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Abstract

Small axial and flexural oscillations are analyzed for a periodic and infinite structure, con-
strained by sliding sleeves and composed of elastic beams. A nested Bloch-Floquet technique
is introduced to treat the non-linear coupling between longitudinal and transverse displacements
induced by the configurational forces generated at the sliding sleeve ends. The action of con-
figurational forces is shown to play an important role from two perspectives. First, the band
gap structure for purely longitudinal vibration is broken so that axial propagation may occur at
frequencies that are forbidden in the absence of a transverse oscillation and, second, a flexural
oscillation may induce axial resonance, a situation in which the longitudinal vibrations tend to
become unbounded. The presented results disclose the possibility of exploiting configurational
forces in the design of mechanical devices towards longitudinal actuation from flexural vibrations
of small amplitude at given frequency.
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1 Introduction

Configurational forces, introduced by Eshelby [21, 22, 23] to describe the motion of defects in solids,
have been shown to act on elastic rods constrained by sliding sleeves [8]. In particular, the sliding of
an elastic rod through a frictionless sleeve generates at both constraint ends an ‘Eshelby-like’ force of
amount proportional to the square of the bending moment and direction parallel to that of sliding.
Configurational forces may also be derived through an asymptotic approach [4, 5] or a material force
balance [26, 40, 41, 42] and have been so far exploited in a series of novel applications [6, 7, 10, 11, 12,
13, 19, 27, 28, 29]. The action of Eshelby-like forces was recently disclosed in a dynamic framework
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and the case of a falling mass attached to an end of an elastic rod investigated to reveal a complex and
often counterintuitive motion [1].

The dynamic characteristics of periodic structures is drawing an intensive research effort motivated
by the design of metamaterials for wave guidance, energy harvesting, vibration mitigation, shock ab-
sorbers, and earthquake protection [2, 3, 9, 14, 15, 16, 17, 18, 20, 24, 25, 34, 36, 37, 38, 39, 43, 44, 45].
In line with this research activity, the aim of the present article is to show how the nonlinearity intro-
duced by configurational forces influences the dynamics of a periodic structural system. This periodic
system is assumed to be made up of linear elastic beams of alternate stiffness, deforming both axially
and flexurally, and constrained through different arrangements of sliding sleeves. For periodic arrays of
buckled beams (in the absence of configurational forces), non-linear wave propagation was addressed
with the related localisation associated with soliton-type solutions [30, 31, 32, 33], but the effects of
configurational forces was never considered. To this purpose, the conventional view on the Bloch waves
as quasi-periodic solutions of linear spectral problems is replaced by the concept of ‘nested Bloch wave’,
which still maintains quasi-periodicity property but is also consistent with the configurational forces
at the ends of the periodically positioned sliding sleeves. As a result, the presence of a small flexural
vibration is shown to overcome the band gap structure of the underlying problem of purely axial vibra-
tions, so that longitudinal propagation may become possible at forbidden frequencies when accompanied
by transverse oscillation. Moreover, a small flexural oscillation is shown to induce axial resonance at
certain frequencies, a situation in which the longitudinal displacements tend to become unbounded.
Therefore, configurational forces are shown in this article to play a decisive role in the dynamics of a
periodic structure. The exploitation of these concepts may lead to the design of mechanical devices
with band gap properties tuned through transverse vibrations or displaying a longitudinal actuation as
the result of small amplitude flexural vibrations at specific frequencies.

The structure of the paper is as follows. The mechanical problem is introduced in Section 2 together
with the new type of interface transmission conditions, which are nonlinear because they are related to
the configurational forces at the sliding sleeves. Quasi-periodic oscillations for the periodic structural
system are investigated in Section 3 through a ‘nested Bloch-Floquet technique’, so that compatible
oscillations – referred to as ‘nested Bloch waves’ – are obtained, connecting longitudinal and transverse
waves. Finally, examples reported in Section 4 show how axial vibrations may become possible in the
presence of flexural oscillations and how the latter may induce resonance of the former.

2 The dynamics of a periodic elastic structure with sliding sleeve constraints

A periodic elastic system, subject to longitudinal (axial) and transverse (flexural) vibrations, is intro-
duced in this section. The peculiarity of the system is the presence of sliding sleeve constraints, which
generate concentrated axial reactions, the so-called ‘configurational’ or ‘Eshelby’ forces, from flexural
motion and introduce a nonlinearity in the dynamics.

2.1 Geometry, mechanical properties and constraints

A one-dimensional structure, rectilinear in its undeformed state along the x-axis, is considered as the
infinite repetition of a periodic piecewise constant distribution of mechanical properties, Fig. 1. The
repeated unit cell of length ` is a sequence of two substructures, A and B, of respective length

`A = (1− λ)`, `B = λ`, with λ ∈ (0, 1), (1)
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Figure 1: A 1D structural system is obtained as the periodic repetition of the substructures A (red)
and B (green), each of them characterized by uniform properties of mass density ρ, Young modulus
E, cross section area S and second moment of area I. The two substructures have respective lengths
`A = (1 − λ)` and `B = λ`. The dynamic behaviour of the system (in the spatial coordinate x and
time variable t) is analyzed in terms of the longitudinal u(x, t) and transverse v(x, t) displacement
components, so that both stretching and bending are involved.

