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Asymptotic fields of mode I steady-state crack propagation
In non-associative elastoplastic solids
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The quasi-static, steady-state propagation of a crack running in an elastoplastic solid with volumetric-non-associative tlow
law is analyzed. The adopted constitutive model corresponds to the small strain version of that proposed by Rudnicki and
Rice. The asymptotic crack-tip fields are numerically obtained for the case of the incremental theory with linear isotropic
hardening, under mode I plane-stress conditions. A relevant conclusion of the study is that the singularity of the near-tip
fields appears to be mainly governed by the flow-rule, rather than by the yield surface gradient.

1. Introduction

Non-associative flow-laws were introduced by
Mréz (1963) and Mandel (1966) in order to de-
scribe the behavior of frictional materials. Since
then, the non-associativity has been identified as
a key feature in the modelling of the behavior of
many materials of engineering importance. Here
we may mention porous metals and metals show-
ing the S-D effect (Drucker, 1973; Spitzig et al.,
1976), plastics (Whitney and Andrews, 1967), con-
crete (Palaniswamy and Shah, 1974), ceramics
(Chen and Reyes-Morel, 1986; Reyes-Morel and
Chen, 1988), rocks and soils (see, e.g., Chen,
1980). Moreover, a remarkable sensitivity of pre-
dictions to non-associativity has been shown for
many elastoplastic constitutive models. In partic-
ular, certain instability phenomena would be pre-
dicted at unrealistic stress levels if the associative
flow-rule were adopted (Rice, 1980). These insta-
bility phenomena, e.g., surface instability
(Hutchinson and Tvergaard, 1980; Horii and Ne-
mat-Nasser, 1982), orange-peel (Rittel, 1990), lo-
calized deformations (Rice, 1976) and elastoplas-
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tic cavitation (Huang et al., 1991), develop just
before failure. For instance, Torrenti and Benaija
(1990) have experimentally observed that, for
concrete and fiber-reinforced concrete, localiza-
tion of deformation occurs immediately before
the peak of the stress—strain curve in simple
compression. In order to model this experimental
evidence in terms of an elastoplastic continuum,
a strong degree of non-associativity is to be intro-
duced (Bigoni, 1992).

From the above discussion, it can be con-
cluded that, for a bettcr understanding of frac-
ture mechanisms in elastoplastic solids, the effect
of non-associativity should be investigated. In this
sense, FE simulatiens of crack growth in ductile
pressure-sensitive materials have been performed
(see, e.g., Aoki et al., 1984; 1987; Needleman and
Tvergaard, 1987; 1992), in which a formulation of
non-associative elastoplasticity is adopted, based
on the Gurson (1977) model. However, the only
contribution regarding asymptotic analysis near
the crack tip seems to be that of Nemat-Nasser
and Obata (1990). The type of non-associativity
introduced by these authors comes from a partic-
ular type of non-coaxiality of the plastic flow-
mode tensor and the stress tensor. This assump-
tion, together with the incompressibility condi-
tion, yields to equations with the same structure
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of those of the associative case. In that paper, it
18 interesting to note that the perfect plasticity
assumption, together with the non-associativity,
yields the appcarance of stress discontinuities in
the solution.

The analysis of mode I steady-state quasi-static
and dynamic crack propagation has been deeply
investigated in the case of the J,-flow theory with
linear hardening (Amazigo and Hutchinson, 1977;
Ponte-Castaneda, 1987a,b; Achenbach et al.,
1981; Ostlund and Gudmundson, 1988; Ponte-
Castaneda and Mataga, 1991), as well as in the
perfeet plastic case (Slepyan, 1974; Gao, 1987
Rice et al., 1980; Drugan et al., 1982; Rice, 1982;
Gao and Nemat-Nasser, 1983). With the excep-
tion of the papers of Li and Pan (1990a,b) and Li
(1992), where the static of a crack in a Drucker—
Prager deformation theory has been analyzed, no
asymptotic analyses are available on crack propa-
gation in pressure-sensitive materials. In a previ-
ous paper (Bigoni and Radi, 1992), the mode 1
steady-state, quasi-static propagation has been
studied for an elastoplastic material obeying the
Drucker—Prager yield criterion with associative
flow-rule under plane stress and plane strain con-
ditions. In that paper, it was shown that the
pressure-sensitivity turns out to have a strong
influence on the traction and the octahedral
stresses ahead the crack tip.

