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Abstract

An elastic double pendulum subject to a force acting along a fixed straight line, the so-
called “Reut’s column problem”, is a structure exhibiting flutter and divergence instability,
which was never realized in practice and thus debated whether to represent reality or mere
speculation. It is shown, both theoretically and experimentally, how to obtain the Reut’s
loading by exploiting the contact with friction of a rigid blade against a freely-rotating cylin-
drical constraint, which moves axially at constant speed, an action recalling that of a bow’s
hair on a violin string. With this experimental set-up, flutter and divergence instabilities,
as well as the detrimental effect of viscosity on critical loads, are documented indisputably,
thus bringing an end to a long debate. This result opens a new research area, with perspec-
tive applications to mechanical actuators, high-precision cutting tools, or energy harvesting
devices.

Keywords: Coulomb friction; flutter instability; divergence instability; follower load; Hopf bi-
furcation;

1 Introduction

A force constrained to act on an elastic structure while remaining on a given straight line is an
example of non-conservative load, which was introduced through the so-called “Reut’s column
problem” [1], sketched in Fig. 1. The column is modeled as an elastic double pendulum with two
viscoelastic hinges of stiffnesses k1 and k2 and dampings c1 and c2, as in the case investigated by
Ziegler [2]. The force P is left free to slide along a rigid blade (the dashed/grey element shown
in the figure), but has to lie always on the same horizontal line. It can be shown [3, 4] that the
Reut’s column is subject to flutter and divergence instabilities and that its critical loads are
the same as those calculated for the Ziegler double pendulum subject to a tangential follower
force [2]. It is perhaps less known that the Reut’s column also exhibits the Ziegler paradox,
which corresponds to a discontinuity in the critical load occurring in the limit of null viscosity
[2, 3, 5, 6, 7, 8, 9, 10].

The difficulty with the Reut’s load lies in its realization and on this point Bolotin [3] writes:
“It is clear that something similar to such a force could be produced by the pressure from a jet of
absolutely inelastic particles”. However, inelastic particles do not exist in practice and, if these
remain attached after impact, the mass of the structure changes, so that the proposal by Bolotin
is simply unrealistic. Hermann et al. [4] and Sugiyama [11, 12] used an air jet impinging the
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Figure 1: An elastic double pendulum loaded by a force constrained to remain coaxial to a fixed straight line,
but allowed to freely slide against a rigid blade (sketched dashed/grey in the figure), the so-called ‘Reut’s column’.
This load triggers flutter and divergence instability in the structure which occur at the same values of critical
load as in the Ziegler double pendulum.

structure to produce the load, a set-up much different from that evisaged by Bolotin. Flutter
instability was found by the former research team [4], while Sugiyama was initially unable to find
it [11], but succeeded later [12]. In any case, the air jet produces with the structure a complex
aeroelastic interaction, leading to a load differing from that idealized by Reut. Therefore, the
force postulated by Reut remained until now (for 80 years!) a boundary condition with nothing
but a mathematical meaning, never observed in the real world (see the vivid description of the
state-of-the-art given in [14]). A similar difficulty arose in the realization of the tangentially
follower force introduced by Ziegler, which, considered ‘unrealistic’ by Koiter [13, 14], was only
recently realized by Bigoni and Noselli [15] (see also [16, 17]) through the introduction of a
special constraint, namely, a freely rotating wheel sliding with friction against a moving rigid
plate.

In this article it is shown that the Reut’s load can be obtained through the sliding, with
constant Coulomb friction, of a cylindrical surface free of rotating about its axis against a rigid
blade, as shown from two equivalent views (but taken with a different perspective) in Fig.
2. The cylindrical constraint is idealized with negligible mass so that it can transmit to the
blade only an axial force. In fact, the free-rotation condition does not allow the generation of
tangential actions orthogonal to the cylinder’s axis. The action of the cylindrical constraint on
the blade is in a sense similar to the action of the hair of a bow on violin strings.

As shown in Fig. 2, the introduced frictional constraint can produce a positive work in a
closed cycle and transmit it to the elastic structure, so that the steady energy input provided
by the cylinder transforms the structure in a self-oscillating system when flutter instability or
divergence instability occur. The way of realizing the Reut’s load (‘cylinder-blade contact’) is
dual to how the Ziegler’s load (‘wheel-plane contact’) has been obtained by Bigoni and Noselli
[15], so that it is suggested that these two possibilities of generating nonconservative loads are
in a sense unique and complementary.

It may be highlighted that the Reut’s force cannot be produced through contact with a
frictionless guided weight subject to gravity, as the frictionless condition implies that the force
transmitted to the rigid blade be orthogonal to it. This loading condition will also be considered,
in this article in addition to dead loading, and follower loading (in the Ziegler sense), three
different loads included to facilitate comparisons.

