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CRACK PROPAGATION IN POROUS HARDENING METALS

Enrico Rapt and DaviDE BIGONI

University of Bologna

Abstract — Steady-state and quasi-static rectilinear crack propagation is analyzed in porous elas-
toplastic solids obeying the Gurson yield condition and flow-law. Both plane strain and plane
stress conditions are considered under Mode I and Mode I1 loading conditions. The asymptotic
crack-tip fields are obtained with reference to the incremental small strain theory in the case
of linear isotropic hardening behavior of the matrix material. The porosity of the material is
assumed constant, therefore the elastoplastic constitutive operator results in being self-adjoint.
Elastic unloading and plastic reloading on crack flanks are taken into account.

I. INTRODUCTION

The determination of asymptotic stress and strain fields in the plastic zone near a crack-
tip is fundamental in the understanding of crack propagation mechanisms. The case of
a steadily propagating crack in the framework of the J,-flow theory with linear hard-
ening was initially developed by AMaziGo and HutcHINSON [1977], under the hypoth-
esis of HRR singularity in the fields ahead of the crack-tip (HurcHinsoN [1968a,1968b1;
RICE & ROSENGREN [1968]). Later, the problem was considered by PONTE CASTANEDA
[1987], who accounted for plastic reloading on crack flanks, by ACHENBACH ef al. [1981]
and OsTLUND and GUDMUNDSoN [1988], who investigated dynamic propagation.

In recent papers (BiGoN1 & RADI [1993] and Rapi & Bicont [1993]), the authors ana-
lyzed crack propagation in elastoplastic pressure-sensitive solids with associative and
nonassociative flow-rules, employing a constitutive model based on the Drucker-Prager
yield condition, namely, the small strain version of the RubpNickr and Rice [1975]
model. This constitutive model can be useful in a rough modelling of many materials
of engineering importance, for example, ceramics, rocks, concrete, metals showing
the S-D effect and porous metals. Moreover, in Rapr and Bicont [1993], a first effort
was expended in the direction of the analysis of nonassociativity effects on crack
propagation.

Porous metals and particulate-reinforced metal matrix composites are known to
exhibit pressure sensitivity and volumetric changes during plastic flow processes. Of this
behavior, the Drucker-Prager model with isotropic hardening gives only a first approx-
imation (TVERGAARD [1990]). More precise modelling can be achieved by employing the
elastoplastic model proposed by Gurson [1977a,1977b] and subsequently modified by
TvERGAARD [1981,1982] and TVERGAARD and NEEDLEMAN [1984]. The Gurson model
originated from micromechanical considerations in which the voids were assumed to be
spherical and the matrix material rigid-plastic. Gurson extended the model to isotropic
hardening and later MEAR and HuTtcHinsoN [1985], and TvERGAARD [1987] introduced
kinematic hardening. This model was investigated from many points of view. Strain
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localization into narrow planar bands was analysed by NEEDLEMAN and RicE [1978],
YaMamoTo [1978], SATE ef al. {1982], Ouno and HUuTcHINSON [1984], MEAR and HuTtch-
INSON [1985], and TvERGAARD and VAN DER GIESSEN [1991]. Surface instabilities were
considered by TVERGAARD [1982]. However, fracture mechanics, that was thoroughly
investigated via f.e. methods by Aravas and McMEEKING [1985], Aokl et al. [1987],
NEEDLEMAN and TVERGAARD [1987], JAGOTA et al. [1987], TVERGAARD and NEEDLEMAN
[1992], Aok et al. [1992], was never analyzed from the point of view of asymptotic anal-
ysis until quite recently. In fact, the only contribution in this direction was given by DrRU-
GAN and Mi1ao [1992], in the case of a stationary crack in plane strain and Mode 1
conditions, under the hypotheses of constant porosity and perfect plastic behavior of
the matrix material.

This article concerns itself with an asymptotic analysis of steady-state crack propa-
gation in an elastoplastic material obeying the Gurson yield function and flow-law. As
in DruGaN and M1ao [1992], the hypothesis is introduced of constant porosity. It should
be noted that the behavior of incompletely sintered and previously deformed metals can
be modelled with this assumption. As noted by HurcHinsoN [1983a], the method of
asymptotic analysis is valid in an annular zone close to the crack-tip, which is small if
compared to the size of the plastic sector. The internal radius is determined by the mag-
nitude of the zone where micro-inhomogeneities, cavitation, and finite deformation
effects dominate. Therefore, the assumption of constant porosity can be appropriate in
the range of applicability of asymptotic analysis. In any case, the inclusion of a nucle-
ation law for the porosity not only complicates the analytical computations, but may
yield a nonadjoint elastoplastic operator. This circumstance, as discussed in Rap1 and
BiconI [1993], may cause a loss of ellipticity of the PDEs governing the problem, with
possibility of the appearance of stress discontinuities.

Mode II loading condition has been explored in elastoplastic materials by AMAZIGO
and HUTCHINSON [1977], PONTE CASTAREDA [1987], ACHENBACH ef al. [1981], and Ost-
LuND and GUuDMUNDSON [1988]. These investigations are restricted to the case of I,-flow
theory only. Therefore, for pressure-sensitive solids, the problem is almost unexplored.
This may be due to the fact that the different behavior in tension and compression of
many vield criteria for pressure-sensitive solids (e.g. the Drucker-Prager, Schleicher,
Coulomb-Mohr, and Elliptic yield surfaces, Fig. 2) breaks the symmetry of the Mode
II conditions. There exist, however, yield criteria that are pressure-sensitive but insen-
sitive to the sign of the stress. A typical example of this behavior is represented by the
BeLTrRAMI [1885] yield condition. This criterion is represented by an ellipsoid centred at
the origin of the Haigh-Westergaard stress space, with the axis of revolution coincident
with the hydrostatic axis. The Gurson yield criterion, which has the meridian section
shown in Fig. 1, is another example of pressure-sensitive criterion independent of the
sign of the stress. In any case, the type of yield function is not the only source of break-
ing the Mode 1I symmetry; in fact, all plasticity rules must be insensitive to the sign of
the stress. In the case of the Gurson model (Gurson [1977a,1977b]), the evolution law
of the porosity (see TVERGAARD [1981,1982]) changes with the sign of the stress. How-
ever, in the particular case of constant porosity and isotropic hardening of the matrix
material, Mode Il symmetry is preserved.

Ductile Mode II crack growth in extremely rare in real application of civil and marine
structures. However, Mode 11 ductile crack growth occurs on interface problem in elec-
tronic type materials, and its analysis is the basis for mixed mode crack propagation
problems. As far as the authors are aware, asymptotic analyses are not available for
Mode Il propagation in porous elastoplastic materials obeying the Gurson model. In this
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Fig. 1. Meridian section of the Gurson yield surface.

research direction, the only contribution concerns F.E. analyses. In particular, the inves-
tigation performed by Aokr ef al. [1987] is more closely related to the result that will
be presented.