In the present paper, the cffect of the non-as-
sociativity is analyzed in mode I propagation,
adopting the small strain formulation of the con-
stitutive model of Rudnicki and Rice (1975) and
Nemat-Nasscer and Shokooh (1980). The model is
based on the Drucker—-Prager (1952) yield surface
with a volumetric non-associative flow rule. When
the plastic potential corresponds to the Huber-
von Mises yield function, the model reduces to a
Jenike—Shield (1959) type model and, conse-
quently, plastic flow occurs without volumetric
changes. A finite-strain version of this model was
proposed by Needleman and Ricc (1978) as a
simplified model for capturing the S-D effect in
metals and was later used by Needleman (1979)
to investigate the effects of non-associativity on
bifurcations of a block in plane-strain compres-
sion. The model used in the present paper, has
been thoroughly studied from the point of view of

local stability criteria (Rudnicki and Rice, 1975,
Needleman, 1979; Vardoulakis, 1981; Chau and
Rudnicki, 1990; Bigoni and Hueckel, 1990; Bigoni
and Zaccaria, 1992); nevertheless, it had never
been used in the asymptotic analysis of crack
propagation. The study has been restricted to the
condition of plane-stress, steady-state, quasi-static
crack propagation in linear isotropic hardening.
Solutions are found that satisfy the full continuity
of fields across the elastic—plastic boundarics. In
the framework of the adopted constitutive model,
the non-associativity is shown to reduce, at low
hardening, the amplitude of the plastic scctor
ahead the crack tip. Moreover, the singularity of
the stress and velocity fields near the crack tip is
found to be strongly dependent on the flow-rule,
and only weakly dependent on the yield surface
gradient. Therefore, the non-associativity appears
to be a dominant parameter in crack-propagation
analyses.

2. Constitutive model

The small strain version is adopted of the
isotropic elastoplastic model proposed by Rud-
nicki and Rice (1975) and Nemat-Nasser and
Shokooh (1980). Tsotropic linear hardening is as-
sumed. The stress—strain relation writes:

1
é=E (1+v)o—v(tro)l

1
+E<Q-d>P , (2.1)

in which » is the Poisson ratio, £ the elastic
modulus, / the ratio between hardening modulus
and FE, the operator { ) denotes the McAulay
brackets, @ is the gradient of the yield function:

;LI S 25
=—I+ —=, .
0=+ (22

where § is the deviatoric stress and g the param-
eter governing the pressure-sensitivity. Finally, P
is the flow-mode tensor:

B S

P="1+-—, 23
302, (2.3)
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where B is the parameter governing the non-as-
sociativity. Plastic flow can occur only when the
stress point lies on the (Drucker—Prager) yield
surface:

3
- k=0,
g, ,u+\/§

where the hardening parameter k is 1/\/5 time
the radius of the deviatoric section of the yield
surface with thc m-plane in the Haigh-West-
ergaard stress space and o, is the effcctive stress:

(2.4)

S+ J) 25
= —tro+J, ), 2
G /.L+\/§(3 roth (23)

which reduces to the principal non-zero stress
component in uniaxial traction. Note from (2.1)
that elastic unloading occurs when Q-0 <0.
Moreover, in the case of mode 111 stress state, it
can be noted that the constitutive equation (2.1)
coincides with the J,-flow theory. Deviatoric
non-associativity would change the response (in
respect to the J,-flow theory) even for antiplane
shearing conditions. The model reduces to that of
Drucker—Prager when 8 = u, to a Jenike—Shield
type model, when 8 =0 and u # 0 and, finally, to
the J,-flow theory when 8 =pu =0.

