region. The

blow-up of all components of the Green’s tensor is evident in the flutter region, H=m ¼ 1:5.

A. Piccolroaz et al. / J. Mech. Phys. Solids 54 (2006) 2391–24172406



It becomes evident that further exploration of flutter instability requires plotting of
incremental displacement maps. These are obtained below employing a perturbation in the
form of a pulsating dipole.

4.2. Effects of flutter instability revealed by a perturbing dipole

The singular solution previously obtained, Eq. (61), can be used to analyse the effects of
a perturbation superimposed upon a given homogeneous deformation of an infinite body.
We follow here Bigoni and Capuani (2005) considering the simplest self-equilibrated
perturbation in terms of a dipole: two equal and opposite pulsating forces of unit
amplitude, taken at a distance 2a apart, along a line inclined at b ¼ 45� with respect to the
x1-axis, see Fig. 6.

For this loading system, the level sets of the real part (left in the figures) and the
imaginary part (right in the figures) of the components u1 (first and third parts from the top
of the figure) and u2 (second and fourth parts from the top of the figure) of incremental
displacements have been computed and plotted in Figs. 7–12. The two upper parts of all
the figures refer to a situation far from flutter instability, whereas the two lower parts refer
to a situation of flutter, well inside the region of instability.

The following parameters have been selected to be equal for all figures:

l=m ¼ 1; b̂ ¼ 80�; c ¼ 30�; w ¼ 0�.

Moreover, Figs. 7–10 refer to the same nondimensional frequency parameter ō ¼ 1,
whereas the effect of frequency is explored in Figs. 11 and 12, pertaining, respectively to
ō ¼ 2 and 1

2
and corresponding to the same parameters employed in Fig. 8. All components

of incremental displacements have been plotted for the nondimensional coordinates x1=a

and x2=a ranging between �25 and 25, with the exception of Fig. 10, where this range has
been extended to �50 and 50 to help visualization of the blowing-up typical of flutter.

The differences between Figs. 7 and 10 lie in the choice of different stress states
expressed in terms of yL and anisotropy direction ys. In particular:

� Fig. 7 refers to H=m ¼ 3 (two upper parts), H=m ¼ 0:32 (two lower parts) and to Case 1
of Fig. 4, where yL ¼ 0� and ys ¼ 15�;
� Fig. 8 refers to H=m ¼ 2 (two upper parts), H=m ¼ 0:25 (two lower parts) and to Case 2
of Fig. 4, where yL ¼ 30� and ys ¼ 30�;
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Fig. 6. Geometry of the time-harmonic pulsating perturbing dipole.
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Fig. 7. Level sets of the real (left) and imaginary (right) parts of the components of incremental displacements (u1
first and third parts from the top, u2 second and fourth parts) for a dipole inclined at b ¼ 45�, far from (upper two

parts, H=m ¼ 3) and inside (lower two parts, H=m ¼ 0:32) the flutter region. Results pertain to Case 1 of Fig. 4, for

ō ¼ 1. Note the system of blowing-up, parallel waves revealing the effect of flutter.
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Fig. 8. Level sets of the real (left) and imaginary (right) parts of the components of incremental displacements for

a dipole inclined at b ¼ 45�, far from (upper part, H=m ¼ 2) and inside (lower part, H=m ¼ 0:25) the flutter region.
Results pertain to Case 2 of Fig. 4, for ō ¼ 1.
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Fig. 9. Level sets of the real (left) and imaginary (right) parts of the components of incremental displacements for

a dipole inclined at b ¼ 45�, far from (upper part, H=m ¼ 4) and inside (lower part, H=m ¼ 1:5) the flutter region.
Results pertain to Case 3 of Fig. 4, for ō ¼ 1.
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Fig. 10. Level sets of the real (left) and imaginary (right) parts of the components of incremental displacements

for a dipole inclined at b ¼ 45�, far from (upper part, H=m ¼ 4) and inside (lower part, H=m ¼ 1:9) the flutter

region. Results pertain to Case 4 of Fig. 4, for ō ¼ 1.
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Fig. 11. As for Fig. 8, but with ō ¼ 2.
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� Fig. 9 refers to H=m ¼ 4 (two upper parts), H=m ¼ 1:5 (two lower parts) and to Case 3
of Fig. 4, where yL ¼ 0� and ys ¼ 45�;
� Fig. 10 refers to H=m ¼ 4 (two upper parts), H=m ¼ 1:9 (two lower parts) and to Case 4
of Fig. 4, where yL ¼ 0� and ys ¼ 60�.