The asymptotic problem is solved by using the procedure introduced by PONTE
CASTANEDA [1987], which allows to take into account elastic unloading in the crack wake
and plastic reloading on crack flanks. Results are given for the near tip stress and veloc-
ity fields as functions of matrix hardening and porosity parameters. When the poros-
ity is set equal to zero, the J,-flow theory is recovered and the results reduce to those
by PoNTE CASTANEDA [1987]. Both the conditions of plane strain and plane stress are
analysed in Mode I and Mode II loading conditions. The obtained results emphasize the
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Fig. 2. Meridian sections of the Drucker-Prager, Schleicher, and Elliptic yield surfaces.
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effects of the porosity on the asymptotic fields. Due to the high value of mean stress,
this effect is more pronounced under plane strain and Mode I loading, rather than under
plane stress or Mode II conditions. This circumstance agrees with the results obtained
for crack propagation in materials obeying the Drucker-Prager model (BIGoNT & RADI
[1993]; Rap1 & Biconr [1993]). However, the Gurson yield surface has curved meridian
sections and is closed and smooth at every point (included intersections with the hydro-
static axis; see Fig. 1). As a consequence, the stress states near crack-tip are different
from those obtained when the Drucker-Prager model is adopted. In the case of the Gur-
son model in Mode I plane strain, for instance, the stress state ahead of the crack-tip
does not tend to the hydrostatic state of stress. Moreover, by increasing the porosity,
the radial stress component tends to coincide with the out-of-plane stress component,
in the whole plastic sector ahead of the crack tip.

Finally, it is worth mentioning that the obtained solutions correspond to continuous
stress and velocity fields. This circumstance agrees with the argument proved by Dru-
GaN and Rick [1984], which does not cover the condition of perfect plastic behavior.
Therefore, the stress jumps evidenced in the solution by Drucan and Miao [1992] are
consistent. These jumps occur for a “critical” value of porosity and fit coherently with
the solution proposed in this article. In fact, for low hardening behavior of the matrix
material, the obtained stress fields show a definite change around the mentioned criti-
cal value of porosity.

This article is organized as follows. In Section II, the Gurson model is briefly
reviewed, and in Section III the general equations, which govern the propagation prob-
lem, are derived. Sections 1V and V address the plane strain and plane stress problems
for Mode I loading. Mode II loading is examined in Sections VI and VII. In these sec-
tions, stress and velocity fields near crack-tip are obtained by performing an asymptotic
analysis, and the results are presented and elucidated.

II. CONSTITUTIVE MODEL

The yield condition corresponding to the Gurson model, in the version modified by
TVERGAARD [1981,1982], is:

flo,0,) = % + 2q1¢>cosh<% tr—”) —1—(q,¢)* =0, 1

m Um

where o denotes the (macroscopic) stress tensor, J, the second invariant of deviatoric
(macroscopic) stress, o, is an equivalent tensile flow stress representing the actual
microscopic stress-state in the matrix material. Moreover, g, and ¢, are the parameters
introduced by TVERGAARD [1981,1982] and ¢ is the volume fraction of voids. Let &
denote the product g ¢. In the following, the void volume fraction ¢ will be assumed
constant, as in DRUGAN and Miao [1992]. The associative plastic flow law is:

e’ =4Q; 2

in eqn (2) A is the (nonnegative) plastic multiplier and Q is the gradient of the yield func-
tion (1):

S, 3
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where S denotes the deviatoric (macroscopic) stress, and the scalar « has the expression:

a:ds%sinh(@ ”—") (4)

2 Grn

In the case of isotropic hardening, the rate of equivalent plastic work in the matrix
material is assumed equal to the macroscopic rate of plastic work:

e-£" = (1 '_d))amésn (5)

where &P is the effective plastic strain rate (work-conjugate with ¢,,), representing the
microscopic strain-state in the matrix material. Assuming for the matrix an elastoplas-
tic constitutive relationship based on the J,-flow theory with linear hardening, the fol-
lowing relationship between the equivalent stress and the effective plastic strain rate
holds true:

d,, = 3H,, érr:z’ (6

where H,, is the hardening modulus of the matrix material, which depends on the ratio
g between the tangential shear modulus G, and the elastic shear modulus G of the
matrix material:

QG

H, = G. (7

l_OlG

The relation governing the evolution of g, follows from (5), by using (6), (2), and (3)
in the form:

3H
. i m Q . 8
m (1 —o¢)oy, ’ ®)

The value of the plastic multiplier is obtained by imposing Prager consistency:

(Q-d)

A=—0 ®

where () denotes the McAulay brackets, i.e. the operator R - R* U {0}: vx € R,
(x) = Sup{x,0}, and the macroscopic hardening modulus H is given by:

3H,,
S T—ee @ (0

H

It should be noted that a positive hardening modulus of the matrix material implies a

positive hardening behavior of the porous (homogenized) material (H,, > 0=H > 0).

Assuming isotropic elastic behavior, the elastoplastic incremental constitutive equa-

tions, relating the stress rate ¢ to the velocity of deformation &, can finally be obtained
in the standard form:
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Ly .
e—ZG[a w1+y(tra)l}+AQ, (11)

where » is the Poisson ratio.

It is worth noting that o,, plays the role of a hardening scalar parameter and that the
assumption of constant porosity implies that void nucleation is absent and thus yields
a symmetric elastoplastic operator. Moreover, the analogies between the present and the
Drucker-Prager models should also be noted. In fact, the constitutive equation (11) with
Q given by (3) differs from the associative Drucker-Prager model (see, e.g. BIGONTI &
RaDI [1993]) for the particular evolution laws of H, «, and, of course, for the yield func-
tion. In particular, the Gurson yield surface is smooth in correspondence of the hydro-
static axis and is closed in stress space. These circumstances yield different behavior with
respect to the Drucker-Prager plasticity. It may be interesting to show that for radial
stress paths, the constitutive equations (8-11) exhibit constant hardening. To this pur-
pose, let us assume:

¢ = B¢, consequently b = p¢, (12)
in which the constant-unit norm tensor £ fixes the direction of ¢ and ¢ in the stress space

and (3 specifies the norm increment. A substitution of eqns (10) and (9) into eqn (8) gives
the following identity, which holds true during plastic flow:

O _ Q8 (13)
On Q ‘g
Conditions (12) may be substituted in eqn (13) and integrated to give:
om = kB, (14)
where & must be obtained as the positive solution of the following equation:
3d -d t
JdevEdevE | geosh( L2 TE) 1 g2, (15)
2k 2k

where the symbol dev denotes the deviatoric part of a tensor. The substitution of (12)
and (14) into (10) yields:

3H,,

= ———(Q-§)% (16)
(I —¢)k*
where Q is obtained from (3) in the form:
Q=¢%sinh<% %>I+%{dev£. a7

From (16) and (17) it is easily concluded that, for the considered constitutive model, the
hardening modulus H is constant during radial stress paths emanating from the origin
of the stress space. However, the stress path of near crack-tip particles is not radial, and
thus the hardening modulus changes during crack-tip loading.
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III. CRACK PROPAGATION PROBLEM

In the problem under consideration, a rectilinear crack is supposed to propagate at
constant velocity in an infinite medium of elastoplastic material, obeying the constitu-
tive rules described in the previous section. In this propagation problem, elastic unload-
ing zones are involved as sketched in Fig. 3. Therefore, a full incremental theory of
elastoplasticity has to be employed. This will be done on the basis of the method pro-
posed by PONTE CASTANEDA [1987].