In order to facilitate the comparisons with the
results from the J,-flow theory, it is important to
remark that £ is related to the ratio a between
the tangent modulus G, (of the shear stress—en-
gineering strain curve) and the elastic shear mod-
ulus through the following equation:

2(1+v)h

I 20t (2.6)
Moreover, in the special case B=u =0 and v=
1/2, « turos out to be equal to the ratio between
the uniaxial tangent modulus and the elastic
modulus E.

The model (2.1} has been widely adopted in
the constitutive description of various brittle and
ductile materials, such as high strength steels,
porous metals, ceramics, plastics, concrete, rocks
and soils. However, the crack-propagation analy-
sis that will be developed in the present paper

appears to be suitable for homogeneous materi-
als. Therefore, the analysis may be considered a
rough modelling of fracture in concrete, due to
the siz¢ of the inhomogeneities which are not
comparable with the representative scalc length
of a near-tip field. For metals showing the SD
effect, parameter u may range from 0 to 0.07 and
B is approximately 1/15 of u (Spitzig et al,
1976). In plastics u may arrive at the value 0.26
with B =pu/6. Reyes-Morel and Chen (1986;
1988) reported u = 8 = 0.69 for zirconia-contain-
ing ceramics. Finally, x may range between 0.4
and 1.0 and B8 between 0.2 and 0.5 for rocks
(Rudnicki and Rice, 1975).

3. Governing equations

A Cartesian reference system is adopted, with
the origin attached to the moving crack tip, the
x,-axis in the direction of crack propagation and
the x;-axis normal to the plane of non-zero
stresses. The steady-statc propagation condition
implies:

()=-v. (3.1)

where V' denotes the (constant) crack-tip specd
and comma indicates differentiation. Moreover,
for algebraic convenience, a cylindrical system
(r,9, x;) is employed, having the origin located
at the crack tip and the longitudinal axis coinci-
dent with x;.

In cylindrical coordinates, the equilibrium
equations become:

1o, F 09— 055 =0,
( rr).) VY bR (32)

(r(rrf)),r T Og9.9 T 0e = 0.

The three non-zero stress components and the
two in-plane velocities (v, and ry) are assumed
as unknown (€5 is determined from (2.1) as a
function of the non-zero stresses). By substituting
the strain compatibility relation € = (Vv +
(Vv)T)/2 into (2.1) and using the steady-state
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condition (3.1), three equations are obtained in
the five unknowns a,,, 044, 0,4, U, and vy:

E

1
—¢,,=|1+-0,P
Vl’r,r ( her rr)

sin 9
X|{—a0,, 5, —cos do,

s re,r

2 .
— —sin do,,
v

1
- (V - ZQFH‘)PN)
sin ¥
X (-——a-l"h‘),x‘) — €Os ﬁ O‘l‘h‘).r

2 .
+ —sin do,,
r

0,59 —COS GO, ,

2 sin O
+ ZQrﬁ Prr(

1
+ —sin Ho,, — Uw))’ (3.3a)
r
E 1
W(Uﬁ.ﬁ +u)= (1 + EQ»‘?P».‘))

X Tyy.9— COS DOyy ,

(sin )
2

+ —sin 1‘}0,0)
4

1
- (V - ZQ”PM)

sin 9
X o, s —cos ¥,

r r rr.r
2 2

— s 19a’rvf)) + _Qn‘}Prr
r h

X *—.—70}1‘),1‘) - COs 19 O-rl‘),r

(sinﬁ

1
+ —sin ¥(o,, — 0}”,)), (3.3b)
r

E 1
Y% (L'o,r + 7(1«5,3 - Uﬁ))

2 2
= (1 +r+ ZQ,.Q)

sin
X —Urt?,l‘) — COs 19Crrl?,r
I 1
+ —sin 13(o-rr - 0-1319) + _Qrﬂ
¥ h
sin ¥
X1 Qg Tyg.0 — COS Doy,

