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Two types of non-holonomic constraints (imposing a pre-
scription on velocity) are analyzed, connected to an end of
a (visco)elastic rod, straight in its undeformed configura-
tion. The equations governing the nonlinear dynamics are
obtained and then linearized near the trivial equilibrium con-
figuration. The two constraints are shown to lead to the same
equations governing the linearized dynamics of the Beck (or
Pflüger) column in one case and of the Reut column in the
other. Therefore, although the structural systems are fully
conservative (when viscosity is set to zero), they exhibit
flutter and divergence instability. In addition, the Ziegler’s
destabilization paradox is found when dissipation sources
are introduced. It follows that these features are proven to
be not only a consequence of ‘unrealistic non-conservative
loads’ (as often stated in the literature), rather, the models
proposed by Beck, Reut, and Ziegler can exactly describe the
linearized dynamics of structures subject to non-holonomic
constraints, which are made now fully accessible to experi-
ments.

1 Introduction
Elastic structures subject to non-holonomic constraints,

such as a rolling wheel or sphere, do not admit a formula-
tion in terms of energy potential, even when all applied loads
are conservative [1, 2]. For these mechanical systems, the
linearized equations governing the dynamics can be charac-
terized by a non-hermitian operator [3,4] admitting complex
conjugate eigenvalues, so that flutter instabilities may occur.
An example of this behaviour is provided by the so-called
‘shimmy instability’ [5–7]. The scope of the present arti-
cle is an extension of results obtained for discrete systems
[8] to continuous structures equipped with non-holonomic

constraints. In particular, two types of non-holonomic con-
straints attached to an elastic (or visco-elastic) rod are in-
vestigated, as sketched in Fig.1. The first type (referred as

Fig. 1: Two types of the non-holonomic constraints applied to an elas-
tic rod. The ‘skate’ constraint (left) realized through a knife edge (a non-
slipping wheel can also be used), and the ‘violin bow’ constraint (right)
realized through slipless contact between a cylinder, freely rolling about its
fixed axis, and a rigid bar attached orthogonally to the end of the rod.

‘skate’, Fig.1 left) can be visualized as a knife edge or a non-
slipping wheel mounted at the end of a rod with an inclina-
tion β0 (which is detailed in Fig. 2). The reaction ppp (of mod-
ulus p) transmitted to the structure by this device is directed
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along the ‘skate’ axis

ppp = eee1 p cos(θ(l)+β0)+ eee2 p sin(θ(l)+β0) , (1)

where θ(l) is the rotation of the rod’s end and eee1 and eee2 are
two orthogonal unit vectors providing the reference system.
The key issue associated to the non-holonomic ‘skate’ con-
straint is that the velocity of the end of the structure vvv(l) is
prescribed to remain orthogonal to ppp

ppp · vvv(l) = 0. (2)

The other non-holonomic constraint (referred as ‘violin
bow’, Fig.1 right) investigated here is a device in which a
rigid ‘appendix’ of an elastic structure is constrained to re-
main in slipless contact with a circular cylinder (inclined at
an angle β0 detailed in Fig. 2) which can only roll about its
axis. In this case the reaction on the structure remains coaxial
with the cylinder

ppp = eee1 p cosβ0 + eee2 p sinβ0. (3)

Moreover, the velocity ċcc of the point ccc belonging to the rigid
appendix of the structure in contact with the cylinder (Fig.1,
right) is given by the Poisson’s theorem as

ċcc = vvv(l)+ θ̇(l)eee3×ξ(−eee1 sinθ(l)+ eee2 cosθ(l)) (4)

(where ξ is the distance along the rigid appendix to the con-
nection with the elastic rod and eee3 = eee1× eee2) and, to satisfy
the non-holonomic ‘violin bow’ constraint, has to remain or-
thogonal to the reaction ppp

ppp · ċcc = 0. (5)

It is clear from the above discussion that the essence of
non-holonomy is a requirement on the velocity (not displace-
ment!) at some point of the structure. This leads to the fact
that the reaction ppp does zero work during every possible mo-
tion and therefore the mechanical system is conservative if
the structure is purely elastic and subject to a load admitting
a potential [1, 3].

Subject to two different conservative loadings (that will
be detailed later), the linearized dynamic equations for the
rod are derived in this article1and are shown to coincide
with the corresponding equations holding for the Beck and
Pflüger columns [9–13], when the ‘skate’ constraint is ap-
plied, or to the Reut column [14, 15], when the ‘violin
bow’ is considered. Therefore, the structures exhibit flut-
ter and divergence instability, although the system (in the

1The behaviour of the elastic rod analyzed in this paper is also confirmed
using a discretized rod model [8] at increasing number of its constituent
rigid bars, so that the continuous and discrete models show coincidence of
the instability loads in the limit.

absence of viscous dissipation) is fully conservative. More-
over, when viscosity is present, the Ziegler destabilization
paradox [7, 8, 11, 16, 17] occurs in the limit of vanishing dis-
sipation.