Note that the values of the plastic modulus selected for the examples are all higher than
the critical values for loss of ellipticity7 [see the values listed in (27)], so that shear bands are
excluded. However, all the values of H=m corresponding to situations far from flutter and
the two values 1.5 and 1.9 lie in the zone of positive definiteness of the constitutive
operator, while the two values 0.25 and 0.32 have been selected outside this region [see the
values listed in (27)].
It can be observed from the upper parts of Figs. 7–10 (referring to a nonflutter situation)

that the displacement maps are typical of an anisotropic material, since 45�-symmetry is
not in evidence. Moreover, decay of the solution is appreciable, when the distance from the
dipole increases. Now, considering the lower parts of the figures, the effects of flutter
instability become self-evident. In particular, we may observe a growth of the solution in
space, which tends to degenerate into a system of blowing-up, parallel plane waves. Results
not reported here for brevity demonstrate that:

the inclination of the blowing-up plane waves is almost independent of the dipole
inclination (angle b in Fig. 6), so that it has to be considered a characteristic of the
material, related to the particular stress state and constitutive features. We have
observed that the inclination of the blowing-up waves corresponds to a value in the
middle of the inclination fan of flutter (see Fig. 4).

In particular, the inclinations of the plane waves at a sufficient distance from the dipole
are different in Figs. 7–10, but correspond to the mean value of flutter direction fan visible
in Fig. 4 at the analysed H=m values. On the other hand, the same inclinations are found
for Figs. 8, 11 and 12, since these cases differ only in the nondimensional frequency
parameter ō, which influences only the spacing of the blowing-up waves.
As far as the effects of varying the nondimensional frequency parameter ō are

concerned (see Figs. 11 and 12, referring to the same material parameters as in Fig. 8,
but with ō ¼ f1; 2; 1=2g), we see that an increase in the frequency yields a narrowing
of the distance between blowing-up plane waves. Moreover, increase in frequency gives
rise to the ‘shadowing’ effect already noted by Bigoni and Capuani (2005) for shear
bands.
Compared to the shear bands analysed by Bigoni and Capuani (2002, 2005), we may

observe that these are already revealed when the boundary of the region of ellipticity is
approached from the inside, while flutter remains undetected. Beside this difference, there
are however many similarities between the two phenomena: first of all, shear bands tend to
blow-up in space as the boundary of instability is approached, and extend from a
perturbation to infinity, outside the elliptic range. Second, shear bands also tend to
degenerate into families of plane waves parallel to a specific direction. Third, the signals
tend to focus along well-defined patterns, both for shear bands and for flutter. Note,
however, that flutter instability may occur much earlier than shear banding in
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a deformation process; moreover, waves near the loss of ellipticity threshold tend to blow-
up along the shear bands but, in contrast to flutter, they tend to decay in the parallel
direction.

As a conclusion, we remark that flutter instability yields a self-organization of dynamic
disturbances along well-defined and blowing-up parallel waves, having inclinations
corresponding to the mean value of the inclinations for which flutter is possible at the
considered constitutive setting and stress state.

From the mechanical point of view, our results suggest that flutter yields a ‘layering’ of
deformation patterns, with an inclination corresponding to the flutter direction, a spacing
related to the frequency of the perturbing agency, and possibly occurring early in a plastic
deformation process.

