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Abstract

A new continuous model of shearable rod, subject to large elastic deformation, is derived from nonlinear
homogenization of a one-dimensional periodic microstructured chain. As particular cases, the governing
equations reduce to the Euler elastica and to the shearable elastica known as ‘Engesser’, that has been
scarcely analysed so far. The microstructure that is homogenized is made up of elastic hinges and four-
bar linkages, which may be realized in practice using origami joints. The equivalent continuous rod
is governed by a Differential-Algebraic system of nonlinear Equations (DAE), containing an internal
length ratio, and showing a surprisingly rich mechanical landscape, which involves a twin sequence of
bifurcation loads, separated by a ‘transition’ mode. The latter occurs, for simply supported and cantilever
rods in a ‘bookshelf-like’ mode and in a mode involving faulting (formation of a step in displacement),
respectively. The postcritical response of the simply supported rod exhibits the emergence of folding, an
infinite curvature occurring at a point of the rod axis, developing into a curvature jump at increasing
load. Faulting and folding, excluded for both Euler and Reissner models and so far unknown in the
rod theory, represent ‘signatures’ revealing the origami design of the microstructure. These two features
are shown to be associated with bifurcations and, in particular folding, with a secondary bifurcation of
the corresponding discrete chain when the number of elements is odd. Beside the intrinsic theoretical
relevance to the field of structural mechanics, our results can be applied to various technological contexts
involving highly compliant mechanisms, such as the achievement of objective trajectories with soft robot
arms through folding and localized displacement of origami-inspired or multi-material mechanisms.

1 Introduction

The implementation of shear compliance into an elastic rod model is an old mechanical problem, rooted in
the early works of Rankine [32], Bresse [8], and Ehrenfest (following Elishakoff [10, 15]), and Timoshenko
[37]). Though standard in the linear beam theory, the effect of shear becomes controversial when large
deformation is involved, so that different approaches lead to different results and end up affecting even the
linearized problem of buckling. This is a consequence of the fact that there are several ways to introduce
both kinematics and internal forces in a large deformation setting and that, without violating any rule
of mechanics, these ways reflect different points of view and lead to different results. So far, two main
mechanical models for shear deformable rods have been pointed out, known as ‘Engesser’ [16] and ‘Haringx’
[21], the latter formulated in full generality by Reissner [33]. The Reissner model is the mathematically
easiest among the two and the most widespread [3, 4, 5, 9, 35], while the former is only scarcely analysed
[2, 17, 23, 43]. Both the models reduce to: (i.) the Euler’s elastica when the shear deformation is neglected,
and (ii.) to the two versions of the prestressed Timoshenko model for the determination of beam buckling
(both included by him in [38]). When all terms are considered, Fig. 1 illustrates the hierarchy of models,
with reference to a rod in a simply supported configuration with a load parallel to the initial straight axis.
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Our shearable rod model
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Figure 1: Different shearable models for a simply supported rod subject to an axial force P (negative in
compression). α is a micromechanical parameter, EI and GAs are, respectively, the bending and the shear
stiffnesses of the rod’s cross-section and θ its rotation, different from the rotation angle φ of the tangent to
the rod’s axis, due to the presence of a shear angle γ/α. The symbol ′ denotes differentiation with respect to
the axis coordinate s (omitted for conciseness). Notice that: (i.) in the infinitesimal theory all the models
are characterized by vanishing rotational fields for every value of the axial force P ; (ii.) the rod model
introduced here (labelled ‘our shearable rod model’) is characterized by two coupled differential–algebraic
equations, while in all other models the algebraic equation is decoupled from the differential one, which can
be solved independently of the other involved variable.

The striking difference between the two Haringx/Reissner and the Engesser models can immediately be
appreciated by considering that the former rod predicts bifurcation occurring under tensile force, which are
impossible for the Engesser and Euler rods (tensile bifurcations for Euler rod can be induced by constraints
[41]).

Perhaps curiously, progress in clarifying shearable rod models can be made by resorting to prototyping
technology (3D printing and CNC machines). In fact, the latter sets the designer free from the constraint of
using homogeneous materials to realize a beam; rather, an elastic rod can be obtained through the periodic
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repetition of microstructures that may reach virtually any level of complexity. With a properly designed
microstructured chain one can independently tune axial, shear, and bending stiffnesses to obtain desired
compliance ratios. The overall behaviour of the chain can be homogenized into the response of an equivalent
elastic rod. In the latter, the effective shear and bending stiffnesses are no longer mutually constrained as
in the case of a rod made of a homogeneous material, so that different continuous models emerge and find
their justification as connected to a given microstructure. Pioneers in this line of research, and extending
earlier results of Domokos [12, 13, 14], are Challamel and co-workers [11, 20, 23, 24, 26] who have shown
how the Reissner and the Engesser models can both be obtained by employing two microstructures differing
only in the elastic element transmitting shear: a ‘Love finite shear strain’ component (equivalent to a slider
and similar to the element used in [30]) in the former case and a ‘Timoshenko finite shear strain’ component
in the latter. In this way, the two famous shearable rod models have been shown to be both consistent from
a mechanical perspective, but representative of two different microstructures.

The aim of the present article is to introduce, via homogenization, a new nonlinear model of shearable rod,
based on a four-bar linkage microstructure, representative of a simple ‘origami’ junction (a concept prototype
of a three-element chain at macroscale1 is shown in Fig. 2, but microscale realizations are possible2). In

Figure 2: Concept prototype of the microstructure forming a three-element discrete chain to be homogenized
into a new model of shear deformable elastic rod. Note the box-like elements representing origami-junctions
and the white elements crossing the hinges, so providing the flexural stiffness. Upper part: lateral view
of the undeformed configuration. Top views of the undeformed configuration (central part, left), of a bent
deformation (central part, right), of the bifurcation modes with the faulting (lower part, left) and the
‘bookshelf-like’ (lower part, right) modes.

this model, an internal length ratio, constitutive and geometrical in nature and absent in the Engesser
and Reissner rods, appears in the governing equations. The complexity of the microstructure leads to a
work-conjugacy governing the decomposition of the force internal to the equivalent rod into a non-trivial

1The black elements in the concept model are made in Loctite 3D IND403 and were manufactured with a Stratasys Origin
One 3D printer. They are jointed with folded cardboard sheets. The white connections providing bending stiffness are made in
Agilus30 and were 3D printed with a a Stratasys J750.

2Microscale compliant mechanisms, closely resembling the four-bar linkage system explored here, may be realised by means
of advanced 3D-printing technologies based on 2PP (two-photon polymerization). Such technologies, which are also referred to
as direct laser writing, achieve sub-micron resolution. For instance, with such a 3D-printer it would be possible to manufacture
a composite rod of total length 30 mm, containing 30 four-bar links, and cross section 0.5 mm×0.5 mm in the thicker parts.
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definition of normal and shearing forces. The decomposition shows that the unshearable Euler and the
shearable Engesser models can both be interpreted as limit cases of the broader shearable model introduced
here, obtained for limit values of the internal length ratio, Fig. 1. Our equivalent rod model is governed by
a set of irreducible Differential–Algebraic Equations (DAE) and shows a rich mechanical behaviour. With
respect to the Engesser model, our rod theory leads to a Sturm-Liouville problem for the bifurcation under
compressive loads, surprisingly characterized by two twin infinite sequences of eigenvalues. One sequence
has eigenvalues bounded (in their absolute value) from both below and above, while the other sequence
is bounded only from below. These two sequences are found to be separated by an additional eigenvalue,
which corresponds to a ‘bookshelf-like’ mode of bifurcation for a simply supported beam configuration, or
to a discontinuous mode in a cantilever setting.

For sufficiently high values of loading, our equivalent rod shows the emergence of discontinuous solutions
in terms of either folding (formation of a discontinuity in the curvature of the rod axis, in a simply supported
scheme) or faulting (formation of a displacement jump at the clamp in a cantilever scheme). Such singular
mechanisms in rod elements are analogous to the folding and faulting found in highly-anisotropic elastic
solids, where the shear/bending stiffness ratio of the rod plays now a role analogous to the anisotropy
contrast of the continuum [7, 18, 19]. These folding and faulting discontinuities are ‘inherited’ by the
presence of origami junctions in the microstructural design and were never so far observed in any rod
model. While they are excluded for both Euler and Reissner rods, our model shows (as a particular case)
that both discontinuities may arise for the Engesser rod, another previously overlooked feature. Folding
initiates from a point (but we show also multiple folding, initiating simultaneously at two different cross
sections, associated to two points) along the rod axis where the curvature localizes, becoming infinite, and
at the correspondent step of loading the Runge-Kutta integration of the DAE governing the deformation
of the rod fails to converge. The difficulty in the integration can be bypassed through the insertion at
the singularity point in the equivalent rod of a special element localizing the curvature, namely, an elastic
hinge. Providing an increasing stiffness to the hinge, it is shown that the solution converges to a constant
result, evidencing folding. The latter is further explained through consideration of the microstructured
chain underlying the homogenized response of the rod. In particular, when the chain is characterized by
an even number of elements, the folding of the continuum simply becomes a localized rotation between the
two central elements. The situation complicates when the number of elements is odd, so that a secondary
bifurcation is shown to occur, where the initial postcritical path becomes unstable and separates from a new
stable postcritical path, in which a sort of ‘cusp’ of elements forms, mimicking the folding of the continuous
model.

The results outlined in the present article introduce a new approach to the design of elastic structures
by leveraging microstructural features and show that

many (or perhaps even infinite) new shearable rod models can be introduced,
with internal geometrical constraints (possibly different from our constraint involving an internal

length ratio), all representing real behaviours of periodic chains of discrete elements.

This concept opens up a wide range of new applications, such as folding and faulting, which could be pivotal
in developing soft robotic arms. Indeed, origami-inspired arms [22, 27, 28, 34, 40, 42] complement solutions
based on soft continuous elements [25, 31] and are currently defining new design strategies in soft robotics.
Therefore, design breakthroughs can be guided by new structural concepts and models capable of displaying
both global and local deformation mechanisms, which is the point of view pursued in the present article.

2 Discrete one-dimensional system endowed with four-bar linkages

2.1 Geometry of the unit cell

Within a reference Cartesian planar system x1–x2, defined by the two orthonormal vectors e1 and e2, the
mechanical response is analysed for a one-dimensional structural system (of n elements and n + 1 nodes)
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realized as the periodic repetition of a unit cell of undeformed length a aligned parallel to the direction e1,
Fig. 3a. The repetition of n unit cells realizes a one-dimensional structure having a total length L = na and
its undeformed axis aligned parallel to the direction e1. Symmetric with respect to both e1 and e2 in its
undeformed state, the unit cell is made up of two equal rigid end bars, connected through a parallel four-bar
linkage of length b so that the ratio

α =
b

a
∈ [0, 1] , (1)

becomes an internal length ratio, surviving the homogenization process and thus affecting the nonlinear
behaviour of the equivalent rod. The four-bar linkage forms a rectangle in the unloaded configuration and
a parallelogram in any deformed state; it is equipped with a linear elastic rotational spring, of stiffness kβ.
The i–th unit cell is joined to the (i + 1)–th cell through a linear elastic hinge with rotational stiffness K,
present at each internal node (i = 1, ..., n− 1).
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Figure 3: Undeformed (lower part) and deformed (upper part) configurations of the i–th unit cell (a) and
the respective configurations of its homogenized counterpart (b). The deformed state of the i–th unit
cell, joining the (i − 1)–th and i–th nodes (position vectors pi−1 and pi), is described by the two angles
θi and βi. The piece-wise rigid motion of the cell is interpolated by a smooth displacement field for the
homogenized i–th element. Its nonlinear elastic behaviour follows from the geometric nonlinearity of the
kinematics, involving relative rotations at the nodes (constrained by rotational springs of stiffness K) and
relative displacements at the four-bar linkage (equipped with rotational springs of stiffness kβ). The unit
vector ti denotes the tangent (and ni the normal) to the equivalent rod axis, while ai1 is normal (and ai2
tangent) to the cross-section, while bi

1 is aligned parallel (and bi
2 normal) to the linkage bars.

2.2 Large deformation kinematics of the unit cell

The current (deformed) configuration of the i–th unit cell is completely described through its 4 degrees of
freedom (d.o.f.), as it results from a rigid motion combined with the actuation of the four-bar mechanism.

To properly describe the motion of the i–th element (i = 1, ..., n), it is instrumental to introduce two
local orthonormal bases: {ai1,ai2} and {bi

1,b
i
2}, respectively aligned and orthogonal to the rigid end bars and

to the internal mechanism’s bars, Fig. 3a. The two orthonormal bases {ai1,ai2} and {bi
1,b

i
2} are expressed

for the i–th unit cell as

aij = R(θi)ej , bi
j = R(θi + βi)ej , i = 1, ..., n, j = 1, 2 , (2)

where θi and βi are respectively the rotation of the end bars (equal to the overall rotation of the unit
cell) and the relative rotation of the four-bar mechanism, while R(ϕ) is the rotation tensor associated to a
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rotation angle ϕ
R(ϕ) = (cosϕ e1 + sinϕ e2)⊗ e1 − (sinϕ e1 − cosϕ e2)⊗ e2 , (3)

where the symbol ⊗ denotes the dyadic product and the rotations are considered positive when counter-
clockwise.