The ideal scheme illustrated in Fig. 2 to produce the Reut’s load will be shown to be
implementable in reality (the experimental set-up is shown in Fig. 3). Experimental results
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Figure 2: Two equivalent views (a) and (b) show the interaction between a rigid and rough cylindrical surface
sliding with constant speed v against a rigid blade, which produces a frictional force P remaining parallel to
the axis of the cylinder (on the left). This force provides the load postulated by Reut and is able to produce
positive work in a closed cycle, as illustrated by the sequence of figures (from left to right): initially the blade
slides orthogonally to the cylinder without producing any work (movement 1); then it rotates anticlockwise
about its centre absorbing from P a positive work (because the force is displaced parallel to itself, movement 2);
finally, translation orthogonal to the cylinder (movement 3) and rotation around the contact point (movement
4) produces no further work and completes a closed loop in which work has been transmitted to the blade from
the sliding with friction of the cylinder.

a b

Figure 3: Schematics of the experimental set-up for applying a force acting on a straight line to an elastic
double pendulum: a freely-rotating cylindrical constraint is sliding with friction against a rigid element of the
structure. The structure is in the initial (a) and in a deformed (b) configuration.

documenting flutter and divergence instabilities in the Reut’s column will be presented (a se-
quence of photos taken during an experiment is anticipated in Fig. 4, see also the electronic
supplementary material and also http://ssmg.ing.unitn.it/), showing how the contact with the
rough cylindrical surface may induce flutter.

Our experiments are in excellent agreement with the theoretical results, providing measured
values of the flutter and divergence instability thresholds lying between the two values corre-
sponding to the viscoelastic and purely elastic schemes. These experiments, therefore, provide
another experimental proof of the destabilization by damping, so supporting the concept of
dissipative instability [22] and related Ziegler paradox.

The introduced mechanical set-up shows for the first time after the 80-years-old Reut’s
paper, that a load acting on a fixed line can be made a real and usable condition, thus opening
the way to new and unexpected applications, for instance in mechanical actuation or energy
harvesting [18], but also in models for locomotion [19], biomechanics [20], and fluid-structure
interaction [21], research arenas where flutter instability may play an important role.
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Figure 4: A sequence of photos during an experiment documenting flutter instability in the Reut’s column.

2 Elastic double pendulum subject to four different loads of conservative and
nonconservative nature

A double pendulum is considered, namely, the two-degree-of-freedom rigid and heavy (the rods
have unit mass densities ρ1, ρ2, and ρ3) rods system shown in Fig. 5. The system is made elastic
by two rotational springs of stiffnesses k1 and k2, which may also display a viscous behaviour
with coefficients c1 and c2, and will be subject to four different loads, all initially applied at
the junction point v. Note that the ‘blade’, in other words the bar orthogonal (and rigidly
attached) to the element v − u, is only needed to transmit two of the considered loads to the
system.

The kinematic description of the double pendulum does not need considering the
(visco-elastic) constitutive law of the hinges and the applied loads. The generic configuration of
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Figure 5: A double pendulum (in the reference configuration, left, and in a deformed configuration, right) with
heavy rigid bars and visco-elastic hinges (located at o and u) and subject to four types of horizontal forces: (i.)
a horizontal ‘dead’ load P applied at v; (ii.) the ‘Reut’ non-conservative load P , remaining parallel to the axis
e1; (iii.) a ‘contact’ force of horizontal fixed component P is applied parallel to the axis e1; (iv.) the ‘Ziegler’
non-conservative load P applied at the point v and remaining parallel to the rod v − u. Note the two degrees
of freedom α1 and α2 and that the rigid ‘blade’ orthogonal to the bar v − u is only needed to transmit the two
loads (ii.) and (iii.).

the system remains determined by the two Lagrangean angles α1 and α2, so that denoting the
time derivative by a superimposed dot, the kinematics of the double pendulum can be obtained
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from the knowledge of the position, velocity and acceleration of points a (belonging to the bar
u− o), b (belonging to the bar v − u), and c (belonging to the bar orthogonal to the element
v − u). Point c moves in agreement to the following rules

c = l1e
(1)
r + l2e

(2)
r − ce(2)

θ + o,

ċ = l1α̇1e
(1)
θ + l2α̇2e

(2)
θ + cα̇2e

(2)
r ,

c̈ = l1α̈1e
(1)
θ − l1α̇

2
1e

(1)
r + l2α̈2e

(2)
θ − l2α̇

2
2e

(2)
r + cα̈2e

(2)
r + cα̇2

2e
(2)
θ ,

(1)

where e
(j)
r , e

(j)
θ (with j = 1, 2) are unit vectors respectively parallel and orthogonal to the bar

j, Fig. 5. Placement, velocity, and acceleration of points a and b are specified in Appendix A.
Note that for the Reut’s and the contact cases, the load is applied at point w, so that the

distance c between points c and v on the blade, when c is momentarily superimposed with w,
is

c =
l1 sinα1 + l2 sinα2

cosα2
, (2)

so that the velocity of the point w of the rigid arm momentarily intersecting the x1–axis is
obtained as

ẇ = l1 sinα1 (−α̇1 + α̇2) e1 + l1

(
α̇1 cosα1 + α̇2

sinα1 sinα2 + l2/l1
cosα2

)
e2, (3)

which, in general, is not parallel to e1.

The constitutive equations for the hinges connecting the rigid bars are assumed visco-
elastic and defined by the stiffnesses kj and cj (j = 1, 2), so that the moments transmitted by
the rotational springs to the rods are k1α1 + c1α̇1 and k2(α2 − α1) + c2(α̇2 − α̇1).

The principle of virtual powers for the double pendulum writes as

P · δw︸ ︷︷ ︸
external power

= (k1α1 + c1α̇1)δα1 + [k2(α2 − α1) + c2(α̇2 − α̇1)] (δα2 − δα1)︸ ︷︷ ︸
internal power

+ ρ1

∫ l1

0
(ä · δa) da+ ρ2

∫ l2

0

(
b̈ · δb

)
db+ ρ3

∫ l3/2

−l3/2
(c̈ · δc) dc︸ ︷︷ ︸

inertia

,
(4)

where the virtual velocities δa, δb, δc, have the same expressions (35)2, (35)5, and (1)2 with
the ‘˙’ replaced by ‘δ’.