2.
+ —sin d o,y
r

sin 1
+0,, a,, 9 — €08 Yo,

r rr,r
r

2
— —sin 190,.(,)}. (3.3¢)

¥

Equations (3.2) and (3.3) form a system of five
first order PDEs. Solutions are sought in the
HRR form {(Hutchinson, 1968a,b; Rice and
Rosengren, 1968), i.e.,

1
0(r ) = Ve y(9),

1
vg(r, 9) =Vri—y, (),
s

0,5(r, 0) =Er’y;(9), (3.4)
(rrr(r’ 19) :Efsy4(19)’
ayo(r, 3) = Erfys(),

where s is the stress singularity coefficient and
the bar under r denotes non-dimensionalization
with respect to any length parameter. The form
of solution (3.4) has been widely adopted in
crack-propagation analyses (Achenbach et al.,
1991; Ostlund and Gudmundson, 1988; Ponte-
Castaneda, 1987a; Ponte-Castaneda and Mataga,
1991). However, it is well-known (Ponte-
Castaneda, 1987a) that the singularity s does not
approach the limit corresponding to the perfect-
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plasticity solution when the hardening modulus
tends to zero. Unfortunately, perfect-plasticity so-
lutions are not available for the problem of
crack-propagation in the assumed elastoplastic
solid and therefore conclusions are not drawn
concerning valucs of hardening approaching zero.
Substitution of (3.4) into (3.2) and (3.3) yiclds a
system of five first order ODEs in the form:

y =f(y,9,s, o, sign(Q-0)). (3.9)

It should be noted that the form of the system
depends on the sign of the plastic multiplicr and
on the value of the cffective stress g, which
indicate, respectively, elastic unloading and plas-
tic rcloading. System (3.5) writes:

yi= ’(l +S)Y4+YSs (3.6a)
yi=—(s+2)y;, (3.6b)
, 1
Ya= A sin 9
X [[yl + (2 —vs) sin 9y,

+s(yqs—vys) cos 9]

B 2y, — s
-t —
3 6y,

(A) 1
A h

X (O, sin ¥ y;+s50, cos )|, (3.6c)

yi=(1-5)y
= 2(1+v)s*(sin &y, + cos ¥ y;)
sy
(A

V2

(3.6d)

yy=—y,—ssin vy, + (s —2v)y,]
+52 cos vy, —ys)

B 2y5y4)
_..Jr.—.*.___v y

§
+ (A —
=Th\3 6,

(3.6¢)

where 1/h =0 if o, < 3k/(u + V3) and:

1 2y, =y
Aogio|B L2
A3 61/,
2y -y
x| B2 ) (3.7)
3 6,4,
VL2
w o 2As—1)ys;+(5s+4)y
O,=(s+2)= + ( )5,7 ‘.
3 6\/!2
(3.8)
M :
(")z:?(h‘*'ys)"‘v!zw (3.9)
B2y, -y
A=y sin 9] =+ ——
0y,
—y40, sin # — 56, cos 9, (3.10)
Jy=3(vi+yi—yiys) +yi. (3.11)

Equations (3.6a) and (3.6b) have bcen derived
from (3.2) and Eq. (3.6¢) from (3.3a), by using
(3.6a) and (3.6b). Equations (3.6) differ from the
analogous cquations of Bigoni and Radi (1992)
because of the terms containing the plastic flow-
mode paramecter 8. For high values of non-as-
sociativity, the parameter 4 defined by (3.7) might
vanish at sufficiently small values of hardening.
Therefore, the value of A has to be checked
during the numerical intcgration of system (3.5).
However, 4 was always found to be greater than
zero in all performed numecrical cases. The van-
ishing of A secems to be connected with the emer-
gence of solutions presenting discontinuitics in
the field variables.
The boundary conditions are: -

y2(0) =y3(0) =y4(0) =0,
yi(m) =ys(m) =0,

(3.12a)
(3.12b)

where (3.12a) have been obtained from mode 1
symmetry and (3.12b) from thc requirement of
zero tractions on the crack surface. Moreover, by
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using (3.12) into Egs. (3.9), the following auxiliary
conditions are obtained:

1
yi(0y=— S[m(ﬂ)* vys(0)+ "

y (B 2y,(0) = ¥5(0) )
3 2300+ y20) = yy(0)y5(0)]

m
%[5 L0+ 5]

Y3+ ¥y = ya(Oys0)]/3 )]

(3.13)
y[(0) =y1(0) =0, (3.14)
yi(0) = — (1 +5)y,(0) +y5(0). (3.15)

From a comparison with the corresponding
equations of Bigoni and Radi (1992), it may be
noted that the non-associativity affects the form
of the PDEs, as well as the boundary condition
(3.13).

Possibility of plastic reloading on crack flanks
has been taken into account by assuming that the
path of the (moving) particles is rectilincar
(Ostlund and Gudmundson, 1988; Ponte-
Castaneda, 1987a). Plastic reloading occurs when
a particle reaches thc same value of effective
stress it had at elastic unloading. The angle corre-
sponding to elastic unloading will be denoted by
,; hence, plastic reloading occurs at the angle 4,
which satisfies the following equation:

g () /(sin 9,)" = (0,)/(sin 9,)’

3.16
and A>0. ( )

In the following, solutions are sought which
satisfy the continuity of all fields. Thus, the fol-
lowing conditions are imposed across clastic—
plastic boundaries:

Iy d=ly.l= - = [ys]=0,

where [y;] denotes the jump of y,. However, as
was pointed out by Nemat-Nasser and Obata
(1990), non-associativity opens the possibility to
the appcarance of jump discontinuitics in the
radial stress and in the strain components. In

(3.17)

fact, the continuity of the stress and strain fields
for steadily propagating surfaces has been proved
under the hypotheses of associative flow and
isotropic (positive) hardening only (Drugan and
Rice, 1984; Drugan and Yinong, 1990; Nara-
simhan and Rosakis, 1987; Nemat-Nasser and
Gao, 1988). Therefore, the solutions to the prob-
lem analyzed in this paper may not be uniguc.
The possible discovery of discontinuous solutions
at positive hardening could be interpreted as the
key-tool to cxplain the appearance of highly local-
ized near-tip deformation patterns like those
studied by Vitek (1976), Riedel (1976) and Lo
(1979).

4. Numerical results

In order to solve the system (3.6), subject to
(3.12), the Runge-Kutta method is cmployed.
The Runge-Kutta method requires the knowl-
edge of all the values of functions y, at 9 =0.
Therefore, the normalization y,(0)=1 is intro-
duced and an initial estimate is given of the
valucs of y,(0)=g and s. After the numerical
integration is performed, a check is made to
determine if conditions (3.12b) are satisfied. On
the basis of the error made on (3.12b), new valucs
of g and s are given; the intcgration is then
re-started and the process is iterated until the
solution is approached with the required accu-
racy. The scheme adopted for the iteration on g
and s is the modified Powell hybrid method, used
also by Ostlund and Gudmundson (1988). Both
the Runge—Kutta and Powell methods were
available in the IMSL library (subroutines DIvPRK
and pNeonF). Finally, when g and s are dcter-
mined, the solution is re-normalized by assuming
() /Eri =1

As in the case of the associative flow-rule, the
influence of v was found negligible and no
reloading was observed. Therefore, all results are
given for v=1/2 and the angle &, is never
reported. In order to make comparisons easier,
the plots of the angular distributions of the stress
components for the J,-flow theory are reported
in Fig. 1, for @ =0.001, and in Fig. 8, for ¢ =0.1.
It should be mentioned that the graphs reported
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Fig. 1. Angular stress distribution for small strain hardening
in the case of J,-flow theory.

in Fig. 1 coincide with those of Fig. 16b in
Ponte-Castaficda (1987). The valucs of the singu-
larity s and of the unloading angle %, arc re-
ported in Tables 1 and 2. The plots in all the
figures represent the angular distributions of
functions y, (—y, for y, and y,), when
o,(83,)/Er® = 1. These functions represent (under
a suitable normalization) the stress and the veloc-
ity ficlds. In Figs. 2-7 and Figs. 9-14 the angular
distributions of the stress and velocity compo-