The two end points of the i–th unit cell are defined by the two nodes (i − 1) and i. Introducing the
position of the i–th node defined by vector pi, the relative position for the two nodes of the i–th unit cell is

pi − pi−1 = a
[
(1− α)ai1 + αbi

1

]
, (4)

or, equivalently from Eq. (2),

pi − pi−1 = a
[
(1− α)R(θi) + αR(θi + βi)

]
e1 . (5)

The kinematics of the internal linkage implies a unilateral internal constraint on the distance between
two adjacent nodes, expressed as

∥pi − pi−1∥
a

=
√
1− 2α(1− α)(1− cosβi) ≤ 1 , (6)

enforcing the distance between two nodes singling out a cell never to exceed its initial value. Moreover,
Eq. (5) can be written in terms of displacements as

ui − ui−1 = a
[
(1− α)R(θi) + αR(θi + βi)

]
e1 − ae1 , (7)

because the position of the i–th node in the reference (undeformed) configuration is i ae1.

2.3 Homogenization of the i–th unit cell

The presence of the four-bar linkage realizes a discontinuous deformed shape of each unit cell. In order to
derive an equivalent continuous rod model, it is instrumental to perform an ‘intermediate’ homogenization
of the i–th unit cell through a linear interpolation of the position and displacement fields inside of it, Fig. 3b.
To this purpose, a local coordinate σ ∈ [0, a] is introduced along each element, measuring the distance of
the generic point along the axis of the i–th unit cell from the (i− 1)–th node in the reference configuration.

2.3.1 Homogenized kinematics

Through the linear interpolation between the two end nodes i− 1 and i, Eq. (5), the point pi(σ), describing
the deformed axis of the cell, can be defined as

pi(σ) = pi−1 + σ
[
(1− α)R(θi) + αR(θi + βi)

]
e1 , σ ∈ [0, a] , (8)

and, using Eq. (7), the displacement becomes

ui(σ) = ui−1 + σ
[
(1− α)R(θi) + αR(θi + βi)

]
e1 − σe1 , σ ∈ [0, a] , (9)

where the continuity of both the position and displacement fields at each node implies

pi(a) = pi+1(0) = pi , ui(a) = ui+1(0) = ui . (10)

The cross-section of the i–th unit cell, orthogonal to the rod axis in the undeformed configuration, follows
the rotation θi of the edge bars, Fig 3b. The tangent ti and normal ni unit vectors tangent to the axis of
the i–th unit cell are

ti = R(χi)ai1 , ni = R(χi)ai2 , (11)
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where the ‘deviation angle’ χi measures the angle between the normal ai1 (tangent ai2) to the cross-section
of the unit cell and the tangent ti (normal ni) to the axis of the unit cell,

sinχi =
α sinβi

λi
, cosχi =

(1− α) + α cosβi

λi
. (12)

It is interesting to observe that the deviation angle χi is related to the angle βi, defining the deformation
of the four-bar linkage, and the angles introduce a shortening of the axis of the i–th unit cell. In fact, the
kinematic constraint (6) can be interpreted as the longitudinal stretch λi of the i–th homogenized unit cell,

λi =
√
1− 2α(1− α)(1− cosβi) ≤ 1 . (13)

It is finally noted that, alternatively to Eq. (11), the pair of unit vectors {ti,ni} can be introduced as a
linear combination of the pairs {ai1,ai2} and {bi

1,b
i
2} as

ti =
(1− α)ai1 + αbi

1

λi
, ni =

(1− α)ai2 + αbi
2

λi
. (14)

2.3.2 External loads on the unit cell

An external distributed load qi, modelled as uniform for simplicity, is considered to be applied along the
i–th unit cell, while concentrated forces and moments are assumed acting at the ends of the cell. The load
is assumed to be dead, so that it is assigned on the reference configuration.

The homogenization of the uniform external load qi leads to a uniform external load qi applied on the
homogenized rod, equivalent in terms of work done to reach the deformed configuration. Note that the unit
cell has a discontinuous shape, becoming continuous for its homogenized counterpart, Fig. 4.
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Figure 4: Dead load distribution (the external concentrated force Fi and moment Ci are applied at the i–th
node, while the distributed load qi is defined in the reference configuration) and internal forces (transmitted
by the contiguous elements from the left, N−

i and M−
i , and from the right, N+

i and M+
i , of node i, see the

inset) acting on the chain element (a) and on the homogenized unit cell (b). Part (a): ui
A, u

i
B and ui

C denote
displacements of the midpoints of the 3 rigid segments forming the i-th chain element; the diffused load
remains equal to qi when applied on the deformed configuration. Part (b): The equivalent load qi = qi/λi

is distributed along the stretched axis of the homogenized unit cell, with average displacement (ui−i+ui)/2.
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The load, acting on the length αa of the four-bar linkage, is divided in equal parts between the two
longitudinal bars, Fig. 4a. Under this assumption, the work done by the dead load on the i–th element can
be evaluated by considering the displacement of the midpoints, say, A, B and C, of each of three connected
rigid portions

ui
A = ui−1 +

a

4
(1− α)

[
R(θi)− I

]
e1 ,

ui
B = ui−1 +

a

2

[
(1− α)R(θi) + αR(θi + βi)− I

]
e1 ,

ui
C = ui−1 +

a

4

[
3(1− α)

(
R(θi)− I

)
+ 4α

(
R(θi + βi)− I

)]
e1 .

(15)

The work W i
discr performed by qi can be written as follows

W i
discr = aqi ·

[
ui−1 +

a

2

(
(1− α)R(θi) + αR(θi + βi)− I

)
e1

]
. (16)

On the homogenized element, the load qi has to be considered on the deformed configuration, so that
a multiplication by the length of the stretched axis, aλi, provides the resultant force. Moreover, the i–th
displacement field is assumed linear, Eq. (9), and thus the work of the external load can be obtained through
a multiplication by the average displacement (ui−1 + ui)/2 as

W i
homog = a λiqi ·

[
ui−1 +

a

2

(
(1− α)R(θi) + αR(θi + βi)− I

)
e1

]
, (17)

where Eq. (7) has been used to evaluate the nodal displacement ui.
The equivalence between the works done on the discontinuous and on the homogenized element can be

enforced by equating Eq. (16) and Eq. (17). This equality is promptly obtained through a rescaling of the
load magnitude on the deformed configuration with the stretch λi, defined by Eq. (13), leading to

λiqi = qi . (18)

Together with the load qi distributed along the element, the dead concentrated force Fi and couple Ci

are applied at the i–th node, the latter at its immediate left. Considering the i–th element, connecting nodes
i − 1 and i, the unit cell is defined as the element joining the points at the immediate right of the nodes
i− 1 and i. In this way, the node i and the concentrated loads acting on it are entirely included within the
cell, while the node i− 1 and its applied loads are excluded.

2.3.3 Equilibrium and constitutive equations

The equilibrium and constitutive relation for the i–th homogenized unit cell in its deformed state, subject
to the equivalent distributed load qi, the nodal force Fi applied on the i-th node, and the moment Ci on
the immediate left of the i–th node, is ensured by the internal forces N+

i−1 and M+
i−1 applied at the right

limit of the (i− 1)–th node, as well as N+
i and M+

i , acting at the right limit of the i–th node (see the inset
of Fig. 4b). The equilibrium of the i–th node is obtained by considering the left (labelled ‘−’) and right
(labelled ‘+’) limits of the internal forces as

N+
i −N−

i + Fi = 0 , M+
i −M−

i + Ci = 0 . (19)

The dead loading is conservative, so that the equilibrium and constitutive relation of the unit cell can
be analysed through the energy approach. The work W i performed by the loads on the i–th unit cell is
given by the sum of the works done by the equivalent distributed load qi, Eq. (17), by the concentrated load
Fi, by the internal forces N+

i−1 and N+
i (obtained through multiplication with the conjugate displacements

ui−1 and ui), by the concentrated moment Ci, and by the internal moments M+
i−1 and M+

i (obtained
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through multiplication with the conjugate rotations θi and θi+1). The expression for the nodal displacements
difference, Eq. (7), allows the evaluation of the work W i on the i-th unit cell as

W i =
(
Ci −M+

i−1

)
θi +M+

i θi+1 −
(
N+

i−1 −N+
i − Fi − aλiqi

)
· ui−1

+
(
N+

i + Fi +
a

2
λiqi

)
· a

[(
(1− α)R(θi) + αR(θi + βi)

)
e1 − e1

]
.

(20)

Note that, according to the definitions used in Eq. (19), the contributions of the internal forces N+
i−1

and M+
i−1 have been considered with the negative sign.

The elastic energy E i associated with the i–th unit cell is stored within the linear rotational springs
at the i–th node (stiffness K) and at the four-bar linkage (stiffness kβ), respectively through the unit cell
rotation difference (θi+1 − θi) and the linkage rotation βi,

E i =
1

2
K

(
θi+1 − θi

)2
+

1

2
kββ

i2 . (21)

Eqs. (20) and (21) reveal that the kinematic parameters defining the status of the unit cell comprise also
the rotation θi+1. Therefore, these 5 parameters become: the nodal displacement vector ui−1, the linkage
rotation βi, and the unit cell rotations θi and θi+1. Accordingly, the stationary of the total potential energy
(E i −W i) with respect to such parameters leads to the equations

N+
i = N+

i−1 − aλiqi − Fi ,

kββ
i = Ni(a/2) · aαbi

2 ,

M+
i = M+

i−1 −Ni(a/2) · aλini − Ci ,

K(θi+1 − θi) = M+
i ,

(22)

where Ni(a/2) is the value at the central point of the unit cell (σ = a/2) of the internal force Ni(σ)

Ni(σ) = N+
i−1 − σλiqi , σ ∈ [0, a] , (23)

while the unit vectors bi
2 and ni in Eq. (22)2,3 follow from the role played by the rotation angles θi and

βi in Eq. (20). In fact, the derivative of the rotation tensor R(ϕ), Eq. (3), with respect to the angle ϕ is
R(ϕ)R(π/2), which used in Eq. (20) leads to

∂

∂θi
[
R(θi)e1

]
= R(θi)e2 = ai2 ,

∂

∂βi

[
R(θi + βi)e1

]
= R(θi + βi)e2 = bi

2 , (24)

whence the occurrence of the unit vectors bi
2 and (through Eq. (14)2) n

i in Eq. (22).
The distributed load qi can be expressed in terms of the equivalent load qi, assigned in the undeformed

configuration and therefore known, Eq. (18). Moreover, an evaluation of λini through Eq. (14) and the use
of Eqs. (2) to express the unit vectors ai2 and bi

2, allow to express the internal force Ni(σ), pertaining to
the i–th unit cell, Eq. (23), as

Ni(σ) = N+
i−1 − σqi , σ ∈ [0, a] , (25)

so that Eqs. (22), describing the equilibrium of the i–th unit cell, become

N+
i = N+

i−1 − aqi − Fi ,

kββ
i = −α

(
aN+

i−1 −
a2

2
qi
)
·
[
sin(θi + βi) e1 − cos(θi + βi) e2

]
,

M+
i = M+

i−1 +
(
aN+

i−1 −
a2

2
qi
)
·
[
(1− α)(sin θi e1 − cos θi e2)

+α
(
sin(θi + βi) e1 − cos(θi + βi) e2

)]
− Ci ,

K(θi+1 − θi) = M+
i .

(26)
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2.4 Analysis of the periodic discrete structure

It is recalled that the chain is composed of n elements, with n + 1 nodes, and its complete configuration
depends on 2n+ 2 kinematic parameters, corresponding to the two components of the displacement vector
u0, the n bar rotations θi, and the n four-bar linkage angles βi (i = 1, . . . , n). At this stage, each element
forming the rod can both be understood as a discrete mechanism of a chain or an equivalent element of a
piece-wise continuous rod, as reported in Fig. 4.

The equilibrium equations required to determine the configuration of the entire structure can be obtained
by assembling the equations derived for the i–th unit cell, with the first and the n–th contribution treated
separately. In particular, the first, i = 0, and the last, i = n, node of the structure have to obey equilibrium

N+
0 = −F0 , M+

0 = −C0 , N−
n = Fn , M−

n = Cn , (27)

in which the end forces F0, C0, Fn, and Cn may either be unknown reaction forces (conjugated to constrained
displacement components) or prescribed external loads. Consistently with the formalism adopted in Fig. 4b,
internal forces transmitted from the left neighbourhood on the first node, i = 0, are absent (N−

0 = 0,
M−

0 = 0); similarly, internal forces are not transmitted from the right neighbourhood of the last node,
i = n, (N+

n = 0, M+
n = 0).

In order to simplify the notation, the resultant external force Qi is introduced as the sum of the con-
centrated and the distributed loads applied between the midpoint of the i–th element and the final node of
the structure, excluding the boundary force Fn (becoming a boundary condition)

Qi =
n−1∑
k=i

Fk +
n∑

k=i

aλkqk − 1

2
aλiqi , i = 1, . . . , n , (28)

which is related via translational equilibrium to the i–th internal force acting at σ = a/2, defined by Eq. (23),
through the following relation

Ni(a/2) = Qi + Fn , i = 1, . . . , n . (29)

Eq. (29) can be exploited in Eqs. (22) to explicitly relate the equilibrium of the i–th unit cell to the
external loads. Moreover, the equations for all cells can be assembled to obtain the equilibrium equations
for the complete structure in terms of external loads, end forces, and configurational parameters

Q1 +
1

2
aλ1q1 + F0 + Fn = 0 ,

kββ
i − (Qi + Fn) · aαbi

2 = 0 , i = 1, . . . , n ,

K(θ1 − θ2)− (Q1 + Fn) · aλ1n1 − C1 − C0 = 0 ,

K(−θi−1 + 2θi − θi+1)− (Qi + Fn) · aλini − Ci = 0 , i = 2, . . . , n− 1 ,

K(θn − θn−1)− (Qn + Fn) · aλnnn − Cn = 0 .

