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Design of filters for electromagnetic, acoustic, and elastic waves involves structures possessing
photonic/phononic band gaps for certain ranges of frequencies. Controlling the filtering properties
implies the control over the position and the width of the band gaps in question. With reference to
piecewise homogeneous elastic beams on elastic foundation, these are shown to be strongly affected
by prestress �usually neglected in these analyses� that �i� “shifts” band gaps toward higher �lower�
frequencies for tensile �compressive� prestress and �ii� may “annihilate” certain band gaps in
structures with defects. The mechanism in which frequency is controlled by prestress is revealed by
employing a Green’s-function-based analysis of localized vibration of a concentrated mass, located
at a generic position along the beam axis. For a mass perturbing the system, our analysis addresses
the important issue of the so-called effective negative mass effect for frequencies within the stop
bands of the unperturbed structure. We propose a constructive algorithm of controlling the stop
bands and hence filtering properties and resonance modes for a class of elastic periodic structures
via prestress incorporated into the model through the coefficients in the corresponding governing
equations. © 2009 American Institute of Physics. �DOI: 10.1063/1.3093694�

I. INTRODUCTION

Periodic structures, for instance, phononic and photonic
crystals,1 are known to display important filtering properties
for electromagnetic, acoustic, and elastic waves: the so-
called band gaps �BGs� �frequency ranges where the waves
are evanescent�,2–5 localized or defect modes �an exponen-
tially localized waveform located near a periodicity-breaking
element�,6,7 negative refraction �refraction occurring on the
same side of the normal to the interface where the incoming
wave is incident�,8–12 and effective negative mass effects
�corresponding to an exponential decay of vibrational modes
rather than sinusoidal propagation�.13–15 Elastic waves are
addressed in this article, which are the key to vibration con-
trol of structural systems and to the design of signal trans-
mission properties in sensors.16

In the field of elastic structural systems �beams, plates,
and shells, namely the basic models of mechanical design�,
analyses of BGs date back to Cremer and Leilich,23 Miles,24

and Lin,25 and, later, to Mead.26,27 In the recent papers by Yu
et al.28,29 flexural systems with BG properties were ad-
dressed; these included analysis of Euler–Bernoulli beams
with locally resonant structures as well as flexural vibration
BGs in Timoshenko beams.

In general, elastic periodic systems have been analyzed
from a number of perspectives. In particular, Movchan and
co-workers30–32 developed the asymptotic methods for the
resonance modes in question. It is also noted that the pre-
stress changes the dispersion properties of Bloch–Floquet
elastic waves within periodic systems, but the analytical
studies of prestress—coupled to periodicity—have never

been explicitly addressed for flexural Bloch–Floquet waves
within inhomogeneous periodic elastic systems.33

Flexural wave propagation in a piecewise homogeneous
elastic beam on an elastic foundation �of Winkler type; see
Ref. 38� and prestressed by a uniform �tensile or compres-
sive� axial force is considered in the present article. In addi-
tion, the presence of defects39 in the form of cracks partially
cutting the beam is modeled by effective rotational springs,
so that the bending moment remains continuous, but the ro-
tation angle has a jump across the junction.

The practical applications of prestressed structures have
been addressed in a number of experimental works. In par-
ticular, a cantilever beam prestressed near buckling has been
considered in Ref. 41 and, with regard to micromechanics,
highly stressed silicon microresonators have been investi-
gated in Refs. 42 and 43.

Along with the analysis of Bloch–Floquet waves within
a periodic and prestressed elastic system, we address the im-
portant issues of localization, and, in particular, a problem of
localized mass perturbation along the beam is solved through
a Green’s function approach, exploiting the recent findings of
Movchan and Slepyan7 on lattice structures. The investiga-
tion shows the strong influence of prestress on the filtering
properties of flexural phononic BG structures, and we spe-
cifically address the following features:

�i� The prestress controls the frequency location of the
BGs. A shift toward high �low� frequency is revealed
when tensile �compressive� prestress is applied.

�ii� The prestress can eliminate or, say, “annihilate,” cer-
tain BGs in defected structures.

