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ABSTRACT

Loss of strong ellipticity is considered for clastoplastic solids in the presence of non-associative flow laws.
Reference is made to the two comparison solids introduced by Ramiccki and Bruhns. The loss of strong
ellipticity is expressed in terms of a critical value of the hardening modulus. In the context of the infinitesimal
theory, the loss of strong ellipticity is shown to occur simultaneously in the two comparison solids. Finally,
an explicit form for the critical hardening modulus is given and applications are performed for the Drucker-
Prager and Schleicher yicld functions.

NOTATION

A NOTATION is used which is standard in continuum mechanics [cf., for example,
GURTIN (1981)]:

Aa vector that second-order tensor A assigns to vector a
A[A]  second-order tensor that fourth-order tensor A assigns to second-order tensor A
AB second-order tensor defined as (AB)a = A(Ba) for every vector a
A" transpose of second-order tensor A
Al inverse of second-order tensor A
tr A trace of second-order tensor A
@) fourth-order zero tensor
scalar product
® tensorial product

1. INTRODUCTION

LocaL stability conditions for elastoplastic solids were formulated and discussed by
MRrO6z (1963, 1966), VILLAGGIO (1968), HUECKEL and MAIER (1977) and MAIER and
HUECKEL (1979) in terms of second-order work positiveness, by HiLL (1962) and
MANDEL (1966) in terms of the propagation of acceleration waves, by HILL and
HuTtcHINSON (1975), RubpNickr and Rice (1975), Rice (1976), VARDOULAKIS (1976)
and Rice and Rupnickr (1980) in terms of strain localization, and, finally, by
BENALLAL et al. (1989) and SCHAEFFER and SHEARER (1990) in terms of the stability
of the equations governing the elastoplastic rate problem. Recently, local stability
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criteria have been used in the numerical analysis of the nucleation and growth of
localized deformations (FisH and BELYTSCHKO, 1990 ; NACAR et al., 1989 ; ORTIZ et
al., 1987).

Sufficient conditions for the stability and uniqueness of the elastoplastic incremental
response, allowing for large displacement gradients, were stated by HILL (1958, 1959,
1961). Hill’s formulation was later extended to non-associative flow laws by MAIER
(1970), RanieckI (1979) and Raniecki and BRUHNs (1981). However, the problem
of stability and uniqueness in the non-associative case is far from being fully under-
stood. Non-associative flow rules were introduced by MANDEL (1966) and MROZ
(1963, 1966), and later widely used to model the behavior of pressure-sensitive
materials, such as, for example, void-containing ductile solids, polymers, ceramics,
concrete and rocks (LEE, 1988 ; NEEDLEMAN, 1979 ; NEMAT-NASSER, 1983 ; RICE, 1976 ;
Rubpnickr and RICE, 1975).

This paper continues with a brief review of the general framework of stability and
uniqueness for elastoplastic solids under dead loading. In this section, an attempt is
made to establish a hierarchy between the various stability criteria and to emphasize
all the physical motivations of the criteria. This paper then focuses on the local
condition of strong ellipticity (the SE condition in the following). The SE condition
is connected to the loss of infinitesimal stability through Hadamard’s inequality
(TRUESDELL and NoLL, 1965, Section 68 bis).

In Section 3, some new results are presented which were obtained without any
assumption on the direction of the plastic flow, on the shape of the (smooth) yield
surface, and on the type of hardening/softening law. The loss of the SE condition is
expressed in terms of a critical value of the hardening modulus for both comparison
solids (RANIECKI and Brunns, 1981). However, starting from Section 4, the co-
rotational terms are neglected in the constitutive equations and the coaxiality of the
tensors of the plastic flow mode and the yield surface gradient is assumed. In this
context, a coincidence is shown between the critical hardening moduli of the com-
parison solids. Moreover, an explicit expression for the critical hardening modulus is
given for the loss of the SE condition. Applications are performed for the yield surfaces
proposed by DRUCKER and PRAGER (1952) and SCHLEICHER (1926) (“modified von
Mises”). The non-associative flow rule has been selected to be the type used by
Rupnicki and Rice (1975). Finally, the possibility is discussed of generalizing the
results obtained to the finite displacement theory.

2. STABILITY AND UNIQUENESS FOR ELASTOPLASTIC SOLIDS
2.1. Constitutive equations

A piecewise linear relationship is assumed (NEMAT-NASSER, 1983 ; RANIECKI and
BruHNS, 1981) to relate the Jaumann derivative (%) of the Kirchhoff stress K to the
rate of deformation tensor D

K = C[D]. 2.1)

The fourth-order constitutive operator C is given by the following form:
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C[D] = E[D]— > S [P, (2.2)

where E is the elastic (positive definite) constitutive tensor, Q is the gradient of the
(smooth) yield surface, the (symmetric) second-order tensor P gives the mode of the
plastic flow, the symbol {-> denotes the McAulay brackets, // is the hardening
modulus, and the scalar H, represents the absolute value of the hardening modulus
at the snap-back threshold, i.c.