(30)

Eq. (30)1, expressing the overall translational equilibrium of the chain, can be obtained by summing
up Eq. (22)1 when the index i ranges between 1 and n, with the assumptions N+

0 = −F0 and N+
n = 0.

Eqs. (30)2 can be derived by applying Eq. (22)2, written in terms of external loads, to all n elements.
Eq. (30)3 is the specialization of Eq. (22)3 for i = 1, along with M+

0 = −C0 and using Eq. (22)4 to evaluate
M+

1 . Eq. (30)4 is obtained by using Eqs. (22)3 and (22)4. Finally, Eq. (30)5 can be derived setting i = n in
Eq. (22)3, with M+

n = 0 and evaluating M+
n−1 through Eq. (22)4.

Observe that the product λiqi represents the distributed load qi expressed in the undeformed config-
uration, Eq. (18), whence the resultant force Qi of external loads, defined by Eq. (28), can be written
as

Qi =
n−1∑
k=i

Fk +
n∑

k=i

aqk − 1

2
aqi , i = 1, . . . , n , (31)
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and the solvability condition expressed in terms of overall translational equilibrium, Eq. (30)1, reads as

n−1∑
k=1

Fk +

n∑
k=1

aqk + F0 + Fn = 0 . (32)

Using Eqs. (14) and (2) to express λini and the unit vectors ai2 and bi
2, respectively, Eqs. (30)2–(30)5 can

be rearranged as

K(θ1 − θ2) + a(Q1 + Fn) ·
[
(1− α)(sin θ1 e1 − cos θ1 e2)

+α
(
sin(θ1 + β1) e1 − cos(θ1 + β1) e2

)]
− C1 − C0 = 0 ,

K(−θi−1 + 2θi − θi+1) + a(Qi + Fn) ·
[
(1− α)(sin θi e1 − cos θi e2)

+α
(
sin(θi + βi) e1 − cos(θi + βi) e2

)]
− Ci = 0 , i = 2, . . . , n− 1 ,

K(θn − θn−1) + a(Qn + Fn) ·
[
(1− α)(sin θn e1 − cos θn e2)

+α
(
sin(θn + βn) e1 − cos(θn + βn) e2

)]
− Cn = 0 ,

kββ
i + a(Qi + Fn) · α

[
sin(θi + βi) e1 − cos(θi + βi) e2

]
= 0 , i = 1, . . . , n ,

(33)

which is a system of 2n nonlinear algebraic equations for the unknowns θi and βi governing the mechanics
of the discrete chain. Depending on the constraints applied at the end nodes, it may happen that some
components of the end forces (F0, C0, Fn, Cn) may become additional unknowns, but in this case the dual
displacements are constrained and these constraints are to be added to Eqs. (33).

The kinematic parameters θi and βi, obtained as solutions of Eqs. (33), can be used to evaluate the
internal forces transferred at each node of the discrete chain. In particular, the moment transferred at the
i–th elastic hinge can be obtained from Eq. (26)4, while the internal force N

+
i can be evaluated by iteratively

applying Eq. (26)1, together with the equilibrium condition at the first node, N+
0 = −F0, and summing all

the contributions up the i–th node, leading to

N+
i = −

i∑
k=1

(
aqk + Fk

)
− F0 . (34)

Moreover, using Eq. (7) and summing all the contributions up to the i–th node, the horizontal and
vertical components of the nodal displacements can be expressed as

ui · e1 = u0 · e1 +
i∑

k=1

a
[
(1− α) cos θk + α cos(θk + βk)− 1

]
,

ui · e2 = u0 · e2 +
i∑

k=1

a
[
(1− α) sin θk + α sin(θk + βk)

]
.

(35)

Note that, together with Eq. (32), the solvability condition expressing the overall rotational equilibrium
must be satisfied, but this condition is already implicitly contained in Eqs. (33)1–(33)3, because their sum

n∑
i=1

a(Qi+Fn)·
[
(1−α)(sin θi e1−cos θi e2)+α

(
sin(θi+βi) e1−cos(θi+βi) e2

)]
−

n−1∑
i=1

Ci−C0−Cn = 0 , (36)

represents the moment equilibrium.

3 Homogenization of the chain into an equivalent elastic rod

The objective of this Section is to move from the equations governing the mechanics of the discrete chain
to the differential equations ruling the behaviour of an equivalent elastic rod.
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Figure 5: Deformation of the equivalent rod at the coordinate s (a) and equilibrium of its infinitesimal
element (b). Part (a): Note the tangent t(s) and normal n(s) to the rod axis, the parallel a2(s) and the
normal a1(s) to the rod cross-section, the inclination angle φ(s) = θ(s) + χ(s) of t(s) and the shear angle
γ(s)/α. Part (b): Note the displacement u(s), the stretch λ(s), the external (q(s) and m(s)) and the
internal forces (N(s) and M(s)). The internal force N(s) is decomposed along the unit vectors b1(s) and
b2(s), allowing an orthogonality in the sense of work.

3.1 Kinematics and equilibrium of the infinitesimal rod element

The chain has an undeformed length L = na, so that to homogenize its mechanical response, the length L
is kept fixed, while the number n of unit cells is made to approach infinity (n → ∞), so that their length
a = L/n tends to zero. The equivalent rod is characterized by the coordinate s ∈ [0, L], defined in the
straight reference configuration, so that its infinitesimal element, comprised between s and s+ ds, Fig. 5b,
can be identified with the i–th unit cell shown in Fig. 4b and the rotations defining the configuration of the
element localize into a continuous model as

θ(s) = lim
a→0

θi , γ(s) = α lim
a→0

βi , (37)

where θ(s) becomes the continuously varying rotation of the cross-section of the rod, while γ(s) is the cross-
section kinematic parameter associated with the shearing slip. The multiplication by α in the localization
of βi to obtain γ(s) enforces the work-conjugacy of the internal forces with the displacement of the rod
axis. In fact, applying Eq. (7) to small variation δβi, with θi held constant, the variation of the relative
displacement reads

δ(ui − ui−1) = aR(θi + βi)e2 α δβi , (38)

and, through a localization of the internal force N+
i−1 into its distributed version N(s), the relevant work

per unit length becomes

lim
a→0

N+
i−1 ·R(θi + βi)e2 α δβi = N(s) ·R(θ(s) + γ(s)/α)e2 δγ . (39)
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It should be observed that the angles θ(s) and γ(s)/α identify two distinct reference systems to be
associated to the axis coordinate s, Fig. 5a. Specifically, a rotation of an angle θ(s) of vectors ej yields
vectors aj , while a further rotation of an angle γ(s)/α provides bj , representing the continuous counterparts
of Eq. (2),

aj(s) = R(θ(s))ej , bj(s) = R(θ(s) + γ(s)/α)ej , j = 1, 2 . (40)

On the other hand, the unit vectors tangent t(s) and normal n(s) to the rod axis are

t(s) =
(1− α)a1(s) + αb1(s)

λ(s)
, n(s) =

(1− α)a2(s) + αb2(s)

λ(s)
, (41)

where λ(s) is the stretch of the rod axis, intended as the reduction to a continuous model of the i–th stretch
λi, Eq. (13),

λ(s) =
√
1− 2α(1− α)

(
1− cos(γ(s)/α)

)
≤ 1 . (42)

The unit vectors t(s) and n(s) represent the continualization of ti and ni, respectively, defined by
Eq. (11), so that the tangent to the rod axis deviates of an angle χ(s) with respect to the direction normal
to the cross-section, Fig. 5a. Taking into account Eqs. (12) and (37), the deviation angle χ(s) satisfies

sinχ(s) =
α sin(γ(s)/α)

λ(s)
, cosχ(s) =

(1− α) + α cos(γ(s)/α)

λ(s)
, (43)

and the sum of χ(s) with θ(s) provides the rotation angle of the tangent vector to the rod axis with respect
to the horizontal direction, Fig. 5a,

φ(s) = θ(s) + χ(s) . (44)

More specifically, the ratio (ui − ui−1)/a, Eq. (7), in the limit of n → ∞ becomes the derivative of the
displacement with respect to s, denoted through a prime ( )′ as

u′(s) =
[
(1− α)R(θ(s)) + αR(θ(s) + γ(s)/α)

]
e1 − e1 , (45)

which defines the kinematics of the continuous rod model. The derivative of the rotation angle φ(s), Eq. (44),
provides the axis curvature φ′(s) as

φ′(s) = θ′(s) +
α+ (1− α) cos(γ(s)/α)

λ2(s)
γ′(s) , (46)

where Eqs. (43) have been used together with Eq. (42).
The vanishing of the unit cell length a shows that Ni(σ) converges to N+

i−1 for any σ in [0, a], Eq. (23),
a result that motivates the continualization of Ni(a/2) as N(s). Therefore, the continualization of Eqs. (22)
leads to the following homogenized equilibrium and constitutive equations for the equivalent rod

N′(s) + λ(s)q(s) = 0 ,

kβ
aα2

γ(s) = N(s) · b2(s) ,

M ′(s) + λ(s)[N(s) · n(s) +m(s)] = 0 ,

aKθ′(s) = M(s) .

(47)

The equilibrium equations (47)1 and (47)3 can be obtained by evaluating the ratios (N+
i − N+

i−1)/a and
(M+

i −M+
i−1)/a from Eqs. (22)1 and (22)3, respectively, in the limit a → 0. The equivalence between the

loads distributed along the rod and those applied on the discrete chain stems from

q(s) = lim
a→0

(
qi +

Fi

λia

)
, m(s) = lim

a→0

( Ci

λia

)
. (48)
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The above identification is based on the assumption that Fi and Ci remain in the limit proportional to
the length λia, so that both limits of Fi/(λ

ia) and Ci/(λ
ia) converge. If not, the contributions of Fi and

Ci cannot be smeared and must be modelled as concentrated forces and couples (a situation not addressed
here for conciseness). In the case when the limit converges, the discrete forces Fi and Ci, except F0, C0,
Fn and Cn, contribute to q and m as divided by their length of influence. The forces F0, C0, Fn and Cn

become end forces for the equivalent rod.
The constitutive relations, Eqs. (47)4 and (47)2 respectively for the bending moment M(s) and the shear

force N(s) · b2(s), are obtained from Eqs. (22)4 and (22)2, taking into account Eqs. (37). Notice that the
former continualization also requires the limit (48)2 to be valid, so that M+

i approaches M+
i−1 as the unit

cell is contracted to null length, and can therefore be continualized as M(s). θ′(s) in Eq. (47)4 results in
the limit of the ratio (θi+1 − θi)/a. It is further noted that the axial force component N(s) ·b1(s) has to be
understood as a Lagrangian multiplier in the model, because the rod is axially constrained, Eq. (42).

It is worth to highlight that, even if the homogenization of the discrete chain is based on the limit in
which the length a approaches zero, the parameters kβ/(aα

2) and aK, Eqs. (47)2, 4, are assumed to remain
finite in this limit. Therefore, the nomenclature

GAs =
kβ
aα2

, EI = aK , (49)

is introduced to keep contact with the continuous theories of shearable rods, so that the two constants should
not be intended as related through the usual constants pertaining to elastic rods made of homogeneous
material, but become independent parameters connected to the stiffnesses of the microstructure. Moreover,
during the homogenization, the geometric ratio α, Eq. (1), does not disappear, but ends up playing the role
of an internal dimensionless length.

Observe finally that, while Eq. (47)4 represents the typical linear bending relation between the internal
moment M(s) and the curvature θ′(s), Eq. (47)2 provides a shear constitutive law which is peculiar to the
model under consideration. In fact, the parameter γ(s) plays the role of a shear slip angle, linearly related
to the shear force T (s), which is obtained by projecting the internal force N(s) along the direction of the
unit vector b2(s).

The system {b1,b2}, identified with the shear angle γ(s)/α, is different from both the reference systems
{a1,a2} and {t,n}, with a1 orthogonal to the cross-section and t tangent to the rod axis, Fig. 5a. Therefore,
it follows that:

the present equivalent shearable rod model defines
a decomposition of the internal force through shear and normal components

neither aligned with the tangent to the cross-section (as in the Haringx/Reissner model [33])
nor with the normal to the rod axis (as in the Ziegler model [43]).

Moreover, a-priori assumptions about the shear direction are not needed, because the constitutive relation
Eq. (47)2 is derived by a continualization process. On the contrary, the shear direction is implicitly included
in the model as a cross-section property reflecting the microstructural properties of the discrete chain.