so that the continuous sets X
[m]
A and X

[m]
B are introduced as the collection of all the coordinates x within

the m-th unit cell (m ∈ Z) associated with substructures A and B,

X
[m]
A =

{
x
∣∣ (m− 1 + λ) ` < x < m`

}
and X

[m]
B =

{
x
∣∣m` < x < (m+ λ) `

}
, m ∈ Z, (2)

where, for simplicity, the origin of the x-axis is assumed at the interface between the two substructures,
so that the final coordinate of one substructure A coincides with the initial coordinate of the following
substructure B. It is instrumental to introduce the discontinuous sets XA and XB as the collection of
all the coordinates along the x-axis corresponding to the substructures A and B,

XJ =
⋃
m∈Z

X
[m]
J , J = A,B, (3)

and to define the coordinates of the interfaces between structures A and B with lower (-) and upper

(+) bounds for the sets X
[m]
J , eqns (2),

∂−X
[m]
J = inf

x

{
X

[m]
J

}
, ∂+X

[m]
J = sup

x

{
X

[m]
J

}
, J = A,B, m ∈ Z, (4)

so that
∂+X

[m]
A = ∂−X

[m]
B = m`, ∂+X

[m]
B = ∂−X

[m+1]
A = (m+ λ)`, m ∈ Z. (5)

The inertial, geometrical, and mechanical properties are assumed to be uniform along each substruc-
ture, which is modeled as linearly elastic. Therefore, the distributions of (volumetric) mass density ρ,
cross section area S, second moment of area I, and Young modulus E are given by

ρ(x) = ρJ S(x) = SJ I(x) = IJ E(x) = EJ if x ∈ XJ , J = A,B. (6)

A dynamic analysis is performed in the time variable t for the periodic structural system, which
undergoes planar motion, described under the assumption of linearized kinematics by the longitudinal
u(x, t) and transverse v(x, t) displacement components, so that both stretching and flexure occur. In
particular, three structural systems are considered, one of which is subject to purely longitudinal motion,
while the other two involve the presence of sliding sleeve constraints, but of different extent, namely:

(0) axially vibrating structure (corresponding to a sliding sleeve constraining the whole structure, Fig.
2, upper part)

v(x, t) = 0, ∀x; (7)
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(I) sliding sleeves of length (1 + 2δ − λ)` (with δ ∈ (0, λ/2)) fully enclosing the substructure A and
symmetrically constraining the external parts of substructure B (Fig. 2, central part)

v(x, t) = 0, x ∈
[
∂−X

[m]
A − δ`, ∂

+X
[m]
A + δ`

]
, m ∈ Z; (8)

(II) sliding sleeves of length 2δ` (with δ ∈ (0, 1/4)), centered at the discontinuity points ∂±X
[m]
J

(symmetrically constraining the external parts of substructures A and B, Fig. 2, lower part)

v(x, t) = 0, x ∈
[
∂+X

[m]
J − δ`, ∂

+X
[m]
J + δ`

]
, J = A,B, m ∈ Z. (9)

The presence of these constraints imply that the parameter λ has to belong to the interval

λ ∈ (2δ, 1− 2δ). (10)

Figure 2: The three structural systems differ in the constraint applied to periodic structure shown in
Fig. 1: System (0) only subject to longitudinal motion (constrained by an infinitely long sliding sleeve),
System (I) where a sliding sleeve fully encloses the substructure A, but leaves transverse oscillations
possible for the central part of the substructure B (central part), and System (II) where a sliding sleeve
symmetrically acts at the ends of the substructures, leaving to the central parts of both of them the
possibility of flexural deformation (lower part).

In the following, the analysis is developed for the structural System (II) and later exploited to
investigate the behaviour of Systems (0) and (I) as particular cases. To this purpose, it is useful to
distinguish the three different subparts of the substructure J = A,B through the coordinate subsets
X

[m]
JK , with K = C,L,R identifying the central, left, and right positions, as

X
[m]
AL =

{
x
∣∣ (m− 1 + λ) ` < x < (m− 1 + λ+ δ) `

}
, X

[m]
BL =

{
x
∣∣m` < x < (m+ δ) `

}
,

X
[m]
AC =

{
x
∣∣ (m− 1 + λ+ δ) ` < x < (m− δ)`

}
, X

[m]
BC =

{
x
∣∣(m+ δ)` < x < (m+ λ− δ) `

}
, m ∈ Z,

X
[m]
AR =

{
x
∣∣(m− δ)` < x < m`

}
, X

[m]
BR =

{
x
∣∣ (m+ λ− δ) ` < x < (m+ λ) `

}
,

(11)

4



Published in Philosophical Transactions of the Royal Society A (2019) 377: 20190101
doi: https://doi.org/10.1098/rsta.2019.0101

so that their extremal coordinates respectively satisfy

∂+X
[m]
AL = ∂−X

[m]
AC = (m− 1 + λ+ δ)`, ∂+X

[m]
AC = ∂−X

[m]
AR = (m− δ)`,

∂+X
[m]
AR = ∂−X

[m]
BL = m`, ∂+X

[m]
BL = ∂−X

[m]
BC = (m+ δ)`,

∂+X
[m]
BC = ∂−X

[m]
BR = (m+ λ− δ)`, ∂+X

[m]
BR = ∂−X

[m+1]
AL = (m+ λ)`,

m ∈ Z, (12)

and the discountinuous sets X
[m]
J are given by

X
[m]
J =

⋃
K=L,C,R

X
[m]
JK , J = A,B, m ∈ Z. (13)

2.2 Equations of motion and boundary conditions

Under the small displacement assumption, the free axial u(x, t) and flexural v(x, t) oscillations are
governed by the well-known uncoupled system of partial differential equations with constant coefficients
(where the rotational inertia is neglected)c