H,=P-E[Q]. (2.3)

Note that no hypotheses are made for the evolution law of the hardening modulus.
When the hardening modulus is negative, strain softening occurs. When P = Q, the
constitutive equation (2.1)—(2.2) reduces to the usual constitutive equation in the
presence of the associative flow rule (HiLL, 1958).
In relation to the constitutive equation (2.1), the comparison solid ““in loading”
(Hill’s type) 1s introduced :
O e [ LPl ® [E[Q]' (2.4)
H+H,
Morcover, the family of comparison solids introduced by RANIECKI (1979) is specified
by the constitutive fourth-order tensor

E[R] ® E[R]

C=E— .
Ay (H + H.,)

WeR', (2.5)

where
R =P+yQ. (2.6)

Note that  is a free parameter and. therefore. the choice of a particular comparison
solid of the family (2.5) can be optimized, depending on the problem at hand.
Bifurcation analyses using Raniecki’s comparison solid were performed by BRUHNS
(1982) and TVERGAARD (1982).

2.2, Stability and uniqueness for elastoplastic solids

For the rate problem of an elastoplastic solid under dead loading the infinitesimal
stability condition (TRUESDELL and NoLL, 1965, Section 68 his : OGDEN, 1984, Section
6.2.3) states that

J_L-(@+@)[L] > 0, (2.7)

A
where L is the gradient of the spatial velocity and
GI/‘/IA‘ = %([\/’/’A(Sm - K/'A(S//f - K[/.r(j,f/\ - Kfﬁ'yé//\ )- (28)

d,, being the Kronecker symbol. The tensor (C+ G) [L] represents the material deriva-
tive of the first Piola Kirchhoft stress tensor.
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Necessary conditions for (2.7) to hold have been derived by RyzHAK (1987):
g®n-(C"+G)[g®n] =0, (2.9)
g®n (E+G)[g®n] =0, (2.10)

for every pair of vectors g and n not equal to zero. The theorem derived by Ryzhak
represents an extension to the non-associative elastoplasticity of the Hadamard
theorem of finite elasticity, proved in a general form by CATTANEO (1946).

The following sufficient condition for the uniqueness of the rate problem for non-
associative flow laws has been derived by RANIECKI (1979) and RANIECKI and BRUHNS
(1981) through the introduction of the family of comparison solids (2.5):

JL-(@"JF@)[L] > 0, 2.11)

for every velocity field satisfying homogeneous conditions on the boundary where
displacements are prescribed. Based on the Hadamard theorem, a local necessary
condition for (2.11) to hold can be written as

g@n: (C'+G)lg®@n] =0, Ve, n# 0. (2.12)

2.3. Local stability criteria

From (2.11), the following local sufficient condition for the uniqueness of the
incremental elastoplastic response is immediately obtained :

L-(C'+G)[L] >0,  VLeLin-{0}. (2.13)

In the case of finite elasticity, condition (2.13) is due to HiLL (1957). Moreover, when
L is restricted to Sym-{0}, condition (2.13) is analogous to the GCN™* condition of
finite elasticity (TRUESDELL and NoLL, 1965, Section 52). In the case of the infinitesimal
theory (G = 0), (2.13) is known as the condition of second-order work positiveness
(MROz, 1963). In this context, RANIECKI (1979) proved the coincidence of the loss of
second-order work positiveness for both Hill’s comparison solid and the optimum
comparison solid of the Raniecki family.

Condition (2.13) excludes the possibility of localization of deformations into planar
bands. Strain localization occurs when the constitutive equation (2.1) suffers a loss
of ellipticity (HiLL and HutcHinsoN, 1975; Rubnickl and RICE, 1975; RICE,
1976). However, RICE and RUDNICKI (1980) proved that the first possibility of strain
localization in the elastoplastic solid occurs when Hill’s comparison solid suffers a
loss of ellipticity, i.c. when

dn # 0: det A,(n) = 0, (2.14)
where the acoustic tensor A, is defined as
A,(m)g = (C"+G) [g®n]n. (2.15)

Condition (2.14) is the condition for the vanishing of the speed of an acceleration
wave (HiLL, 1962). When all acceleration waves are able to propagate with real speed,
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the material is considered stable in the MANDEL (1966) sense. Mandel’s stability only
proves to be a sufficient condition for excluding strain localization, due to the possi-
bility of complex eigenvalues of the acoustic tensor (RICE, 1976).

Note that, due to the symmetry of C’, the condition of strain localization coincides,
for Raniecki’s comparison solid, with the loss of the SE condition.

Inequality (2.13) is obviously stronger than the SE condition for the comparison
solid “in loading” :

g®@n- (C'+G)[g®n] >0, Vg n#0, (2.16)

as well as for the family of comparison solids (2.5).
The SE condition plays a central role in the above-mentioned local criteria and,
therefore, the present paper is devoted to a systematic study of this condition.

3. STRONG ELLIPTICITY FOR THE COMPARISON SOLIDS

The local criteria presented in the previous section place restrictions on the consti-
tutive laws. This becomes particularly evident, for instance, in the infinitesimal theory,
where it is well known that, when normality holds, the positiveness of the hardening
modulus is sufficient for ensuring stability in all the mentioned senses (MELAN, 1938 ;
HiLL, 1950, pp. 53-60). The condition of loss of second-order work positiveness is
expressed in terms of a critical value of the hardening modulus (MAIER and HUECKEL,
1979). For hardening modulus values exceeding the critical one, the second-order
work is positive for every strain rate. Analogously, in the finite theory, the condition
of strain localization (loss of ellipticity) is expressed in terms of a threshold for
the hardening modulus (RICE, 1976). Clearly, the critical hardening modulus for
localization is lower than that for the loss of second-order work positiveness.