Note that Eqs. (48) introduce the distributed loads q(s) and couples m(s) with reference to the deformed
configuration of the equivalent rod. However, all loads are assumed to be dead, so that in analogy to the
discrete unit cell, Eq. (18), the distributed loads q(s) and couples m(s) can be associated to the undeformed
configuration of the rod as

q(s) = λ(s)q(s) , m(s) = λ(s)m(s) , (50)

obtained by scaling q(s) and m(s) though the rod axis stretch λ(s), Eq. (42).
In view of Eqs. (50), and using Eq. (42) together with Eqs. (40) to express λ(s)n(s) and b2(s), the

equilibrium equations of the rod element, Eqs. (47)1 and (47)3, can be written as
N′(s) + q(s) = 0 ,

M ′(s)−N(s) ·
[
(1− α)

(
sin θ(s) e1 − cos θ(s) e2

)
+α

(
sin (θ(s) + γ(s)/α) e1 − cos (θ(s) + γ(s)/α) e2

)]
+m(s) = 0 ,

(51)
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and the rod constitutive relations, Eqs. (47)2 and (47)4, can be expressed as

GAsγ(s) = −N(s) ·
(
sin (θ(s) + γ(s)/α) e1 − cos (θ(s) + γ(s)/α) e2

)
, EI θ′(s) = M(s) , (52)

where the equivalent shear GAs and bending EI stiffnesses, Eqs. (49), have been used.

3.2 The mechanics of the equivalent rod

Analogously to the analysis of the discrete chain, it is useful to introduce the resultant of the external
diffused load, Q(s), defined at s as

Q(s) =

∫ L

s
λ(σ)q(σ) dσ , (53)

where λ(σ) is the stretch of the rod axis, Eq. (42), and q(σ) the distributed load in the deformed con-
figuration, Eq. (48)1. The product λ(σ)dσ accounts for the change of variable, the axis coordinate, from
the deformed configuration, where the load q is defined, to the undeformed one. The integral in Eq. (53)
is consistently defined between the material axis coordinate s and the undeformed rod length L. In the
same vein, the product λ(σ)q(σ) represents the equivalent load referred to the undeformed configuration,
Eq. (50)1, whence the resultant force Q(s) can conveniently be expressed as

Q(s) =

∫ L

s
q(σ) dσ . (54)

At the ends s = 0 and s = L, the forces internal to the equivalent rod correspond to the nodal forces
[(F0 and C0) and (FL and CL), respectively]

N(0) = −F0 , M(0) = −C0 , N(L) = FL , M(L) = CL . (55)

Eq. (53) can be viewed as the continualization of Eq. (28), where the term −aλiqi/2 vanishes when a
approaches zero, while Eqs. (55) are the continuous counterpart of Eqs. (27). Consequently, the continual-
ization of Eqs. (30) provides the equilibrium equations for the equivalent rod in the following form

Q(0) + F0 + FL = 0 ,

GAs γ(s)−
(
Q(s) + FL

)
· b2(s) = 0 ,

EI θ′(0) + C0 = 0 ,

EI θ′′(s) +
(
Q(s) + FL

)
· λ(s)n(s) + λ(s)m(s) = 0 ,

EI θ′(L)− CL = 0 ,

(56)

where b2(s) is the shear direction, Eq. (40)2, and n(s) is the normal to the rod axis, Eq. (41)2.
It is straightforward to derive Eq. (56)1 from Eq. (30)1, because Q1 approaches Q(0) and aλ1q1/2

vanishes when a vanishes. The continualization of Eq. (30)2 into Eq. (56)2 requires a preliminary division
through aα and use of Eq. (37)2, because the ratio kβ/(aα

2) represents, in the limit, the shear stiffness of
the equivalent rod, Eq. (49)1.

The continualization of Eqs. (30)3–(30)5 into Eqs. (56)3–(56)5 can be obtained by applying Eq. (49)2.
Eqs. (56)3 and (56)5 are obtained in the limit a → 0, noting that the ratios (θ2 − θ1)/a and (θn − θn−1)/a
become θ′(0) and θ′(L), respectively, and the terms having a as a coefficient vanish, while C0 and CL remain
as concentrated moments at the rod ends. To obtain Eq. (56)4, a division through a is needed so that θ′′(s)
is obtained in the limit of the ratio (θi−1 − 2θi + θi−1)/a2 at vanishing a. The term λ(s)m(s) is obtained
using Eq. (48)2.
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Note that Eqs. (56) can be alternatively derived from Eqs. (47). Moreover, Eq. (56)1 represents the so-
called ‘solvability condition’, namely, the overall translational equilibrium, which can be explicitly expressed
in terms of the distributed load q, assigned in the undeformed configuration, as∫ L

0
q(σ) dσ + F0 + FL = 0 , (57)

where Eq. (54) has been used to evaluate the resultant external force Q(s) at s = 0.
Furthermore, using Eqs. (41)2 and (40) to evaluate λ(s)n(s), and the unit vectors a2(s) and b2(s),

respectively, Eqs. (56)2 and (56)4 can be rearranged into

the nonlinear system of DAE governing the equilibrium at large deformation of the rod, equivalent to the
discrete chain, Eqs. (33), subject to arbitrary diffused and concentrated loads EI θ′′(s)− (1− α)

(
Q(s) + FL

)
·
(
sin θ(s) e1 − cos θ(s) e2

)
+ αGAs γ(s) +m(s) = 0 ,

GAs γ(s) +
(
Q(s) + FL

)
·
(
sin (θ(s) + γ(s)/α) e1 − cos (θ(s) + γ(s)/α) e2

)
= 0 ,

(58)

containing the bending and shear stiffnesses, EI and GAs, Eqs. (49), and the internal length α, Eq. (1).

Eqs. (58) has to be supplemented by Eqs. (56)3 and (56)5 providing the boundary conditions

EI θ′(0) = −C0 , EI θ′(L) = CL . (59)

Solving Eqs. (58) provides the cross-section rotation θ(s) and the shear angle γ(s), from which the rod
axis stretch λ(s) can be evaluated through Eq. (42). Moreover, the axis deviation angle χ(s) can be evaluated
by solving Eqs. (43) and the rotation angle of the tangent to the axis can be obtained as φ(s) = θ(s)+χ(s),
Eq. (44), and the axis curvature φ′(s) is obtained from Eq. (46).

The bending moment distribution along the equivalent rod can be evaluated from Eq. (52)2, while the
internal force N(s) requires an integration of Eq. (51)1, which, taking into account the boundary condition
at s = 0, Eq. (55)1, yields

N(s) = −F0 −
∫ s

0
q(σ) dσ . (60)

The normal and shear components of the internal force N(s) are associated with the unit vectors b1(s)
and b2(s), Eq. (41)2. Specifically, the shear component can be easily obtained from the shear angle γ(s),
by exploiting the constitutive relation (47)2, as

N(s) · b2(s) = GAs γ(s) , (61)

withGAs being the cross-section shear stiffness of the equivalent rod, Eq. (49)1. The ‘normal’ (i.e. orthogonal
to the shear) component of the internal force N(s) can be evaluated by projecting Eq. (60) onto b1(s), to
obtain

N(s) · b1(s) = −
(
cos (θ(s) + γ(s)/α) e1 + sin (θ(s) + γ(s)/α) e2

)
·
[
F0 +

∫ s

0
q(σ) dσ

]
. (62)

The angles θ(s) and γ(s), obtained as solutions of the DAE (58), can in turn be employed as known
functions for the differential equation defining the rod axis displacement u(s), Eq. (45), which in components
becomes3

u′1(s) = (1−α) cos θ(s)+α cos (θ(s) + γ(s)/α)−1 , u′2(s) = (1−α) sin θ(s)+α sin (θ(s) + γ(s)/α) , (63)

3The displacement derivative components u′
j(s) satisfy λ(s) =

√
(1 + u′

1(s))
2 + (u′

2(s))
2.
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to be complemented with the displacement boundary conditions at s = 0 and s = L.
Once the displacement field u(s) is determined from integration of Eqs. (63), the current position x(s, y)

of the generic point within any cross-section of the rod axis, at the transverse coordinate y, can be evaluated
as

x1(s, y) = s+ u1(s)− y sin θ(s) , x2(s, y) = u2(s) + y cos θ(s) . (64)

In closure, it should be noted that an integration of Eq. (58)1 from s = 0 to s = L, together with the
boundary conditions, Eqs. (59), results to be∫ L

0

[
(1− α)

(
Q(s) + FL

)
·
(
sin θ(s) e1 − cos θ(s) e2

)
− αGAs γ(s)

]
ds =

∫ L

0
m(s) ds+ C0 + CL , (65)

which represents the overall rotational equilibrium of the rod, which need not be added to the translational
equilibrium Eq. (57).

3.3 Lagrangian of the equivalent rod

The equilibrium equations (51) and the constitutive relations (52) for the homogeneous rod can be equiva-
lently derived by considering a Lagrangian L

L = E −W +M , (66)

where E is the elastic energy of the equivalent rod, quadratic in the curvature θ′(s) and in the shear angle
γ(s),

E
(
θ′(s), γ(s)

)
=

1

2

∫ L

0

[
EI

(
θ′(s)

)2
+GAs

(
γ(s)

)2]
ds , (67)

W is the work on the equivalent rod of the external distributed loads (q(s) and m(s)) and concentrated end
loads (F0, C0, FL, and CL)

W
(
θ(s),u(s)

)
=

∫ L

0

[
q(s) · u(s) +m(s)θ(s)

]
ds+ F0 · u0 + C0 θ0 + FL · uL + CL θL , (68)

and M is the contribution of the Lagrange multiplier N(s) (to be mechanically interpreted as the force
internal to the equivalent rod), needed to enforce the kinematic constraint between u(s) and the primary
kinematic fields θ(s) and γ(s),

M
(
θ(s), γ(s),u(s)

)
=

∫ L

0
N(s) ·

[
u′(s)−

(
(1− α)a1(s) + αb1(s)− e1

)]
ds , (69)

where a1(s) and b1(s) are the unit vectors rotated at the angles θ(s) and θ(s) + γ(s)/α with respect to e1,
Eqs. (40).

After integration by parts, the first variation δL of the Lagrangian L (66) is given by

δL = −
∫ L

0

[
EIθ′′(s) +N(s) ·

(
(1− α)a2(s) + αb2(s)

)
+m(s)

]
δθ(s) ds

+

∫ L

0

[
GAsγ(s)−N(s) · b2(s)

]
δγ(s) ds−

∫ L

0

[
N′(s) + q(s)

]
· δu(s) ds

+
[
N(L)− FL

]
· δuL −

[
N(0) + F0

]
· δu0 +

[
EI θ′(L)− CL

]
δθL −

[
EI θ′(0) + C0

]
δθ0 ,

(70)

and its vanishing for every admissible variation δθ(s), δγ(s), and δu(s) implies the equilibrium equations
(51), the constitutive relations (52), and the boundary conditions (55) and (59).
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3.4 The Engesser rod as the special case α → 1

The micromechanical parameter α, implementing into the equivalent rod the ratio between the extension of
the four-bar linkage and the length of the unit cell, Fig. 3a, plays a key role in defining the direction of the
internal shear force in the equivalent continuous rod.

In the limit case of α → 1, the continuous rod specializes to the Engesser rod model. Indeed, in such a
limit the rod kinematics is characterized by an inextensible rod axis, Eq. (42), an axis deviation angle χ(s)
coincident with the shear angle γ(s), Eqs. (43), and therefore a rotation angle of the tangent to the rod axis
φ(s) linear in the shear angle γ(s), Eq. (44), namely

λ(s) = 1, χ(s) = γ(s), φ(s) = θ(s) + γ(s). (71)

Consequently, the unit vectors b1(s) and b2(s), defining the normal and the shear components of the internal
force N(s), coincide with the tangent t(s) and the normal n(s) to the rod axis, Eqs. (41), and simplify as

t(s) = b1(s) = cosφ(s) e1 + sinφ(s) e2 , n(s) = b2(s) = − sinφ(s) e1 + cosφ(s) e2 . (72)

Moreover, Eq. (58)2 can be solved for the shear angle γ(s), leading to

γ(s) = −
(
Q(s) + FL

)
·
(
sinφ(s) e1 − cosφ(s) e2

)
GAs

, (73)

so that the DAE (58) can be reduced to a second-order differential equation, nonlinear in the unknown
function φ(s),

EI

[
φ(s) +

(
Q(s) + FL

)
·
(
sinφ(s) e1 − cosφ(s) e2

)
GAs

]′′

−
(
Q(s) + FL

)
·
(
sinφ(s) e1 − cosφ(s) e2

)
+m(s) = 0 ,

(74)

to be complemented by the boundary conditions at the rod ends, Eqs. (59),[
φ(s) +

(
Q(s) + FL

)
·
(
sinφ(s) e1 − cosφ(s) e2

)
GAs

]′

s=0

= −C0

EI
, (75)

and [
φ(s) +

(
Q(s) + FL

)
·
(
sinφ(s) e1 − cosφ(s) e2

)
GAs

]′

s=L

=
CL

EI
. (76)

The function φ(s), solution of the differential equation (74), can be used in Eq. (73) to obtain the shear
angle γ(s), and the cross-section rotation angle can be evaluated as θ(s) = φ(s)−γ(s). The derivative φ′(s)
represents the rod axis curvature, and the derivative θ′(s) can be used in Eq. (52)2 to obtain the bending
moment M(s). Moreover, the internal shear force, directed along n(s) = b2(s), is obtained from γ(s) using
Eq. (61), and the normal component of the internal force, in the direction of t(s) = b1(s), Eq. (72)1, can
be obtained through a specialization of Eq. (62) to

N(s) · t(s) = −
(
cosφ(s) e1 + sinφ(s) e2

)
·
[
F0 +

∫ s

0
q(σ) dσ

]
. (77)