�iii� Defect modes and effective negative mass effects44

are analyzed with the emphasis on their strong sensi-
tivity with regards to the prestress.
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The present paper provides a definitive answer to the
modeling of controlled BG structures responding to flexural
vibrations. The new properties of solutions disclose a new
approach to the design of efficiently controlled elastic wave
filters and polarizers.

II. BAND-GAP SHIFT FOR PERIODIC FLEXURAL
SYSTEMS

Following the results of the asymptotic analysis of
Bigoni et al.,34 we use the “beam approximations” to model
the Bloch–Floquet flexural waves within prestressed periodic
beams on an elastic foundation of the Winkler type; it is
assumed that the typical wavelength is much larger com-
pared to the thickness of the structure itself. The elastic stiff-
ness of the foundation for the model considered here can be
related to the properties of the corresponding half space as
discussed in Ref. 34. The periodic geometry is shown in Fig.
1, where F denotes the longitudinal prestress applied at in-
finity. The period is equal to d, and in the unperturbed �per-
fect� structure, consisting of two types of materials and
shown in Fig. 1�a�, the interface conditions of ideal contact
incorporate continuity of the displacement, the angle of ro-
tation, as well as the continuity of the transverse forces and
bending moments. Furthermore, periodically distributed “de-
fects” are introduced by incorporating imperfect junction
conditions �see the rotational springs in Fig. 1�b� or the
hinge-type junctions in Fig. 1�c��. The periodicity can be
broken by the addition of a mass into the central cell of the
structure �as in Fig. 1�d�� without affecting the physical char-
acteristics of other cells; in this way, an exponentially local-
ized waveform can be constructed for a certain frequency
range.

For each of the phases m within the periodic structure,
the time harmonic flexural displacement wm�z� satisfies the
following governing equation:

Bmwm� − Fwm� + �S − �m�2�wm = 0 �m = 1,2� , �1�

where �m are the values of the piecewise constant mass den-
sity ��z�, B�z�= I�z�E�z� is the bending stiffness �with the
second-order moment I�z� and the Young modulus E�z��, and

the stiffness of the elastic foundation is denoted by S �see
Refs. 45 and 46 for details on the nomenclature�.

The flexural displacements are sought in the form

wm = �m exp�ik�m�z� �m = 1,2� . �2�

The substitution of Eq. �2� into Eq. �1� yields the following
equations for the circular frequency �:

�k�m�rm�4 + F̄m�k�m�rm�2 + S̄m − Pm�2 = 0 �m = 1,2� , �3�

where the following dimensionless parameters have been in-
troduced:

F̄m =
Frm

2

Bm
, S̄m =

Srm
4

Bm
�m = 1,2� , �4�

in which rm are the radii of inertia of the beam cross section,
while

Pm =
�mrm

4

Bm
�m = 1,2� �5�

have the dimension of a squared time. The quantities rm are
related to the second-order moments Im and the cross-
sectional areas Am of the beam by

rm = �Im/Am �m = 1,2� .

Equation �3� provides the following eight solutions:

k1,2,3,4
�m� = �

1

rm

�−
F̄m

2
��F̄m

2

4
+ Pm�2 − S̄m �m = 1,2� ,

�6�

so that the transverse displacements w1 ,w2 become a linear
combination of four terms, namely,

w1�z� = �
p=1

4

�1
p exp�ikp

�1�z�, w2�z� = �
p=1

4

�2
p exp�ikp

�2�z� . �7�

The eight constants of the problem can be obtained by
imposing the interface conditions at the internal interface of
the elementary block. For a perfect structure �shown in Fig.
1�a��, these are continuity of displacement, rotation, bending
moment, and shear force, so that, for the block j=0, the
interface is located at z=0 and the corresponding interface
conditions for the functions w1, w2 and their derivatives are

w1�0� = w2�0�, w1��0� = w2��0� ,

B1w1��0� = B2w2��0�, B1w1��0� = B2w2��0� . �8�

For a defected structure, where a crack partially cuts the
cross section of the beam, a rotational elastic spring of stiff-
ness C is introduced to link the two points across the dam-
aged section of the beam �Fig. 1�b�� �see Ref. 47 for an
estimation of C in terms of the ratio between cracked and
total cross section areas�. Here the rotation of the axis of the
beam is no longer continuous and the condition �8� is substi-
tuted by the constitutive equation of the spring. For j=0, at
z=0, condition �8� now becomes