Table 1

Values of s, g and &, (v =1/2)

a =0.001

o B s q i,

0.8 0.8 —0.02394 17.65462 36.692
0.8 0.6 —0.03334 5.46313 29.650
0.8 0.4 —0.03861 3.37610 24.045
0.8 0.2 —0.04286 2.49603 19.133
0.6 0.6 —0.02431 5.33904 39.816
0.6 0.4 —0.03511 3.36579 31.294
0.6 0.2 —0.04155 2.49363 24.425
0.4 0.4 —0.02516 3.31713 43.445
0.4 0.2 —0.03789 248787 33.241
0.2 0.2 —0.02656 2.45930 47.770
0.2 0.1 —0.03557 2.20354 41.028
0.2 0.0 —0.04206 1.98923 35.616
0.1 0.1 —0.02751 2.18393 50.307
0.1 0.0 ~0.03753 1.98404 43.038
0.0 0.0 —0.02866

1.96890 53.202

Table 2

Values of s, g and 9, (v =1/2)

a=01

M B $ q g

1.0 1.0 —0.17914 12.61329 58.894
1.0 0.8 —(1.18880 5.33852 58.543
1.0 0.6 —.19902 3.49597 58.177
1.0 0.4 —0.21021 2.63698 57.804
1.0 0.2 —(0.22292 2.12792 57.439
1.0 0.0 —0.23795 1.78210 57.122
0.8 0.8 —0.18497 4.92100 60.732
0.8 0.6 —0.19671 3.35213 60.457
0.8 0.4 —0.20928 2.57038 60.169
0.8 0.2 —0.22327 2.09179 59.881
0.6 0.6 - (.19302 3.18331 63.016
(L6 0.4 —.20729 2.49038 62.822
0.6 (.2 —1{.22285 2.04798 62,624
0.4 0.4 —0.20379 2.39237 65.826
0.4 0.2 —0.22130 1.99384 65.732
0.4 (.0 —0.24083 1.70125 65.653
0.2 0.2 —(L.21810 1.92533 69.296
0.2 0.1 —{0.22870 1.78478 69313
0.2 0.0 —0.23991 1.65978 69.337
0.1 0.1 —0.22695 1.75279 71.342
0.1 0.0 —0.23883 1.63468 71.500
0.0 0.0 —0.23726 1.60583 73.646

nents are reported for o« =0.001 and o« = 0.1,
respectively. Various degrees of non-associativity
are explored for the cases u = 0.8 (Figs. 2-7) and
p = 1.0 (Figs. 9-14).

a = 0.001

0.5 1

0.0

It nnu

Fig. 2. Angular distribution of circumferential stress for small
strain hardening and various degrees of non-associativity.
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Fig. 3. Angular distribution of radial stress for small strain
hardening and various degrees of non-associativity.
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Fig. 4. Angular distribution of shear stress for small strain
hardening and various degrees of non-associativity.

a = 0.007
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00T 6o 90 1200 1807 180

Fig. 5. Angular distribution of effective stress for small strain
hardening and various degrees of non-associativity.

1.0

Lo

0.5

0.0

-0.5

Fig. 6. Angular distribution of velocities in cyclindrical coordi-
nates for small strain hardening and various degrees of non-
associativity.