The virtual power of an external load applied at a point c (singled out by the distance c
between v and c) can be written as

P · δw = l1P · e(1)
θ δα1 +

(
l2P · e(2)

θ + cP · e(2)
r

)
δα2. (5)

Four loads are applied to the double pendulum, two conservative (a ‘dead’ and a ‘fric-
tionless contact’) and two nonconservative loads (the ‘Ziegler’ and the ‘Reut’). Consideration
of these loads, separately acting on the structure, is particularly instructive.

5

https://doi.org/10.1016/j.jmps.2019.103741


Published in Journal of the Mechanics and Physics of Solids (2019), 134, 103741
doi: 10.1016/j.jmps.2019.103741

For all cases of loading, the force P transmitted to the structure (referred to the unit vectors
e1 and e2 singling out the horizontal and vertical direction respectively, Fig. 5) are

P = −P


e1 Dead loading

(e1 + tanα2 e2) cosα2 Ziegler

e1 + tanα2 e2 Frictionless contact

e1 Reut loading

(6)

where P is the constant modulus of the force P, except in the case of the frictionless contact,
where P is the component of P along e1, or the modulus of P when α2 = 0.

It is clear from (6) that the applied forces for the dead and Reut loads are identical and
that the forces for the Ziegler and frictionless contact coincide only in a linearization written
for small deviations from the trivial equilibrium configuration

P = −P

{
e1 Reut or dead loading,

e1 + α2 e2 Ziegler or frictionless contact.
(7)

It can be concluded from expressions (6) and (7) that it is not simply the form of the force
which decides if a mechanical system does or does not admit a potential structure.

The treatments of dead loading, loading through frictionless contact, and the Ziegler load
are deferred to Appendix A, while the Reut load is analyzed below.

The Reut load is nonconservative and is characterized as follows: the force P is (i.) free of
moving along the bar orthogonal to v − u, but has to (ii.) belong and (iii.) remain parallel to
the e1-axis. Such a force does not follow the structure and has the same direction as the dead
load. As for the frictionless contact load, the load is always applied at the point w, so that the
two points c (belonging to the double pendulum) and w (belonging to the reference e1-axis)
are momentarily superimposed when Eq. (2) holds.

The power of external load can be obtained from Eq. (5), by setting for c the value (2) and
thus obtaining

P · δw = Pl1 sinα1 (δα1 − δα2) , (8)

so that the load does not admit a potential because ∂ sinα1/∂α2 6= ∂(− sinα1)/∂α1. The power
of the Reut load (8) can be linearized near the trivial equilibrium position as

P · δw = Pl1α1 (δα1 − δα2) . (9)

The equations of motion for a double pendulum can be obtained from the virtual power
principle (4), by invoking the arbitrariness of δα1 and δα2, which yields the two equations(
ρ1
l31
3

+ ρ3l
2
1l3 + ρ2l

2
1l2

)
α̈1 +

(
ρ3l1l2l3 + ρ2

l1l
2
2

2

)
α̈2 cos (α1 − α2)

+

(
ρ3l1l2l3 + ρ2

l1l
2
2

2

)
α̇2

2 sin (α1 − α2) + k1α1 + k2(α1 − α2) + c1α̇1 + c2(α̇1 − α̇2)− l1P · e(1)
θ = 0,(

ρ3l1l2l3 + ρ2
l1l

2
2

2

)
α̈1 cos (α1 − α2) +

[
ρ3

(
l22l3 +

l33
12

)
+ ρ2

l32
3

]
α̈2

− l1(ρ3l2l3 + ρ2
l22
2

)α̇2
1 sin (α1 − α2)− k2(α1 − α2)− c2(α̇1 − α̇2)− l2P · e(2)

θ − cP · e(2)
r = 0,

(10)

6

https://doi.org/10.1016/j.jmps.2019.103741


Published in Journal of the Mechanics and Physics of Solids (2019), 134, 103741
doi: 10.1016/j.jmps.2019.103741

governing the nonlinear dynamics of the double pendulum.
The differential equations (10), linearized near the trivial (equilibrium) configuration α1 =

α2 = 0, become[
ρ1
l31
3

+ ρ3l
2
1l3 + ρ2l

2
1l2

]
α̈1 +

(
ρ3l1l2l3 + ρ2

l1l
2
2

2

)
α̈2 + k1α1 + k2(α1 − α2)

+ c1α̇1 + c2(α̇1 − α̇2)− l1Pw1 = 0,(
ρ3l1l2l3 + ρ2

l1l
2
2

2

)
α̈1 +

[
ρ3

(
l22l3 +

l33
12

)
+ ρ2

l32
3

]
α̈2 − k2(α1 − α2)− c2(α̇1 − α̇2)− l2Pw2 = 0,

(11)
The terms defining the external power in equation (10) and in its linearized version (11) are

reported in Table 1 with reference to all four considered loads.