In the following, the critical hardening modulus for the loss of the SE condition is
derived for both comparison solids (2.4) and (2.5). These critical hardening modulus
values are the validity thresholds for (2.9) and (2.12). Therefore, the interest in the
SE conditions lies in the fact that they set a local bound sufficient for the validity of
integral conditions (2.7) and (2.11). For this reason, the SE condition appears to be
complementary to the condition of second-order work positiveness.

3.1. Comparison solid *‘in loading” (Hill’s type)

For the comparison solid ““in loading™ (2.4), the critical hardening modulus, as a
function of the unit vector n, is given by

H'(n) = — H,+3{E[P]n- A, ' () E[Q]n
+[(E[PIn- Az '(m)E[PIn) (E[QIn- A; "(ME[QIm)]?}, (3.1)
where A .(n) is the elastic acoustic tensor :
Ar(n)g = (E+G) [g ® n]n. (3.2)

Equation (3.1) requires that A ;(n) be non-singular. On the other hand, the components
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of the fourth-order tensor G (‘‘geometrical terms”) are of the order of magnitude of
a stress component and, therefore, are generally small compared to the elastic moduli
for metals and pressure-sensitive materials. The assumption that A; '(n) exists is,
therefore, common (RICE and RUDNICKI, 1980).

The vector g at the loss of the SE condition is

g' = 3{A; (ME[PIn+7A; ' (ME[Q]n}, (3.3)

where

B ([E[P]n-AE '(n)[E[P]n>”2
~ \E[Q]n-A; '(WEQIn/

Therefore, the critical hardening modulus is given by the maximum value attained by
(3.1) over all possible directions of n, i.e.

(3.4)

H%. = max H'(n),  subjectton'n= 1. (3.5)

It is to be noted that condition (3.1) reduces to the condition of strain localization in
a planar band having normal unit vector n (RICE, 1976) in the case of the associative
flow law.

In order to prove (3.1), a procedure similar to that proposed in MAIER and HUECKEL
(1979) is used. Hence, the constrained minimum of the functional

S(g) =g - Ax(mg—g-E[P]n, (3.6)
subject to the condition
g E[Qn=H+H, (3.7)

is set to equal zero (in Appendix 1 the equivalence is shown between the above
problem and the loss of the SE condition). The constrained minimum of (3.6) is
performed by minimizing the unconstrained functional

L(g,n) = S(g)—n(g* E[QIn—H—H,), (3.8)

where 5 is a Lagrangean multiplier. Then the extremum conditions of (3.8) and the
vanishing of the minimum of the functional (3.6) are:

2A(n)g—E[PIn—xE[Q]n = 0, (3.9
g F[QIn—H—H, =0, (3.10)
g-Ai(n)g—g-E[Pn = 0. (3.11)

Vector g" is obtained from (3.9) in the form of (3.3). A substitution of (3.3) into (3.11)
yields (3.4). Finally, by substituting (3.3) and (3.4) into (3.10), the condition (3.1) is
obtained.

3.2. Family of comparison solids (Raniecki’s type)

As a function of the unit vector n, the critical hardening modulus, for a given solid
of the family (2.5), is given by
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H@p) = —Hot {E[P]n-A; '(WE[QIn

+ l/‘;[E[Q]n-A_g '(n)E[Q]n+ 2ll/j{E[P]n “Aj 1(n)[E[P]n}. (3.12)
The vector g at the loss of the SE condition is
g" = Az '(n)E[R]n. (3.13)

Finally, the critical hardening modulus is obtained by maximizing (3.12) as a
function of the unit vector n. The best choice in the family of comparison solids (2.5)
for the loss of the SE condition is finally achieved by calculating the infimum of the
hardening modulus as a function of y :

ng:ird}fmaxH’(n,lp), YeR , n-n=1. (3.14)

Equations (3.12) and (3.13) have been obtained by a procedure quite analogous to
that employed to obtain (3.1) and (3.3). The Lagrangean multiplier is now equal
to 1.

It is worth noting that the values of the critical hardening moduli (3.1) and (3.12)
are not explicit, in the sense that a minimization with respect to the unit vector n is
required. In the following section this minimization will be performed for the solid
(2.5), so as to obtain an explicit form for the critical hardening modulus.

4. CrRITICAL HARDENING MODULUS FOR THE RANIECKI-TYPE COMPARISON SOLID

Problem (3.14) is solved, in the context of the infinitesimal theory, in order to
obtain an explicit expression for the critical hardening modulus corresponding to the
loss of the SE condition of the solids (2.5). In the case of the infinitesimal theory, all
relations of Sections 2 and 3 still hold for G = O. Furthermore, K coincides with the
Cauchy stress tensor T.

The elastic behavior is assumed to be isotropic and is, therefore, characterized by
the two Lamé constants 4 and u:

E=A0®I)+2uS, 4.1)
where I is the identity tensor and S is the symmetric operator over Lin:
S[X] = #X+X%), VX e Lin. (4.2)

The tensors P and Q are assumed to be co-axial, i.e. PQ = QP. Due to objectivity
requirements, this condition is always satisfied in the case of isotropic hardening.
Furthermore, P and Q are co-axial if they are related through an isotropic tensorial
function (TRUESDELL and NoLL, 1965, Section 1.2), as in the particular cases studied
by NEEDLEMAN (1979) and RupNIckr and RICE (1975).