Research on structures subject to nonconservative loads
is a timely topic in view of several, different applications
[18–20], nevertheless the fundamental models proposed by
Reut, Ziegler, and Beck have often been considered unre-
alistic and therefore harshly criticized [21, 22]. The results
presented here (and those relative to discrete systems [8])
demonstrate that the Reut, Ziegler, and Beck models repre-
sent the exact linearized behaviour of corresponding struc-
tures subject to non-holonomic constraints.

Finally, the obtained results confirm the validity of
the experimental verification of the flutter load proposed in
[10,11,23,24] and definitely open the way to exploitation of
non-holonomic constraints in the mechanics of deformable
structures.

2 Viscoelastic rod subject to a non-holonomic con-
straint
An inextensible and unshearable rod of length l is con-

sidered in the plane X −Y , straight in its underformed con-
figuration. The rod’s tangent is inclined (with respect to the
X-axis) at an angle θ(s, t), function of the curvilinear coor-
dinate s ∈ [0, l] and time t, Fig.2. The rod’s end (at s = 0)
is constrained with a clamp of mass MX , which can freely
slide along the X−axis, so that θ(0, t) = 0 and its position
is singled out by the coordinate X0(t) = X(s = 0, t). In this
setting, the usual expressions of the deformed shape of an
inextensible rod hold

X(s, t) = X0(t)+
∫ s

0
cosθ(ς, t)dς,

Y (s, t) =
∫ s

0
sinθ(ς, t)dς,

(6)

showing that the rod’s motion is described by θ(s, t) and the
clamp position X0(t).

A conservative loading is applied to the sliding clamp
by means of (Fig.2)

A - a linear elastic spring of stiffness K, initially pre-
compressed by a prescribed displacement ∆ > 0 (fixed
in time), so that its elastic energy is given by

Ξ(X0) =
1
2

K [X0−∆]2 ; (7)

B - a dead load F , with potential energy

Ξ(X0) =−F X0. (8)

The two types of non-holonomic constraint mentioned in the
introduction are applied at the right rod’s end (s = l):
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Fig. 2: A flexible rod (bending stiffness B and mass density ρ) is subject
to either the non-holonomic ‘skate’ or ‘violin bow’ constraint. The rod’s
deformed configuration is defined by the rotation θ(s, t) and the horizontal
position X0(t) of a sliding clamp of mass MX which is loaded either with a
precompressed linear spring (of stiffness K) or with a dead load F .

S - the ‘skate’ constraint, expressed by equation (2),
which is rewritten as

Ẋ(l)cos [θ(l)+β0]+ Ẏ (l)sin [θ(l)+β0] = 0, (9)

or in the format of virtual displacements as

[
δX0 +δζl

]
cos [θ(l)+β0]+δY (l)sin [θ(l)+β0] = 0,

(10)
where

δζl = δ

(∫ l

0
cosθ(ς, t)dς

)
; (11)

V - the ‘violin bow’ constraint, expressed by equation
(5), which is rewritten as

Ẋ(l)cosβ0 + Ẏ (l)sinβ0+θ̇(l)
[
Y (l)cosβ0

+[l−X(l)]sinβ0

]
= 0,

(12)

or, equivalently, in terms of virtual displacements as

[
δX0+δζl

]
cosβ0 +δY (l)sinβ0

+δθ(l)
[
Y (l)cosβ0 +[l−X(l)]sinβ0

]
= 0.

(13)

As a secondary effect, the device realizing the non-
holonomic constraint has a mass Ml and rotational inertia Ir,l ,
which may be non-negligible and therefore are both assumed
to act at the rod’s end, s = l.

2.1 Dissipative effects
Different sources of external dissipation are considered

through the following linear damping coefficients:

ce and ct,l modelling external translational damping re-
spectively distributed on the rod and concentrated on the
non-holonomic device (both dissipation sources corre-
spond to viscous forces, provided for instance by the air
drag during motion);
cr,l - rotational damping produced at the non-holonomic
constraint when pivoted about eee3.

Following [25], dissipation from internal damping is intro-
duced by means of the linear visco-elastic constitutive law
σ = E ε+Λε̇, relating the longitudinal stress σ to the strain
ε and its rate, respectively through the Young modulus E and
the viscosity parameter Λ. Assuming a linear strain distribu-
tion (ε = yθ′, where y is the distance from the neutral axis
and a dash ‘ ′ ’ denotes differentiation with respect to the
curvilinear coordinate s), integration over the rod’s cross sec-
tion provides the internal bending moment M as

M (s, t) = Bθ
′(s, t)+D θ̇

′(s, t) , (14)

where B = EJ and D = ΛJ are respectively the bending stiff-
ness and the viscous damping coefficient associated to bend-
ing, with J =

∫
A y2dA being the second moment of inertia of

the cross section.