External Power

Non linear Linearized Non linear Linearized

Force type P · e(1)
θ Pw1 P · e(2)

θ + c/l2P · e(2)
r Pw2

Dead P sinα1 Pα1 P sinα2 Pα2

Ziegler P sin(α1 − α2) P (α1 − α2) 0 0

Contact P (sinα1 − cosα1 tanα2) P (α1 − α2) −P l1/l2 sinα1 + sinα2

cos2 α2
−P (l1/l2α1 + α2)

Reut P sinα1 Pα1 −Pl1/l2 sinα1 −Pl1/l2α1

Tab. 1: The terms defining the external power in equation (10) and its linearized version (11).

The system of differential equations (11) can be written in matrix form as

M

[
α̈1

α̈2

]
+

[
c1 + c2 −c2

−c2 c2

][
α̇1

α̇2

]
+

([
k1 + k2 −k2

−k2 k2

]
+ PL

)[
α1

α2

]
= 0 (12)

For the considered four loads the load matrix L is

l1

[
−1 0

0 −l2/l1

]
︸ ︷︷ ︸

Dead

l1

[
−1 1

0 0

]
︸ ︷︷ ︸

Ziegler

l1

[
−1 1

1 l2/l1

]
︸ ︷︷ ︸

Contact

l1

[
−1 0

1 0

]
︸ ︷︷ ︸

Reut

(13)

Time-harmonic vibrations are analyzed near the equilibrium configuration, so that the La-
grangean parameters are now assumed to be harmonic functions of time

αj = Aj e
−iΩ t, j = 1, 2, (14)

where Aj are (complex) amplitudes, Ω is the circular frequency, and i is the imaginary unit
(i =

√
−1), so that a substitution of eqn. (14) into eqns. (11) yields(

−Ω2M− iΩ

[
c1 + c2 −c2

−c2 c2

]
+

[
k1 + k2 −k2

−k2 k2

]
+ PL

)[
A1

A2

]
= 0. (15)

Nontrivial solutions of the system (15) occur when the determinant of the matrix vanishes,
a condition which is identical for the cases of Ziegler and Reut, but is different in the two other
cases of frictionless contact and dead loading.
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2.1 Flutter and divergence instabilities in the perfectly elastic case for the Reut’s
column

In the undamped case, c1 = c2 = 0, the generalized eigenvale problem (15) can be rewritten as[
K + PL− Ω2M

]
a = 0, (16)

so that, since the mass matrix M is real, symmetric and positive definite, its square root M1/2

is invertible. Therefore, the generalized eigenvalue problem (16) can be recast in a standard
eigenvalue form [

M−1/2 (K + PL) M−1/2 − Ω2I
]

M1/2a = 0, (17)

showing that the only possibility of unsymmetry arises because of the nonsymmetry of L,
possible only for the Reut or Ziegler loads. Therefore, only for these loads the squared circular
frequency Ω2 can turn to be complex with non-null real part, which is the condition for flutter
instability.

Due to the particular structure of the nonconservative loads so far considered, the condition
of vanishing for the determinant of the matrix appearing in Eq. (17) is the same both for Ziegler
and Reut systems. Therefore, the conditions for flutter and divergence instability are the same.

In the following, only the situation l1 = l2 = l, k1 = k2 = k, and ρ1 = ρ2 = ρ is considered,
because the experiments that will be reported in the following refer to this setting. For the
Reut system, the coefficient matrix becomes

− ρl3Ω2


4

3
+
ρ3l3
ρl

ρ3l3
ρl

+
1

2

ρ3l3
ρl

+
1

2

ρ3l3
ρl

+
ρ3l

3
3

ρl312
+

1

3

+ k

 2 −1

−1 1

+ Pl

 −1 0

1 0

 . (18)

The condition of vanishing of the determinant of the matrix (18) becomes

Ω4(M11M22 −M2
12) + Ω2 [Pl(M22 +M12)− k(M11 + 2M22 + 2M12)] + k2 = 0, (19)

which is exactly the same expression that is obtained for the Ziegler load.
In particular, the flutter interval is defined by the condition that the discriminant of the

equation (19) be null

P 2 − 2P
k

l

M11 + 2M22 + 2M12

M22 +M12
+

(
k

l

)2
[(

M11 + 2M12

M22 +M12

)2

+ 4

]
= 0, (20)

leading to the two loads defining the range of flutter instability, which separates the stable
behaviour from the divergence instability

P =
k

l

M11 + 2M22 + 2M12 ± 2
√
M11M22 −M2

12

M22 +M12
, (21)

where it should be noticed that the radicand is det M, and thus always real and positive.
Eq. (21) becomes for the considered matrix M

P =
k

l

36 + 2ρ̄l̄(30 + l̄2)± 4
√

7 + 3ρ̄2 l̄4 + 4ρ̄l̄(6 + l̄2)

10 + ρ̄l̄(24 + l̄2)
, (22)

where l̄ = l3/l1 and ρ̄ = ρ3/ρ.
In the special case in which the mass of the blade is negligible (ρ̄ = 0), Eq. (22) simplifies

to

P =
k

l

36± 4
√

7

10
≈ {2.542, 4.658}k

l
. (23)
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2.2 The destabilizing role of viscosity and the Ziegler paradox for the Reut system

Due to the fact that the determinant of the system (15) governing the linearized equilibrium is
identical for both the Ziegler and Reut loadings, it is expected that also in the Reut case the
viscosity plays a destabilizing role even in the limit when the coefficients of viscosity are set to
be equal to zero, the so-called ‘Ziegler paradox’ [2, 3, 6, 7, 8, 9, 10, 23, 24], see the discussion
reported in [5].