block j=0

l1 l2

z
(a)

l1 l2

OP1 P2

z
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z
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FIG. 1. Sketches of the piecewise homogeneous beam on an elastic foun-
dation �visualized as a distribution of springs� studied in the paper: �a�
perfect structure, �b� structure with localized defects transmitting bending
moments across the damaged sections �which depend linearly on the rota-
tion angle jumps; C is the stiffness of the rotational springs�, �c� structure
with localized defects of hinge type across the damaged sections �C=0�, and
�d� perfect structure with additional mass M placed at z=y. F represents the
longitudinal prestress.
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w1�0� = w2�0�, w2��0� − w1��0� =
B1

C
w1��0� ,

B1w1��0� = B2w2��0�, B1w1��0� = B2w2��0� . �9�

The remaining four equations follow from imposition of
the Bloch–Floquet conditions, linking fields at the bound-
aries of the elementary block, namely,

w2�l2
−� = w1�− l1

+�exp�iKd�, w2��l2
−� = w1��− l1

+�exp�iKd� ,

�10�

B2w2��l2
−� = B1w1��− l1

+�exp�iKd� ,

B2w2��l2
−� = B1w1��− l1

+�exp�iKd� , �11�

where K is the Bloch parameter. Equations �8�–�11� provide
a homogeneous system for the eight unknown constants
�1

p ,�2
p �p=1, . . . ,4�, so that the vanishing of the determinant

of the associated matrix yields the dispersion equation of the
system. We note that if � is taken to be zero in Eqs. �1� and
�6�, the system �8�–�11� provide the buckling load of the
structure.45,48

A. Results for a perfect structure

Solutions to the dispersion equation relative to a perfect
beam �Fig. 1�a�� with piecewise constant mass density
��1��2�, but uniform bending stiffness �B1=B2, yielding

F̄1= F̄2= F̄�, are reported in Fig. 2 for P2 / P1=0.1,

S̄=0.0001, r /d=0.015, l1= l2=d /2, and three different levels

of prestress F̄ �tensile, null, and compressive in Figs.
2�a�–2�c�, respectively�. For this beam, the buckling force

corresponds to F̄buckl=−0.02, while the cutoff frequency of
the homogeneous counterpart—which can be recovered if
P1= P2—is �P1�0=0.01.

At a given dimensionless circular frequency �P1�, four
complex values of the Bloch parameter K can be found from
the dispersion equation, which occur in positive and negative
pairs. In particular, a propagating mode corresponds to a pure
real K, while a monotonic decaying mode is found when K is
purely imaginary; for complex conjugate Bloch parameters,
the mode also does not propagate and decays sinusoidally.

For each value of prestress F̄, two diagrams are dis-
played in Fig. 2, namely, the dimensionless parameters
Im�K�d and Re�K�d on the left and on the right, respectively.
Both diagrams are symmetric with respect to the vertical axis
K=0, so that only the positive ranges have been plotted. In
the left parts of the figures, the solid lines denote purely
imaginary solutions, Re�K�=0, while dashed lines corre-
spond to complex solutions with Re�K�=� /d. The BG fre-
quency ranges are marked with black segments. Note that in
Figs. 2�b� and 2�c� and for �P1��0.0094 and 0.0042, re-
spectively, K assumes complex conjugate values and results
have been omitted for this type of solutions, which corre-
spond to sinusoidally decaying modes.

The BG distribution is reported as a function of the pre-
stress for fixed contrast parameter P2 / P1=0.1 in Fig. 3�a�,
while a fixed, small, and tensile prestress is assumed in Fig.