3 Equations of motion
3.1 The elastic rod

Disregarding possible self-contact for the rod, its equa-
tions of motion can be obtained by considering the total po-
tential energy V given by the sum of elastic energy (stored
in the rod and, when present, in the spring) and the potential
of the load (when present)

V = Ξ(X0)+
B
2

∫ l

0
θ
′(s, t)2ds, (15)

where Ξ is given either by equation (7) or (8).
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Considering the different inertial contributions to the
system, the kinetic energy T is given by

T =
1
2

Ir,l θ̇(l, t)2 +
1
2

Ml
(
Ẋ(l, t)2 + Ẏ (l, t)2)

+
1
2

MX Ẋ0(t)2 +
1
2

ρ

∫ l

0

(
Ẋ(s, t)2 + Ẏ (s, t)2)ds,

(16)

where ρ is the uniform mass density.
It follows that the Lagrangian L of the system is

L =
∫ l

0
L ds, (17)

where

L =
MX

2l
Ẋ0(t)2 +

Ir,l

2l
θ̇(l, t)2 +

Ml

2l

(
Ẋ(l, t)2 + Ẏ (l, t)2)

+
ρ

2
(
Ẋ(s, t)2 + Ẏ (s, t)2)− Ξ(X0)

l
− 1

2
Bθ
′(s, t)2

+
M0

l
θ(0)+RX (X ′− cosθ)+RY (Y ′− sinθ) ,

(18)

in which the time derivative Ẋ and Ẏ of the position functions
X and Y can be obtained by differentiating the Eqs.(6) and
the three Lagrangian multipliers RX (s, t), RY (s, t) and M0(t)
are associated to the constraints of inextensibility (from the
derivative with respect to s of Eqs.(6)) and of null rotation of
the initial rod’s end, respectively.

The equations of motion for the rod (without keeping
into account for the moment non-holonomic constraints and
dissipative effects) can be obtained by means of the virtual
work of the conservative forces acting on the system and the
vanishing of the first variation δA of the ‘action’ integral A ,

δA = 0, where A =
∫ t1

t0

∫ l

0
L dsdt, (19)

and t0 and t1 are two arbitrary time instants. To enforce equa-
tion (19), the following primary functions are needed

w = {X0, X , Y,θ, X(l), Y (l),θ(l), RX , RY , M0}, (20)

whose variations δw are subject to the boundary conditions
at the rod’s ends (s= 0 and s= l) and at the two time instants
(t0 and t1),

δw
∣∣
t0
= δw

∣∣
t1
= 0, δθ(0) = δY (0) = 0,

δX(0) = δX0, δX(l) = δX0 +δζl ,
(21)

where δζl is specified by Eq.(11).

3.2 Equations of motion for the non-holonomic systems
with dissipative effects

The equation (19) introduced in the previous section
hold for any elastic rod with the left end connected to a
freely-sliding clamp, so that in these equations the non-
holonomic constraints and dissipations do not play, for the
moment, any role. Their role is defined as follows.

Dissipation can be introduced in the D’Alembert-
Lagrange equations by adding to δA the virtual work of
damping forces through the Rayleigh dissipation function
Fd , built from the 4 considered viscous sources as

Fd =
∫ l

0
Fd ds, (22)

where

Fd =
ce

2
(Ẋ(s, t)2 + Ẏ (s, t)2)+

cr,l

2l
θ̇(l, t)2

+
D
2

θ̇
′(s, t)2 +

ct,l

2l

(
Ẋ(l, t)2 + Ẏ (l, t)2) . (23)

The non-holonomic constraint, Eq.(10) or (13), can be
introduced in the D’Alembert-Lagrange equations by means
of the Lagrangian multiplier p(t), representing the reaction
force (positive when compressive) transmitted by the non-
holonomic constraint to the structure. By keeping into con-
sideration also viscosity, the complete equations become

δA−
∫ t1

t0

∫ l

0
∑

i

(
∂Fd

∂α̇i
δαi

)
dsdt =∫ t1

t0
p(t)

[(
δX0 +δζ(l)

)
cosΘ+δY (l)sinΘ+δθ(l)A

]
dt,

(24)

where {αi}= {X , Y, θ′, θ(l), X(l), Y (l)} (its rate and varia-
tions are respectively α̇i and δαi) and

{
Θ, A

}
=

{
θ(l)+β0, 0

}
‘skate’,{

β0, Y (l)cosβ0 +[l−X(l)]sinβ0

}
‘violin bow’.