A cylindrical coordinate system (r,d,X;) is employed with the origin attached to the
moving crack-tip, which is propagating in the ¢ = 0 direction. The x;-axis is assumed
along the direction of zero stress or strain. For this choice of the reference frame, the
steady-state propagation condition implies:

C

(")=~-10)ssind —r(),cosd|, (18)

T

where ¢ denotes the (constant) crack-tip speed and the comma indicates differentiation.
The kinematic compatibility conditions are:

érr = Vr,r’ é(?:’ = (vﬁ,ﬂ + Vr)/ra érz? = (rvﬂ,r + vr,ﬁ - Vz?)/(zr)s (19)
where v; are the velocity components.
The problem is formulated by taking the stress and the two in-plane velocity compo-
nents as unknown functions, The equilibrium equations in cylindrical coordinates are:
(roy ), + 0.9.9 — 099 =0, (rory)s + 09,9 + 0;5 = 0. (20)
In cylindrical coordinates, the elastoplastic relationship (11), may be written as
&y = [drr - I/(dgg + 03‘%)] /E + Aera
&g9 = [099 — v (00 + 633)]/E + AQyy,
(21)

£33 = [33 — v (0 + 0g5)1/E + AQ33,

érz‘) = [(1 + V)6r19]/E + AQrL%

trajectory of a material partic]

wake

crack-tip zone

Fig. 3. Plastic zone near a propagating crack-tip.
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where E is Young modulus and the components of the stress rate tensor are:

. c .
Ory = ; [(Grﬂ,ﬂ + Oy — 01919)5111 19 - ran?,r cos 0] s

. C .
Oy = ; [(Urr,§ - 20“9)511'1 9 - [0 r COS 0] ’

| T oY

[(059,9 + 20:5)Sin & — ragy,. cos &1, (22)

0 plane stress

O3y = c . .
= (033, 95In ¢ — ro33 , cos ¢) plane strain.
T

Equilibrium eqns (20) and constitutive eqns (21) form a system of first order PDEs,
which governs the problem of the crack propagation. We look now for solutions in the
HRR separable form (HuTcHINSON [1968a,1968b]; RicE & ROSENGREN [1968])

v(r,d) = (¢/s)r'y,(9),  vu(r,8) = (¢/s)r'y,(9),

ars(r,9) = Erfy;(9), 0. (r,9) = Er'y,(9), (23)

Uﬁﬁ(raﬂ) :EISyS(ﬁ)v 033(r30) :EISY6(0),
where s is the fields singularity exponent and r denotes the nondimensional ratio between
r and any characteristic dimension of the plastic zone. The solution can be determined
except for an amplitude factor, as expected from asymptotic analysis of a homogencous
problem.

A representation similar to (23) is introduced for o,,:

om(1,9) = Er’y,,(9). (24)

A substitution of (23) into the equilibrium eqns (20) yields the following expressions
for y5 and y;:

y3=—(1 +5)ys + s, (25)

Il

ys = =2 + s)ys. (26)

When the representations (23) are substituted into the compatibility conditions (19) and
the steady-state condition (18) is employed, the strain rates may be written as:

érr = (C/Y)ISYD
€99 = (¢/DI/s(y5 + y1), (27

&y = (¢/Dr’/(2s) [yr — (1 = s)y,].
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Similarly, when (23) are substituted into (22), the dimensionless stress rate tensor,
defined as:

r=—2 (28)
(c/T)Er*
results in the following representation in terms of functions y;.
Lo = —S(yssind + yy3cos J),
L = (ys — 2y3)sin J — sy, cos J,
Lgs = —s(yysind + ys cos J), (29)
0 plane stress,
Ly = . .
Ve sin ¢ — sy, cos & plane strain.

It is worth noting that y; and y§ do not appear in the expressions for L., and Xy, since
equilibrium eqns (25) and (26) have been used to get (29, ;). Moreover, from represen-
tation (24) the dimensionless rate of o,, results to be:

g
r,= ——— =y, sind — sy, cos & 30
(e/Er y (30)
When the stress functions (23,24) are employed, the components of the yield func-
tion gradient (3) become:

2y, — ys — 2ys — Y, —
Q. =a+ Y4 — Vs Y(.’ Qo = o + Ys — Va Yf;,
PAS 2y,
(31
2¥6 —ya—y 3
Q33=0l+—6“#, Qny:z&,
where: Ym Yom
. +
o=¢ % sinh | £ s+ Y5 +¥6) y(,)}' (32)
Ym

A substitution of the expressions (22-24) and (27-32) into the incremental constitutive
relationships (8) and (21), together with equilibrium eqns (25,26), yields the system of equa-
tions governing the near-tip stress and velocity fields. This system results in seven first order
ODEs, whose unknown functions are the velocity and stress functions y, (J),y, (&), .. .,
ve(?), and y,,(¢). The unknown functions reduce to six in plane stress conditions (o33 =
vs = 0). The system of first order ODEs may be cast in the following standard form:

Y'(9) = £(2,¥(d),s), (33)
where: y(3) = {y, (4),y2(8), .. .,y ().