Finally, the horizontal and vertical components of the displacement field can be obtained through an
integration of Eqs. (63), which simplify as

u′1(s) = cosφ(s)− 1 , u′2(s) = sinφ(s) . (78)

It should be noted that the above-derived Eqs. (74)–(78) govern the equilibrium at large deformation of
the Engesser rod subject to general loading conditions, never introduced before.
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Recovering the Euler rod. The model of an inextensible and unshearable rod, namely, the Euler rod,
can be obtained as a special case of the Engesser rod for GAs → ∞, obtained in the limit of kβ → ∞,
Eq. (49)1. This condition implies a null shear angle, Eq. (73), and in turn a rotation angle φ(s) of the
tangent to the rod axis coincident with the rotation angle of the cross-section θ(s),

γ(s) = 0 , φ(s) = θ(s) . (79)

It follows that the unit vectors tangent t(s) and normal n(s) to the rod axis become coincident with the
unit vectors orthogonal a1(s) and parallel a2(s) to the cross-section,

t(s) = a1(s) = cos θ(s) e1 + sin θ(s) e2 , n(s) = a2(s) = − sin θ(s) e1 + cos θ(s) e2 . (80)

The differential equation (74) further specializes to the well-known Euler elastica equation [6]

EI θ′′(s)−
(
Q(s) + FL

)
·
(
sin θ(s) e1 − cos θ(s) e2

)
+m(s) = 0 , (81)

to be complemented with the boundary conditions EI θ′(0) = −C0 and EI θ′(L) = CL. The differential
equations (78) defining the components of the displacement become

u′1(s) = cos θ(s)− 1 , u′2(s) = sin θ(s) . (82)

It is observed that the Euler rod model can also be obtained from our model of equivalent continuous
rod in the limit case of α → 0, which implies an infinite shear stiffness, Eq. (49)1, GAs → ∞ and the shear
angle γ(s) vanishes, Eq. (37)2. Moreover, despite the ratio γ(s)/α becomes undefined, Eqs. (42) and (43)
provide λ(s) = 1 and χ(s) = 0, so that the rod becomes both unstretchable and unshearable, Eq. (71)1 and
Eq. (79), and the differential equations (63) reduce to Eqs. (82).

Finally, the differential equation Eq. (58)1 becomes Eq. (81), while the algebraic equation (58)2, repre-
senting the equilibrium of the shear internal force, does not longer apply when α → 0.

4 Bifurcation of the discrete and the equivalent continuous models for
cantilever and simply supported schemes

The bifurcation conditions for the straight configuration are analytically solved for both the discrete chain
model and its equivalent continuous counterpart, subject to an axial load P . Two different boundary
conditions are considered, corresponding to cantilever and simply supported schemes, Fig. 6 (henceforth,
the negative load P is drawn on the structure by making explicit its true direction). The obtained bifurcation

P

P

(a)

P

P

(b)

Figure 6: The cantilever (a) and simply supported (b) structural schemes used in the bifurcation analysis
of the discrete (upper part) and equivalent continuous models of the rod (lower part). The first buckling
mode for a discrete system (with n = 5) and for its equivalent continuous counterpart is superimposed to
the undeformed configuration. Results are for α = 0.3, and ζ = 20.
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loads and modes for the discrete chains in the limit of an infinite number of elements (n → ∞) are shown to
be coincident with those of the corresponding equivalent rod, confirming the effectiveness of the homogenized
model. The analysis is performed with reference to the dimensionless load p and the (shear vs bending)
stiffness ratio ζ

p =
PL2

EI
=

Pan2

K
, ζ =

GAsL
2

EI
=

kβn
2

α2K
. (83)

The bifurcation conditions for the two different boundary value problems evidence strict analogies, as
follows.

• The bifurcation loads for the discrete chain (for the continuous equivalent model) occur for two ‘twin’
sequences p+m and p−m of n (of infinite) values given by pairs of bifurcation conditions associated to
the same mode number m, but belonging to the different sequences. The critical m–th mode of each
of the twin sequences share the same critical shape for the rod axis, but obtained through a different
critical shear deformation contribution.

• The values sets p+m and p−m of the ‘twin’ sequences satisfy a strict inequality, so all the values of the
first sequence (p+m) are smaller than all the corresponding values of the second sequence (p−m). The two
sequences are separated from each other by a ‘transition’ bifurcation load p0, which is independent of
the number n of elements characterizing the chain and is coincident with the ‘transition load’ of the
equivalent rod,

... < p−m+1 < p−m < ... < p−2 < p−1 < p0 ≤ p∗ < ... < p+m+1 < p+m < ... < p+2 < p+1 < 0 . (84)

Note that an additional characteristic load, namely, p∗, appears in Eq. (84). This is a value for which
the equations degenerate and will be later demonstrated to represent an accumulation value for the
bifurcations of the equivalent rod. The value p∗ corresponds to the buckling load P ∗ of the four-bar
linkage,

p∗ = −αζ ⇐⇒ P ∗ = −
kβ
αa

. (85)

• In the limit of infinite shear to bending stiffness ratio, the first sequence approaches that characterizing
Euler buckling of the inextensible and unshearable elastica, while both the transition load p0 and the
second sequence (p−m) diverge to infinity, therefore becoming mechanically irrelevant.

The transition load p0 for the two boundary value problems is associated with two substantially different
critical modes,

• a ‘bookshelf-like’ shape for the simply supported scheme, where the rod axis remains straight;

• a transverse displacement jump occurring at the clamp in an otherwise straight rod axis for the
cantilever scheme.

4.1 Discrete chain models

A cantilever chain and a simply supported chain of discrete elements, as illustrated in Fig. 3a, are shown in
Fig. 6 and are loaded at the n–th node through a force P parallel to e1 (therefore positive when tensile in
the straight configuration). The distributed loads and the inner nodal forces are null, so that the resultant
of external forces Qi vanishes, Eq. (31). In both the considered structural schemes, the vertical force applied
on the n–th node is null. Therefore, from Eq. (32), the forces applied on both ends of the rods are

Fn = −F0 = Pe1 , (86)
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and Eqs. (33) simplify to

K(θ1 − θ2) + Pa
[
(1− α) sin θ1 + α sin(θ1 + β1)

]
− C0 = 0 ,

K(−θi−1 + 2θi − θi+1) + Pa
[
(1− α) sin θi + α sin(θi + βi)

]
= 0 , i = 2, . . . , n− 1 ,

K(θn − θn−1) + Pa
[
(1− α) sin θn + α sin(θn + βn)

]
= 0 ,

kββ
i + Paα sin(θi + βi) = 0 , i = 1, . . . , n ,

(87)

which have to be further specialized to keep into account the boundary conditions, different in the two
schemes. For the analysis of these structures, it is instrumental to collect the configuration parameters θi

and βi, with i = 2, . . . , n, into the (n− 1)-dimensional arrays

θ = [θ2 . . . θn]T , β = [β2 . . . βn]T . (88)

4.1.1 Cantilever chain

For a cantilever chain, Fig. 6a (upper part), the moment applied at the n–th node is null, Cn = 0, and
the bending moment C0 at the clamp can be evaluated using the global rotational equilibrium, Eq. (36),
together with Eq. (86) and the boundary condition θ1 = 0, thus obtaining

C0 = Pa
[
α sinβ1 +

n∑
i=2

[
(1− α) sin θi + α sin(θi + βi)

]]
. (89)

In order to analyse the bifurcation of the structure from its undeformed state (θi = βi = 0), the linear
approximations sin θi ≈ θi and sin(θi + βi) ≈ θi + βi are considered. Furthermore, noting that Eq. (89) is
the sum of Eqs. (87)1–(87)3, the first equation of (87) becomes redundant, so that the cantilever chain may
be analysed by considering only equations (87)2–(87)4, specifically assembled in the matrix form

Aθ +
p

n2
(θ + αβ) = 0 , pθ + (αζ + p)β = 0 , (αζ + p)β1 = 0 , (90)

where A is the tridiagonal and symmetric matrix of dimension (n− 1) defined as

A = 2I− Fn−1 , (91)

where

Fk =


0 1 0 · · · · · · 0
1 0 1

. . .
...

0 1
. . .

. . .
. . .

......
. . .

. . .
. . . 1 0...

. . . 1 0 1
0 · · · · · · 0 1 1︸ ︷︷ ︸

k




k . (92)

The solution β and θ to Eqs. (90) can be found by confining attention to the case p ̸= p∗. More
specifically, when p ̸= p∗, Eq. (90)3 provides β1 = 0 and Eq. (90)2 can be inverted to give

β = − p

αζ + p
θ , (93)

an equation that can be used in Eq. (90)1 to assemble the following eigenvalue problem(
A− ω2

n2
I

)
θ = 0 , (94)
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where ω2 is defined as

ω2 = −p
αζ + (1− α)p

αζ + p
. (95)

By virtue of Eq. (91), the eigenvalues of the matrix A can be expressed in the form 2 − λ
(n−1)
m , being

λ
(n−1)
m the m–th eigenvalue of Fn−1. In particular, the eigenvalues of the matrix Fk for any k ≥ 1 are (see

Appendix A.1 for details)

λ(k)
m = 2 cos

(
(2m− 1)π

2k + 1

)
, m = 1, . . . , k , (96)

whence, setting k = n− 1, the solution of the eigenvalue problem, Eq. (94), becomes

ω2
m(n) = 4n2 sin2

(
π(2m− 1)

2(2n− 1)

)
, m = 1, . . . , n− 1 . (97)

By inverting Eq. (95) and assuming ω2 = ω2
m(n), the twin sequences of (negative) bifurcation loads p+m(n)

and p−m(n) are obtained

p+m(n)

p−m(n)

}
=

−
(
αζ + ω2

m(n)
)
±
√(

αζ + ω2
m(n)

)2 − 4α(1− α)ζω2
m(n)

2(1− α)
, m = 1, . . . , n− 1 . (98)

In addition to the twin sequences of bifurcation loads p+m and p−m, Eq. (98), an additional bifurcation
condition exists, associated with the negative transition load p0, which can be obtained from Eqs. (90) as

p0 = −αζ , β1 = c , θi = βi = 0 , i = 2, ..., n , (99)

where c is an arbitrary amplitude, defining a jump in the axis displacement (see the inset labelled ‘Transition
mode’ in Fig. 7).

The transition load p0 coincides4 with p∗, Eq. (85), namely,

p0 = p∗ , (100)

and corresponds to the vanishing of the coefficient multiplying β1 in Eq. (90)3. Note that p0 is intermediate
between the twin critical loads sequences, according to inequality (84), as

p−n−1 < ... < p−2 < p−1 < p0 < p+n−1 < ... < p+2 < p+1 < 0 .

4.1.2 Simply supported chain

For a simply supported chain, Fig. 6b (upper part), the bending moments at both ends of the rod vanish,
C0 = Cn = 0, and taking into account Eq. (86), the global rotational equilibrium, Eq. (36), provides

a
n∑

i=1

[
(1− α) sin θi + α sin(θi + βi)

]
= 0 , (101)

which is used in place of Eq. (87)1 in analysing the discrete chain. Note that Eq. (101) corresponds to the
kinematic boundary condition un · e2 = 0, where the displacement un · e2 can be evaluated by specializing
Eq. (35)2 to i = n and using the condition u0 = 0.

The bifurcation of the chain is analysed by considering once more the linearized approximations sin θi ≈ θi

and sin(θi + βi) ≈ θi + βi, so that with reference to the dimensionless parameters, Eq. (83), and vectors θ
and β defined by Eq. (88), equations (87)2–(87)4 and (101) can be assembled in the following matrix form

−θ1e+Aθ +
p

n2
(θ + αβ) = 0 , (θ1 + αβ1) + 1 · (θ + αβ) = 0 ,

pθ1 + (αζ + p)β1 = 0 , pθ + (αζ + p)β = 0 ,

(102)

4This coincidence does not occur for the simply supported chain, as will be shown later.
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where e = [1 0 . . . 0]T, 1 = [1 . . . 1]T, and A is the tridiagonal symmetric matrix expressed by Eq. (91).
Assuming p ̸= p∗, Eq. (102)4, can be solved for β to again obtain Eq. (93), moreover Eq. (102)3, provides

β1, so that Eq. (102)2 yields
αζ + (1− α)p

αζ + p
(θ1 + 1 · θ) = 0 , (103)

an equation that is satisfied when either (θ1+1 ·θ) or its coefficient vanish. In the former case, the relation
θ1 = −1 · θ can be used in Eq. (102)1 along with Eq. (93) to obtain the eigenvalue problem(

B− ω2

n2
I

)
θ = 0 , (104)

where B = A+ e⊗ 1 and ω2 is the parameter defined by Eq. (95).
The eigenvalue problem Eq. (104) is formally analogous to Eq. (94) governing the bifurcation of the

cantilever chain, so that the same strategy is followed to solve it. In this case, the auxiliary matrix to be
considered is

Hk = Fk − e⊗ 1 , (105)

where Fk is still defined by Eq. (92) and therefore Hk follows as

Hk =



−1 0 −1 · · · · · · · · · −1
1 0 1 0 · · · · · · 0
0 1 0

. . .
. . .

......
. . .

. . .
. . .

. . .
. . .

......
. . .

. . .
. . . 1 0...