The hinges of the double pendulum are now assumed visco-elastic, so that the formulation
(15) applies. Under the assumptions l1 = l2 = l, k1 = k2 = k and now also c1 = c2 = c, and
introducing the notation ω = −iΩ, the vanishing of the determinat of the coefficient matrix can
be written as

p0ω
4 + p1ω

3 + p2ω
2 + p3ω + p4 = 0, (24)

where

p0 = det M, p1 = cµ1, p2 = −Plµ2 + kµ1 + c2, p3 = 2ck, p4 = k2,

µ1 = M11 + 2M22 + 2M12, µ2 = M22 +M12.

(25)

Following the Routh-Hurwitz criterion, stability occurs when the following three inequalities
are all satisfied [5, 25]

p1 > 0, p1p2 − p0p3 > 0, (p1p2 − p0p3)p3 − p2
1p4 > 0, p4 > 0. (26)

Condition (26)3 is the more restrictive and reads

P <
1

µ2

[
k

l

µ2
1 − 4 det M

2µ1
+
c2

l

]
, (27)

which becomes

P <
1

10 + ρ̄l̄(24 + l̄2)

[
k

l

296 + 4ρ̄l̄(246 + 5l̄2) + ρ̄2 l̄2(900 + 48l̄2 + l̄4)

18 + ρ̄l̄(30 + l̄2)
+

12c2

ρl4

]
. (28)

In the special case when the mass of the blade is negligible (ρ̄ = 0), Eq. (28) simplifies to

P <
74

45

k

l
+

12 c2

10ρl4
≈ 1.644

k

l
+ 1.2

c2

ρl4
, (29)

an equation which clearly reveals the Ziegler paradox, because the critical load in the limit of
null viscosity, c = 0, becomes smaller than the critical load for flutter evaluated assuming that
the viscosity is ‘from the beginning’ not present, Eq. (23).

3 Reut’s force from Coulomb friction

In the proposed experimental set-up the Reut’s force is obtained from frictional contact. The
implementation of this force in the theoretical background follows [15]. When point w is iden-
tified through the coordinate (2), the relative velocity at the blade/cylinder contact is

ẇp = vpe1 + ẇ. (30)

The Coulomb rule for frictional contact distinguishes between the two conditions when relative
sliding does or does not occur, respectively

ẇp · e1 6= 0 slip

ẇp · e1 = 0 stick
(31)
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so that the two frictional coefficients ‘static’ µs and ‘dynamic’, µd define the axial force P from
the vertical force R transmitted orthogonally at the blade/cylinder contact as

P = Rµ(ẇp · e1) = R

{
µd sign(ẇp · e1) slip

∈ [−µs, µs] stick
(32)

where
ẇp · e1 = vp + l1 sinα1 (−α̇1 + α̇2) . (33)

The numerical solution of the nonlinear differential system (10) with the force P given by
Eq. (32) was pursued with the same technique described for the Ziegler double pendulum
[15], assuming for simplicity µs = µd and introducing the regularization reported in [26], with
the small parameter ε=0.04. Using for the geometrical and viscoelastic parameters the values
representative of the experiments that will be presented in the next section, a sequence of
images taken from a simulation of flutter instability and of divergence instability in the Reut’s
column is reported in Figs. 6 and 7, respectively. The simulations were performed with initial
conditions α1 = α2 = ±0.2 and α̇1 = α̇2 = 0, at a speed vp of the cylindrical constraint equal
to 20 mm/s. The load transmitted through friction in the straight configuration is 15 N and 60
N respectively for flutter and divergence.

t₀ t₁ t₂ t₃ t₄

t₅ t₆ t₇ t₈ t₉

Figure 6: A sequence of images from a simulation of flutter instability in the Reut’s column, obtained through
numerical analysis of the nonlinear differential system (10) with initial conditions α1 = α2 = −0.2 and α̇1 =
α̇2 = 0. The load transmitted through friction in the straight configuration is 15 N and the speed of the cylinder
vp is equal to 20 mm/s.

The simulations show that flutter instability starts as an oscillation of increasing amplitude,
but soon degenerates into a limit cycle motion, while divergence is characterized by a blowing-up
dynamics, which is terminated when the force falls out of the blade.

4 Experimental realization of the Reut’s column

The double pendulum with Reut’s load was designed and realized in the ‘Instability Lab’ of
the University of Trento. Details on the construction are deferred to Appendix B. Difficulties
arise in the practical implementation of the concept illustrated in Fig. 2 from several sources.
These were already encountered in the realization of the Ziegler follower force, namely, the
non-perfect adherence of friction to the Coulomb law and the non-null friction occurring in the
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t₀ t₁ t₂ t₃ t₄

Figure 7: A sequence of images from a simulation of divergence instability in the Reut’s column, obtained
through numerical analysis of the nonlinear differential system (10) with initial conditions α1 = α2 = 0.2 and
α̇1 = α̇2 = 0. The load transmitted through friction in the straight configuration is 60 N and the speed of the
cylinder vp is equal to 20 mm/s.

mechanical system providing the compression to the head of the double pendulum. However,
the most important difficulty is related to the fact that when the double pendulum is subject
to a large deflection, the vertical transmission of the load becomes eccentric, so that a spurious
torsion is induced. It is important to realize, however, that all the difficulties mainly concern
the development of the instability, but not the onset of it. In fact, initially the double pendulum
is in its straight configuration so that there are no eccentricities in load, and the measure of the
critical loads for flutter and divergence is particularly accurate, as it is taken through a direct
measure on the axis of the cylinder.