System (33) depends on the strength of singularity s, which is determined as an eigen-
value of the problem. Moreover, the system depends on the conditions of elastic unload-
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ing and subsequent plastic reloading, that is, on sign(Q-¢) and f(e,0,,). Consistently
with the assumption of small deformations, a straight path motion of particles is
assumed (Fig. 4). Thus, a generic particle ahead of the crack-tip experiences elastic
unloading at ¥ = 9,, when:

Q=<0 (34)
In the elastic unloading sector, the plastic multiplier vanishes, and the constitutive rate
relationships (21) reduce to the linear isotropic elastic relations. Throughout this sec-

tor, the value of equivalent stress in the matrix material o,, remains constant for each
material particle and equal to the value assumed at the elastic unloading angle &, :

0171(r90) - Um(rlslgl)v for 191 =d= 1925 (35)

where &, indicates the plastic reloading angle and r, singles out the material particle
under consideration (Fig. 4). The representation (24) of ¢,, and condition (35) imply:

Ym(l?) = (rl/r)syr71(0l)’ fOY 191 = 0 = 192- (36)
The straight trajectory of a generic particle is defined through the geometric relation:
rsind =r;sin ¥,. a7

The value of g,, must remain constant in the elastic sector and thus, in this sector, func-
tion y,, () must have the following dependence on the polar coordinate §:

V() = (sin 9, /sin 4) "y, (¥,), ford, <= =<d,. (38)
Plastic reloading on crack flanks occurs when the particle reaches a stress state which

lies on the yield surface left at unloading. Thus, reloading takes place at the angle ¢,,
when:

f(a(r2al?2)’am(rlxl91)) =0. (39)

elastic

crack-tip

Fig. 4. l.oading history of a generic material particle near to the crack-tip.
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By using relation (38), the reloading condition (39) becomes:

Mcosh[@ Ya(92) + Y5 (92) + Yo () (s%n 02” ELACH (sﬁ_n@)*“: ey
2 Y (91) sin 9, y2.(9) \sin &,
(40)
where J>(49) corresponds to:
Jo = 5(vi + Vi + Yo — Ya¥s — Ya¥s — Ys¥e) + V3. (41

If representations (23) and (24) are substituted into eqn (10), the following expression
for the dimensionless plastic modulus # = H/E is obtained:

3h,,
5 (QuYs + Quuys + Qua¥e + 2Q,9¥3)%, (42)

h= ———
(l - (b)ym

where 4, = H,,/E.

Mode [ and Mode Il symmetry conditions restrict the study to the interval 0 < d =<«
and yield appropriate boundary conditions ahead crack-tip.

In particular, Mode I loading condition implies at ¢ = 0:

Vz?(r)o) = 01‘19(r!0) = 01 (43)
and regularity of the stress and velocity functions ahead of the crack-tip implies:
Vr,&(rso) = Urr,ﬁ(r’o) = Uz)z),d(ryo) = 033’19(1',0) = 0 (44)

Thus, the following boundary conditions have to be prescribed, in terms of functions
Yi:

¥2(0) = y3(0) = y1(0) = y4(0) = y5(0) = y4(0) = 0. (45)
Moreover, Mode II loading condition implies at & = 0:
v (r,0) = 0,,.(r,0) = 04,5 (r,0) = 033(r,0) = 0, (46)
and regularity of the stress and velocity functions ahead of the crack-tip implies:
Vg,0(1,0) = 0,5 5(r,0) = 033 5(r,0) = 0. 47)

Thus, the following boundary conditions have to be prescribed, in terms of functions
¥i:

¥1(0) = ya(0) = y5(0) = ys(0) = y2(0) = y3(0) = 0. (43)
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Two more boundary conditions, which hold both for Mode I and Mode 1I, are
obtained from the condition that the crack surfaces are traction free, that is, stress com-
ponents o4, and o,y must vanish at ¢ = =«

yi(m) = ys(w) =0. (49

Finally, continuity of functions y;(##) has to be imposed at elastic-plastic boundaries.
In fact, DRuGaN and RICE [1984] proved that all stress components must be continu-
ous for quasi-static problems in elastoplastic materials with positive isotropic harden-
ing and associative flow-rule.

It is important to remark that all equations reported in this section hold true both in
plane strain and in plane stress. The plane stress case corresponds to the condition
¥e = 0. In the next sections, the plane stress and plane strain cases are considered in
separate ways for Mode I and Mode 11, respectively. Moreover, it should be noted that
the equations derived in the next sections are referred to plastic sectors, in fact, for the
elastic sectors the governing system of equation are well known and can be obtained
under the condition A = 0.

1V. MODE I: PLANE STRAIN

The plane strain condition:
vy = €33 = 0, (51)

together with the compatibility relations (19) have to be introduced into the constitu-
tive relations (21) to obtain, with the equilibrium eqns (20), a system of seven first order
PDEs in the unknown functions o, ¢4g, 019, @33, v, Vs, and o,,. In particular, consti-
tutive equations (21, 3), expression (9) for the plastic multiplier, and plane strain con-
dition (51) yield the following system of equations:

(h + Qgr)Err - (Vh - erQ33)E33 = ylh + (Vh - erQﬂﬁ)Eﬁd - 2Qr1’Ql‘0Erz9:
(52)

—(vh — Q. Q)L + (A + Q§3)233 = (vh — Q33Q&§)Eaa - 2Q33Qn95ns-

Eans (29, ;) make explicit that Zy; and L, 5 do not depend on the components of y’.
Therefore, functions L, and L3; follow from eqns (52) in a form that is independent
of y’. In particular, X, can be expressed as:

1

L= —{Lsslv(1 +v)h + vQ33(Q33 — Qus) — Qu (#Qs3 + Quy)l
4 (53)

+ _2Erz9Qr19(VQ33 + er) + yl(h + Q_%3)}y

where:
A4=(01-v)h+ Q%+ Ql + 2rQ,Qu, (54)

is always different from zero. Having L., a substitution in (52,) gives the expression
fOr 233 :



Porous hardening materials 773

L33 > [vh (L + Lyg) — Qas( L Qr + L9 Qus + 22,5Q19)]. (55)

_h+Q33

A substitution of L, and L; into eqns (29, 4) yields the explicit expressions for yj
and yg:

yi = Syscot d + 2y; + (X, /sin o), (56)
Ve = Sygcot & + (X33/sin §). (57)

By using eqns (53), (55) and (29, 3) for L,;, Ls;, Ly, and Ly, the expressions for yj
and yj can be obtained from (19, ;) and (21):

yi = =8)y, + 2s[(1 + ») Ly + 4Qr], (58)
vy = —=yy +8[L55 — v(L + L33) + 4Qusl, (59)

where A = Q-Z/h be written as:
1
4= P (Quler + Quoliyy + Qazlisz + 2Q.511y). (60)

Finally, eqn (30) yields:
Vi =Sy, cotd + X, /sin &, 61)
where L,,, defined by (30) by using (8), can be cast in the following form:

3n,, 3/,
L= A4 = L a(ys + Y5 + yo) + =2 |. (62)
(1 - d))ym yrn

Egs. (25), (26), (56-59), and (61) form the first order ODEs system, which governs
the near-tip stress and velocity fields.

1V.1. Boundary conditions

The Mode I symmetry conditions (43) and (44) imply the vanishing of the values of
the nonsymmetric components of stress and velocity functions at = 0. It should be
noted that only four of the boundary conditions (45) are independent. Moreover, the
boundary conditions (49) at 4 = = are of homogeneous type. Therefore, the normal-
ization condition ys(0) = 1, is employed to avoid the trivial solution.