2
Ju
′′(x, t)− ü(x, t) = 0,

c2
JR2

Jv
′′′′(x, t) + v̈(x, t) = 0,

x ∈ XJK , J = A,B, K = L,C,R, (14)

where a superscript ’ or ˙ denotes spatial or time derivative, RJ =
√
IJ/SJ the radius of gyration and

cJ =
√
EJ/ρJ the longitudinal wave speed of the substructure J (J = A,B). With reference to System

(II), the boundary conditions are the following

• continuity of the longitudinal displacement field u(x, t) at the subset boundaries

u(x, t)|
x=∂+X

[m]
AL

= u(x, t)|
x=∂−X

[m]
AC
, u(x, t)|

x=∂+X
[m]
BL

= u(x, t)|
x=∂−X

[m]
BC
,

u(x, t)|
x=∂+X

[m]
AC

= u(x, t)|
x=∂−X

[m]
AR
, u(x, t)|

x=∂+X
[m]
BC

= u(x, t)|
x=∂−X

[m]
BR
,

u(x, t)|
x=∂+X

[m]
AR

= u(x, t)|
x=∂−X

[m]
BL
, u(x, t)|

x=∂+X
[m]
BR

= u(x, t)|
x=∂−X

[m+1]
AL

,

∀m ∈ Z;

(15)

• continuity of the internal axial force N(x, t) = E(x)S(x)u′(x, t) at the interface between the two
substructures

EASA [u′(x, t)]|
x=∂+X

[m]
AR

= EBSB [u′(x, t)]|
x=∂−X

[m]
BL
,

EBSB [u′(x, t)]|
x=∂+X

[m]
BR

= EASA [u′(x, t)]|
x=∂−X

[m+1]
AL

,
∀m ∈ Z; (16)

• jump in the internal axial force N(x, t) = E(x)S(x)u′(x, t) at the interface between the two
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substructures given by the configurational force

EASA [u′(x, t)]|
x=∂+X

[m]
AL

= EASA
[
u′(x, t) +

R2
Av
′′(x, t)2

2

]∣∣∣∣
x=∂−X

[m]
AC

,

EASA
[
u′(x, t) +

R2
Av
′′(x, t)2

2

]∣∣∣∣
x=∂+X

[m]
AC

= EASA [u′(x, t)]|
x=∂−X

[m]
AR
,

EBSB [u′(x, t)]|
x=∂+X

[m]
BL

= EBSB
[
u′(x, t) +

R2
Bv
′′(x, t)2

2

]∣∣∣∣
x=∂−X

[m]
BC

,

EBSB
[
u′(x, t) +

R2
Bv
′′(x, t)2

2

]∣∣∣∣
x=∂+X

[m]
BC

= EBSB [u′(x, t)]|
x=∂−X

[m]
BR
,

∀m ∈ Z. (17)

Note that the configurational force is given by the bending moment, EJSJR2
Jv
′′(x, t), evaluated

at the sliding sleeve end, squared and divided by two times the beam’s bending stiffness EJSJR2
J

(J = A,B);

• null transverse displacement v(x, t) and rotation v′(x, t) within each sliding sleeve and at its ends

v(x, t) = 0, v′(x, t) = 0, x ∈ X [m]
AL ∪X

[m]
AR ∪X

[m]
BL ∪X

[m]
BR m ∈ Z. (18)

From the above boundary conditions is evident that:

• the transverse displacement, as well as its first derivative, is continuous along the periodic struc-
ture. The longitudinal displacement is continuous too, but its first derivative is discontinuous at
each sliding sleeve end, due to the presence of the configurational force, and at each substructure’s
interface where the material properties are discontinuous;

• although the governing equations (14) are uncoupled, a coupling between the transverse v(x, t) and
the longitudinal u(x, t) motion arises due to the boundary condition involving the configurational
force. The coupling is weak because the former affects the latter, but not vice versa, and therefore
longitudinal oscillations are ‘nested’ into the transverse ones. Moreover, due to the nonlinear
character of configurational forces, the presence of sliding sleeves introduces non-linear effects in
structural systems governed by linear differential equations.

3 Nested Bloch-Floquet vibrations

Following standard techniques, the solution to the differential system (14) can be sought through
separation of variables, so that both the displacement fields become functions of space, modulated by
a function of time

u(x, t) = U(x)Φ(t), and v(x, t) = V (x)Ψ(t). (19)

Under this assumption, the system of two partial differential equations, eqn (14), can be rewritten as
two systems of ordinary differential equations, one in the time variable, the other in the space variable.
The system in the time variable is given byΦ̈(t) + ω2Φ(t) = 0,

Ψ̈(t) + Ω2Ψ(t) = 0,
(20)
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so that the two functions Φ(t) and Ψ(t) can be expressed in terms of sinusoidal and cosinusoidal
trigonometric functions of ωt and Ωt, with ω and Ω being the angular frequencies for longitudinal
and transverse vibrations, both for the moment unknown. Introducing these angular frequencies, the
differential system in the space variable can be written as

U ′′(x) +
ω2

c2
J

U(x) = 0,

V ′′′′(x)− Ω2

c2
JR2

J

V (x) = 0,
x ∈ XJK , J = A,B, K = L,C,R. (21)

Imposing the boundary conditions at all upper and lower boundaries ∂±X
[m]
JK of each subset X