Experimental results for the determination of the critical loads for flutter and divergence
instabilities are reported in Fig. 8. Here the theoretical values for flutter instability depend on

0 2 4 6 8 10 12 14 16 18 20 22 24 26 ... ...

c=0, ideal case

8.34 

P =5.55 cr,flStabilty Flu�er DivergenceP =20.44 cr,div

14.26 

Stability
Flutter
Divergence

Figure 8: Comparison between the theoretical values and the experimental determinations of the threshold
loads for flutter and for divergence. The experimental value of critical load for flutter (divergence), Pcr,fl=6.27
N (Pcr,div=18.72 N), lies between the two theoretical values referred to the viscous case, 5.55 N (20.44 N) and
the purely elastic case, 8.34 N (14.26 N). Note that the experiments support the reduction in the critical load
related to viscosity and thus the validity of the Ziegler paradox.

the account or not of the viscosity in the hinges. In the former case, called ‘ideal’, the hinges
are assumed purely elastic, while in the latter the hinges are viscoelastic. The elasticity and
viscosity of the hinges have been separately identified with ad hoc experiments (described in
Appendix B), so that the values of the critical loads calculated with the viscoelastic model are
believed to be tighter to the experiments. The theoretical values for the critical loads are

5.55 N︸ ︷︷ ︸
viscoelastic

8.34 N︸ ︷︷ ︸
elastic︸ ︷︷ ︸

Flutter

−−−−−−−− 14.26 N︸ ︷︷ ︸
elastic

20.44 N︸ ︷︷ ︸
viscoelastic︸ ︷︷ ︸

Divergence

(34)

which have been reported in Fig. 8 together with the measured values, reported as colored
spots.
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The fact that the experimentally observed values of critical loads lie within the intervals (34)
provides the first experimental proof for the Reut’s column of the detrimental effect of viscosity
on the flutter load and, indirectly, of the validity of the Ziegler paradox for this structure.

A record of the transverse displacement in time of the head of the double pendulum is
provided in Fig. 9, showing that the structure reaches a limit cycle almost immediately and
thus behaves as a self-oscillating system [27].

Time, t [s]

80

40

0

-40

-80
0 1 2 3 4 5 6

ExperimentTheoryD
is

p
la

ce
m

en
t,

 x
 [

m
m

]
ᵛ

P (Reut)
a₁

a₂

o

u

v

x (t)ᵛ

w

Figure 9: The oscillatory behaviour typical of flutter instability (at P=14 N), recorded as the transverse
displacement component of the head of the double pendulum (speed of the cylinder vp=20 mm/s). Note that a
limit cycle is reached very soon, so that the structure behaves as a self-oscillating system.

A sequence of photos documenting flutter instability and divergence instability are reported
(in addition to Fig. 4) respectively in Figs. 10 and 11, where also the tracking of the head
of the double pendulum has been marked in yellow. Note that the experiments addressed to
divergence instability were interrupted when the displacements became so large that the blade
of the structure was escaping from the compressing glass (an event that would have ruined the
testing machine). In this way it was not possible to document any oscillatory behaviour when
divergence was observed.

t₀ t₁ t₂ t₃ t₄

t₉t₈t₇t₆t₅

Figure 10: A sequence of photos documenting flutter instability in the Reut’s column. The measured load in
the straight configuration is P =14 N; a speed of vp=20 mm/s was imposed to the cylinder. Note the tracking
of the head of the double pendulum (reported yellow).

The results reported in Figs. 8 - 11, plus those collected in the movie of experiments included
as supporting material (see also http://ssmg.ing.unitn.it/), provide a coherent demonstration
(i.) that the Reut’s load can be realized, (ii.) that elastic structures subject to this load can
suffer flutter and divergence instability, (iii.) that during flutter the structure behaves as a
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t₀ t₁ t₂ t₃ t₄

Figure 11: A sequence of photos documenting divergence instability in the Reut’s column. The measured load
in the straight configuration is P =60 N; a speed of vp=20 mm/s was imposed to the cylinder. Note the tracking
of the head of the double pendulum (reported yellow).

self-oscillating device and (iv.) that the viscosity decreases (increases) the threshold for flutter
(for divergence).

5 Conclusions

The realization of the nonconservative load proposed near 80 years ago by Reut, namely, a
force constrained to act along a straight line, was so far considered impossible. We have shown,
theoretically and experimentally, how to produce this load on elastic structures, a finding which
may be applicable to mechanical actuation, energy harvesting, and biomechanics.

Acknowledgments D.B. acknowledges financial support from the PRIN 2015 ‘Multi-scale
mechanical models for the design and optimization of micro-structured smart materials and
metamaterials’ 2015LYYXA8-006. D.M. thanks support from the National Group of Math-
ematical Physics (GNFM-INdAM). The authors also acknowledge support from the Italian
Ministry of Education, University and Research(MIUR) in the frame of the ‘Departments of
Excellence’ grant L. 232/2016. The authors thank Mr. Lorenzo P. Franchini and F. Vinante
for assistance with the experiments.