(25)

Invoking arbitrariness of the independent variations of
the parameters and of the time instants t0 and t1, the equa-
tions of motion can be finally obtained. Arbitrariness of vari-
ations in the Lagrangian multipliers leads to

X ′ = cosθ, Y ′ = sinθ, θ(0, t) = 0, (26)

while the field equations governing functions X , Y and θ are

ρẌ + ceẊ +R′X = 0, ρŸ + ceẎ +R′Y = 0, (27)
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and

Bθ
′′+Dθ̇

′′+RX sinθ−RY cosθ = 0, (28)

respectively. The coordinate X0 of the moving clamp satisfies

MX Ẍ0 +
dΞ(X0)

dX0
+MlẌ(l)+ ct,lẊ(l)−RX (l)

+RX (0)+ pcosΘ = 0.
(29)

Finally, the equations of motion are complemented by the
contributions governing X(l), Y (l)

MlẌ(l)+ ct,lẊ(l)−RX (l)+ pcosΘ = 0,
MlŸ (l)+ ct,lẎ (l)−RY (l)+ psinΘ = 0,

(30)

the rotation of the end of the rod θ(l)

Ir,l θ̈(l)+ cr,l θ̇(l)+Bθ
′(l)+Dθ̇

′(l)+ pA= 0, (31)

and by the non-holonomic constraint

Ẋ(l)cosΘ+ Ẏ (l)sinΘ+ θ̇(l)A= 0. (32)

The number of governing equations can be reduced through
integration of Eqs.(27) to provide expressions for the La-
grangian multipliers RX (s, t) and RY (s, t)

RX = RX (l)+
∫ l

s
(
ρẌ + ceẊ

)
dς,

RY = RY (l)+
∫ l

s
(
ρŸ + ceẎ

)
dς,

(33)

which represent the space evolution of the components of
the total internal force projected along the horizontal X and
vertical Y axes, respectively. By means of equations (30), the
terms RX (l, t) and RY (l, t) can be made explicit,

RX = MlẌ(l)+ ct,lẊ(l)+ pcosΘ+
∫ l

s
(
ρẌ + ceẊ

)
dς,

RY = MlŸ (l)+ ct,lẎ (l)+ psinΘ+
∫ l

s
(
ρŸ + ceẎ

)
dς.

(34)
Eqs.(34) therefore represent the balance of linear momentum
along the X and Y directions for the portion of rod comprised
between the coordinates s and l.

The substitution of Eqs.(34) into Eq.(28) yields the fol-
lowing expression for the rotation field

Bθ
′′+Dθ̇

′′+ psin(θ−Θ)+ sinθ

(
MlẌ(l)+ ct,lẊ(l)

+
∫ l

s

(
ρẌ + ceẊ

)
dς

)
− cosθ

(
MlŸ (l)+ ct,lẎ (l)

+
∫ l

s

(
ρŸ + ceẎ

)
dς

)
= 0,

(35)

while the coordinate X0 can be expressed by

MX Ẍ0 +
dΞ(X0)

dX0
+MlẌ(l)+ ct,lẊ(l)+ pcosΘ

+
∫ l

0

(
ρẌ + ceẊ

)
dς = 0.

(36)

Therefore, Eqs.(35), (36), (32), (26)1 and (26)2 repre-
sent a system of 5 equations in the 5 unknown functions
{θ, X0, p, X , Y}, complemented by Eqs.(26)3 and (31) ex-
pressing the boundary conditions for θ.

4 Euler’s elastica with non-holonomic constraints
Neglecting the inertial and damping terms in the afore-

mentioned equations, the equations governing the Euler’s
elastica are recovered, subject to a ‘skate’ or a ‘violin bow’
non-holonomic constraint. Under the quasi-static assump-
tion, the Eqs.(28), (26), (34) and (36) reduce to the following
system governing the quasi-static configuration (superscript
QS)



Bθ
′′QS +RQS

X sinθ
QS−RQS

Y cosθ
QS = 0

X ′QS = cosθ
QS

Y ′QS = sinθ
QS

RQS
X = pQS cosΘ

QS = const

RQS
Y = pQS sinΘ

QS = const

dΞ(X QS
0 )

dX QS
0

+ pQS cosΘ
QS = 0 ,

(37a)

(37b)

(37c)

(37d)

(37e)

(37f)

where the equation for the non-holonomic constraint (32) is
automatically satisfied. Moreover, by considering Eqs.(26)3
and (31), the aforementioned system is complemented by the
following boundary conditions on the rotation field θQS

θ
QS(0) = 0, Bθ

′QS(l)+ pQSAQS = 0 (38)

while the condition Y QS(0) = 0 holds true.
Similarly to the case of discrete systems [8], the number

of unknowns {θQS, RQS
X , RQS

Y , X QS, Y QS, X QS
0 , pQS} is equal to 7,

thus exceeding the number of Eqs.(37) of a factor 1. This
reflects the fact that the quasi-static solution is represented
by a one-dimensional manifold of equilibrium states [1] that
will be shown below to be parametrized through the free co-
ordinate θQS(l).