[m]
JK ,

system (21) leads to the following expressions for the spatial functions

U(x) =
+∞∑

m=−∞

∑
J=A,B

∑
K=L,C,R

U
[m]
JK (x)θ

[m]
JK(x), V (x) =

+∞∑
m=−∞

∑
J=A,B

V
[m]
JC (x)θ

[m]
JC (x), (22)

where

U
[m]
JK (x) = U

[m]
JK1 sin

(
ω

cJ

(
x− ∂−X [m]

JK

))
+ U

[m]
JK2 cos

(
ω

cJ

(
x− ∂−X [m]

JK

))
,

V
[m]
JC (x) = V

[m]
JC1 sin

(
βJ

(
x− ∂−X [m]

JC

))
+ V

[m]
JC2 cos

(
βJ

(
x− ∂−X [m]

JC

))
+V

[m]
JC3sinh

(
βJ

(
x− ∂−X [m]

JC

))
+ V

[m]
JC4cosh

(
βJ

(
x− ∂−X [m]

JC

)
)
)
,

J = A,B,
K = L,C,R,

(23)
with

βJ =

√
Ω

cJRJ

, J = A,B, (24)

and

θ
[m]
JK(x) = θ

(
x− ∂−X [m]

JC

)
+ θ

(
∂+X

[m]
JC − x

)
− 1, J = A,B, K = L,C,R, m ∈ Z, (25)

in which θ(x) is the Heaviside step function, so that θ(x) = 1 for positive argument x and θ(x) = 0
otherwise.

3.1 Flexural vibrations

Due to the weak coupling between axial and flexural vibrations, the latter vibrations can be solved
independently of the former. More specifically, imposing the boundary conditions (18) to the transverse
displacement field (22)2 yields the following well-known eigenvalue problem for the parameter βJ

cosh (βJ(`J − 2δ`)) cos (βJ(`J − 2δ`)) = 1, J = A,B, (26)

providing an infinite set of solutions

βJ(nJ) =
Ξ(nJ )

(`J − 2δ`)
with Ξ(nJ ) ≈

{
4.730, nJ = 1,(
nJ + 1

2

)
π, nJ ≥ 2,

J = A,B, (27)
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each corresponding to the following eigenvector

V
[m]
JC2 = −V[m]

JC4 = − sin(βJ(`J − 2δ`))− sinh(βJ(`J − 2δ`))

cos (βJ(`J − 2δ`))− cosh(βJ(`J − 2δ`))
V

[m]
JC1, V

[m]
JC3 = −V[m]

JC1 J = A,B. (28)

It is important to observe that the present analysis leads to the independent evaluation of the
eigenvalues βA(nA) and βB(nB). However, for System (II), due to the axial interaction between the
substructures, these two eigenvalues are related to the same angular frequency Ω, eqn (24), so that the
free oscillation may be realized only when

β2
AcARA = β2

BcBRB, (29)

a condition imposing that a transverse motion governed by modes nA and nB becomes possible for two
substructures only when

cARA

cBRB

(
λ− 2δ

1− λ− 2δ

)2

=

(
Ξ(nB)

Ξ(nA)

)2

, (30)

implying the following linear relation1 between λ and δ

λ = 2δ +
1− 4δ

1 + Ξ(nA)

Ξ(nB)

√
cARA

cBRB

∈ (2δ, 1− 2δ). (31)

The geometrical constraint (31) shows that, for finite values of
√

(cBRB)/(cARA), the lower (upper)
bound for λ is attained when nA � nB (nA � nB). The linear relation between λ and δ defined by
equation (31) is graphically represented in Fig. 3, for (cBRB)/(cARA) = 9 and different mode pairs
{nA, nB} (with nA and nB ranging between 1 and 3).

It is remarked that the relation (31) holds only for System (II) when both substructures are vibrating
transversally. Whenever at least one of the two substructures does not display transverse oscillations
(as it occurs for System (II) when V

[m]
AC1 = 0 or V

[m]
BC1 = 0 for every m, but also for Systems (0) and

(I)), relation (31) does not hold any longer.
With reference again to System (II), it is worth to note that when λ is such that the two substruc-

tures may simultaneously oscillate under transverse modes, respectively, nA and nB:

• if nA 6= nB then this is the unique pair of modes for which transverse oscillation may occur;

• if nA = nB = n then the two substructures may oscillate transversally for every mode n. In this
case, the periodic structure has a length parameter λ given as a function of the sliding sleeve half-
length δ, the longitudinal wave speeds cJ and the radii of gyration RJ of the two substructures
(J = A,B) in the form

λ = 2δ +
1− 4δ

1 +
√

cARA

cBRB

. (32)

1 Equation (30) has two solutions: one is given by eqn (31) and always satisfies the geometrical restriction expressed
by eqn (10), while the other solution violates the latter restriction, so that it is mechanically meaningless.
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Figure 3: Parameter λ as a function of the dimensionless sliding sleeve half-length δ, eqn (31), allowing
for transverse oscillations in both substructures of System (II) under modes nA and nB. The linear
relation has been drawn only for the mode pairs {nA, nB} with nA and nB ranging between 1 and 3 of a
structural system with (cBRB)/(cARA) = 9. In particular, the red line represents the case nA = nB = n,
under which the two substructures may simultaneously oscillate under every mode n. This line and the
two dashed lines, the latters representing upper and lower bounds for λ (respectively given by the limit
cases nA � nB and nA � nB), define two regions in the plane where all the cases nA < nB (light red
background) and nA > nB (light green background) lie. The specific mode pairs {nA, nB}, to which
the other colored straight lines are referred, are listed in the figure with corresponding colors.