IX

Appendix A The elastic double pendulum subject to four different loads: detailed
analysis

A.1 Kinematics of the double pendulum

The kinematics of the double pendulum is fully specified by the position, velocity and acceler-
ation of points a, b, and c. For points a and b the following relations hold true

a = ae
(1)
r + o,

ȧ = aα̇1e
(1)
θ ,

ä = aα̈1e
(1)
θ − aα̇

2
1e

(1)
r ,

b = l1e
(1)
r + be

(2)
r + o,

ḃ = l1α̇1e
(1)
θ + bα̇2e

(2)
θ ,

b̈ = l1α̈1e
(1)
θ − l1α̇

2
1e

(1)
r + bα̈2e

(2)
θ − bα̇

2
2e

(2)
r ,

(35)
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The integrals defining the inertia in Eq. (4) can be solved to give∫ l1

0
(ä · δa) da =

l31
3
α̈1δα1∫ l2

0

(
b̈ · δb

)
db = δα1

[
l21l2α̈1 +

l1l
2
2

2
α̈2 cos (α1 − α2) +

l1l
2
2

2
α̇2

2 sin (α1 − α2)

]
+δα2

[
l1l

2
2

2
α̈1 cos (α1 − α2)− l1l

2
2

2
α̇2

1 sin (α1 − α2) +
l32
3
α̈2

]
,

∫ l3/2

−l3/2
(c̈ · δc) dc = δα1

[
l21l3α̈1 + l1l2l3α̈2 cos (α1 − α2) + l1l2l3α̇

2
2 sin (α1 − α2)

]
+δα2

[
l1l2l3α̈1 cos (α1 − α2)− l1l2l3α̇2

1 sin (α1 − α2) +

(
l22l3 +

l33
12

)
α̈2

]
.

(36)

A.2 External power for three loads

The power associated to external loads P · δw in Eq. (4) is now evaluated for the three cases
of (i.) dead load, (ii.) Ziegler nonconservative load, and (iii.) frictionless contact with a guided
weight.

A.2.1 Dead load (conservative)

In the case of the dead load: (i.) the force P is fixed at the point v of the structure and remains
(ii.) constant and (iii.) parallel to the e1-axis. Such a force follows the structure, because it
is attached to the moving point v, and can be visualized as a weigth in a gravitational field
(taking the e1-axis to be in the opposite direction of the field). The power of external load can
be obtained from Eq. (5) setting c = 0 as

P · δw = Pl1 sinα1 δα1 + Pl2 sinα2δα2. (37)

The dead load is conservative and in fact admits the potential

W (α1, α2) = P (l1 cosα1 + l2 cosα2 − l1 − l2) , (38)

so that

P · δw = −∂W
∂α1

δα1 −
∂W

∂α2
δα2. (39)

The power of external load, linearized near the trivial equilibrium position, is for the dead
load

P · δw = Pl1α1 δα1 + Pl2α2δα2. (40)

A.2.2 Ziegler load (non conservative)

In the case of the Ziegler load: (i.) the force P is fixed at the point v of the structure and
remains (ii.) constant and (iii.) parallel to the bar v − u. Such a force follows the structure
and can be easily seen to be a nonconservative force (Bigoni, 2018). The power of external load
can be obtained from Eq. (5) setting c = 0 as

P · δw = Pl1 sin(α1 − α2) δα1, (41)
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an expression which cannot be derived from a potential.
The power of external load, linearized near the trivial equilibrium position, is for the Ziegler

load
P · δw = Pl1(α1 − α2) δα1. (42)

A.2.3 Frictionless contact load with a dead weight (conservative)

This load, which could be confused with the Reut load, can be imagined as a weight P in a
gravitational field acting on a constraint which forces the weight to slide along the e1-axis and
stay in frictionless contact against the blade, namely, the bar orthogonal to v − u. Therefore,
the latter bar is subject to a force orthogonal to it, free of moving along the bar, and with
horizontal component equal to −P .

In the case of the frictionless contact: (i.) the force P is free of sliding along the bar
orthogonal to v− u, (ii.) remains orthogonal to it, while (iii.) P · e1 = −P is constant. Such a
force does not follow the structure, but has the same direction of the Ziegler load, although its
modulus is not constant. In any case, the modulus of the Ziegler force and of the frictionless
contact become identical in the linearized expression (7).

The power of external load can be obtained from Eq. (5), by setting for c the value given
by Eq. (2) and thus obtaining

P · δw = Pl1 (sinα1 − cosα1 tanα2) δα1 − Pl2
(
l1/l2 sinα1 + sinα2

cos2 α2

)
δα2, (43)

which is a conservative load, admitting the potential

W (α1, α2) = Pl1

(
cosα1 + sinα1 tanα2 +

l2
l1 cosα2

− 1− l2
l1

)
. (44)

The power of external load, linearized near the trivial equilibrium position, is for the fric-
tionless contact load

P · δw = Pl1 (α1 − α2) δα1 − P (l1α1 + l2α2) δα2. (45)

Note that there is another route to calculate the power of external load (43), which is to
consider the power of the load P sliding along the e1 axis. This movement can be calculated
identifying c with the value (2) before the differentiation in Eq. (1)1

c = l1e
(1)
r + l2e

(2)
r −

(
l1 sinα1 + l2 sinα2

cosα2

)
e

(2)
θ + o, (46)

so that

ċ = l1α̇1e
(1)
θ + l2α̇2e

(2)
θ +

(
l1 sinα1 + l2 sinα2

cosα2

)
α̇2e

(2)
r +

d

dt

(
l1 sinα1 + l2 sinα2

cosα2

)
e

(2)
θ , (47)

defines the velocity which produces the power directly from the load P . The scalar product of
Eq. (47) with −Pe1 provides the expression (43) for the power.