. . . 1 0 1
0 · · · · · · · · · 0 1 1︸ ︷︷ ︸

k




k , (106)

with eigenvalues expressed as (see Appendix A.2 for details)

λ(k)
m = 2 cos

(
mπ

k + 1

)
, m = 1, . . . , k . (107)

Specializing Eq. (106) to k = n−1, one can easily recognize that B = 2I−Hn−1, whence the m–th eigenvalue

of B is ω2
m(n)/n2 = 2− λ

(n−1)
m . The latter eigenvalue, keeping into account Eq. (107), can be reduced to

ω2
m(n) = 4n2 sin2

(mπ

2n

)
, m = 1, . . . , n− 1 . (108)

Furthermore, the definition of ω2 in Eq. (95) applies to both the cantilever and the simply supported
chain, so that the bifurcation loads can be evaluated again using Eq. (98), but referring to Eq. (108) for the
values of ω2

m(n) specific to the simply supported chain.
Similarly to the cantilever chain, the bifurcation of the simply supported chain is characterized by a twin

sequence of loads, p+m and p−m, separated by an additional bifurcation condition occurring for the transition
load p0. This condition arises when the constraint expressed by Eq. (103) is satisfied because the coefficient
αζ + (1− α)p vanishes, whence

p0 = − αζ

1− α
, (109)

while Eq. (102)1 becomes Aθ = θ1e, whose solution provides the bifurcation mode in the form

θi0 = c , βi
0 = − c

α
, i = 1, . . . , n , (110)

where c is an arbitrary amplitude. The bifurcation mode, Eq. (110), defines a ‘bookshelf-like’ configuration
(see the inset labelled ‘Transition mode’ in Fig. 8).
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4.2 The continuous rod equivalent to the chain and the match of the two models on
the bifurcation loads and modes when n → ∞

The homogenized rod model of the chains is analysed in the configuration shown in Fig. 6. In particular,
the force P along e1 is applied at s = L, while the distributed load q(s) and couple m(s) are null, implying
the vanishing of the resultant external force Q(s), Eq. (54).

The forces at the ends of the rod are FL = Pe1 and F0 = −Pe1, satisfying Eq. (57), and the differential-
algebraic system of equations (58) reduces to EI θ′′(s)− P (1− α) sin θ(s) + αGAs γ(s) = 0 ,

GAs γ(s) + P sin
(
θ(s) + γ(s)/α

)
= 0 ,

(111)

with the boundary conditions, Eqs. (59), and the solvability condition (65) which becomes

P

∫ L

0
(1− α) sin θ(s) ds−

∫ L

0
αGAs γ(s) ds = EI

[
θ′(L)− θ′(0)

]
. (112)

4.2.1 Cantilever configuration for the equivalent rod

For the cantilever rod depicted in Fig. 6a (lower part), the rotation at the clamp vanishes, while at the free
end Eq. (59)2 must be used with the loading condition CL = 0, leading to the boundary conditions for the
unknown rotation field θ(s)

θ(0) = 0 , θ′(L) = 0 . (113)

which supplement the system of equations Eq. (111). Eq. (59)1 can be used to evaluate the bending moment
at the clamp when the function θ(s) and its derivative θ′(s) have been determined.

In order to use the dimensionless parameters in Eq. (83) for the continuous rod, the dimensionless
coordinate ξ = s/L ∈ [0, 1] is introduced. The bifurcation condition is obtained through a linearization of
Eqs. (111) in the form

θ′′(ξ)− p (1− α) θ(ξ) + αζ γ(ξ) = 0 , αp θ(ξ) + (αζ + p)γ(ξ) = 0 , (114)

where the symbol ′ denotes henceforth the derivative of the function with respect to the relevant variable.
Assuming p ̸= p∗, Eq. (85), the algebraic equation (114)2 can be solved for γ(ξ) as

γ(ξ) = − αp

αζ + p
θ(ξ) , (115)

which substituted in Eq. (114)1 provides

θ′′(ξ) + ω2 θ(ξ) = 0 , (116)

where the parameter ω2 is again given by Eq. (95), introduced for the bifurcation analysis of the discrete
chains.

Note that equation (116) is identical to the homogeneous differential problem ruling Euler’s buckling
for the inextensible and unshearable elastica except for the definition of ω, Eq. (95). Therefore, while
the bifurcation loads result different, the bifurcation modes in terms of cross-section rotation θ(s) of the
present equivalent shearable model are identical with those corresponding to the inextensible and unshearable
elastica, namely

θ(ξ) = A sin(ωξ) +B cos(ωξ) , (117)

where the boundary conditions, Eq. (113), imply B = 0 and ω cosω = 0. It follows that, beside the trivial
condition ω = 0 (implying θ(ξ) = γ(ξ) = 0), non-trivial solutions exist only when cosω = 0, namely,

ω2
m =

(2m− 1)2π2

4
, m = 1, 2, . . . , (118)
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and, setting ω2 = ω2
m in Eq. (95), the bifurcation loads are obtained as twin sequences of negative values

p+m and p−m as

p+m

p−m

}
=

−
(
αζ + ω2

m

)
±
√(

αζ + ω2
m

)2 − 4α(1− α)ζω2
m

2(1− α)
, m = 1, 2, . . . , . (119)

which are formally the same as Eq. (98), but now with the mode number m unbounded from the above.
Moreover, Eqs. (117) and (115), lead to the bifurcation modes

θm(ξ) = A sin(ωmξ) , γm(ξ) = −A
αp±m

αζ + p±m
sin(ωmξ) , (120)

where A is an arbitrary amplitude.

The emergence of a strongly discontinuous bifurcation mode. In addition to the twin sequences
of bifurcation loads p±m, the bifurcation of the cantilever rod also occurs at a transition load p0 which results
coincident with p∗, Eq. (85),

p0 = p∗, (121)

consistent with the finding from the analysis of the cantilever discrete chain, Eq. (100). As a matter of fact,
when p = p0 = p∗, the algebraic Eq. (114)2 cannot anymore be solved for γ(ξ), but merely reduces to the
condition θ(ξ) = 0.

By using the dimensionless coordinate ξ = s/L and enforcing the linear approximation underlying the
bifurcation analysis, the solvability condition (112) reduces to

αζ

∫ 1

0
γ(ξ) dξ = θ′(0) , (122)

which suggests that the solution is to be sought within the framework of generalized functions in the form
γ(ξ) = c δ(ξ), where δ(ξ) is the Dirac delta function and c is an arbitrary amplitude, implying θ′(0) = c αζ.
In this circumstance, Eq. (114)1 leads to a representation of θ′ in terms of Heaviside step function H, namely,
θ′(ξ) = c αζ[1−H(ξ)], so that θ(ξ) = c αζ ξ[1−H(ξ)] vanishes for ξ ∈ [0, 1].

The bifurcation mode just found corresponds to the rod remaining straight under the axial load, but
rigidly displaced in the transverse direction of an arbitrary amount. Therefore, both the displacement and
the bending moment suffer a jump at the clamp, where the shear angle γ(ξ) displays a stronger singularity.
This behaviour is shown in Fig. 7 in the inset labelled ‘Transition mode’.

4.2.2 Simply supported configuration for the equivalent rod

The bending moment at both ends of the rod, Fig. 6b (lower part), is null, so that the boundary conditions
on the function θ(s), Eqs. (59), read as

θ′(0) = 0 , θ′(L) = 0 . (123)

complementing the differential-algebraic problem (111).
Using again the dimensionless parameters, Eq. (83), and the normalized coordinate ξ ∈ [0, 1], the lin-

earized equations (114) are again obtained.
When p ̸= p∗, Eq. (85), the function γ(ξ) is again given by Eq. (115) and the homogeneous differential

equation (116) still applies, with its general solution, Eq. (117). The boundary conditions Eq. (123) provide
A = 0 and ω sinω = 0. The latter condition is satisfied when

ω2
m = m2π2 , m = 1, 2, . . . , (124)
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which can be used in Eq. (119) to obtain the bifurcation loads, while the relevant modes become

θm(ξ) = B cos(ωmξ) , γm(ξ) = −B
αp±m

αζ + p±m
cos(ωmξ) , (125)

being B an arbitrary amplitude.
Differently from the cantilever scheme, for the simply supported rod the condition ω = 0 provides an

additional bifurcation load. In fact, recalling the definition (95) of ω2, the transition load p0 can be derived
as in Eq. (109), valid also for the continuous rod, and the corresponding mode is

θm(ξ) = −γm(ξ) = B . (126)

In the degenerate case p = p∗, Eq. (114)2 provides θ(ξ) = 0, and, using the boundary conditions (123)
in Eq. (112), the solvability condition for the linearized buckling analysis becomes

αζ

∫ 1

0
γ(ξ) dξ = 0 , (127)

an equation that is satisfied by the null function γ(ξ) = 0, so that, differently from the case of the cantilever
rod, Eq. (122), a discontinuity in γ(ξ) does not occur.

4.3 Patterns of bifurcations for the discrete chain and the equivalent rod

The results obtained in the previous Sections 4.1 and 4.2 for the discrete chain are compared with analogous
results relative to the equivalent shearable rod. In particular, bifurcation loads, Eqs. (98), (100), (109),
(119), and (121), and bifurcation modes, Eqs. (99), (110), (120), (125), and (126), are investigated for the
cantilever and the simply supported equivalent rod schemes.

4.3.1 The bifurcation loads and modes

The bifurcations of the cantilever chain and the simply supported chain are characterized in both cases by
the twin sequences of bifurcation mechanisms, Eqs. (98), separated by a transition mode, Eqs. (100) and
(109). The twin modes for the discrete systems correspond to p+m(n) and p−m(n) and are characterized by the
same shape of the nodes’ interpolation obtained through different contributions of the angles θi (representing
the rotation of the chain elements) and the angles βi (characterizing the micromechanics connected with
the inclination of the four-bar linkage), Fig. 3. The same feature also characterizes the bifurcation modes
corresponding to p+m and p−m of the continuous system, Eqs. (119), so that the same deformed shape of the
rod axis is obtained for both twin modes by considering different angles ratios θ(s)/γ(s), Eqs. (120) and
(125). It follows that the overall shape of the bifurcation modes is the same, but the actual configuration is
obtained via different contributions of the rotation and the shear angles.

Figs. 7 and 8 report bifurcation loads and modes for the discrete and continuous systems. The former
figure is dedicated to the cantilever scheme and the latter to the simply supported one. Both figures pertain
to a system with a low stiffness ratio, ζ = 20, and a value α = 0.3 of the microstructural parameter,
providing p∗ = −6. Parameters ζ and α have been selected as representative of a structure in which the
shear deformation plays an important role.

A set of nineteen different discrete systems are considered, corresponding to n varying between 2 and
20, with the bifurcation mode number m satisfying m ≤ n − 1. The continuous and discrete structures
exhibit the twin sequences of bifurcation loads, separated by the transition load p0, which is independent of
n and therefore appears as a constant value in the figures. Note that for the continuous model (identified by
n → ∞ in the figures) the bifurcation mode number m ranges from 1 to +∞ and the corresponding modes
are sketched in red.
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Figure 7: Bifurcation loads and modes for the cantilever chain and for the equivalent elastic rod (α =
0.3 , ζ = 20). The discrete systems are defined by a number of elements n ranging between 2 and 20. The
twin sequences of bifurcation loads ‘+’ and ‘−’ are separated by the ‘transition’ load p0 = p∗ and are
reported for the discrete systems (marked blue), corresponding to n values, and for the continuous system
(marked red). The twin m-th critical modes for the continuous system are reported superimposed to chains
with increasing number n of elements. Note that the transition mode involves a jump in displacement at
the clamp.

In the continuous model for both cantilever and simply supported conditions, the first sequence of
bifurcation loads initiates from p+1 and accumulates towards p∗, Eq. (85), namely,

lim
m→∞

p+m = p∗, (128)

while the second sequence initiates from p−1 < p0 and grows to infinity, p−∞ → −∞. For the cantilever rod
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Figure 8: As for Fig. 7, except that the rod is simply supported. In this case p∗ > p0 and the transition
mode has a ‘bookshelf-like’ shape.

the accumulation load coincides with the transition load, p0 = p∗, Fig. 7, while these two loads remain
different for the simply supported rod and verify p0 < p∗, Fig. 8.

The bifurcation modes characteristic of the twin sequences are reported in the figures for p+m(n) on the
left and for p−m(n) on the right. The twin modes display the same deformed rod axis but the rotation of
the cross-sections is different, so that each bifurcation mode of the chain (with a given number n of discrete
elements) corresponds to a unique bifurcation mode of the continuous rod. The modes belonging to the
sequence ‘+’, are characterized by the angles θ and γ sharing the same sign, while these signs become
opposite for the modes belonging to the second sequence.

The transition mode exhibits a peculiar shape, because a jump in displacement for the cantilever rod
emerges at the clamp (Fig. 7, n = 2, p0(2) = p0), while a ‘bookshelf-like’ bifurcation mode (Fig. 8, n = 2,
p0(2) = p0) characterizes the simply supported scheme. These bifurcation modes, observed in the equivalent
rod, closely resemble their discrete counterparts (drawn superimposed on the deformed rod).

A comparison between the numerical values of bifurcation loads for discrete and continuous systems
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shows that the critical loads characterizing the first sequence and the transition mode are captured with
an excellent approximation already with a chain of 5 elements only. This approximation becomes worse for
critical loads smaller than that corresponding to the transition mode.

4.4 The special case of the Engesser rod

It has been shown in Section 3.4 that our model of equivalent rod specializes to the Engesser rod in the limit
α → 1, so that the bifurcation analysis for the Engesser rod can be performed by specializing the results
obtained from Eqs. (114).