3.2 Axial vibrations

In order to solve for axial oscillations, the boundary conditions (15), (16), and (17) involving the longi-
tudinal displacement may be rewritten via separation of variables, eqn (19), and using the expression
(22) for the spatial functions. In particular, the continuity of the longitudinal displacement (15) implies

U
[m]
AC2 = U

[m]
AL1 sin

(
ωδ`

cA

)
+ U

[m]
AL2 cos

(
ωδ`

cA

)
, U

[m]
AR2 = U

[m]
AC1 sin

(
ω(1− λ− 2δ)`

cA

)
+ U

[m]
AC2 cos

(
ω(1− λ− 2δ)`

cA

)
,

U
[m]
BL2 = U

[m]
AC1 sin

(
ωδ`

cA

)
+ U

[m]
AC2 cos

(
ωδ`

cA

)
, U

[m]
BC2 = U

[m]
BL1 sin

(
ωδ`

cB

)
+ U

[m]
BL2 cos

(
ωδ`

cB

)
,

U
[m]
BR2 = U

[m]
BC1 sin

(
ω(λ− 2δ)`

cB

)
+ U

[m]
BC2 cos

(
ω(λ− 2δ)`

cB

)
, U

[m+1]
AL2 = U

[m]
BR1 sin

(
ωδ`

cB

)
+ U

[m]
BR2 cos

(
ωδ`

cB

)
,

(33)
while the continuity equations (16) implies

EASA
ω

cA

[
U

[m]
AR1 cos

(
ωδ`

cA

)
− U

[m]
AR2 sin

(
ωδ`

cA

)]
= EBSB

ω

cB
U

[m]
BL1,

EBSB
ω

cB

[
U

[m]
BR1 cos

(
ωδ`

cB

)
− U

[m]
BR2 sin

(
ωδ`

cB

)]
= EASA

ω

cA
U

[m+1]
AL1 .

(34)

Moreover, holding the jump conditions (17) at each sliding sleeve end ∂X
(±)
J (J = A,B) for every time

t, the frequency of the longitudinal oscillation is related to that of the transverse through

ω = 2Ω, (35)

9



Published in Philosophical Transactions of the Royal Society A (2019) 377: 20190101
doi: https://doi.org/10.1098/rsta.2019.0101

a condition defining that the two types of oscillation are ‘nested’. It follows that the jump conditions
(17) at each sliding sleeve end ∂X

(±)
J (J = A,B) reduce to

ω

cA

[
U

[m]
AL1 cos

(
ωδ`

cA

)
− U

[m]
AL2 sin

(
ωδ`

cA

)]
=

ω

cA
U

[m]
AC1 +

2Ω2

c2
A

(
V

[m]
AC1

)2
[

sin[(1− λ− 2δ)βA`]− sinh[(1− λ− 2δ)βA`]

cos[(1− λ− 2δ)βA`]− cosh[(1− λ− 2δ)βA`]

]2

,

ω

cA

[
U

[m]
AC1 cos

(
ω(1− λ− 2δ)`

cA

)
− U

[m]
AC2 sin

(
ω(1− λ− 2δ)`

cA

)]
+

2Ω2

c2
A

(
V

[m]
AC1

)2
[

sin[(1− λ− 2δ)βA`] cosh[(1− λ− 2δ)βA`]− sinh[(1− λ− 2δ)βA`] cos[(1− λ− 2δ)βA`]

cos[(1− λ− 2δ)βA`]− cosh[(1− λ− 2δ)βA`]

]2

=
ω

cA
U

[m]
AR1,

ω

cB

[
U

[m]
BL1 cos

(
ωδ`

cB

)
− U

[m]
BL2 sin

(
ωδ`

cB

)]
=

ω

cB
U

[m]
BC1 +

2Ω2

c2
B

(
V

[m]
BC1

)2
[

sin[(λ− 2δ)βB`]− sinh[(λ− 2δ)βB`]

cos[(λ− 2δ)βB`]− cosh[(λ− 2δ)βB`]

]2

,

ω

cB

[
U

[m]
BC1 cos

(
ω(λ− 2δ)`

cB

)
− U

[m]
BC2 sin

(
ω(λ− 2δ)`

cB

)]
+

2Ω2

c2
B

(
V

[m]
BC1

)2
[

sin[(λ− 2δ)βB`] cosh[(λ− 2δ)βB`]− sinh[(λ− 2δ)βB`] cos[(λ− 2δ)βB`]

cos[(λ− 2δ)βB`]− cosh[(λ− 2δ)βB`]

]2

=
ω

cB
U

[m]
BR1.