A.3 Quasi-static bifurcations for the conservative systems

A simple static analysis of the structure shown in Fig. 5 is sufficient to conclude that only
the trivial (straight) configuration satisfies equilibrium for the cases of Ziegler and Reut loads,
so that in these cases quasi-static bifurcations are excluded. The other two loads are different
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and non-trivial quasi-static bifurcations can be found, corresponding to quasi-static solutions
for which the frequency vanishes, Ω = 0.

The loads for quasi-static bifurcations, occurring only for dead loading and frictionless con-
tact loading, are independent of the viscosity of the hinges, because the matrix containing the
coefficients c1 and c2 is multiplied by Ω.

The case of the dead load is well-know, while it can be remarkable that in the case of the
frictionless contact bifurcations for both compressive and tensile loads may occur.

When two bars of equal length are considered, l1 = l2 = l, together with identical spring
stiffnesses, k1 = k2 = k, the dead load problem admits the following two compressive bifurcation
loads

Pdead =
k

l

3±
√

5

2
≈ {0.3820, 2.618}k

l
, (48)

while the frictionless contact problems admits the following tensile and compressive buckling
loads (the former distinguished by the ‘−’ sign)

P crcontact =
k

l

3±
√

17

4
≈ {−0.281, 1.781}k

l
, (49)

which are both ‘critical’, since they are both minimum values of loads which can be realized
without adding further constraints to the system.

Appendix B The experimental set-up for the Reut’s column

Photos of the experimental set-up are reported in Fig. 12, where the ‘load frame’ belongs to
an electromechanical testing machine (Midi 10 from Messphysik Materials Testing) turned in a
horizontal position.

loading cell

viscoelastic 
hinges

loading cell

load frame

rotating cylinder

Reut’s column

a b

loading cell

loading pulley 
system

rotating cylinder
contact point

c

Figure 12: Experimental set-up showing the Reut’s columns (detail b) in contact with the freely-rotating
cylinder (detail c), moved against the structure at fixed velocity by a testing machine (its load frame and loading
cell are visible, part a) turned horizontally. Note that the system used to load the head of the Reut’s column is
the same as that developed in [16].

The elastic double pendulum was realized with two PMMA rigid bars (Young modulus
E=2.35 GPa, ρ1=ρ2=0.322 kg/m; l1=l2=120 mm), while the transverse rigid bar (dashed/grey
in Fig. 5) was realized as a truss structure in PMMA (ρ3=0.439 kg/m, l3=250 mm), terminating
with an aluminium bar (diameter φ= 8mm) at its edge in contact with the cylinder. The friction
coefficient at the contact between the latter aluminium bar and the freely rotating cylinder was
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enhanced by wrapping the bar with a nitrile rubber NTR (thickness 1 mm, surface roughness
0.7 ± 0.1 µm, hardness 72 ShA, kindly provided by TyreF srl).

The Reut’s load is transmitted to the double pendulum as a contact force generated through
sliding against a stainless steel thin-walled cylinder (mounted on ball bearings, so that it is left
free of rotating), moved at constant speed of vp=20 mm/s by the above-mentioned electrome-
chanical testing machine. During the tests the reaction force at the fixed end of the pendulum
and the force applied to the freely rotating cylinder were simultaneously acquired from two
load cells (respectively a Mettler MT1041 RC 200N and a Mettler MT1041 RC 300N) with a
NI CompactRio, interfaced with Labview 2018 (National Instruments). While conducting the
experiments, high-speed movies were recorded (at 240 fps with a Sony PXW-FS5 high-speed
camera) and employed to track the position in time of the head of the structure. Photos were
taken with a Sony α9 camera.

To transmit the frictional load, thin-walled tubes made of different materials (plastic, alu-
minium, galvanized steel and stainless steel) were used as the idealized cylindrical constraint.
The most appropriate was found to be the stainless steel tube (diameter φ=30 mm, thickness
t=0.5 mm, length L=550 mm) which was placed on two linear guides (type Easy Rail SN22-80-
500-610, from Rollon). Two ball bearings (model B626ZZ, from Misumi Europe) were mounted
at both ends of the tube to leave it free of rotating.

As a system to vary the vertical force transmitted between the blade and the cylinder (so
to vary the Reut’s force via Coulumb friction) the same apparatus developed for the flutter
machine was used (a detailed description is reported in [16]). The friction coefficient measured
at the blade/cylinder contact decreases with the vertical load within the interval 0.71 ± 0.15.
This variation was taken into account in the simulations, but did not affect the measure of the
critical loads for flutter and divergence, which was taken directly on the cylinder.

The viscoelastic hinges have been obtained with a strip of Carbon Fiber (Young modulus
E=62 GPa) of thickness 0.41 mm, width 30 mm, and length L=20 mm. The elastic stiffness
of the hinges was evaluated as k1=k2=k=0.531 Nm from a buckling test, Fig. 13a. The
viscous coefficient of the hinges was identified to be c1=c2=c=0.012 Ns from a matching between
simulated and measured free oscillations of the double pendulum with the first bar kept fixed
(so that only rotation about the second hinge was allowed), Fig. 13b.

b x(t=0)a

x(t)

a2
k,c

x(t=0)

k k P

Figure 13: Identification of the hinges viscoelasticity through a buckling experiment to determine the stiffness
k1 = k2 (a) and through measurement of vibration damping to determine the viscous coefficients c1 = c2 (b)
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