Equilibrium configuration can be found in terms of Ja-
cobi elliptic functions for the inflectional elastica [26], by
fixing the following four parameters:

- the left end rotation of the rod θQS(0) = 0, Eq. (38)1;
- the right end rotation of the rod θQS(l);
- the inclination β = ΘQS of pQS w.r.t. the X-axis;
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- the characteristic parameter of the elastica η, represent-
ing the inclination of the tangent to the elastica at an
inflection point with respect to the line connecting all
inflections.

In the following, the parameter η is obtained for the rod sub-
ject to the ‘skate’ and the ‘violin bow’ constraints as a func-
tion of the end rotation θQS(l).

4.1 Statics of the rod for ‘skate’ constraint
For the ‘skate’ constraint, the parameter β is the ‘skate’

inclination with respect to the X axis, β = ΘQS = θQS(l)+β0.
Furthermore, because AQS = 0, by exploiting the analyti-
cal expression (38)2 of vanishing curvature at the final end
θ′QS(l) = 0 it follows that η = sin(|β0|/2).2

Because the elastica provides the non-holonomic reac-
tion force pQS = |R| as a function of the end’s rotation θQS(l),
this angle represents the only unknown needed to define the
equilibrium configuration. Indeed, the clamp position X QS

0
can be solved from equation (37f) as a function of ∆ (for
loading A), or of F (for loading B), and θQS(l).

It follows that the rotation θQS(l) plays the role of a free
coordinate of the system (37), so that the existence of the
inflectional elastica (related to real values of parameter ω0 in
[26]) provides the following manifold of equilibrium states
for the elastica subject to a ‘skate’ non-holonomic constraint

D :=

θ
QS(l) ∈ R :

∣∣∣∣∣∣∣∣
sin
(

θQS(l)+β0

2

)
sin
|β0|

2

∣∣∣∣∣∣∣∣≤ 1

 . (39)

As examples of multiple solutions, five quasi-static con-
figurations selected within the manifold of equilibrium states
are reported in Fig.3 for a ‘skate’ inclination β0 = 0.1π. The
configurations share a null position of the sliding clamp,
X QS

0 = 0, but differ in the end’s rotation value θQS(l) and
in the imposed displacement ∆ of the spring. These con-
figurations are picked within the set defined by equation
(39) which for the considered ‘skate’ inclination reduces to
θQS(l) ∈ [−0.2,0]π.

The condition η = sin(|β0|/2) shows that the trivial
(straight) solution is unique for a ‘skate’ aligned with the
rod’s end, β0 = 0. Indeed, the manifold domain (39) re-
duces to the condition θQS(l) = 0, so that θQS(s) = 0 for every
s ∈ [0, l].

4.2 Statics of the rod for ‘violin bow’ constraint
For ‘violin bow’ constraint, the parameter β is the incli-

nation of the rotating cylinder, β = β0. The elastica param-
eter η is provided through the following nonlinear relation,

2A null curvature at the coordinate s = l implies

cos
{

arcsin
[

1
η

sin
(
−β0

2

)]}
= 0, →

√
1− 1

η2 sin2
(

β0

2

)
= 0.

Fig. 3: Five different equilibrium configurations for an elastic rod subject
to the non-holonomic ‘skate’ constraint inclined at β0 = 0.1π. The five de-
formed configurations share the same position of the sliding clamp, XQS

0 = 0,
but differ in the value of the end’s rotation θQS(l) and the corresponding
force in the spring (dimensionless values Kl2 ∆/B listed in the legend).

obtained from Eq.(38)2 by considering Eq.(25) and involving
the end rotation θQS(l)

2ηcosω0 =− [F(ωl ,η)−F(ω0,η)]sinβ0, (40)

where F(σ,κ) is the incomplete elliptic integral of the first
kind [26] and for m inflection points

ω0 = arcsin
[

1
η

sin
(
−β0

2

)]
,

ωl = (−1)m arcsin
[

1
η

sin
(

θQS(l)−β0

2

)]
±mπ.

As for the ‘skate’ constraint, now the end’s rotation θQS(l)
of the rod plays the role of free coordinate defining a one-
dimensional manifold of equilibrium states. The uniqueness
of the trivial solution at null inclination β0 = 0 is proven by
Eq.(40), which reduces to η = 0 and leads to θQS(s) = 0 for
every s ∈ [0, l].

5 Linearized dynamics and instabilities. Case β0 = 0
In the next Sections, the linearized equations of mo-

tion for the considered non-holonomic systems are obtained
and particularized for β0 = 0. This condition represents a
perfectly-aligned non-holonomic constraint, for which the
sliding direction is perpendicular to the tangent vector at the
final end of the rod s = l for the ‘skate’ constraint and for
which the inclination of the rolling cylinder taken with re-
spect to the horizontal is null for the ‘violin bow’ constraint.
Moreover, as sentenced in the previous Section, the condition
β0 = 0 corresponds to the existence of a unique quasi-static
solution represented by the trivial one.