(36)

3.3 Bloch-Floquet analysis and resonance

Free oscillations are sought with quasi-periodicity properties by imposing the Bloch-Floquet condition
with phase angle φ between two subsequent structural unit cells

u(x+ p`, t) = ei pφ u(x, t), v(x+ p`, t) = ei pφ/2 v(x, t), p ∈ Z, (37)

where i is the imaginary unit. Considering the separation of variables, eqn (19), the quasi-periodicity
provides the following constraints on the (complex) amplitudes defining the motion in the different cells

U
[p]
JKj = ei pφ U

[0]
Jj,

V
[p]
JCk = ei pφ/2 V

[0]
Jk,

p ∈ Z, J = A,B, K = L,C,R, j = 1, 2, k = 1, 2, 3, 4, (38)

so that the quasi-periodic motion of the infinite periodic structural system is defined once the amplitudes
defining the motion of the 0-th cell are given. In particular, the application of the Bloch-Floquet
condition to the boundary conditions (33), (34), and (36) leads to the following linear system in the

twelve amplitudes of the axial motion in the 0-th cell, U
[0]
JKj (J = A,B, K = L,C,R,, and j = 1, 2),

to be solved for given values of the two transverse amplitudes V
[0]
AC1 and V

[0]
BC1, both corresponding

respectively to modes nA and nB,

M
U[0]

`
=

1

2

ω`

cA

ΓA

(
V

[0]
AC1

`

)2

+
cA
cB

ΓB

(
V

[0]
BC1

`

)2
 , (39)

10
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which, under the quasi-periodicity assumption (37), also includes the boundary conditions (33), (34),
and (36) for every cell p ∈ Z. In eqn (39), M is a 12 by 12 matrix, whose non-null coefficients are

M1,1 = M3,5 = −M7,2 = −M9,6 = sin

(
ωδ`

cA

)
, M1,2 = M3,6 = M7,1 = M9,5 = cos

(
ωδ`

cA

)
,

M1,4 = M2,6 = M3,8 = M4,10 = M5,12 = M7,3 = M8,5 = M10,9 = M11,11 = −1,

M4,7 = M6,11 = −M10,8 = −M12,12 = sin

(
ωδ`

cB

)
, M4,8 = M6,12 = M10,7 = M12,11 = cos

(
ωδ`

cB

)
,

M2,3 = −M8,4 = sin

(
ω(1− λ− 2δ)`

cA

)
, M2,4 = M8,3 = cos

(
ω(1− λ− 2δ)`

cA

)
,

M5,9 = −M11,10 = sin

(
ω(λ− 2δ)`

cB

)
, M5,10 = M11,9 = cos

(
ω(λ− 2δ)`

cB

)
,

M12,1 = −EASA
EBSB

cB
cA
ei φ , M6,2 = −ei φ , M9,7 = −EBSB

EASA
cA
cB
,

(40)
while the three vectors U[0], ΓA, and ΓB are defined as

U[0] =
[
U

[0]
AL1,U

[0]
AL2,U

[0]
AC1,U

[0]
AC2,U

[0]
AR1,U

[0]
AR2,U

[0]
BL1,U

[0]
BL2,U

[0]
BC1,U

[0]
BC2,U

[0]
BR1,U

[0]
BR2

]T
,

ΓA = [0, 0, 0, 0, 0, 0,ΓA1,ΓA2, 0, 0, 0, 0]T ,

ΓB = [0, 0, 0, 0, 0, 0, 0, 0, 0,ΓB1,ΓB2, 0]T ,

(41)

where the superscript T denotes the transpose operator and the coefficients ΓJk (J = A,B and k = 1, 2)
are given by

ΓJ1 =

[
sin[Ξ(nJ )]− sinh[Ξ(nJ )]

cos[Ξ(nJ )]− cosh[Ξ(nJ )]

]2

,

ΓJ2 = −
[

sin[Ξ(nJ )] cosh[(Ξ(nJ )]− sinh[Ξ(nJ )] cos[Ξ(nJ )]

cos[Ξ(nJ )]− cosh[Ξ(nJ )]

]2

,

J = A,B. (42)

From the linear equation (39) it is evident that the analysis developed for System (II) also includes, as

particular cases, that for System (0) (by considering V
[0]
AC1 = V

[0]
BC1 = 0) and System (I) (by considering

V
[0]
AC1 = 0).

For the given transverse amplitudes V
[0]
AC1 and V

[0]
BC1, the longitudinal motion of the system can be

solved when the matrix M in Eq. (39) is not singular, in other words, when

det[M] = ei φ
[
2 cos

(
ω(1− λ)`

cA

)
cos

(
ωλ`

cB

)
−
(
cA
cB

EBSB
EASA

+
cB
cA

EASA
EBSB

)
sin

(
ω(1− λ)`

cA

)
sin

(
ωλ`

cB

)
− 2 cosφ

]
,

(43)
is not null, a condition showing that the sliding sleeve length parameter δ is not involved. It follows
that the vanishing of the determinant is attained when the pair ω and φ satisfies2

2 cos

(
ω(1− λ)`

cA

)
cos

(
ωλ`

cB

)
−
(
cA
cB

EBSB
EASA

+
cB
cA

EASA
EBSB

)
sin

(
ω(1− λ)`

cA

)
sin

(
ωλ`

cB

)
= 2 cosφ,

(44)

2The annihilation condition (44) is equivalent to the well-known dispersion equation for one-dimensional scalar (out-of
plane) Bloch-Floquet wave in a periodic bi-material reported in [35] (Chapt. 1, equation (1.170)), where the shear moduli
of the bi-material are replaced by the respective Young moduli.
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a relation which mathematically defines the singularity of the matrix M and from a mechanical point
of view represents the resonance condition of the periodic structural system. For such a condition an
infinitely large longitudinal motion results from an infinitely small transverse oscillations.

4 Results on the dynamics of a periodic structure subject to configurational forces

The theoretical framework developed in the previous sections is exploited here to investigate the dynamic
behaviour of the considered three periodic structures subject to configurational forces: Systems (0),
(I), and (II).