3�b� for varying P2 / P1. The latter figure makes evident that
the cutoff region is not strongly influenced by the contrast
parameter P2 / P1 and that the range where the increase in the
size of the BG zones is more pronounced occurs for
0.464� P2 / P1�0.0464.
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FIG. 2. Dispersion diagrams �circular frequency �P1� vs Bloch parameter
Re�K�d and Im�K�d� for a beam on an elastic foundation with piecewise
constant mass density �Fig. 1�a�� and homogeneous flexural stiffness,

B1=B2 �P2 / P1=0.1, S̄=0.0001, r /d=0.015, and l1= l2=d /2�. �a� Tensile pre-

stress: F̄=0.1. �b� Null prestress: F̄=0. �c� Near-buckling �F̄buckl=−0.02�
compressive prestress: F̄=−0.019. Im�K�d is reported with a solid �dashed�
line when Re�K�=0 �Re�K�d=��. Note that in cases �b� and �c� for
�P1��0.0094 and 0.0042, respectively, where solutions are not reported, K
assumes complex conjugate values. BG denotes a band gap. Note that the
compressive stress in �c� induces the annihilation of the second band gap
�between branches AB and CD�.
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Let us consider now the two lower frequency BGs in
Figs. 2 and 3�a�, one of which is present also in a homoge-
neous beam on an elastic foundation. The prestress strongly
modifies the BG intervals �shifting these toward higher fre-
quencies for tensile loading� and, when this becomes com-
pressive, the higher frequency BG �between branches AB
and CD in Fig. 2� is reduced in size and annihilated already
before the buckling load is attained �see Appendix for the
calculation of the buckling load of a periodic beam�.

B. Results for a structure with a periodic distribution
of defects

In the case of an infinite piecewise homogeneous beam
on an elastic foundation with defects localized at the internal
interface of the periodicity cell, we have to impose boundary
conditions �9�–�11� to obtain the dispersion equation.

A BG annihilation region—evidenced in gray—is shown
in Fig. 4�a�, where the dimensionless rotational spring stiff-
ness has been introduced

C̄ = Cr/B1, �12�

and is reported versus the dimensionless prestress F̄ defined
earlier in Eq. �4�. For a beam with rectangular cross section
of height h and width b and through-width rectangular-shape
crack of depth a, a physical interpretation of the degree of
damage described by Eq. �12� can be inferred using the ap-
proach by Chondros et al.,47 which estimates the effective
rotational spring stiffness C in terms of factor a /h, reported
on the vertical axis of Fig. 4�a�. In the case of Fig. 4�a�,
where B1=B2, as r=h /2�3 for a rectangle, it turns out that

C̄ =
1

12�3��1 − �2�	�a/h�
, �13�

where 	�a /h� is a polynomial function.49 The black lines in
the diagram correspond to the BG distributions shown in
Figs. 4�b� and 4�c� plotted for two representative values of
compressive prestress. We highlight in Fig. 4�a� the effect of
a compressive force in the beam that induces dramatic
changes in the dynamic behavior when compared to that of a
tensile force, leaving the response qualitatively unchanged.
The line corresponding to the onset of buckling separates
stable configurations from unstable—buckled—states. The

point of intersection of this line with the axis C̄=0 �at

F̄=−0.00959� is representative of the buckling load of a pe-
riodic beam with hinges at the internal interface of the peri-
odic cell �Fig. 1�c��.

III. BAND-GAP LOCALIZED MODES AND EFFECTIVE
NEGATIVE MASS EFFECTS

The strong influence of prestress F on “localized defect
modes” present within the BG frequencies is demonstrated
for an infinite piecewise uniform beam on an elastic founda-
tion, making use of a Green’s function formulation. The case
of piecewise constant properties is postponed to the treat-
ment of the uniform beam, which can be analytically solved.

In the range of a forbidden frequency, say, 0����min,
a localized mode can be created by an oscillating point mass,
inserted at a point of the �for the moment homogeneous�
beam. In order to arrive at the mass-frequency relationship,
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-0
.0

1
6

0.12

0.09

0.06

0.03

0

F

-0
.0

1
4

-0
.0

1
2

0.18

0.15

-0
.0

1
0

C

unstable
(buckled)
states

stable
states

-0
.0

0
8

0.02

0.01

0

P1 �

0
.3

0
0

0
.0

3
0

0
.0

6
0

C

0
.0

1
8

F=-0.012

F=-0.010

onset of
buckling

band-gap
annihilation
region

0.02

0.01

0

0
.3

0
0

0
.0

3
0

0
.0

6
0

0
.0

1
8

P1 �

C

(a) (b)

(c)

band-gap
annihilation
in the defected
structure

(b) (c)