The linearized equations of motion around the trivial
quasi-static solution, θQS = 0 and X QS

0 = 0, are obtained by
introducing an arbitrary small real parameter ε relating the
fields and quantities to their unperturbed (quasi-static, super-
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script QS) and perturbed contributions (superimposed ‘ˆ’)

θ = ε θ̂, X0 = ε X̂0, p = pQS + ε p̂, (41)

and by assuming fixed displacement ∆. The reaction force
at equilibrium pQS can be evaluated through Eq.(37f) in the
specific case θ(l) = β0 = 0 thus obtaining

pQS =

{
K(∆−X QS

0 ) for elastic device A,

F for dead loading B.
(42)

The linearization of the equations of motion (35) and
(36) and of the boundary conditions equations (26)3 and (31)
is performed by considering the first-order term in the expan-
sion in ε. For simplicity, the symbol ‘ˆ’ is removed hence-
forth so that quantities {θ, X0, p} will denote perturbations
of the related scalar fields.

Exploiting Eqs.(6) for X and Y , the equation of motion
(35) is linearized as

Bθ
′′+Dθ̇

′′−
∫ l

s

(
ρ

∫
ς

0
θ̈dσ+ ce

∫
ς

0
θ̇dσ

)
dς

+ pQS [θ−Γθ(l)]−Ml

∫ l

0
θ̈ds− ct,l

∫ l

0
θ̇ds = 0 ,

(43)

where the reaction force of the non-holonomic constraint is
present both with its unperturbed (‘pre-stress’) part pQS at the
equilibrium and its perturbation p, and Γ = 1 (Γ = 0) for
‘skate’ (for ‘violin bow’) constraint.

The linearization of Eq.(26)2 leads to the condition Y ′ =
θ, so that a substitution in Eq.(43) provides

BY ′′′+DẎ ′′′−
∫ l

s

(
ρ

∫
ς

0
Ÿ ′dσ+ ce

∫
ς

0
Ẏ ′dσ

)
dς

+ pQS[Y ′−ΓY ′(l)]−Ml

∫ l

0
Ÿ ′ds− ct,l

∫ l

0
Ẏ ′ds = 0,

(44)

which differentiated in s yields

BY ′′′′+DẎ ′′′′+ρŸ + ce Ẏ + pQS Y ′′ = 0 , (45)

where pQS is given by Eq.(42). Eq.(45) is independent of Γ,
so that it is valid for both types of non-holonomic constraints.

Due to the presence of fourth order spatial derivatives in
the equation (45), a further boundary condition is introduced
by particularising the differential equation (44) at s = l,

BY ′′′(l)+DẎ ′′′(l)+ pQS(1−Γ)Y ′(l)−Ml Ÿ (l)

− ct,l Ẏ (l) = 0.
(46)

The boundary condition (31) can be linearized as

BY ′′(l)+DẎ ′′(l)+ Ir,l Ÿ ′(l)+ pQSY (l)(1−Γ)

+ cr,l Ẏ ′(l) = 0 ,
(47)

and complemented by Y ′(0, t) = Y (0, t) = 0.
Because Ẋ0 = Ẋ(l), both non-holonomic constraints,

Eq.(32), are described by the same linearized equation

Ẋ0 = 0 → X0(t) = X0(0) ∀ t, (48)

so that X0(0) = 0 is selected and the linearized version of the
Eq.(36) gives a null perturbation in the reaction force, p =
0, for every loading condition; therefore the reaction of the
non-holonomic constraint remains constant in a first-order
analysis, as it happens in the case of follower load.

Note that the type of constraint only affects the boundary
conditions (46) and (47) through Γ, while the loading device
affects Eqs.(45), (46) and (47) through pQS, see Eq.(42).

The linearized equations governing the dynamics of the
rod with the non-holonomic constraints, Eqs. (45)–(47) plus
Y ′(0, t) = Y (0, t) = 0, coincide for Γ = 1 (for Γ = 0) with
the corresponding equations pertinent to the Beck column (to
the Reut column), in its variant with viscosity and additional
mass concentrated at the loaded end. Therefore, the mod-
els by Beck and Reut can be understood as simplified linear
models for structures subject to non-holonomic constraints.
Moreover, as noted in [3] for a different non-holonomic sys-
tem, the linearized equations of dynamics, Eqs. (45)–(47)
plus Y ′(0, t) = Y (0, t) = 0, violate the conservation of the
energy (as the Beck and Reut models do), even though the
exact equations without dissipation crearly describe a fully-
conservative system. This peculiarity of non-holonomic sys-
tems is a consequence of the mechanical equivalence be-
tween non-holonomic conditions and polygenic [27] forces
that cannot be derived from a potential.