4.1 Purely axial vibrations: System (0)

When transverse motion is excluded, v(x, t) = 0, only longitudinal oscillations become possible. A way
to eliminate flexural vibrations is to insert the whole structure inside a sliding sleeve, so that now the
definition of the subsets XJL, XJC , and XJR (J = A,B) becomes meaningless and the longitudinal
displacement field can be expressed as

U(x) =
+∞∑

m=−∞

∑
J=A,B

U
[m]
J (x)θ

[m]
J (x), (45)

where

U
[m]
J (x) = U

[m]
J1 sin

(
ω

cJ

(
x− ∂−X [m]

J

))
+ U

[m]
J2 cos

(
ω

cJ

(
x− ∂−X [m]

J

))
, J = A,B, (46)

with
θ

[m]
J (x) = θ

(
x− ∂−X [m]

J

)
+ θ

(
∂+X

[m]
J − x

)
− 1, J = A,B, m ∈ Z. (47)

Due to the simplicity of expression (45) for the longitudinal field, the twelve boundary conditions
(15), (16), and (17) reduce to four continuity conditions at the interfaces between the two substructures,
which considering the quasi-periodicity condition (37), are equivalent to the following homogeneous

linear system for the four amplitudes U
[0]
A1, U

[0]
A2, U

[0]
B1, and U

[0]
B2

sin

(
ω(1− λ)`

cA

)
cos

(
ω(1− λ)`

cA

)
0 −1

0 −ei φ sin

(
ωλ`

cB

)
cos

(
ωλ`

cB

)
cos

(
ω(1− λ)`

cA

)
− sin

(
ω(1− λ)`

cA

)
−EBSB
EASA

cA
cB

0

−EASA
EBSB

cB
cA
ei φ 0 cos

(
ωλ`

cB

)
− sin

(
ωλ`

cB

)





U
[0]
A1

U
[0]
A2

U
[0]
B1

U
[0]
B2


=


0
0
0
0

 . (48)

It is noted that the determinant of the matrix involved in the above linear problem coincides with that
of the matrix M, eqn (43), so that non-trivial solutions (namely, longitudinal oscillations) exist when
eqn (44) holds, defining the dispersion diagram ω - φ at varying the properties of the substructures.

For the sake of simplicity, the results are presented for this and the other two systems assuming the
same mass density and geometrical properties for the two substructures

ρJ = ρ SJ = S IJ = I if x ∈ XJ , J = A,B, (49)
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but different stiffness defined in relation to a positive parameter r

EA = E EB = r2E, (50)

so that the longitudinal wave speed for each substructure is given by

cA = c cB = rc, (51)

with c =
√
E/ρ. Under this assumption, the matrix determinant (44) reduces to

2 cos

(
ω(1− λ)`

c

)
cos

(
ωλ`

rc

)
−
(
r +

1

r

)
sin

(
ω(1− λ)`

c

)
sin

(
ωλ`

rc

)
= 2 cosφ, (52)

which defines the relation between the Bloch-wave frequency ω`/c̄ and its phase φ, provided the struc-
tural properties λ and r are given.

The dispersion diagrams ω`/c̄–φ reported in Fig. 4 for System (0) with λ = {0.6, 0.7, 0.8} and
r = {4, 9, 16} are well-known [35] and show the presence of pass bands and stop bands (also called
‘band gaps’), namely, intervals of the frequency ratio ω`/c̄ inside which a Bloch-wave may and may not
propagate, respectively.
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Figure 4: Dispersion diagrams ω`/c̄ - φ/π for periodic structures differing in the value of r =√
EB/EA = {4, 9, 16} (and respectively reported as dashed grey, continuous blue, and continuous

red lines) and with λ = {0.6, 0.7, 0.8}, increasing from left to right. The stop band widths increase with
the increase of r and of λ.

It is remarked that these pass and stop bands, only exist for System (0) (not involving transverse
displacements). Flexural vibrations allow the possibility of axial vibrations for Systems (I) and (II)
even for angular frequencies ω inside the stop bands defined for System (0). However the pass and
stop band structure of the underlying System (0) is related to interesting features for Systems (I) and
(II), as shown later in this Section.
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4.2 Flexural vibrations with configurational forces acting on one substructure: System
(I)

In System (I) transverse oscillations may only exist within the substructure B, so that the parameter
λ is unconstrained (namely, eqn (31) does not hold). In this case only configurational forces at the end
of the sliding sleeve exerted on the substructure B are generated. Considering that the substructure B
oscillates transversally under mode nB, the angular frequency ω can be obtained from eqn (27) as

ω =
2cBRB

(
Ξ(nB)

)2

(λ− 2δ)2`2
, (53)

which, under the assumptions (49), (50), and (55), reduces to the following dimensionless form

ω(nB)`

c
=

2r

Λ

(
Ξ(nB)

λ− 2δ

)2

, (54)

where Λ = `
√
S/I is the slenderness of the periodic structural cell. The dimensionless frequency ω`/c,

eqn (54), defines the oscillations of System (I) for given values of r, λ, δ, Λ, and mode number nB,
whose longitudinal amplitudes can be obtained from the solution of the linear system (39), once a non-

null transverse amplitude V
[0]
BC1 is imposed (and by assuming V

[0]
AC1 = 0). Because such an evaluation

requires the inversion of the matrix M, two cases may be distinguished:

• the dimensionless frequency ω`/c belongs to one of the band gaps of System (0). In this case, the
matrix M is always non-singular so that finite longitudinal amplitudes are always attained for a
given finite transverse amplitude V

[0]
BC1;

• the dimensionless frequency ω`/c does not belong to a band gap. In this case, the matrix M
becomes singular for values of ω`/c and φ lying on the dispersion curve, for which the resonance
condition, eqn (44), is attained. It follows that oscillations defined by pairs of ω`/c and φ close
to the dispersion curve are governed by large longitudinal amplitudes (approaching infinity) at

given finite transverse amplitude V
[0]
BC1.