The qualitative trends of all curves are similar
to the associative case. However, it is evident that
the cffect of non-associativity consists in a
smoothing (increasing with the lowering of 8/u
ratio) of the stress-component curves. The effect
of non-associativity on the velocities is less evi-
dent. Moreover, by increasing «, all curves be-
come close to each other and tend to the clastic
solution. From Tables 1 and 2 it can be seen that
the non-associativity generally reduces the size of
the plastic zone. Notice that a similar effect is
produced by the pressurc-sensitivity (Bigoni and
Radi, 1992). However, for high values of harden-

i

o

LS
ATRRSRT T

o
w
(@}
(o2}
Q
(o}
o
)
o
w
(o]
o]
o

Fig. 7. Angular distribution of velocities in Cartesian coordi-
nates for small strain hardening and various degrees of non-
associativity.
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Fig. 8. Angular stress distribution for high strain hardening in

Fig. 11. Angular distribution of shear stress for high strain
the case of J,-flow theory.

hardening and various degrees of non-associativity.
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Fig. 14. Angular distribution of velocities in Cartesian coordi-
nates for high strain hardening and various degrees of non-as-
sociativity.

ing, a slight opposite tendency is observed (in
fact, for £ =0.2 and a = 0.1 a slight increase in
9, is observed for a decreasing B8). Moreover, the
values of parameters s and g decrcasc with the
ratio B/u. In the associative case, it was shown
in Bigoni and Radi (1992) that ¢,(0) — (} for small
values of @ (= 0.001), when u approaches a value
of approximately \/5/2. The effect of the non-as-
sociativity opens the possibility of increasing u
well beyond \/3_/2 for small values of «, if 8 is
kept sufficiently small (see, e.g., Table 3). In Figs.
15-18 solutions are reported corresponding to a
constant value of B, for different values of w (for
a =0.001 and « =0.1). The plots of Figs. 15-18
reveal a remarkable feature, i.e., a weak variation
of fields (especially for the stress fields) with the
pressure-sensitivity parameter ., whereas a strong
variation with the degree of non-associativity is
observed. Moreover, from the tables it appears
evident that the non-associativity controls the sin-
gularity s and the parameter q. Therefore, for the

Table 3

Values of s, g and 3, for =07 (v =1/2)
a=0.001

" s q A

13 —(0.03782 8.40437 19.629
1.0 —0.03478 8.34921 25.906
0.9 —0.03276 8.30788 28.923
0.8 —0.02962 8.22896 32.710

Fig. 15. Angular distribution of stress components for small
strain hardening and various degrees of pressure-sensitivity.
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Fig. 16. Angular distribution of velocities in cylindrical coordi-
nates for small strain hardening and various degrees of pres-
sure-sensitivity.
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Fig. 17. Angular distribution of stress components for high
strain hardening and various degrees of pressure-sensitivity.
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Fig. 18. Angular distribution of velocities in cylindrical coordi-
nates for high strain hardening and various degrees of pres-
sure-sensitivity.

assumed model, the crack fields appear to be
governed by the flow-rule, rather than by the
yield surface gradient.

5. Final discussion

The near tip fields of a steadily running crack
in incremental elastoplastic solids with non-as-
sociative flow laws rcpresents an almost unex-
plored aspect of fracture mechanics. The contri-
bution of the present paper is restricted to a
simple constitutive model, obeying the Drucker—
Prager yield criterion with volumetric-non-as-
sociativity. Moreover, only the plane stress, small
strains, quasi-static mode I has been analyzed.
However, the results scem to change the scenario
of the associative case substantially (sec Bigoni
and Radi, 1992; Li and Pan, 1990a,b; and Li, 1992
for the static casc). In fact, the flow-rule appears
to govern the near tip fields (especially the stress
fields) and thereforc a strong degree of non-as-
sociativity reduces the effect of pressure-sensitiv-
ity remarkably. In other words, the dependence
of the stress fields on the pressure-sensitivity
parameter is weak, whereas the dependence on
the flow-rule is strong. However, at small strain
hardening the plastic sector ahead the tip reduces
in size with respect to the associative case. More-
over, an increasing in the non-associativity yields

a stronger singularity of thc fields. Therefore,
non-associativity represents an instabilizig effect in
the crack growth. It can be concluded that, in the
analysis of crack propagation in pressure-sensi-
tive solids, both the effects of pressure-sensitivity
and non-associativity play an important role.
Therefore, the non-associativity results to be an
important parameter in crack propagation analy-
ses, which deserves further theoretical and exper-
imental investigations.
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