5.1 Dimensionless formulation
It is instrumental to introduce the following dimension-

less quantities

s =
s
l
, τ =

t
T
, Ỹ =

Y
l
, p̃QS =

pQSl2

B
,

M̃l =
Ml

ρl
, Ĩr,l =

Ir,l

ρl3 , c̃e =
cel2
√

ρB
,

D̃ =
D

l2√ρB
, c̃t,l =

ct,l l√
ρB

, c̃r,l =
cr,l

l
√

ρB
,

(49)

where T = l2
√

ρ/B is the characteristic time of the rod.
By introducing the exponential solution Ỹ (s,τ) = Ψ(s)eΩτ,
where Ω is the dimensionless eigenvalue and Ψ(s) the
generic eigenfunction of the system, the following fourth or-
der ordinary differential equation is obtained (‘ ′ ’ stands for

7
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the derivative with respect to the dimensionless curvilinear
coordinate s)

(1+ D̃Ω)Ψ
′′′′(s)+ p̃QS

Ψ
′′(s)+(Ω2+ c̃e Ω)Ψ(s) = 0 , (50)

complemented by the boundary conditions



(1+ D̃Ω)Ψ
′′′(1)− (M̃l Ω

2 + c̃t,l Ω)Ψ(1)
+ p̃QS (1−Γ)Ψ′(1) = 0 ,

(1+ D̃Ω)Ψ
′′(1)+(Ĩr,l Ω

2 + c̃r,l Ω)Ψ
′(1)

+ p̃QS (1−Γ)Ψ(1) = 0 ,

Ψ
′(0) = 0 ,

Ψ(0) = 0.

(51a)

(51b)

(51c)

(51d)

5.2 Evaluation of the flutter and divergence loads
The eigenfunction Ψ(s), solution to Eq.(50), is given by

Ψ(s) =A1 sin(λ1s)+A2 cos(λ1s)+A3 sinh(λ2s)

+A4 cosh(λ2s) ,
(52)

where

λ1,2 =

√√√√√ (p̃QS)2−4Ω(D̃Ω+1)(c̃e +Ω)

4(D̃Ω+1)2 ± p̃QS

2(D̃Ω+1)
,

(53)
Imposing the boundary conditions (51) to the general solu-
tion (52) leads to the linear system

{M+ p̃QS (1−Γ)P} A = 0 (54)

where

M =


0 1 0 1
λ1 0 λ2 0
a31 a32 a33 a34
a41 a42 a43 a44

 ,

P =


0 0 0 0
0 0 0 0

sinλ1 cosλ1 sinhλ2 coshλ2
−λ1 cosλ1 λ1 sinλ1 −λ2 coshλ2 −λ2 sinhλ2


(55)

and the following parameters have been introduced



a31 = λ1 cosλ1
(
c̃r,lΩ+ Ĩr,lΩ

2
)
−λ2

1(D̃Ω+1)sinλ1,
a32 =−λ1 sinλ1

(
c̃r,lΩ+ Ĩr,lΩ

2
)
−λ2

1(D̃Ω+1)cosλ1,
a33 = λ2 coshλ2

(
c̃r,lΩ+ Ĩr,lΩ

2
)
+λ2

2(D̃Ω+1)sinhλ2,
a34 = λ2 sinhλ2

(
c̃r,lΩ+ Ĩr,lΩ

2
)
+λ2

2(D̃Ω+1)coshλ2,
a41 =−sinλ1

(
c̃t,lΩ+ M̃lΩ

2
)
−λ3

1(D̃Ω+1)cosλ1,
a42 =−cosλ1

(
c̃t,lΩ+ M̃lΩ

2
)
+λ3

1(D̃Ω+1)sinλ1,
a43 =−sinhλ2

(
c̃t,lΩ+ M̃lΩ

2
)
+λ3

2(D̃Ω+1)coshλ2,
a44 =−coshλ2

(
c̃t,lΩ+ M̃lΩ

2
)
+λ3

2(D̃Ω+1)sinhλ2.
(56)

When Γ = 0 (and Γ = 1), the following property holds

det
[
M+ p̃QS (1−Γ)P

]
= detM, (57)

so that the characteristic equation obtained by imposing the
vanishing of the determinant (57) for the ‘skate’ (Γ = 1) and
for the ‘violin bow’ (Γ = 0) constraints coincide (which is
an expected property, as this coincidence is also observed for
the Beck and Reut columns) and are given by

sinhλ2

[
(λ2

1−λ
2
2)sinλ1

(
λ

2
1λ

2
2C2

1 −C2C3
)

+λ1C1
(
λ

2
1 +λ

2
2
)

cosλ1
(
λ

2
2C2−C3

)]
+λ2 coshλ2

[
2λ1 cosλ1

(
λ

2
1λ

2
2C2

1 −C2C3
)

+C1
(
λ

2
1 +λ

2
2
)

sinλ1
(
λ

2
1C2 +C3

)]
+λ1λ2

[
C2

1
(
λ

4
1 +λ

4
2
)
+2C2C3

]
= 0 ,

(58)

where

C1 = 1+ D̃Ω, C2 = Ω
(
c̃r,l +Ω Ĩr,l

)
, C3 = Ω

(
c̃t,l +ΩM̃l

)
.