With reference to the cantilever and the simply supported rods shown in Fig. 6, in the limit for α → 1,
the second sequence of bifurcation loads, Eq. (119), diverges, p−m → −∞, while the first sequence can be
expressed as

pm = − ζω2
m

ζ + ω2
m

, m = 1, 2, . . . , (129)

where ω2
m is given by Eq. (118) and Eq. (124) for the cantilever and the simply supported rod, respectively.

Moreover, the relevant bifurcation modes can be obtained by specializing Eqs. (120) and (125), whence the
rotation angle of the tangent to the rod axis, for the two schemes, becomes

φm(ξ) = A
ζ

ζ + pm
sin(ωmξ) , φm(ξ) = B

ζ

ζ + pm
cos(ωmξ) , (130)

where the two expressions refer to the cantilever and the simply supported rod, respectively, and A and B
are arbitrary amplitude coefficients.

The transition load for the cantilever structure, Eq. (121), specializes to p0 = −ζ, so that, even for the
Engesser model, a cantilever rod exhibits a local buckling mechanism, with γ(ξ) = c δ(ξ), θ(ξ) = 0 and
φ(ξ) = c δ(ξ), where δ(ξ) is the Dirac delta function and c is an arbitrary amplitude. On the contrary, the
transition load p0 of the simply supported rod, Eq. (109), diverges to −∞ in the limit α → 1, so that the
‘bookshelf-like’ bifurcation mode does not occur for the Engesser rod model. Furthermore, the sequence pm
of bifurcation loads, Eq. (129), accumulates to the value p∗ = −ζ, Eq. (85), which represents a minimum
for the cantilever rod and an infimum for the simply supported scheme.

The bifurcation analysis can also be conducted from the equation governing the mechanics of the Engesser
rod, Eq. (74), with FL = Pe1 and null distributed load q(s) and couple m(s). For this load conditions, the
equation governing the Engesser rod model becomes

EI

[
φ(s) +

P

GAs
sinφ(s)

]′′
− P sinφ(s) = 0 , (131)

which coincides with the equation derived for the so-called ‘Timoshenko’s approach’ [2] and the ‘Engesser
elastica’ [24]. The boundary conditions, Eqs. (75) and (76), become

φ(0) +
P

GAs
sinφ(0) = 0 ,

(
1 +

P

GAs
cosφ(L)

)
φ′(L) = 0 , (132)

for the cantilever rod, and(
1 +

P

GAs
cosφ(0)

)
φ′(0) = 0 ,

(
1 +

P

GAs
cosφ(L)

)
φ′(L) = 0 , (133)

for the simply supported scheme.
Using the dimensionless parameters defined by Eqs. (83), the dimensionless coordinate ξ = s/L, and

applying the linear approximations sinφ(ξ) ≈ φ(ξ) and cosφ(ξ) ≈ 1, Eq. (131) becomes(
1 +

p

ζ

)
φ′′(ξ)− pφ(ξ) = 0 , (134)
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and the boundary conditions, Eqs. (132) and (133), reduce to(
1 +

p

ζ

)
φ(0) = 0 ,

(
1 +

p

ζ

)
φ′(1) = 0 ,︸ ︷︷ ︸

Cantilever rod

(
1 +

p

ζ

)
φ′(0) = 0 ,

(
1 +

p

ζ

)
φ′(1) = 0 .︸ ︷︷ ︸

Simply supported rod

(135)

When p ̸= p∗ = −ζ, it is possible to set ω2 = −ζp/(ζ + p), so that the differential equation (134) can be
expressed as Eq. (116) with φ(ξ) replacing θ(ξ). Moreover, the boundary conditions, Eq. (135), simplify to(
φ(0) = 0, φ′(1) = 0

)
for the cantilever rod, and (φ′(0) = 0, φ′(1) = 0) for the simply supported scheme,

which are analogous to Eqs. (113) and (123).
Therefore, the values ω2

m given by Eqs. (118) and (124) also apply to the buckling of the Engesser rod,
the bifurcation loads are given by Eq. (129) and the bifurcation modes coincide with Eqs. (130).

Note that when p = p∗ = −ζ, corresponding to a local buckling mechanism for the cantilever rod,
Eq. (134) reduces to φ(ξ) = 0 and the boundary conditions in terms of φ(ξ), Eqs. (135), do not apply.
Consequently, Eq. (134) becomes useless, because its validity is limited to the bifurcation modes described
by continuous functions. On the other hand, for a comprehensive analysis of the Engesser rod, a differential-
algebraic system of equations in the form of Eqs. (114) is required.

5 Postcritical response of the simply supported rod showing the emer-
gence and growth of folding

The examination of the postcritical response of the simply supported rod under compression requires the
development of numerical codes to solve the nonlinear equations governing the quasi-static response of the
discrete chain, Eqs. (87), and of its equivalent rod, Eqs. (111).

5.1 The continuous rod and the numerical solution of its deformation under load

The numerical solution of the differential-algebraic equations (111) is performed by considering the equivalent
system of nonlinear differential equations, expressed in terms of dimensionless parameters (83) and of the
coordinate ξ = s/L, as

θ′′(ξ) = p (1− α) sin θ(ξ)− αζ γ(ξ) ,[
αζ + p cos

(
θ(ξ) + γ(ξ)/α

)]
γ′(ξ) = −αp cos

(
θ(ξ) + γ(ξ)/α

)
θ′(ξ) ,

ξ ∈ (0, 1) , (136)

to be complemented with the dimensionless versions of Eqs. (111)2 and (123). The nonlinear analysis is
performed by decreasing the dimensionless load p < 0 through discrete load steps ∆p < 0 (of amplitude
varying with the incremental stiffness) and the system (136) is integrated at each step using the function
‘bvp4c’ of Matlab [36].

Note that, because of the symmetry of the rod configuration, the rotation θ(ξ) vanishes at the midpoint
ξ = 1/2 and, by virtue of the algebraic equation (111)2, the shear angle γ(ξ) is also null at this point. This
symmetry condition leads to a problem during the integration of the system (136), when the dimensionless
load p reaches the value p∗, Eq. (85). In fact, for this value of the load (representing the limit value of the
first sequence p+m of buckling loads), the coefficient of γ′(ξ) in Eq. (136)2 vanishes at ξ = 1/2. Consequently,
function γ(ξ) is not defined at ξ = 1/2 when p = p∗, but approaches zero with a vertical tangent from both
sides of this point, while the symmetry condition still applies as a limit (Fig. 9, centre),

lim γ (1/2± |ε|)
|ε|→0

= 0 , lim γ′ (1/2± |ε|)
|ε|→0

= −∞, for p = p∗ . (137)

The singularity in γ(ξ) and γ′(ξ) at ξ = 1/2 also affects the rotation angle φ(s) of the tangent to the
rod axis and its curvature, φ′(s). Therefore, Eqs. (44) and (46) lead to

lim φ (1/2± |ε|)
|ε|→0

= 0 , lim φ′ (1/2± |ε|)
|ε|→0

= −∞, for p = p∗ , (138)
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Figure 9: Upper part: Three stages during the development of folding in the postcritical behaviour of the
equivalent rod. Central part: Rotation of the cross-section θ, of the tangent to the axis φ, and shear angle γ.
Lower part: Curvature of the rod axis φ′, and derivatives of angles θ and γ. The graphs refer to three levels
of negative load P , with increasing modulus from left to right: at first bifurcation Pcr (left), at the emergence
of folding for the load P ∗ (centre, displaying infinite value for the mid-span curvature φ′(L/2)), and when
folding is already developed PA at u1(L)/L = −0.5 (right, displaying at the mid-span the formation of a
cusp in the curvature φ′(1/2) and a jump in the shear angle γ(1/2)).

whence the curvature φ′(s) = φ′(ξ)/L diverges to infinity and marks the emergence of folding at the mid-span
of the rod.

When the (negative) force P is further increased in its modulus (P < P ∗), a jump occurs at the mid-span
(ξ = 1/2) in the shear angle γ and consequently in the rotation angle φ of the tangent to the rod axis, while
their derivatives (γ′ and φ′) remain finite and continuous (Fig. 9, right). More specifically, due to symmetry,
the following properties hold

γ (1/2+) = −γ (1/2−) ̸= 0 , γ′ (1/2+) = γ′ (1/2−) ̸= ±∞ ,

φ (1/2+) = −φ (1/2−) ̸= 0 , φ′ (1/2+) = φ′ (1/2−) ̸= ±∞ ,

for p < p∗ . (139)

It is also noted that, because symmetry is maintained during the deformation path, although γ is discon-
tinuous at the mid-span, λ remains continuous at that point,

λ
(
1/2+

)
= λ

(
1/2−

)
. (140)

As a consequence of the singularity of functions γ(ξ) and γ′(ξ) in Eq. (136), the Runge-Kutta scheme
implemented in the numerical solver fails to converge when applied to the entire domain [0, 1]. The strategy
adopted to overcome this problem is to release the continuity of the angle θ at mid-span by disconnecting the
left and right halves of the rod through the insertion of an elastic hinge of stiffness K0 (made dimensionless
as κ0 = K0L/(EI)). The adopted numerical strategy is similar to the introduction of finite elements with
embedded strong discontinuities in the shear band analysis of continua, see among many others [1].

Notice that the insertion of an elastic hinge at mid-span of the equivalent rod modifies the structural
setup and thus the bifurcation results. In fact, when a simply supported rod contains an elastic hinge at
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mid-span, the solution of the linearized differential equation (116) becomes

θ(ξ) =

 A1 sin(ωξ) +B1 cos(ωξ) , if ξ ∈ [0, 1/2) ,

A2 sin(ωξ) +B2 cos(ωξ) , if ξ ∈ (1/2, 1] ,
(141)

and the boundary conditions θ′(0) = θ′(1) = 0 are supplemented by the constraints holding across the hinge,

θ′(1/2−) = θ′(1/2+) , θ(1/2−)− θ(1/2+) = θ′(1/2−)/κ0 . (142)

Non-trivial solutions occur when

sinω =
ω(1− cosω)

2κ0
, (143)

and for a value ω = ωm, identifying the m–th bifurcation mode, twin bifurcation loads p±m are obtained
from Eq. (119). Notice that ω1, and thus the critical load p+1 , is lower than that obtained in the absence
of the hinge and approaches the value corresponding to the intact rod when κ0 increases to infinity, leading
Eq. (143) to coincide with the condition sinω = 0, pertaining to the intact rod.

The post-buckling behaviour is now obtained by numerically integrating Eqs. (136) on two symmetric
subdomains separately. The solution depends on κ0, but it is found to converge to a fixed response when
the stiffness is increased at infinity, κ0 → ∞, a condition which restores the continuity of the rotation θ(s),
but allows the discontinuity of the shear angle γ(s) to persist. The convergence of the solution at increasing
κ0 demonstrates that the same solution can be obtained by simply dividing the integration domain into
two halves (ξ ∈ [0, 1/2) and ξ ∈ (1/2, 1]), constrained only through the continuity condition in θ and θ′ at
ξ = L/2,

θ′(1/2−) = θ′(1/2+) , θ(1/2−) = θ(1/2+) . (144)

The process of folding nucleation and growth is illustrated in Fig. 9, where three snapshots of the variation
of functions θ, γ, φ and their derivatives along the rod axis is reported. The graphs are complemented in
the upper part with the deformed shape of the equivalent rod at the three different values of negative loads
P : (i.) the critical buckling load Pcr, (ii.) the load P ∗ = p∗EI/L2 providing the emergence of folding, and
(iii.) at a later stage PA, corresponding to u1(L) = −L/2.

Folding emerges at the load p = p∗ as a point-wise singularity of γ(s), and also of φ(s), corresponding
to infinite curvature at the midpoint, Fig. 9 (central column). When the load is further decreased, p < p∗,
the shear angle γ(s) develops a jump discontinuity growing with the load, Fig. 9 (right column).

For the equivalent rod model, Fig. 10 depicts the applied force as a function of the cross-section rotation
θ(0), shear angle γ(0), and normalized displacements in both the e1 and in the e2 directions of the endpoint
u1(L) and of the midpoint u2(L/2), respectively. The rod is disconnected at mid-span through the inclusion
of an elastic hinge of dimensionless stiffness κ0, so that the four values κ0 = {1, 10, 102, 103} are reported.
It is worth mentioning that the four curves tend to accumulate on that corresponding to κ0 = 103 and that
higher values of κ0 (not reported for conciseness) result in superimposed curves. This provides evidence to
the fact that the continuous solution converges to folding, a feature clearly emerging from the bifurcation
modes reported on the right of the graphs, where the rows refer to the different stiffnesses of the rotational
spring.

Note that Fig. 10 refers to the first mode m = 1 (higher mode bifurcations are not explored) and points
marked on the graphs as Aj , Bj , and Cj (j = {0, 1, 2, 3}, respectively corresponding to κ0 = {1, 10, 102, 103})
correspond to the deformations reported on the right. The continuous curves denote stable behaviour, while
dashed lines indicate an unstable path. The latter always initiates when the two supports coincide, as
illustrated in the central column of the figure. The folding developing at mid-span and making the deformed
shape similar to a pointed arch is displayed (left column of the figure).
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Figure 10: Post-buckling and folding development of the simply supported equivalent rod: load vs end angles
θ(0), γ(0) and displacements u1(L) and u2(L/2) (left); deformed configurations at different loads, points
Aj , Bj , and Cj (j = {0, 1, 2, 3}, respectively corresponding to κ0 = {1, 10, 102, 103}) (right). A discontinuity
in the curvature of the rod axis at the midpoint is modelled by introducing an elastic hinge with stiffness
κ0 = K0L/(EI). Four values of rotational stiffness are reported, showing that the solution tends to a fixed
value of folding when the stiffness increases to infinity. Folding leads the rod to assume the shape of a
pointed arch. See also the video file in the electronic supplementary material.