5. Conclusions

Following the approach to material instabilities proposed by Bigoni and Capuani (2002,
2005), flutter instability in a continuous elastoplastic medium has been investigated, by
finding the dynamic, time-harmonic Green’s function for the loading branch of a fully
unsymmetric tangent constitutive operator, embodying features typical of the behaviour of
granular materials. For this material, flutter instability may occur when the constitutive
operator is positive definite (so that the solution of the rate infinitesimal problem is unique
and shear bands are excluded), while two eigenvalues of the acoustic tensor are complex
conjugate. Our results provide the first interpretation of flutter instability, which is shown
to correspond to a dynamical instability growing in space and self-organizing into plane
waves with normals lying in the fan corresponding to the complex eigenvalues of the
acoustic tensor and yielding a sort of ‘layering’ of unstable deformation patterns, showing
some similarity to shear band instability. The rate of growth of the solutions displayed here
increases with the frequency that is assumed. This demonstrates dynamical ill-posedness of
the governing equations of motion in the general transient case and implies a need that is
physical as well as mathematical for the admission of some appropriate rate-dependence
into the constitutive model, to remove the flutter effect at high frequencies. Although no
such mechanism is built into the present analysis (the tangent moduli would become
functions of o but this is in any case fixed), and other mechanisms not accounted for (such
as for instance the possibility of elastic unloading and material viscosity) may change some
of our conclusions, we believe that the emergence of the layered structures that we have
found may find future experimental validation.
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Appendix A. Green’s function obtained via plane wave expansion

The Green’s function (58) is obtained here for completeness using the plane wave
expansion technique employed by Bigoni and Capuani (2005). The plane wave expansion
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of the d function and of the Green’s tensor GðxÞ are, respectively,

dðxÞ ¼ �
1

4p2

Z
jnj¼1

1

ðn.xÞ2
ds; GðxÞ ¼ �

1

4p2

Z
jnj¼1

~Gðn.xÞds, (A.1)

where n is a unit vector, so that the plane wave expansion of Eq. (39) leads to

Cijklnjnl
~G00kqðxÞ þ ro2 ~GiqðxÞ þ

diq

x2
¼ 0, (A.2)

where x ¼ n.x. In this equation the acoustic tensor can be easily recognized, Aik ¼ Cijklnjnl ,
so that we get

AðnÞ ~G 00ðxÞ þ o2 ~GðxÞ þ
1

rx2
I ¼ 0. (A.3)

Writing now the analogue of the representation (50), namely,

~GðxÞ ¼
X2
N¼1

fN ðxÞvN � wN , (A.4)

we transform Eq. (A.3) into the analogue of Eq. (51)

X2
N¼1

c2Nf
00
N þ o2fN þ

1

rx2

� �
vN � wN ¼ 0, (A.5)

which is equivalent to the following uncoupled system of two equations, analogous to
Eqs. (52)

f00N þ k2
NfN þ

1

rc2N

1

x2
¼ 0; N ¼ 1; 2, (A.6)

where kN ¼ o=cN .
The sole physically meaningful solution of the ordinary differential equation (A.6) is

obtained by imposing the radiation condition, stating that the solution should include only
outgoing waves. Since the harmonic time dependence has been selected in the form e�iot,
the outgoing wave solution of (A.6) in the x coordinate is:

fNðxÞ ¼
1

2rc2N
½2CiðkN jxjÞ cosðkNxÞ þ 2SiðkNxÞ sinðkNxÞ � ip cosðkNxÞ�. (A.7)

Finally, a chain of substitutions, of Eq. (A.7) into Eq. (A.4) and finally into Eq. (A.1)2,
leads to the Green’s function in the form (58).

Appendix B. Evaluation of the integral in the variable p in Eq. (56)

The integral in the variable p appearing in Eq. (56) can be evaluated splitting the domain
as follows:Z þ1

�1

sgnðpÞeikN jpj

x� p
dp ¼ �

Z 0

�1

e�ikN p

x� p
dpþ

Z þ1
0

eikN p

x� p
dp, (B.1)
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so that we can treat the two integrals separately, namely

�

Z 0

�1

e�ikN p

x� p
dp ¼ �e�ikNx

Z þ1
kNx

eiq

q
dq, (B.2)

where we have made the substitution q ¼ kN ðx� pÞ, andZ þ1
0

eikN p

x� p
dp ¼ �eikNx

Z þ1
�kNx

eiq

q
dq, (B.3)

where we have made the substitution q ¼ kN ðp� xÞ. The two expressions (B.2) and (B.3)
are used to get Eq. (58).
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