To solve the system (33) of ODEs the Runge-Kutta procedure is used. This approach
requires the knowledge of initial values of the functions y;. The value for y,(0) is not
specified by the boundary conditions (48), and it is not possible to obtain it from the
governing system of eqn (56-59), evaluated at ¢ = 0. Therefore, the position y4(0) = p
is made and the values of s and p are initially guessed.

In addition to the boundary conditions (45) and (46), the following conditions on
y6(0) and y,,(0) can be imposed:
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Ye(0) = (1 + p) — &[aww M} 0, (63)
s 2y, (0)
34,(0) G 1+pHy®]
y%n(o) + 2@ cosh[ > Aym(()) ] =1+ &, (64)

which derive from the plane strain condition (51) and from the yield condition, evalu-
ated at ¢ = 0. The values for y(0) and v,,(0) are obtained by solving the nonlinear
algebraic system (63-64), using a modified Powell hybrid method. When these values
are known, y;(0) and y5(0) result from eqns (53) and (59), evaluated at ¢ = 0:

2p — 1 — ye(0
Y10) = —s[p — v(1 + ys(0)) ] + 4(0) [aw) + p—zfﬁd)] (65)
2 — p—y0
¥5(0) = —yi(0) — s2[1 — »(p + ys(0)) ] + sA4(0) [oz(o) + —ﬁﬁ} (66)
where:
_ 522 Q@ | 1+p+y40)
a(0) =¢ 5 sinh < 5 + 0 ), (67)
_ s =)y, 35,0017
A(0) = 3h, [(1 +p + y6(0))a (0) + y,,,(O)] , (68)
5(0) = 3(1 + p> + yi0) — p — y&(0) — pys(0)). (69)

Eqns (45), (63-66) give all values of y(0) and y’(0). It is worth noting that the knowl-
edge of the values of y’(0) is important in the present problem. In fact, the value of y;
at ¢ = 0 cannot be derived from eqn (56), and thus the numerical procedure cannot start.
The knowledge of y’(0) makes a Taylor series expansion of functions y; possible, in the
form:

y(e) = y(0) + ey'(0) + o(e). (70)

Therefore, the numerical solution can be obtained starting at ¢ = ¢, rather than at
9 = 0. The integration can finally be performed, with the assigned values of p and s.
On the basis of a check on the values y;(7) and ys(), the guessed values of p and s
are reassigned, and the process is iterated using a modified Powell hybrid method, until
yi(w) and ys(7) are found to be sufficiently close to zero. Finally, all the results are
normalised through the condition:

Ym(ﬁl) =1 0

IV.2. Results

In Table 1 the computed values of the singularity s, the elastic unloading angle &,
and the reloading angle 9, are reported for different values of the porosity parameter
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Table 1. Values of the singularity exponent s and angles &, and ¢,
for » = 1/3, corresponding to ag = 0.001 and 0.1, for different
values of porosity @, in Mode I plane strain conditions

R3¢

0.001 0.1

P s 3 ¥y s 3, 9,

0.000 —0.05640 136.965 138.444  —0.20956 122.012  175.318
0.001  —0.04595 135.908 138.343  —0.23659 116.635 178.990
0.005  —0.03697 134446 139.978 —0.25221 110.897 179.996
0.010 —0.03224 132.885 142.724 —0.25912 107.024  180.000
0.020 —0.02750 127.912 151357 —0.26409 102.195 180.000
0.030 —0.02635 117.106 165.224  —0.26521 98.974  180.000
0.040  —0.02694 105.258 175.009 —0.26486 96.543  180.000
0.050  —0.02746 97.471 178510  ~0.26382 94.585  180.000
0.100 —0.02810 79.209  180.000  -—0.25527 88.127  180.000
0.150 —0.02764 70.696  180.000 —0.24561 84.048  180.000

&, for ¢, = 1. A low hardening case (g = 0.001) and a high hardening case («g = 0.1)
are analyzed. In the case & = 0, the results of the Jy-flow theory are fully recovered (see
PoNTE CASTANEDA [1987], in which, however, a different definition of « is used). All
reported results refer, for conciseness, to v = 1. From Table 1 it can be concluded that
the absolute value of the singularity exponent, as well as the unloading angle and the
size of the reloading sector strongly decrease in highly porous metals, for small strain
hardening. The first of these effects suggest the conclusion that porosity should have
a stabilizing effect on crack growth. However, for high strain hardening (ag = 0.1),
the singularity exponent s reaches a minimum for a porosity @ around the value 0.03.

The angular distribution of the stress and velocity functions y;, normalized under
condition (71), are shown in Figs. 5, 6, 7, and 8 for different values of the porosity, for
a = 0.001 and 0.1. From the figures it can be noted that for low values of porosity the
stress component o33, orthogonal to the deformation plane, is intermediate between the
radial and circumpherential stresses o,, and og4. For high values of porosity, the stress
components o,, and ogy coincide in the whole plastic sector ahead of the crack-tip.
Therefore, differently from the Drucker-Prager model, the stress state ahead of the
crack-tip does not tend to the hydrostatic stress state. Moreover, it is important to em-
phasize that, coherently with the results of DRUGAN and RICE [1984], continuous stress
fields have been found. However, the obtained stress fields share a similarity to the
asymptotic fields obtained by DruGaN and Miao [1992] in the perfectly plastic limit of
the Gurson model. In fact, in correspondence of the critical value of porosity at which
Drugan and Maio find jumps in the angular distribution of stress, the obtained fields
show a definite change in shape, but still remain continuous.

V. MODE I: PLANE STRESS

The plane stress condition:

033 = 033 =¥, =0, (72)
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Fig. 5. Angular distribution of stress functions near crack-tip for small hardening of the matrix material
(e = 0.001), corresponding to different values of the porosity parameter ¢, in Mode I, plane strain condi-
tions. The case ¢ = 0 corresponds to the J5-flow theory.

together with the compatibility relations (19) may be substituted into the constitutive
relation (21,) to obtain:

1
Err = h—ﬁ [ylh + Eﬂﬁ(yh - erQz?t?) - ZErr?erQrﬂ] s (73)
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(g = 0.1), corresponding to different values of the porosity parameter &, in Mode I, plane strain conditions.
The case ¢ = 0 corresponds to the J,-flow theory.

where the dimensionless stress rates (28) have been employed. From (29, 3), (31) and
(42), it can be concluded that L., depends on functions y;, but it is independent of their
derivatives. Thus, yj results from (29,) to be:

Vi = sygcot & + 2y, + L /sin 9, (74)