The critical load of flutter instability can be obtained from
Eq.(58) as the smallest dimensionless pre-stress p̃QS causing
Ω to display a complex conjugate pair with positive real part,
while the divergence load corresponds to the smallest value
of p̃QS providing a real and positive eigenvalue Ω.

Because the characteristic equation (58) applies to the
elastic rod connected to both the ‘skate’ and ‘violin bow’,
flutter and divergence loads are the same for both structures
and in turn coincide with the Beck and Reut columns. This
feature corresponds to an analogous property found for dis-
crete columns made up of N of rigid bars connected by visco-
elastic hinges [8].

As a final remark, the trivial eigenvalue Ω = 0 is always
a solution for Eq.(58), a feature typical of non-holonomic
systems. This trivial solution can simply be omitted in the
evaluation of the stability of configurations belonging to the
manifold of equilibrium states [1]. By omitting the trivial
eigenvalue Ω = 0, Eq.(58) coincides with that holding for
the aforementioned structures.

8
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5.3 Numerical examples: stability and Ziegler destabi-
lization paradox

With reference to a rod having a mass ratio M̃l = 1,
null rotational inertia Ĩr,l = 0, and subject to an internal dis-
sipation D̃ = 0.02 only (c̃e = c̃t,l = c̃r,l = 0), the branches
of real and imaginary parts of the eigenvalues Ω are re-
ported as a function of the pre-stress p̃QS in Fig.4 (left), show-
ing the value of flutter and divergence loads, respectively
p̃QS

flu ≈ 7.920 and p̃QS

div ≈ 40.646.
Note that the flutter load p̃QS

flu represents the limit value
for a column made up of a large number N of rigid bars
(Fig.4, right).3

In agreement with the predictions for the Pflüger column
by Tommasini et al. [29], the ‘ideal’ flutter and divergence
loads are evaluated at null viscosities ‘from the beginning’,
for M̃l = 1 and Ĩr,l = 0, to be P0 ≈ 16.212 and D0 ≈ 34.465,
respectively. The flutter load in the limit of vanishing vis-
cosities confirms the Ziegler’s destabilization paradox for a
rod subject to non-holonomic constraints. Indeed, such limit
value of the flutter load is numerically found to be never
higher than that evaluated for the same structure, but with
null dissipation ‘from the beginning’. In particular, consid-
ering the presence of a single damping source, the following
values are found:

- Internal damping D̃

lim
D̃→0

p̃QS

flu(D̃, c̃e = c̃t,l = c̃r,l = 0)≈ 7.905 < P0 ;

- External damping c̃e

lim
c̃e→0

p̃QS

flu(c̃e, D̃ = c̃t,l = c̃r,l = 0)≈ 16.122 < P0 ;

- Translational damping of the non-holonomic device c̃t,l

p̃QS

flu(c̃t,l , D̃ = c̃e = c̃r,l = 0)≈ 16.052 < P0 ;

- Rotational damping of the non-holonomic device c̃r,l

p̃QS

flu(c̃r,l , D̃ = c̃e = c̃t,l = c̃r,l = 0)≈ 5.219 < P0 .

Finally, it is worth highlighting that a viscosity-
independent Ziegler destabilization paradox occurs for the
continuous system as observed for the discrete system [8].
Indeed, when only one of the two damping sources con-
nected to the non-holonomic device is considered, the flutter

3Using equations available in [8] as Supplementary Material and fol-
lowing [28], the flutter load for the discrete counterpart of the continuous
system can be evaluated by considering the following parameters of inter-
nal rotational damping ci and of rotational stiffness k j ( j = 1, ...,N) for a
visco-elastic chain of N rigid bars

ci =
D
l

N, k1 =
2B
l

N , k j =
B
l

N, m1 =m j =
ρl
N
, j = 2, ...,N

and by assuming that the total length of the discrete system coincides with
that of the continuous rod, L = l.

load p̃QS becomes independent of the damping coefficient (ei-
ther c̃t,l or c̃r,l), and smaller than the ideal value P0 for every
amount of damping.

6 Conclusions
Non-holonomic constraints are commonly used in me-

chanics: a non-slipping wheel, or a non-slipping sphere,
moving on a plane, or a structural element in slipless contact
with a freely rolling cylinder are simple examples. Neverthe-
less, elastic structures containing these constraints have been
only scarcely analyzed. Using two simple non-holonomic
constraints we have shown that it is possible to equip an elas-
tic rod with boundary conditions that satisfy conservation of
energy and, in the linearized version, exactly reproduce the
Beck and the Reut columns, so displaying flutter, divergence
instability, and the Ziegler destabilization paradox. The lat-
ter structures were invented as subject to non-conservative
follower loads and our study definitely shows that can be un-
derstood as simple models reproducing linearized effects of
non-holonomic constraints.
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