In order to maximize the hardening modulus (3.12) as a function of n (for a given
), condition (3.12) is rewritten in the equivalent form
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H*+ H} = E[R]n- Az '(n)E[R]n, (4.3)

having assumed that
H* = 4yH" —P-F[P]+2¢yP-E[Q] —y*Q - E[Q], (4.4)
HY = R-E[R]. (4.5)

It can now be noted that the hardening modulus H* provided by (4.3) corresponds
to the strain localization of an elastoplastic solid with an associative flow rule, charac-
terized by the plastic strain rate mode R. For the associative flow rule, the maxim-
ization with respect to n of the critical hardening modulus, corresponding to the strain
localization, can be performed as a particular case of that solved by BiGcont and
HUECKEL (1990, 1991) for non-associative flow rules. This result is now used to obtain
the maximum of H* and, consequently, through (4.4), of H". The maximum of H*
can be stated as follows:

H*(p) = max H*(p. k), (4.6)
where
H*(, k) = —2G(1+v)R; — 12_Gv |:<g/> (Ri+VvRy)+ <£m> (R,,,+ka):|u.
g ! m
(4.7)

In expression (4.7) G and v indicate the tangential elasticity modulus and the Poisson’s

ratio, respectively, the indices denote principal components, (k, /, m) is a permutation
of (1,2, 3), and, finally,

_ R+VR,

Rm + VR
B( - ﬁm = ‘ .

= 4.8
Rm - Rl ’ Rl - Rm ( )

Equations (4.8), obviously, are valid if R,, # R,. In the case R,, = R;, (4.7) and all
the other following formulae still hold as limits for ;> + o0 and g,, » — o0, or,
equivalently, f,—» —oo and f,,—» +o0. The components of unit vector m cor-
responding to H*(y, k) are

n, =0,
nj = =<{=Bu)>, (4.9)
Hy = {1={=B).
Rewriting problem (4.6) in terms of H" and making s explicit yields
H'(Y) = max H'(), k), (4.10)

where

H' (k) = §<Al//+ 5 —2C>, @.11)
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AWK = Q Q+ 5t Q—(1+7)0?

1 2
— [<§’><Q,+ Qk>+<§"’><gm+va>] 4.12)
B(Y,k) =P- P+1 'TtrQP (1+v)P}
_ [W (Prvpy+ B2 (P,,,+ka>] L @13
l_v Bl R ﬁm
C.k) =P-Q+ ]—_"fzvtrptrQ+(1+v)Pka
1
- [</> (PrevP) @t vQ)+ 7 (Bt vp) (Q,,,+va)} (4.14)

Note that {f,,>/f,, and {f,>/, as functions of i, can assume only values of 0 and 1.
Hence, functions 4, B and C in (4.10) are independent of y inside the following
subsets of R* :

Loy = {YIKBD = {B.> =0}, (4.15)
It oo = WIKBY = BBy = 0}, (4.16)
o = {WIKBY = 0,{Bn> = Bu}- (4.17)
It can be noted that the following implications hold :
yeloy= —p, —Bnel0,1], (4.18)
vel_.q= —pe(—x,0], (4.19)
yell o= —Pne(—o0,0]. (4.20)

When the subsets (4.15)—(4.17) are determined, the maximization problem (4.10) can
be solved. It then becomes possible to minimize the hardening modulus as a function
of y so as to obtain Hf, and the corresponding values of g, and nf,.

5. COINCIDENCE OF L0ss OF STRONG ELLIPTICITY FOR HILL AND RANIECKI
COMPARISON SOLIDS

For a given unit vector n, the SE condition is lost in the best chosen Raniecki
comparison solid (2.5) at the same critical level of the hardening modulus as the SE
condition is lost in the Hill comparison solid (2.4) in the same direction n.

In fact, in the case of the family of Raniecki comparison solids, the minimum of
(3.12) as a function of y is obtained for ¢ = #, where 5 is given by (3.4). Substitution
of this value of y into (3.12) yields (3.1), given previously for the Hill comparison
solid.
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Therefore, the critical hardening modulus for the loss of the SE condition in the
comparison solid ““in loading™ may be expressed as

H@EzmaxmwinH’(n,w), YyeR , n'n=1. (5.1)

On the other hand, the analogous critical hardening modulus for the family of
comparison solids (2.5) is expressed in the dual form (3.14). It will now be shown
that the two dual problems (3.14) and (5.1) have the same solution. Therefore, the
explicit solution (see Section 4) for the critical hardening modulus for the loss of the SE
condition in the best chosen solid of family (2.5) also furnishes the critical hardening
modulus for the solid (2.4).

5.1. Proof that (3.14) and (5.1) have the same solution
Let L be the functional defined as
L:¢xR-R, (mp)+— L(m, )= H'(ne"), (5.2)
where ¢” is the exponential function, H" is defined by (3.12) and
¢ ={meR*IneR*:n'n=1,m=n’ (i=1.273)}. (5.3)
[t can be verified that:

(1) % is closed, bounded, convex and non-empty ;

(2) VpeR, m— L(m, @) is concave and continuous (see Appendix 2) ;
(3) Vme%, ¢+ L(m, @) is convex and continuous;

(4) Jm,e ¥ such that

il‘im L(m,, ¢) = + 0. (5.4)
Q|—x

Therefore, an application of the KY FAN-SION theorem [see EKELAND and TEMAN
(1976, pp. 171-174)] shows that the functional L possesses at least a saddle point
(m, p)e¥ xR and

L(m, ) = minmax L(m, ¢) = max min L(m, ¢). (5.9)

@eR me% me%é @R
From the definition (5.2) of L, it can finally be deduced that
H{;‘E = H. (5.6)

Result (5.6) is analogous to that obtained by RANIECKI (1979) concerning the coinci-
dence of the loss of second-order work positiveness for the solid (2.4) and in the best
chosen solid (2.5). Here, however, the proof technique used by RANIECKI (1979) does
not seem to be applicable in the case of the loss of the SE condition.