778

E. Rap1 and D. BiGoni

40.0 40.0 -
v 1---8238%0 a = o000 v, | ——®=0080 as = 0001
---- & = 0.005 1 ---¢=n0010
] ~—-- & = 0.001 12208 %008
30.02——0= Q \’_”_ 30.0§ —— & = 0.000
20.0 — 20.0
] L T — 1
10.0 1 B S 10.0 ]
0.0 3 L e e SR praaLi o.o-:
0 30 60 90 120 150 180 0
30.0 g 10.0 g
v, ] ag = 0.001 ve 1 a = 0.001
20.0 R
10.0 ] 1003 N\"™_ T--.. 77777
-~ ~20.0 ]
-10.0 ] -30.0 §
—— # = 0050 E =0
1 ---# =000 E = 0.
-20.09 ---- & = 0.005 —40.0 = 0.
] — ¢ = 0001 ] —— & = 0001
{ — & = 0000 i — & = 0000
-30.0 — — . T — — —-50.0 +— — —r v
67 307 "e0 90 120 150 180 30 60 90

1200 150 180
)]

Fig. 7. Comparison between the velocity functions near crack-tip for small hardening of the matrix material
{ag = 0.001), corresponding to different values of the porosity parameter ¢, in Modc 1, plane strain
conditions.

where L\, is given by (73). Explicit expressions for y; and yj can be directly obtained
from (27,3) and (29, ;) in the form:

Vi

Y2

’

(I —8)y:s + 25[(1 + ») 21y + AQss],

-Vt S(Eﬁﬁ - VErr + /_IQL‘h?)a

where A = Q-X/h results to be:

1
/_1 = Z (erErr + Qﬂﬂzﬂﬁ + 2Qrz92r|9)-

Moreover, the evolution equation for y,, is readily obtained from (30):

where X, is defined by using (8), in dimensionless form:

Vi = Symcotd + L, /sin 4,

(75)

(76)

(77

(78)
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3h 3J
Lp=A4 —"—la(y, +ys) + =2 |, (79)
(1 -(b)y”r * ’ y"I

and J, results from (41), under the plane stress condition y, = 0.

Therefore, the system of ODEs defined by (25), (26), (74), (75), (76), and (78), which
governs the asymptotic stress and velocity fields near the propagating crack-tip, may be
expressed in a form similar to (33).

V.1. Boundary conditions

The scheme for solving the system (33) is quite similar to the plane strain case. Now,
the normalisation ys(0) = 1 is adopted and the values of p = y,4(0) and s are initially
guessed. When eqns (73), (76), and (25) are evaluated at ¢ = 0, the following auxiliary
conditions are obtained:

__ 40 2p—1
Vi) = S{p YT [O‘(Oszm(mB’ 80
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A0 2 —
¥3(0) = —y(0) _52{1 — - £[oz«» i 4 ” @81)
S 2ym(0)
yv3(0) =1 — (1 + s)p, (82)
where:
_ s —¢)ya 3.(0) |
A(0) = T [(1 + P (0) + ym(o)] (83)
— P (P L LEP _1 2 _
a(0) =¢ 2 smh<2 +ym(0)), L) =51 +p p). (84)

The value of y,,(0) can now be obtained by evaluating the yield condition at & = 0:

3J:(0)
2 (0)

q: 1 +p
2 ym(0)

+2¢ cosh[ ] =1+ &2, (8%)

Eqns (45), (80-82) give all values of y(0) and y’(0). As in plane strain, all results are
finally normalized through (71).

V.2. Results

Similarly to the J, flow-theory and to the Drucker-Prager model in plane stress, the
results in terms of stress components do not depend on the Poisson ratio. Therefore,
all results are reported for the case » = § and ¢, = 1. The computed values of the sin-
gularity exponent s, the elastic unloading and plastic reloading angles ¢, and ¥, are
reported in Table 2 for different values of the porosity. A low hardening («g = 0.001)
and a high hardening (ag = 0.1) cases are considered. When & is set equal to zero, the
results of the Jy-flow theory are fully recovered (see PONTE CASTANEDA [1987]).

From Table 2 it can be noted that for high values of porosity the singularity exponent
s increases and the size of the plastic sector ahead the crack-tip decreases. Moreover,

Table 2. Values of the singularity exponent s and angles &, and ¢,
for » = 1/2, corresponding to ag = 0.001 and 0.1, for different
values of porosity @, in Mode I plane stress conditions

aG

0.001 0.1

& N 191 192 N 0] 192

0.000 ~0.02866 53.202 179.999 —0.23721 73.646  180.000
0.001  —0.02865 53.185 179.999 —0.23710 73.629  180.000
0.005  —0.02858  S53.117 179.999 —0.23663 73.561  180.000
0.010  —0.02849 53.034 179.999 —-0.23604 73.476  180.000
0.050  —0.02780 52.394 179.998  —0.23131  72.808  180.000
0.100  —0.02693 51.658 179.997  —0.22533  71.995  180.000
0.150  —0.02605  50.980 179.996 —0.21928 71.199  180.000
0.200  —0.02516 50.347 179.995 —0.21310 70.413  180.000
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the plastic reloading sector is very thin, as in the cases of the J, and Drucker-Prager
models. All these effects are less pronounced than in the plane strain case.

The angular distribution of the stress and velocity functions y;, normalized under the
condition (71), are shown in Fig. 9 for different values of the porosity, for ag = 0.001
and ag = 0.1. From the figures it can be concluded that an increase of the parameter
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Fig. 9. Stress and velocity angular distributions for small and high hardening of the matrix material (ag =
0.001, 0.1) corresponding to different values of the porosity parameter ¢, in Mode 1, plane stress conditions.
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& vields a remarkable reduction in the radial stress ahead of the crack-tip, which cor-
responds to a reduction in the hydrostatic stress state.