It follows from the above discussion that longitudinal vibrations are generated when transverse
vibrations are present (in Systems (I) and (II)). For this reason, such longitudinal vibrations are
referred to as nested Bloch waves, as they are ’nested’ to the transverse ones. Indeed, while the
classical Bloch longitudinal waves (in System (0)) have frequency defined by eqn (52) and undefined
amplitude, the nested Bloch longitudinal waves have frequency defined by relation (35) and amplitude

defined in relation of the transverse oscillations amplitudes V
[0]
AC1 and V

[0]
BC1 via the linear system (39).

It is also worth to remark that in the presence of transverse vibrations, longitudinal vibrations may
become possible at frequencies that are forbidden in the absence of flexural motion.

4.3 Flexural vibrations with configurational forces acting on two substructures: System
(II)

The presence of transverse vibrations within both substructures A and B subject to configurational
forces is possible only when λ satisfies eqn (31). Considering oscillations under modes nA and nB within
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substructures A and B, under the assumptions described by eqns (49), (50), and (55), the parameter
λ is given by

λ = 2δ +
1− 4δ

1 +
Ξ(nA)

√
rΞ(nB)

, (55)

so that using eqn (55) the dimensionless angular frequency (54) reduces to

ω(nA, nB)`

c
=

2

Λ

(
Ξ(nA) +

√
rΞ(nB)

1− 4δ

)2

. (56)

Similarly to System (I) the dimensionless frequency ω`/c, eqn (56), is defined once the three parameters
r, Λ, δ, plus the modes numbers nA and nB, are given. Only parameters r, δ, Λ, plus the mode number
nB, have to be prescribed for Systems (I) and (II). The mode number nA is not present in System (I)
and is replaced there by the parameter λ (which is constrained in System (II) by eqn (55), but remains
free in System (I)).

In the particular case when the two substructures oscillate transversally under the same mode
nA = nB = n, the relations (55) and (56) simplify as

λ = 2δ +
1− 4δ

1 +
1√
r

,
ω(n)`

c
=

2

Λ

(
1 +
√
r

1− 4δ

)2

Ξ(n)2
. (57)

The dynamic response of System (II) is depicted in Fig. 5 through a three-dimensional representa-

tion in which the longitudinal amplitude modulus of substructure B, given by

√∣∣∣U[0]
BC1

∣∣∣2 +
∣∣∣U[0]

BC2

∣∣∣2/`
(vertical axis), is reported with varying the phase angle φ (horizontal axis) and the dispersion curve at
different values of dimensionless frequency ω`/c (out of plane axis). The system is considered to have
both substructures oscillating transversally under the same mode, nA = nB = n with n = {1, 2, 3},
with transverse amplitude defined by V

[0]
AC1/` = V

[0]
BC1/` = 1. System parameters are selected as r = 9

and δ = 0.05, to which λ = 0.7 corresponds from eqn. (57). The behaviour is shown for two values of
structural cell slenderness, Λ = 100 (upper part) and Λ = 150 (lower part), for which the first three
modes correspond, respectively, to the dimensionless frequencies ω`/c ≈ {11.186, 30.843, 60.451} and
ω`/c ≈ {7.458, 20.562, 40.300}.

It can be noted from the figure that for the structure with Λ = 100 (Λ = 150) resonance occurs under
modes n = {1, 2} (n = {2, 3}) at respectively phase angles φ ≈ {0.465, 0.436}π (φ ≈ {0.336, 0.838}π),
where the dispersion curve is intersected. Resonance does not occur at any phase angle φ under third
(first) mode for Λ = 100 (Λ = 150), for which there is no intersection with the dispersion curve.

5 Conclusions

The analysis of a periodic system composed of elastic beams and sliding sleeves shows the important
role played by configurational forces in dynamics. Configurational forces introduce a non-linearity,
which couples transverse motion to longitudinal one, and provide nesting of axial vibrations to the
flexural ones. The band gap structure defined by purely axial vibration is broken and the propagation
of nested longitudinal waves may become possible at frequencies forbidden in the absence of transverse
vibrations. The flexural vibration is also shown to generate resonance for the nested longitudinal waves
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Figure 5: Dimensionless amplitude modulus (

√∣∣∣U[0]
BC1

∣∣∣2 +
∣∣∣U[0]

BC2

∣∣∣2/`, red curves) of the longitudinal

nested oscillation in the central part of the substructure B realized by a transverse oscillation under
modes nA = nB = {1, 2, 3} with amplitude defined by V

[0]
AC1/` = V

[0]
BC1/` = 1 on System (II) with r = 9,

δ = 0.05 and λ = 0.7. The horizontal axis reports the phase angle φ, while the out of plane axis the
dimensionless frequency ω`/c, so that the blue curves are the dispersion diagram for purely longitudinal
oscillations (shaded light blue regions represent stop bands for classical Bloch waves). Resonance occurs
for Λ = 100 (Λ = 150) at φ ≈ {0.436, 0.465}π (φ ≈ {0.336, 0.838}π) under first and second (second
and third) modes.
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at frequencies within the pass band of classical Bloch waves. These results suggest applications of
configurational forces in the design of dynamic sensors.
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