As a consequence of the existence of a saddle point of the functional L(m, ¢),
problem (3.14) can be written as follows:

H's; = min H'(Y), (5.7)
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where H'(y) is given by (4.10). In order to solve (5.7), we observe that (5.6) implies
that

n(nsg) = Yy, (5.8)

where 7 is given by (3.4). In fact, let us suppose that n(nj;) # Y. Then the Raniecki
comparison solid defined by i = n(n§;) loses the SE condition in the direction
n¢; = nj; at the level H’;. On the other hand, the best chosen Raniecki comparison
solid, defined by ., loses the SE condition in the direction nl, at the level A
satisfying H', < H < H'y;. Thus, from (5.6) we obtain (5.8).

From (5.8), it is easy to conclude that vy, is expressible in the form

Vsp = \/BSE/AS[-.'- (5.9)
Therefore, the solution of problem (5.7) can be written as
HgE:n}iAn{G(\/B/A—C)h//eR*, k=1,2,3}, (5.10)

where the coefficients 4, B and C are defined by (4.12)—(4.14). The minimization
(5.10) is to be performed over all possible values of 4, B and C, with the condition
that \/B/A belongs to the subset of R* in which 4 and B are defined, and with the
condition that

H'(/B/A,k) > H'(/B/A.j), j=1,2.3, (5.11)

where H' is the function (4.11). It may be noted that, at most, nine different values
of G(\/B’/A—C) exist. Therefore the minimization problem (5.10) can be easily
solved.

6. APPLICATIONS

The results obtained in the preceding sections hold for all non-associative elasto-
plastic models with a smooth yield surface with coaxial tensors of plastic flow mode
and yield surface gradient.

The critical hardening modulus for the loss of the SE condition is now evaluated
for the model proposed by RupnNicki and RiIcE (1975) to represent the behavior of
pressure-sensitive materials and for the model of SCHLEICHER (1926) (“modified von
Mises™) suitable in the modelling of polymers and metals exhibiting the strength-
differential (SD) effect (DRUCKER, 1973 ; SPITZIG et al., 1976 ; RAGHAVA and CADDEL,
1973; LeE, 1988). The model of RupNIicki and Rice (1975) is founded on the
constitutive assumptions described hereafter.

The DRUCKER-PRAGER (1952) yield criterion is assumed :

x

3trT+\/7z—c, (6.1)

S(T) =
where T is the Cauchy stress, J, is the second invariant of the deviatoric stress S, « is
a material parameter, and ¢ may be a function of state variables. The yicld surface
gradient associated with (6.1) is
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‘ 1
Q=1+ ——s. (6.2)
32/
The plastic flow rule is assumed as follows:
P=Q— 3;—/3 I, (6.3)

where B is a material constitutive parameter. It is worth noting that condition (6.3)
represents the simplest form of an isotropic tensorial function relating the tensors P
and Q.

The values of the critical hardening moduli for the loss of second-order work
positive definiteness, for the loss of the SE condition, and for strain localization, are
reported in Table 1 in the case of axially-symmetric compression under constant
lateral pressure. The angle between the unit vector n and the direction of compression
is reported in brackets. The cases v = 0 and v = 0.3 are investigated for values of a
and f ranging from 0 to 0.9. Analogously, in Table 2, the case of axially-symmetric
tension under constant lateral pressure is reported. The values of the critical hardening
modulus for the loss of the SE condition have been obtained by using the explicit
solution (5.10). Second-order work positive definiteness is lost when the hardening
modulus becomes equal to the critical value H, derived by MAIER and HUECKEL
(1979):

H, = 3{[(P-E[P)) (Q" E[QD]"*—P-E[Q]}. (6.4)

Finally, the critical values of the hardening modulus for the loss of ellipticity have
been calculated by using the explicit solution obtained by BiGont and HUECKEL (1990).

It can be noted that the values of the critical hardening modulus for localization
reported in Table 1, for v = 0.3, « = 0.6 and « = 0.9, do not coincide with the same
values given in Rupnicki and Rick (1975). This non-coincidence is due to the fact
that the results in Rupnickr and Rice (1975) were obtained by neglecting terms like
those multiplying 2G/(1—v) in (4.7) [sce the explicit solution for localization given
by Bicont and HUECKEL (1990)).

It is seen from Tables 1 and 2 that the second-order work is lost well before the SE
condition. Moreover, localization of deformation coincides with the loss of the SE
condition in the case of associative flow rule (¢ = f) only.