V1. MODE II: PLANE STRAIN

Mode Il symmetry conditions (48) imply the vanishing of the symmetric components
of stress and velocity functions at & = 0. The normalization condition:

yi(0) =1, (86)
is employed to avoid the trivial solution. The boundary conditions (48) do not specify

the value of y,(0), and it is not possible to derive it from the governing system of
eqn (56-59) evaluated at & = 0. Therefore, the following position is made:

y2(0) = p, (87)

and the values of s and p are initially guessed. The value for y,,(0) results from the
yield condition (64) at ¢ = 0, since all values of the stress functions are known in ¢ = 0:

A3
Ym(o) - I_—¢ (88)

The equilibrium eqn (26) evaluated at ¢ = 0, yields:
ys(0) = — (s + 2). 89)

Eqns (48) and (86-87) give y(0) and some components of y'(0}, but do not specify
y4(0) and y4(0). Moreover, y4(0) and y4(0) cannot be obtained from eqns (56,57), since
these equations assume an indeterminate form at ¢ = 0. Therefore, a Taylor series expan-
sion of functions y; is performed near ¢ = 0 and ¢ = ¢, namely:

y(e) = y(0) + &y'(0) + o(¢), where: y'(0) =y'(e) + o(e). (90)

Once the values of y(0) and y’(0) or y’(e) are known, the numerical procedure can be
started from a small value, say &, of the angular variable . It should be noted that (50)
holds true under the hypothesis of regularity of the functions y(&#) ahead of the crack-
tip. By using eqns (48), (86), and (87) the asymptotic expansion (90) may be written as:

vi(e) = eyi(e) + o(e),

y2(e) =p + o(¢),

yi(e) =1+ o(e),

va(€) = eyy(0) + o (), (91)

ys(e) = —e(s + 2) + o(g),

Ye(€) = eye(0) + 0 (€).
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Evaluation of the yield condition (1) at ¥ = g, and eqns (91) give:

Yim (&) = + o(g). (92)

1—-¢

In view of (91), the dimensionless stress rates (29) assume the following values at
J=e€:

Liy(e) = —s + o(e),

Lys(e) = es(s + 1) + o(e),

L. (&) = el(1 —s)yi(0) — 2] + o(e), 93)
Ly(e) = e(1 — 5)yg(0) + o(e).

Moreover, eqns (31) evaluated at ¢ = € become:

Qiple) = 2y (0) + o(¢e),
Q”w)=aw)+2”“’;;§g+s+ze+oum
Quo(e) = a(e) — 25 FD T YO +¥O 94)

2y, (0)

2y6(0) — y4(0) + s+ 2
2y,,(0)

Qu(e) = ale) + e+ o(e),

where:

£+ o(e). 95)

@)2 ya(0) + y¢(0) — (s +2)

““)=¢<2 ¥ (0)

Therefore, the dimensionless hardening modulus 4 (e) = H(e)/E and A(e) can be
obtained through substitution of (91-95) into eqns (42) and (60), respectively:

(1- o)

h(e) :3hml—_¢—— + o(¢e), (96)
K 1 —¢
A = — R PE—— .
A(¢) B a-3) T o(e) o7
Eqn (58) yields the following value of yj(g):
l—¢

yi(e) = (1 —s)p — 2521 + v+ + o(e). (98)

2h,,(1 — &)?
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A substitution of relations (93) and (94) into eqns (52) gives the following system of two
equations, where y;(0) and y(0) are unknowns:

(1 =5 =722 = v+ $)]yi0) — v2(2v — 1 + ,)y¢(0)

vs(s+ 1) + yi(€)

=2+
1+ v 1 —»?

+v(s+2)(v +1— ), 99)

[—v(1 =)+ v(z = POIYUO) + [1 =5 — v (1 + &)]ye(0)
=vs(s+ 1) =21 +v,(3 — $))(s +2), (100)

where the following symbols have been introduced:

_ s5(1 —¢) _ Y1
T Sh, 0 —#)2 T o0 -7y

(101)
a:\
¢1:¢<2>, ¢2=2¢1(1+V)

Now, values of y4(0) and yg(0) can be obtained by solving egns (99-100). When v/ (¢),
v4(0), and yg¢(0) are substituted into eqns (91), the values of all the stress and velocity
functions at ¢ = € are known. Then, the numerical integration may be performed, start-
ing at § = e. At the extreme & = 7 a check is made on y; and y;. On the basis of this
check, the values of p and s are reassigned and the process is iterated, adopting the usual
scheme.

VI.1. Results

In Tables 3 and 4 the computed values of the singularity exponent s, the elastic unload-
ing angles ¢, ¢;, and the reloading angles ¢, and o, are reported for different values
of the porosity parameter &. In these tables, the following hardening values are con-
sidered: o = 0.001, 0.01, and 0.75. All reported results refer, for conciseness, to v = %
and g, = 1. The case ¢ = 0 corresponds to a material without porosity, therefore, the

Table 3. Values of the singularity exponent s and angles &, and 9,,
for » = 1/3, corresponding to a¢ = 0.001 and 0.1, for different
values of porosity &, in Mode II plane strain conditions

oG

0.001 0.1

[ s DR & s 3, J,

0.000  —0.029120 20.950 179911  —0.238744 34.542  180.000
0.010  —0.028899 21.048 179.909 —0.237572 34.624  180.000
0.050  —-0.028029 21.432 179.901 —0.232826 34.950  180.000
0.100  —0.026967 21.894 179.889 —0.226761 35.356  180.000
0.150  —0.025926  22.339 179.877 —0.220536 35.760  180.000
0.200 —-0.024900 22.769 179.864 —0.214134 36.162  180.000
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Table 4. Values of s, 9, ¥, ¢35, and &4, for » = 1/3
and ag = 0.75, corresponding to different values
of porosity @, in Mode 1I plane strain conditions

[ s 9, 9y I A

0.000 —-0.467330 41.519 129.343  137.010  180.000
0.050  —0.464618 41.854 125.024  136.440  180.000
0.100  —0.461673 42,198  121.555 135.892  180.000
0.150  —0.458461 42.551 118.497 135.360  180.000
0.200  —0.454941 42914 115.684 134,840  180.000

results of the J,-flow theory are fully recovered (see PONTE CASTANEDA [1987]). The
angular distribution of the stress and velocity functions y;, normalized under the
condition:

Ym(lyl) = 17 (102)

are shown in Figs. 10 and 11, for different values of the porosity parameter . The value
of the mean stress and the equivalent stress in the matrix material are reported in Fig. 12.

As in the case of the J,-flow theory, two elastic sectors appear in the solution. More-
over, for high strain hardening, the solution tends to the linear elastic solution. From
the tables and figures it can be noted that the absolute value of the singularity, as well
as the size of the elastic sectors decrease, for high values of porosity. Moreover, an
increase in the porosity yields a flatten in the graphs of all stress and velocity functions.
From Fig. 10 it can be noted that a lowering in the hardening yields a coincidence of
the radial and the out-of-plane components of stress. This circumstance, which occurs
also for the J,-flow theory, is in agreement with the perfectly plastic limit, where a cen-
tred fan sector appears ahead of the crack tip. Finally, it is important to mention that
(see Fig. 12) the mean normal stress and parameter ¢, are very little influenced by the
porosity, for small strain hardening. This circumstance is in contrast with the results
obtained in the case of Mode I condition. In addition, it is important to mention that
the mean normal stress and parameter ¢, have, at small strain hardening, a weak
dependence on the angular coordinate . This fact is coherent with the perfectly plas-
tic limit, where g, is constant. Finally, it should be noted that the mean normal stress
remains small for Mode II loading condition.