0.545

0.498

0.431

0.325

0

0.611

0.582

a/h

FIG. 4. �a� BG annihilation region in the diagram presenting the dimension-

less rotational spring stiffness �C̄� vs prestress �F̄�. For a beam with rectan-
gular cross section of height h and width b and through-width rectangular-

shape crack of depth a, the scale a /h corresponding to C̄ is reported. �b� and
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the time-harmonic Green’s function ĝ�z ,y ; t�
=g�z ,y�exp�i�t� has to be obtained for the unit force placed
at z=y. For this purpose, we introduce the parameters


 = −
F̄

2r2 , � =� 1

r4� F̄2

4
+ P�2 − S̄� , �14�

so that 
 is real and � is purely imaginary, to correspond to
a stationary wave. The four solutions �6� now become

k1,2 = � �
 − �, k3,4 = � �
 + � . �15�

An admissible form for g�z ,y�, satisfying decaying condi-
tions at 	z	→, is

g�z,y� = C1 exp�ik1�z − y�� + C4 exp�ik4�z − y�� . �16�

Let us introduce the notation k1=−�
−�=−
̂+ i�̂ and

k4=�
+�= 
̂+ i�̂, where 
̂ and �̂ are real. The square-root
rule for a complex number gives


̂ =
1

2r
�− F̄ + 2�S̄ − P�2, �̂ =

1

2r
�F̄ + 2�S̄ − P�2,

�17�

therefore


̂2 + �̂2 =
1

r2
�S̄ − P�2. �18�

Therefore, the Green’s function writes �similar to Ref. 7�

g�z,y� =
e−�̂	z−y	

4B�
̂2 + �̂2�
� sin 
̂	z − y	


̂
+

cos 
̂�z − y�

�̂
� , �19�

where �̂ is the localization exponent, which is now positive,
or, in other words, to a solution formally corresponding to
vibrations of a system involving an effective negative mass,
and hence exponentially vanishing �as described by Milton
and Willis15�.

Let us consider now a concentrated mass M attached to
the beam at the origin �y=0� and vibrating at a frequency
���min. A concentrated force at y=0 is replaced by the
inertial force of the mass M, which is equal to M�2U, where
U is the amplitude. Since at z=0, g�0,0�=U, we obtain the
mass-frequency equation

M =
4B�
̂2 + �̂2��̂

�2 =
2B�S̄ − P�2�F̄ + 2�S̄ − P�2

r3�2 ,

�20�

where the prestress contribution �F̄� is made explicit or, al-
ternatively,

M̄P�2 − B�S̄ − P�2�F̄ + 2�S̄ − P�2 = 0, �21�

where

M̄ =
M

2�r
. �22�

The above formula, together with Eq. �20�, gives the value of
an additional mass required to support a localized vibration

mode of frequency ���min. If a periodic set of masses is
introduced for the infinite beam under prestress, then a nar-
row pass band, corresponding to waves of low group veloc-
ity, will appear and “break” the initial BG.

Equation �21� shows that for a negative prestress force

F̄, the circular frequency may vanish, and this corresponds to
the achievement of the buckling load.

The relationship between the dimensionless frequency
�P� and the prestress F̄ at constant M̄ is represented graphi-

cally in Fig. 5�a� for S̄=0.0001, while the amplitude of vi-
bration modes �normalized through division by g�0,y�� is
reported in Fig. 6 along the beam axis for different prestress

forces F̄.
We note from Figs. 5 and 6 that a compressive prestress

does influence significantly the vibration frequency of a
given mass, especially near the buckling state, and that for

M̄→0 the frequency achieves the limit �→�min. Moreover,
a negative, i.e., compressive �positive, i.e., tensile� prestress
strongly decreases �increases� the rate of localization of the
vibration mode.

FIG. 5. �a� Vibrating frequency � �normalized through multiplication by
�P� of an oscillating unit point mass attached to an infinite, homogeneous,
prestressed beam on an elastic foundation �Eq. �21�� as a function of the

prestress F̄ �S̄=0.0001�. Different dimensionless masses M̄ �S̄=0.0001� are

considered. The upper boundary of the BG region at given F̄ is reported

with a dashed line. �b� Localization exponent �̂ for three different prestress

levels within the BG range. For F̄=0.015, �̂=2.04124 at the upper boundary

of the BG range �i.e., �P�=0.01�, while for the other two prestresses, �̂
vanishes in the same limit.
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It can be anticipated that the case of piecewise beam
�Fig. 1�d�� is more interesting than the uniform case since �i�
the dispersion diagrams exhibit several BGs �not only one as
in the uniform case�; �ii� the concentrated mass can be placed
at different positions within the cell, thus providing different
responses; and �iii� the vibration modes of the mass can be
made more or less localized in the vicinity of the defect
depending on the frequency �an effect shown in Ref. 7�.