The yield surface of SCHLEICHER (1926) represents a modification of the Huber—
Hencky-von Mises yield criterion to include a different behavior in tension and
compression. This yield criterion is able to model the behavior of polymers (RAGHAVA
and CADDEL, 1973) as well as metals showing the SD effect (DRUCKER, 1973). In
these materials, however, adopting the Schleicher criterion, the plastic volumetric
deformation is generally overestimated using the associative flow rule (SPITZIG et al.,
1976 ; WHITNEY and ANDREWS, 1967). Therefore, a non-associative flow rule was
proposed corresponding to zero plastic volumetric strain rate (LEg, 1988). The model
is founded on the SCHLEICHER (1926) yield function:

3,4+ (c—)trT—ct =0, (6.5)

where ¢ and ¢ are the absolute values of the compressive and tensile yield stresses,
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TABLE 1. Critical values of H/G in axially-symmetric compression
(3 in degrees is given in parentheses)

L9

o1l = loa| < o] /
’'n |e——
oy
i

Second-order Strong
o p work ellipticity Ellipticity
v=20
0.3 0.00 0.015 —0.215 (38.8) —0.219 (38.7)
0.3 0.15 0.004 —0.261 (40.4) —0.262 (40.4)
0.3 0.30 0.000 —0.302 (42.1) —0.302 (42.1)
0.6  0.00 0.057 —0.243 (42.2) —0.262 (42.1)
0.6 0.15 0.031 —0.309 (43.8) —0.318 (43.7)
0.6 0.30 0.013 —0.370 (45.4) —0.375 (45.4)
0.6 0.45 0.003 —0.426 (47.0) —0.427 (47.0)
0.6 0.60 0.000 —0.478 (48.7) —0.478 (48.7)
0.9 0.00 0.120 —0.250 (45.3) —0.295 (45.4)
0.9 0.15 0.080 —0.337 (46.9) —0.367 (47.0)
0.9 0.30 0.049 —0.418 (48.5) —0.438 (48.7)
0.9 0.45 0.026 —0.495 (50.2) —0.505 (50.4)
0.9 0.60 0.011 —0.566 (52.0) —0.570 (52.1)
0.9 0.75 0.003 —0.632 (53.8) —0.633 (53.8)
0.9 0.90 0.000 —0.693 (55.5) —0.693 (55.5)
v=0.3

0.3 0.00 0.047 —0.250 (45.5) —0.280 (45.5)
0.3 0.15 0.011 —0.332 (47.6) —0.339 (47.6)
0.3 0.30 0.000 —0.393 (49.8) —0.393 (49.8)
0.6  0.00 0.167 —0.207 (49.0) —0.318 (49.8)
0.6 0.15 0.086 —0.346 (51.3) —0.403 (52.0)
0.6 0.30 0.034 —0.460 (53.8) —0.482 (54.2)
0.6 0.45 0.007 —0.550 (36.4) —0.554 (56.5)
0.6  0.60 0.000 —0.621 (58.9) —0.621 (58.9)
0.9 0.00 0.330 —0.118 (51.4) —0.333 (54.2)
0.9 0.15 0.204 —0.316 (54.0) —0.443 (56.5)
0.9 0.30 0.115 —0.480 (56.9) —0.547 (58.9)
0.9 045 0.057 —0.615 (60.1) —0.644 (61.4)
0.9 0.60 0.022 —0.726 (63.4) —0.736 (64.1)
0.9 0.75 0.005 —-0.820 (66.7) —0.821 (66.9)

09 090 0.000 —0.901 (70.1) —0.901 (70.1)
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TaBLE 2. Critical values of H/G in axially-symmetric extension (3
in degrees is given in parentheses)

[o,

n
o1l > [02] = |o] /(:,
03
Second-order Strong
o f work cllipticity Ellipticity
v=20
0.3 0.00 0.015 —0.101 (58.2) —0.104 (58.3)
03 0.15 0.004 —0.088 (60.2) —0.089 (60.2)
0.3 0.30 0.000 —0.071 (62.2) —0.071 (62.2)
0.6 0.00 0.057 —0.021 (61.4) —0.031 (62.2)
0.6 0.15 0.031 —0.026 (63.8) —0.031 (64.2)
0.6 0.30 0.013 —0.027 (66.2) —0.028 (66.4)
0.6 045 0.003 —0.023 (68.7) —0.023 (68.8)
0.6 0.60 0.000 —0.016 (71.3) —0.016 (71.3)
09 0.00 0.120 0.070 (64.4) 0.052 (66.4)
09 0.15 0.080 0.047 (67.2) 0.037 (68.8)
0.9 030 0.049 0.029 (70.2) 0.024 (71.3)
09 045 0.026 0.016 (73.5) 0.014 (74.3)
0.9  0.60 0.011 0.007 (77.3) 0.007 (77.8)
09 075 0.003 0.002 (82.6) 0.002 (82.8)
09 090 0.000 —0.0005 (90.0)  —0.0005 (90.0)
v=20.3

0.3  0.00 0.047 —0.106 (52.9) —0.130 (53.2)
0.3 0.15 0.011 —0.109 (55.4) —0.114 (55.5)
03 030 0.000 —0.093 (57.8) —0.093 (57.8)
0.6 0.00 0.167 0.054 (56.0) —0.018 (57.8)
0.6 0.15 0.086 0.004 (59.1) —0.028 (60.3)
0.6 030 0.034 —0.020 (62.2) —0.031 (62.9)
0.6 045 0.008 —0.027 (65.4) —0.029 (65.6)
0.6 0.60 0.000 —0.020 (68.6) —0.020 (68.6)
0.9  0.00 0.330 0.239 (58.3) 0.117 (62.9)
09 0.15 0.204 0.145 (61.9) 0.082 (65.6)
09 030 0.115 0.082 (65.9) 0.054 (68.6)
09 045 0.057 0.041 (70.2) 0.031 (72.0)
0.9  0.60 0.022 0.017 (75.1) 0.015 (76.1)
09 075 0.005 0.004 (81.4) 0.004 (81.8)