The Engesser rod. The Engesser model shares with our equivalent one the development of folding in the
post-buckling behaviour of a simply supported configuration. This feature, never noticed before, becomes
evident from Eqs. (136) which hold true also in the limit condition α → 1, so that a singularity at ξ = 1/2
emerges for the functions γ(ξ) and γ′(ξ) at p = p∗ = −ζ. The singularity also affects the rotation angle φ(ξ)
of the tangent to the axis and the curvature φ′(ξ), the latter marking the emergence of folding.

5.2 Numerical integration of the equilibrium equations for the discrete system

The nonlinear deformation of discrete chains, in a simply supported configuration, is obtained through nu-
merical solution of the algebraic system of equilibrium equations (87), supplemented by the pinned boundary
conditions. In the numerical procedure, the dimensionless load p < 0 is progressively decreased by dividing
the load in steps ∆p < 0 (of amplitude varying with the incremental stiffness) and the nonlinear equilibrium
equations, Eqs. (87), are solved using the function ‘FindRoot’ of Wolfram Mathematica [39].

At each step of the numerical solution, the stability of the configuration is evaluated. To this purpose,
being the mechanical system conservative, the Hessian of the total potential energy can be obtained through
differentiation of the left hand side of Eqs. (87), with respect to the configuration parameters θi and βi,
with i = 1, . . . , n. However, only 2n − 1 parameters are independent variables, so that the Hessian matrix
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Figure 11: Post-buckling of simply supported chains with even (n = 20) and odd (n = 21) number of
elements. Equilibrium paths (force −P vs kinematic parameters θ1, β1, u1, and u2) for the even (left)
and the odd (right) system. Stable (unstable) paths are denoted with continuous (dashed) lines and dots
indicate bifurcation points. Loss of stability occurs at bifurcation when the two supports coincide, B, and
restabilization, D, is achieved later for the even system. The odd system shows a secondary, B and three
tertiary, Dj (j = 1, .., 3), bifurcations.
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Figure 12: Deformed configurations during the post-buckling of a simply supported chain with an even
number, n = 20, of elements. The deformed configurations are superimposed to the response of the ho-
mogenized rod, highlighting the validity of the homogenization scheme and the emerging of folding at the
midpoint. Points A, B, C, and D correspond to Fig. 11 on the left. See also the video file in the electronic
supplementary material.
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Figure 13: Deformed configurations during the post-buckling of a simply supported chain with an odd
number, n = 21, of elements. Secondary and tertiary bifurcations are found. In particular, the secondary
(stable) bifurcation path mimics the development of folding with a strong distortion of the elements. Points
A, B, Cj , Dj , and Ej (j = 1, 2) correspond to Fig. 11 on the right. See also the video file in the electronic
supplementary material.

must be condensed taking into account the constraint, Eq. (101), expressed in variational form as

n∑
i=1

[(
(1− α) cos θi + α cos(θi + βi)

)
δθi + α cos(θi + βi) δβi

]
= 0 . (145)

Positivity (or negativity) of the smallest eigenvalue of the condensed Hessian denotes stability (instabil-
ity), while vanishing corresponds to a critical condition (a bifurcation or a maximum load). At bifurcation,
non-trivial branches of the equilibrium path can be explored by perturbing the configuration with a small
superimposed displacement parallel to the eigenvector of the Hessian corresponding to the vanishing eigen-
value.

Postcritical equilibrium paths (force −P vs kinematic parameters θ1, β1, u1, and u2) are reported
in Fig. 11 for a chain with an even (left, n = 20) and a odd (right, n = 21) number of elements. Stable
(unstable) paths are denoted in the figure with continuous (dashed) lines and small circles indicate bifurcation
points. The two figures show similar curves both qualitatively and quantitatively, as it can be expected, by
considering that two chains differ only in one element and thus must behave similarly for obvious reasons.
The curves are also very similar to the response of the continuous system, Fig. 10, another proof of the
validity of the homogenization scheme.

Bifurcation always occurs in a global mode. Postcritical deformed shapes are reported in Figs. 12
and 13 for two chains, one with an even (n = 20) and the other with an odd (n = 21) number of elements,
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respectively. The configuration relative to the even system are superimposed to the solution of the equivalent
rod, showing a strict correspondence of the rod axis with the interpolation of the discrete chain nodes.

For both systems, a secondary bifurcation occurs when the two supports coincide, points B for n = 20
and Dj (j = 1, 2) for n = 21. However, the even system displays a simpler behaviour than the odd. In
particular, for even number of elements, a symmetric primary bifurcation path develops after the initial
bifurcation and remains stable up to the point where the two supports coincide, while subsequent deformed
shapes merely represent unstable configurations, a situation similar to the equivalent rod (and also to the
Euler’s elastica). In this system, folding corresponds to the growth of the angle formed between the two
central elements of the chain. It starts to develop from the first bifurcation and continues to increase during
all the postcritical path. A peculiarity of the even system is that a restabilization is achieved in the late
postcritical path, indicated with point D in Fig. 11 on the left.

In the odd system, the primary postcritical path initiates at bifurcation from the straight configuration
and remains stable, but only up to a point close to but preceding the transition load, denoted with B in
Fig. 11 on the right. Before that point is reached, folding does not initiate, because the primary bifurcation
satisfies symmetry and thus the central angle remains null. At point B, a secondary bifurcation path
initiates which is stable and unsymmetric. The stability of the secondary bifurcation path is in line with an
observation of Domokos [13] in the simpler model of a chain equivalent to the Euler’s elastica. During the
secondary path, a strong distortion of the elements develops, which is the discrete counterpart of folding in
the equivalent rod. Finally, the secondary bifurcation path terminates with a tertiary bifurcation, occurring
when the two supports coincide. From that point on, all equilibrium paths become unstable.

Although only chains with n = 20 and 21 elements are reported, we have analysed several chains with
different numbers of elements. The behaviour of these structures was always found similar to each other,
showing the secondary and, in the odd case, tertiary bifurcation. The mechanics of the discrete systems
was found to be perfectly consistent with the mechanics of the equivalent rod (see the video files with the
progressive deformation of the continuous and discrete structures in the electronic supplementary material),
thus confirming the effectiveness of the homogenization scheme and the formation and growth of folding.

5.3 Multiple folding

Folding is influenced by several factors, including structural characteristics, static and kinematic boundary
conditions, as well as the magnitude of the deformation, and can occur at more than one cross section
along the rod axis. Leaving to future work a thorough analysis of this peculiar response, a basic example
is anticipated in Fig. 14 where the postcritical deformed configuration is reported for a rod of total length
L, α = 0.3 and stiffness ratio ζ = 20, supported with three equally-spaced rollers under three levels of
increasing compressive load P , showing the simultaneous folding at two different locations along the rod
axis.

The treatment of the folding was performed with the technique of adding elastic hinges of increasing
stiffness, as explained in the previous Section. The deformed shape reported in the upper part of the figure
refers to the (linearized) critical mode at bifurcation, with the critical load Pcr = −5.71EI/L2 higher in
magnitude than the one of the simply supported scheme (Pcr = −4.71EI/L2). The other two deformations
refer to two subsequent loading steps during the postcritical behaviour, the central part to the load P ∗ =
−6EI/L2 at which folding occurs, while the lower to a later stage, corresponding to the same load PA =
−9.02EI/L2 considered in Fig. 9.

Compared with the deformed shapes reported in Figs. 9, 10, and 12, now the folding becomes more
pronounced, as the parts of the elastic rod comprised between folding points remain less deformed, so that
they appear to be straight. This effect is due to the fact that now the buckling load is higher than that
pertaining to the simply supported scheme, a circumstance magnifying folding. In fact, on one hand Pcr

is closer to the load P ∗ and the folding occurs earlier in the post-buckling behaviour. On the other hand,
recalling Eqs. (125), the relative contribution of the shear angle γ with respect to the rotation θ at bifurcation
is increased by the higher (negative) critical load, making the rod axis deformed primarily by shear effects.
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Pcr

P ∗

PA

Figure 14: Postcritical deformed configurations of a two-span continuous rod showing the development
of multiple folding under an increasing compressive load P = {Pcr , P

∗ , PA}. Three loading stages are
displayed: (upper part) first critical load Pcr; (central part) buckling load for the four-bar mechanism P ∗,
for which folding emerges at two cross sections along the rod axis; and (lower part) postcritical load PA at
which folding is fully developed.

6 Conclusions

Through homogenization, the design of microstructured chains allows to obtain differentmodels of equivalent
continuous rods, implemented with shear and bending deformability, which can be reduced as special cases
to the nonlinear models of Euler, Reissner, and Engesser. In this vein, a new continuous model of shearable
elastic rod has been introduced, which represents the homogenized response of a discrete origami-like chain,
based on four-bar linkages and deformed in the large deformation (nonlinear) range. The derived shearable
rod model reduces as particular cases to the Euler and Engesser (but not Reissner) elasticae, and was shown
to be governed by a set of differential-algebraic equations. Differently from both Euler and Reissner rods,
the presented model is capable of displaying folding in the postcritical response, even occurring at multiple
sections. Moreover, the equivalent rod shows bifurcation modes evidencing faulting deformations, involving
jumps in displacement. These mechanical features, useful in the realization of origami-based soft robot
arms, have been all substantiated through the analysis of the behaviour of the underlying discrete model,
where they correspond to secondary bifurcations and instabilities.
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Appendix A Matrix Eigenvalues

Equations (96) and (107), instrumental to explicitly evaluate the eigenvalues of the matrix Fk, Eq. (92),
and Hk, Eq. (106), are derived here by adapting results reported in [29, Chapter 3].

A.1 Eigenvalues of the symmetric matrix Fk

Denote by Pk(λ) = det(λIk − Fk) the characteristic polynomial of the k × k matrix Fk, given by Eq. (92).
Through a Laplace expansion, Pk(λ) can recursively be expressed as

P0(λ) = 1 ,

P1(λ) = λ− 1 ,

Pk(λ) = λPk−1(λ)− Pk−2(λ) , k = 2, 3, . . . .

(146)

The change of variable λ = 2x, shows that Pk(2x) = Vk(x), where Vk(x) is the k–th degree Chebyshev
polynomial of third kind defined as

Vk(cos θ) =
cos((k + 1/2)θ)

cos(θ/2)
, k = 0, 1, 2, . . . , (147)

so that the eigenvalues λm of Fk can be found by considering the k roots of the polynomial Vk(x) and can
be expressed as in Eq. (96).

A.2 Eigenvalues of the matrix Hk

The evaluation of the eigenvalues of the k× k matrix Hk, defined by Eq. (106), requires the introduction of
the auxiliary matrix

Gk(λ) =



1 1 1 · · · · · · · · · 1
−1 λ −1 0 · · · · · · 0

0 −1 λ
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . −1 0
...

. . . −1 λ −1
0 · · · · · · · · · 0 −1 (λ− 1)︸ ︷︷ ︸

k




k , (148)

whose determinant, evaluated by means of a Laplace expansion, yields the polynomial Qk(λ) in the recursive
form

Q1(λ) = 1 ,

Q2(λ) = λ ,

Qk(λ) = Pk−1(λ) +Qk−1(λ) , k = 3, 4, . . . ,

(149)

where Pk−1(λ) is the polynomial expressed via Eq. (146).
Note that Qk(λ) coincides with the Chebyshev polynomial of second kind of degree k − 1, Uk−1(λ/2).

In fact, the recursive properties evidenced in Eqs. (146) and (149) lead by induction to

Qk(λ) = λQk−1(λ)−Qk−2(λ) , k = 3, 4, . . . , (150)

so that, setting λ = 2x and considering the starting values in Eq. (149), one easily finds

Q1(2x) = U0(x) = 1 ,

Q2(2x) = U1(x) = 2x ,

Qk+1(2x) = Uk(x) = 2xUk−1(x)− Uk−2(x) , k = 2, 3, . . . .

(151)
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In view of the above preliminary result, the eigenvalues of the matrix Hk, Eq. (106), can be evaluated
by considering the characteristic polynomial Dk(λ) = det(λIk −Hk). A Laplace expansion leads to

D0(λ) = 1 ,

D1(λ) = λ ,

Dk(λ) = (λ+ 1)Pk−1(λ) +Qk−2(λ) , k = 3, 4, . . . ,

(152)

which, exploiting the recursive identities in Eqs. (146) and (149), satisfies

Dk(λ) = Qk+1(λ) , k = 0, 1, 2, . . . . (153)

Consequently, the eigenvalues of the matrix Hk are given by the k roots of the polynomial Qk+1(λ)
which, recalling Eq. (151), can be evaluated using the properties of the Chebychev polynomials of second
kind. Specifically, setting λ = 2 cos θ and using the identity

Uk(cos θ) =
sin

(
(k + 1)θ

)
sin θ

, k = 0, 1, 2, . . . , (154)

expression (107) of the eigenvalues of Hk follows.
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