For a piecewise homogeneous beam, the Green’s func-
tion is not available �although, in principle, it can be ob-
tained analytically� and its expression would certainly be
very involved, so that we prefer pursuing an approximate
calculation, where a “sufficiently long,” but finite, beam
�seven elementary cells of length d in our examples� is
solved, with a unit force applied at the central cell �the fourth
cell in our examples�.

Results pertinent to the seven-cell structure are reported
in Fig. 7. Here the ranges of frequencies where localized
modes associated with the concentrated mass are possible

are reported as functions of the position y �normalized
through division by d� of the mass in the central cell, for two

levels of prestress, namely, F̄=0.025 in Fig. 7�a� and F̄=0 in
Fig. 7�b�.

In Figs. 7�a� and 7�b�, the first three BGs have been
investigated, placing masses at discrete distances in mul-
tiples of d /20. Results depend on the dimensionless frequen-
cies �P1� to generate localized modes associated with

M̄ =1 �denoted with black dots� and 10 �denoted with black

squares�, where the dimensionless concentrated mass M̄ is
defined now with respect to the mass density and radius of
inertia of part 1, namely,

M̄ =
M

2�1r1
. �23�

The black vertical segments crossing the BGs indicate
frequency ranges where localized modes �and effective nega-
tive mass effects� cannot be generated by just inserting a
single concentrated mass, being the displacement of the point
of application of the unit force out of phase with respect to
the force itself. We note that at certain locations y /d within
the second and third BGs, these vertical segments cross the
entire range �for instance, at y=0.25d, within the second BG,
and at y=0.2d, 0.8d, within the third BG�, so that in these
cases localized modes cannot be obtained for an applied fi-
nite and positive concentrated mass.

IV. CONCLUDING REMARKS

Prestress has been shown to deeply influence the vibra-
tional response of elastic periodic systems, in particular, BG
width �that can even be shrunk to zero�, position �which
shifts toward higher frequencies for tensile prestress�, and
effective negative mass effects. The prestress is therefore
proposed as a candidate for controlling the dynamic response
of active vibrational devices.
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APPENDIX: BUCKLING LOAD OF A PIECEWISE
CONSTANT STIFFNESS BEAM ON AN
ELASTIC FOUNDATION

The buckling loads of a perfect beam with piecewise
constant bending stiffness �B1�B2� can be obtained by set-
ting �=0 in Eqs. �1� and �6�. Employing the normalization

F̄2 = F̄1
B1

B2
� r2

r1
�2

, S̄2 = S̄1
B1

B2
� r2

r1
�4

,

in the governing equations, the buckling load of the structure

F̄1 can be expressed in terms of B2 /B1 at constant ratio r2 /r1.
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FIG. 6. Amplitude of vibration modes �normalized through division by the
value at the origin� along the beam axis z �the point mass is located at y�, for

different values of prestress F̄ and �P�=0.004.
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FIG. 7. Dimensionless frequency �P1� at which a localized mode con-
nected to a concentrated point mass located at y �Fig. 1�d�� exists for

M̄ =1 �black dots in the figure� and M̄ =10 �open circles� �the following
values of constants have been taken: P2 / P1=0.1, l1= l2=d /2, r /d=0.015,

and S̄=0.0001�. �a� Tensile prestress: F̄=0.025. �b� Null prestress: F̄=0. BG
denotes a band gap, while PB denotes a pass band �see Fig. 2�. A black
vertical segment in the BG zone indicates a frequency range where localized
modes are not possible.

063507-6 Gei, Movchan, and Bigoni J. Appl. Phys. 105, 063507 �2009�

Downloaded 19 Mar 2009 to 193.205.203.3. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



Some results are reported in Fig. 8 for two dimensionless
foundation stiffnesses.
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