0.9 090 0.000 —0.001 (90.0) —0.001 (90.0)
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F1G. 1. Schleicher (modified von Miscs) yield criterion with zero plastic volumetric deformation. Critical
values of H/G for the loss of the SE condition vs tr T/(c—1).

respectively. The yield surface gradient, normalized with respect to the parameter
3(c—1), 18

1 1
=1+ )
Q 3 + C_{S (6.6)
and the flow rule is assumed in the form (LEE, 1988)
1
P= S. (6.7)
c—1

The critical hardening modulus for the loss of the SE condition has been evaluated
in the case of axially-symmetric extension at various lateral pressures (the principal
components of tensor S satisfy S, > 0 and S, = S; < 0). In Fig. 1, for the values of
¢/t equal to 1.04, 1.06, 1.08 and 1.10, the critical values of the hardening modulus
(normalized with respect to the elastic shear modulus) are reported as functions of
the mean normal stress [normalized with respect to the parameter (¢ —)/3]. Figure 2
concerns the analogous case of ¢/t equal to 1.20, 1.25, 1.30 and 1.35. By inspection,
it can be noted that the curves are almost rectilinear and the critical hardening modulus
becomes strongly negative when all the principal stress components are negative.

7. REMARKS ON THE FINITE-STRAIN INCREMENTAL THEORY

Due to Raniecki’s comparison theorem, the following inequality holds at finite
strain (G # O):

g-A"(n)g > g-A'(n)g, Vg # 0. (7.1)
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F1G. 2. Schleicher (modified von Miscs) yield criterion with zero plastic volumetric deformation. Critical
values of H/G for the loss of the SE condition vs tr T/(¢—1).

Hence, the loss of the SE condition in Raniecki’s solid always precedes the loss of the
SE condition in Hill’s solid. Moreover, in the case of non-associative flow rules, certain
directions of the velocity of deformation can result in a stiffer response to plastic
loading than that corresponding to elastic unloading (MROz, 1966). Therefore, in the
finite theory, a loss of the SE condition corresponding to elastic unloading can, in
principle, occur between the loss of the SE condition in Raniecki’s and Hill’s com-
parison solids.

As stressed in Section 2, the loss of the SE condition can be used as an e¢xclusion
principle for the integral conditions of uniqueness (2.11) and infinitesimal stability
(2.7). Let us assume that the tensor A;(n),

Ac(m)g = G[g @ n]n, (7.2)

is negative definite. The result of Section 5, that tensors A" and A’ lose positive
definiteness at the same level in the case G = O, allows us to define, in the finite-strain
context, a necessary condition for the integral conditions (2.11) and (2.7). However,
this necessary condition seems to be too unrestrictive in the context of finite strain
when the importance of the “geometrical terms” is relevant. On the other hand, the
results obtained in Sections 4 and 5 can be easily extended to the finite-strain theory
only when tensor G is isotropic and, therefore, tensor E+ G admits a representation
of type (4.1). This is the case when the Kirchhoff stress tensor K is spherical.

8. CONCLUSIONS

In the context of non-associative elastoplasticity, the condition of the loss of strong
ellipticity has been expressed in terms of a critical value of the hardening modulus for
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Hill and Raniecki comparison solids. Under the small-strain assumption, and
assuming the coaxiality of the plastic flow mode and the yield surface gradient, the
following results have been obtained :

(1) loss of strong ellipticity has been shown to occur simultaneously in the two
comparison solids ;

(2) an explicit form is given that allows for a direct calculation of the critical
hardening modulus, corresponding to the loss of strong ellipticity.

The fact that the loss of strong ellipticity does not coincide with the localization of
deformation, as verified using the elastoplastic model by Rupnickr and RIce (1975),
suggests that the localization can be regarded as an extreme form of the loss of
uniqueness. This result fits consistently in the framework given by RIcE (1976).

ACKNOWLEDGEMENTS

The authors wish to acknowledge the financial support of the Ttalian Ministry of University
and Scientific and Technological Research (M.U.R.S.T.) and of the National Council of
Research (C.N.R)).

REFERENCES

BENALLAL, A., BILLARDON, R. and 1989 In Cracking and Damage (edited by J. MAzARS

GEYMONAT, G. and Z. P. BaZanT), p. 247. Elsevier

Applied Science, London.

Bicont, D. and HUEckEL, T. 1990 Ing. Arch. 60, 491.

BiGgoni, D. and HUECKEL, T. 1991 Int. J. Solids Struct. 28, 197.

Brunns, O. T. 1982 In Stability in the Mechanics of Continua (edited
by F. H. SCHROEDER), p. 46. Springer, Berlin.

CATTANEO, C. 1946  Arti Accad. Naz. Lincei Rend. 1, nota I ¢ 11, 66 and
728.

DRrUCKER, D. C. 1973  Metall. Trans. 4, 667.

DRruUckERr, D. C. and PRAGER, W. 1952 Q. appl. Math. 10, 157.

EKELAND, I. and TEMAM, R. 1976  Convex Analysis and Variational Problems. North-
Holland, Amsterdam.

FisH, J. and BELYTScHKO, T. 1990  Comput. Meth. appl. Mech. Engng 78, 181.

GURTIN, M. E. 1981  An Introduction to Continuum Mechanics. Aca-
demic Press, Orlando, FL.

HiLr, R. 1950 The Mathematical Theory of Plasticity. Clarendon
Press, Oxford.

HiL, R. 1957 J. Mech. Phys. Solids 5, 229.

Hirr, R. 1958 J. Mech. Phys. Solids 6, 236.