VII. MODE II: PLANE STRESS

The boundary conditions (48), (86-88), at & = 0, and (49), at ¢ = =, are still valid for
plane stress, Mode II loading. In this case y4(0) is undetermined. A Taylor series expan-
sion of function y(4) yields eqns (93-95) for the components of X and Q, where now
y6(0) = y¢(0) = 0. A substitution of these relations into eqns (73) evaluated at ¢ = 0
gives:

La(e) = e[yi(E) +ous(s+ 1) + vl[qbl(yé(o) —§—2) + yi0) + 1 +;H + o(e).

(103)
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Fig. 10. Angular distribution of stress functions near crack-tip for various values of hardening of the matrix
material (ag = 0.001, 0.1, 0.75), corresponding to different values of the porosity parameter @, in Mode 1,
plane strain conditions. The case ¢ = 0 corresponds to the J,-flow theory.

Finally, by equating eqns (93) and (103) and by employing relation (98) for yi(e),
which holds true in plane stress condition also, the following value for y;(0) is derived:

y;(O):é[2+(l —5)p— S22+ ») + v + 7 1—§S—¢1(5+2)H, (104)
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Fig. 11. Angular distribution of velocity functions near crack-tip for various values of hardening of the matrix
material (ag = 0.1, 0.1, 0.75), corresponding to different values of the porosity parameter @, in Mode II,
plane strain conditions. The case ¢ = 0 corresponds to the J,-flow theory.

where:
D=1-s5s—v1{1+¢]. (105)

When the values of yj(e) and y;(0) are known, all the values of stress and velocity
functions at ¢ = ¢ are derived through eqns (91). Thus, the integration may be performed
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of hardening (ag = 0.001, 0.1, 0.75), corresponding to different values of the porosity parameter &, in
Mode 11, plane strain conditions.

starting at ¢ = € and the procedure is iterated, with a check on the values of y;(«) and
yi(m).

VII.1. Results

In Tables 5 and 6 the computed values of the singularity s, the elastic unloading angles
3d, 4 and the reloading angles 4,, d,4 are reported for different values of the porosity
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Table 5. Values of the singularity exponent s and angles &; and #,, d3, and d4, for v = 1/2,
corresponding to «¢ = 0.001 and 0.1, for different values of porosity @,
in Mode [I plane stress conditions

QG

0.001 0.1

[ s 1.91 DA A lyl 3, l’} 194

0.000 —0.02631 26.124  179.791 —0.21907 40.269 106.554 123.498  180.000
0.010 —0.02616 26.166 179.788 —0.21800 40.305 106.280  123.384  180.000
0.050  —0.02555 26.334 179.779  —0.21367 40.448 105.200 122.925  180.000
0.100 —0.02477 26.541 179.768  —0.20814 40.623 103.885 122.347  180.000
0.150 —0.02398 26.746 179.756  ~0.20249 40.792 102.606 121.763  180.000
0.200 —0.02318 26.948 179.744  —0.19670 40,955 101.362  121.170  179.999

parameter . In these tables, the following hardening values are considered: ag =
0.001, 0.1, and 0.75. All reported results refer, for conciseness, to » = 5 and to g, = 1.
When & =0, the results of the J,-flow theory are fully recovered (see PONTE CASTANEDA
[1987]). The angular distribution of the stress and velocity functions y;, normalized
under the condition vy,,(¢;) = 1, are shown in Fig. 13, for different values of the poros-
ity parameter &, The value of the mean stress and of the effective stress in the matrix
material o, are reported in Fig. 14.

It should be noted that results are very similar to the plane strain case. This circum-
stance is in full agreement with the results of the J,-flow theory. The observations
drawn in the case of plane strain are still pertinent. The main difference with respect
to the Mode II plane strain case is the more frequent appearance of two elastic unload-
ing sectors.

VIII. CONCLUSIONS

In this article, the near tip fields of a steadily propagating crack under Mode I and
Mode II loading conditions have been obtained for the Gurson incremental elastoplas-
tic model with constant porosity, by adopting the solution procedure proposed by PONTE
CASTANEDA [1987].

The obtained results fit coherently with the previous analysis for the perfectly plastic-
constant porosity version of the Gurson model performed by DRuGAN and Miac [1992].
Moreover, the results qualitatively agree with the responses of the pressure-sensitive

Table 6. Values of s, &, &, ¢35, and d4, for v = 1/2,
ag = 0.75, corresponding to different values
of porosity #, in Mode II plane stress conditions

& s 3, 95 9 9,

0.000 —0.456495 45.807 101.609 132.826  180.000
0.050  —0.453924  46.092 100.186  132.562  180.000
0.100 —0.451126  46.386 98.759  132.295  180.000
0.150  —0.448071  46.690 97.322  132.024  180.000
0.200 —0.444719  47.005 95.869  131.748  180.000
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Fig. 13. Angular distribution of stress and velocity functions near crack-tip for various values of hardening
of the matrix material («g = 0.001, 0.1, 0.75), corresponding to different values of the porosity parameter
@, in Mode 11, plane stress conditions. The case ¢ = 0 corresponds to the J-flow theory.

models of HuTcHINSON [1983b], BicoNT and RaD1 [1993], and Rap1 and BiGont [1993].
However, the constitutive laws of the Gurson model, even under the constant porosity
assumption, deeply affect the stress state near crack-tip.

The plane-stress and plane strain conditions have been considered. The main conclu-
sions are that high values of the porosity produce:
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a lowering in the strength of the singularity

a reduction of the plastic sectors size

a concentration of the plastic deformation ahead of the crack-tip

a lowering in the ratio between the radial and hoop stresses ahead of the crack-tip,
related to a decreasing of the mean normal stress ahead of the crack-tip
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e a coincidence in the whole plastic sector of the radial stress and the stress compo-
nent orthogonal to the deformation plane (in plane strain, Mode I loading)

* a change in the shapes of the angular stress distributions, starting from a critical
value of porosity (in plane strain, Mode I loading)

The first circumstance suggests that the porosity could have a stabilizing effect on
crack propagation. The performed asymptotic analysis proves that continuous solutions
for the angular distributions of stresses are possible. However, the above mentioned
change in the shape of the stress plots indirectly confirms the validity of the perfectly
plastic analysis by DrRuGan and Miao [1992], where stress jumps have been found.

Moreover, the effects of porosity greatly influence the stress and velocity fields for
Mode I loading condition, since the hydrostatic stress reaches high values. In the case
of Mode II loading, porosity has small effects on crack-up fields, due to the reduced
value of the hydrostatic stress.

Finally, it must be remarked that the solving procedure proposed by PoNTE
CasTANEDA [1987] is very effective in obtaining asymptotic solutions of crack propaga-
tion problems even for constitutive laws much more complex than the J, flow-theory.
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