HiLr, R. 1959 J. Mech. Phys. Solids 7, 209.

Hirr, R. 1961 J. Mech. Phys. Solids 9, 114.

Hir, R. 1962 J. Mech. Phys. Solids 10, 1.

HiLr, R. and HutcHinsON, J. W. 1975 J. Mech. Phys. Solids 23, 239.

HueckeL, T. and MAaIer, G. 1977 Int. J. Solids Struct. 13, 1.

LEg, J. H. 1988 J. appl. Mech. 55, 261.

MAIER, G. 1970 J. Mech. Phys. Solids 18, 319.

Maier, G. and HUECKEL, T. 1979  Int. J. Rock Mech. Miner. Sci. 16, 77.



1330 D. BiGoni and D. ZACCARIA

MANDEL, J. 1966 In Rheology and Soil Mechanics (edited by I.
KRAVTCHENKO and P. M. SIRIEYS), p. 58.
Springer, Berlin.

MELAN, E. 1938 Ing. Arch. 9, 116.
MROz, Z. 1963 J. Méc. 11, 21.
MROZ, Z. 1966 Arch. Mech. Stosowanej 18, 3.

NACAR, A., NEEDLEMAN, A. and 1989  Comput. Meth. appl. Mech. Engng 73, 235.
OrTIZ, M.

NEDDLEMAN, A. 1979 J. Mech. Phys. Solids 27, 231.

NEMAT-NASSER, S. 1983  J. appl. Mech. 50, 1114.

OGDEN, R. W. 1984 Non-linear Elastic Deformations. Ellis Horwood,

Chichester.

OrTiZ, M., LEROY, Y. and 1987  Comput. Meth. appl. Mech. Engng 61, 189.
NEEDLEMAN, A.

PEARSON, P. E. 1956 Q. appl. Math. 14, 133.

RaGHAVA, R. S. and 1973  Int. J. mech. Sci. 15, 967.
CADDELL, R. M.

RANIECKI, B. 1979  Bull. Acad. pol. Sci. Sér. sci. technol. 27, 391.

RANIECKI, B. and BrunNs, O. T. 1981 J. Mech. Phys. Solids 29, 153.

Ryznak, E. 1. 1987 [Izv. AN SSSR MTT (Mech. Solids) 22, 99.

RICE, J. R. 1976 In Theoretical and Applied Mechanics (edited by

W. T. KoITER), p. 207. North-Holland.
Rick, J. R. and RupnNIcki, J. W. 1980 Int. J. Solids Struct. 16, 597.
Rubpnickl, J. W. and Rice, J. R. 1975 J. Mech. Phys. Solids 23, 371.

ScHAEFFER, D. G. and 1990 In Nonlinear Evolution Equations That Change
SHEARER, M. Type (cdited by B. KEYriTZ and M. SHEARER).
Springer, New York.
SCHLEICHER, F. 1926 ZAMM 6, 199.

SpitziG, W. A., SOBER, R. J. and 1976  Metall. Trans. TA, 1703.
RicaMOND, O.

TRUESDELL, C. and NoLL, W. 1965 In Encyclopedia of Physics, Vol. 111/3 (edited by S.
FLOGGE). Springer, Berlin.

TVERGAARD, V. 1982 J. Mech. Phys. Solids 30, 399.

VARDOULAKIS, 1. 1976  Mech. Res. Commun. 3, 209.

VILLAGGIO, P. 1968 Meccanica 3, 46.

WHITNEY, W. and 1967 J. Polym. Sci. 16, 2981.

ANDREWS, R. D.

APPENDIX |

For a given vector n, the strong ellipticity condition (2.16) can be regarded as the condition
of positiveness of the function of g:

‘E
F@) =g Admg— & 2" g E[PIn (ALY

The critical hardening modulus H” is defined as the value of the hardening modulus cor-
responding to the semi-definite positiveness of F(g). Therefore, the critical hardening modulus
is determined through the solution of the problem

Find (H",g"): min F(g) = 0. (A1.2)
g

This problem is equivalent to the following problem:
Find (A, 8): min F(g) = 0 subject to (3.7). (A1.3)
g
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In fact, if (H",g") is a solution to (A1.2), then (H", ag") is a solution as well, for every o€ R.
Therefore (H" ag") with & = (H+ H,)/(g"-E[Q]n) is the (unique) solution to (A1.3). The
converse is trivial.

Problem (A1.3) admits the same solution as problem (3.6)—(3.7). This may be easily verified
by performing the derivative of the Lagrangean functions associated to problems (A1.3) and
(3.6)—(3.7). The obtained solutions differ for the values of the Lagrangean multipliers only.

APPENDIX 2. CONCAVITY OF m— L,(m) = L(m, ¢)

Functional (5.2), as a function of m only, can be writlen as follows:

L m) = G HRZHI — l R”l 2"" ! R t R
(/?( ) 21// i i 1 ( 1 i) 1 V( i”li) r
\’2 v
(I—=v)(1=2v) ' ) < gyt ) ( )

where indices (summation convention) denote components in the principal reference system
and the dependence on ¢ is implicit in R.
Concavity requires that

L,(Em +(1-{m")—¢L,(m")—(1=¢)L,(m") > 0, Véel0,1], Vm',m"e®. (A2.2)
Using (A2.1), inequality (A2.2) becomes

1

which is always satisfied.

1
_,c1=9 (Rm;—Rm)> 20,  V&e[0,1], (A23)



